Syracuse University

SURFACE

Electrical Engineering and Computer Science -

Technical Reports College of Engineering and Computer Science

8-1989

Embedding Meshes on the Star Graph

Sanjay Ranka
Syracuse University

Jhy-Chun Wang
Syracuse University, School of Computer and Information Science, jcwang@cs.uiuc.edu

Nangkang Yeh

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

6‘ Part of the Computer Sciences Commons

Recommended Citation

Ranka, Sanjay; Wang, Jhy-Chun; and Yeh, Nangkang, "Embedding Meshes on the Star Graph" (1989).
Electrical Engineering and Computer Science - Technical Reports. 60.
https://surface.syr.edu/eecs_techreports/60

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/60?utm_source=surface.syr.edu%2Feecs_techreports%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

7 D,,pw»w(&mwalc«hﬂﬂﬁa/m

CIS-89-9

EMBEDDING MESHES
ON THE STAR GRAPH

Sanjay Ranka
Jhy-Chun Wang
Nangkang Yeh

School of Computer and Information Science
Syracuse University
Syracuse, New York 13244-4100, U.S.A.
August 1989

SCHOOL OF COMPUTER
AND INFORMATION SCIENCE
SYRACUSE UNIVERSITY

Embedding Meshes on the Star Graph

Sanjay Ranka, Jhy-Chun Wang and Nangkang Yeh

Syracuse University

August 25, 1989

Abstract

We develop algorithms for mapping n-dimensional meshes on a star graph of degree n
with expansion 1 and dilation 3. We show that an n-degree star graph can efficiently
simulate an n-dimensional mesh.

Keywords and Phrases
Star graph, mesh, embedding, sorting

1 Introduction

One of the primary design considerations for a large multiprocessor system is the
topology of the interconnection network used for communication between processors.
Some of the important interconnection networks which have been studied so far are
hypercube, meshes, trees, mesh-of-trees and pyramids [HWAN84]. Hypercube is one
of the more popular general purpose networks due to its small degree, short diameter,
symmetry, optimal fault tolerant properties, embedding of other networks, and a fast
sorting algorithm [RANK®88] [AKERS8T7]. Akers, et al. [AKER87] presented a new
interconnection network ”star graph” as an alternative to hypercube. They showed
that with degree-n, (n+1)! nodes could be connected using a star graph as compared
to only 2" nodes for a hypercube. The diameter of star graph is asymptotically
superior to the hypercube. It has also been shown that the star graph is maximally
fault tolerant [AKERST7].

One of the important properties of any general interconnection networks is that
it should be able to embed other interconnection networks with low overheads. Most
of the problems, which utilize parallel processing, use n-dimensional matrices (n >
2) as one of the primary data structures. This is especially true in the areas of
numerical analysis, image processing, computer vision and pattern recognition. These
applications require operations which utilize data which is proximate from the point
of view of the mesh topology. Thus efficient embedding of n-dimension meshes is an
important feature of any general purpose interconnection network.

It has already been shown that meshes can be efliciently embedded in hypercubes
[SAAD88) [CHANSS]. In this paper we develop algorithms for mapping an (n — 1)-
dimensional mesh on a star graph of size N =2 %3 *4 % ... xn. This mapping has a
dilation 3 and expansion 1.

One of the important data movement operations on an SIMD n-dimensional mesh
is a unit route [NASS81]. In a unit route on an SIMD n-dimensional mesh, data can
be moved along any one of the n dimensions by each processor. This is one of the
primary operations used for development of almost all parallel algorithms on a mesh.
We show that our mapping can perform this operation efficiently on the star graph.

Thus most algorithms for the (n — 1)-dimensional mesh of size 2*3*4*---*n can
be efficiently simulated on the star graph of size N = n!. There have been a great deal
of research done on parallel algorithms on meshes [ATAL84], [NASS79], [NASS80],
[THOM77). However most of these algorithms assume n-dimensional meshes which
are equal in size along all the n dimensions. At this stage, it does not seem very
obvious that uniform meshes can be efficiently mapped on the star graph. We use the
results of Atallah [ATALS88] to give weak upper bounds on the mapping of uniform
meshes on the star graph.

The rest of the paper is described as follows. In section 2, we describe the star
graph and the model of computation. In section 3, we describe the embedding of
an n-dimensional mesh on an n degree star graph. In section 4 we show that this

embedding can be used efficiently to simulate a mesh on a star graph.

2 Model of Computation

A block diagram of an SIMD multicomputer is given in Figure 1. The features and
programming notations used to describe data movement operations on the star graph

are as follows:

1. There are N = n! nodes connected together via an "n-star graph”, S, (to be
described later). Each PE has a unique representation (a,—1a,-2 - - - @1a¢) which
is a permutation of (n—1n-2---3210) (t.e.,,a; # a;,1 # jand 0 < a; < n-1).
We shall use A(7) to refer to a register value in PE with a representation 7. The
local memory of each PE holds data only. Each PE is capable of performing
only the basic arithmetic operations.

2. There is a separate program memory and control unit. The control unit per-
forms instruction sequence, fetching, decoding. In addition, instructions and
masks are broadcasted by the control unit to the PEs for execution. An in-
struction mask is a boolean function used to select certain PEs to execute an
instruction. For example, in the instruction :

A) =A@+ (f)=y)

only PEs’ 1 satisfying the condition f(i) = y will execute the instruction.

o
Control Program
Unit Memory
] 1
Processing n
Element !
r
c
]
n
Memory 2
c
t
i
o
n
P . N
rocessing
" Element f
w
o
r
Kk
Memory

Figure 1: SIMD multicomputer

3. The topology of a 4-star graph is shown in Figure 2. An n-star graph, S,,
connects N = n! PEs. Each PE 7 = (an—;---ap), a permutation of (n — 1
n—2-.-3210), is connected to nodes (@i@Gn-2an-3" - i418n_18i-1---ag) (
0 <i<n-—2). Wewill use the notation 7} to represent these nodes.

The topology of a 2 * 3 * 4 mesh is shown in Figure 3. An m-dimensional
mesh M of size N = I} ¥ l; x--- % [, can be represented by an m-dimensional
array D(ln,lm_1,-++,l,) where [; is the size of the i** dimension. Each PE
d = (dm,dm-1,-,d1) is connected to PEs (dp,,---,d; £1,---,d;),1 < j <m,
provided they exist.

0123 3120
A B c D
2103 1023 2130 1320
1203 2013 1230 2310
E F
0213 3210
2301 1302
D A
3201 0321 3102 0312
0231 3021 0132 3012
F B c E
2031 1032

Figure 2: A star graph of degree 3

300 301
]
1
201 !
1 :
_1310 f---=311
- - /
000 210 t----1211 :
|
320 [-=- 321
bl
010 f - 221
020

Figure 3: A 2% 3 x4 mesh

4. Interprocessor assignments are denoted using the symbol « while intraprocessor
assignments are denoted using the symbol :=. Thus the assignment statement:

B(i®) « B(i)

implies that all processors transmit their message to neighbor along dimension
2.

5. In a unit route, data may be transmitted from one processor to another if it is
directly connected. We will assume two models of computation SIMD-A and
SIMD-B. In model SIMD-A each processor can transmit data along a particular
dimension 7, 1 <7 < n —1, in a unit route. In model SIMD-B each processor
can transmit data to any one neighbor in one unit route.

5

6. The asymptotic complexity of all our algorithms is determined by the number

of unit routes. Thus our complexity analysis will only count these.

Some of the important properties of the star graph are as follows [AKERS87],
[AKER&9]:

1. Each node is symmetrical to every other node.
2. The diameter k, of the star graph S, is [gﬂ;—llj .

3. Broadcasting can be performed on the star graph in at most 3(nlogn — %) unit

routes in a star graph S,.

4. A star graph is maximally fault tolerant.

3 Mapping

3.1 Definitions

A set of interconnected processors may be modeled as an undirected graph in which
each vertex denotes a unique processor and there is an edge between two vertices iff
the corresponding processors are directly connected. Let G and S be two undirected
graphs that model two sets of interconnected processors. For any undirected graph
G we use V(G) and E(G), respectively, to denote the vertices and edges in G. An
embedding of G into S is a mapping of V(G) into V(S) and of E(G) into simple
paths of S. We will denote this mapping from G to S by m. Thus any vertex z of G
is mapped to m(z) of S. The vertex mapping is such that each vertex of G is mapped
to a distinct vertex of S (1.e., m(z) # m(y), ¢ # y, where z,y € V(G)). Note that
for an embedding to exist |S| > |G|. Also, if S is connected and |S| > |G| then an
embedding always exists. As an example, consider the graphs G and S of Figure 4.
The vertex mapping(l — a,2 — b,3 — ¢,4 — d) and the edge to path mapping (
(1,2) — ab,(2,4) — bad,(4,3) — dac,(3,1) — ca) defines an embedding of G into S.

: : ()

3)y © © ©

()G ®S

Figure 4: Example of graphs

The ratio |S|/|G| is called the ezpansion. The dilation is defined as follows:

dilation = V(:E}gﬁ(a){length of the shortest path from m(z) to m(y)}

The congestion of any edge e of S is the number of paths (each path representing an
edge of G mapped to S) of G which contain e. The maximum of the congestions of all
edges of S is the congestion of the embedding. For the above example, the expansion
is 1 while the dilation and congestion are both 2. In the remainder of this section the
graph S will always be the graph corresponding to a star graph interconnection. S,
will denote the n-star graph. This graph has n! vertices and each vertex has degree
n—1.

3.2 Mapping Strategy

In this section, we describe a mapping of an (n — 1)-dimensional mesh (no wrap
arounds), D,, of size 2*3*4 % ---xn on a star graph S,. Since the number of nodes
in the both graphs are equal, we are considering a mapping of expansion 1.

Lemma 1: There is no dilation 1 embedding existing for D,, on S, for n > 2.

7

Proof: In any dilation 1 embedding the degree of a node in D,, should be less
than or equal to the degree of a node in S,,. A node in D, (namely (1,1,---,1)) can
have a degree (2n — 3). Thus there is no dilation 1 embedding of D, on S, when
2n-3>n—-1(orn>2). O

Let the mapping of a node (d,-;,dn-3,--,d;) in D,, be mapped on to (p(n — 1)
p(n — 2)---p(0)) node on a star graph (Thus the array p[0..n — 1] represents the
mapping). Assume that node (0,0,0---,0) gets mapped to (n —1n —2...210).
The algorithms for mapping any node of D, on S, and for inverse mapping any of
node of S, on D, are described in Figure 5 and Figure 6 respectively.

procedure CONVERT-D-S(d, n, p)
fori:=0ton—1do
q(z) :==1
end
fori:=1ton—1do
forj =1 tod(i) do
exchange ¢(7 — j) and ¢(i — j + 1)

end
end
fori:=1ton—-1do
p(q(i)) =i
end

end

Figure 5: Algorithm for mapping any node in D,, on S,

procedure CONVERT-S-D(p,n,d)
fori:=0ton—1do
q(%) := p(z)
end
fori:=n—11t01l do
if i > q(7) then
[d(5) =1 —q(7)
forji=i—1to1 do
if g(7) > i then g(j) := q(j) - 1
end |
else d(i1) :==0
end

end

Figure 6: Algorithm for mapping any node in S, on D,

Let (a b) represent the exchange of symbols @ and b. The algorithm in Figure 5
can be explained by Table 1. The row i represents the sequence of exchanges along

dimension z.

Sequence of exchanges
1 [(01)
(12)(01)

n;l .(n—2n—1) n-3n-2)-(23)(12)(01)

Table 1: Sequence of exchanges

Consider the mapping of (3,0,1) on S,. Since d; =1 a (0 1) exchange is performed
on (3 210)giving (320 1). In the next iteration since d; = 0 there is no need to
perform any exchange. In the next iteration dz = 3, thus we need to perform a (2 3)
exchange followed by a (1 2) exchange and a (0 1) exchange. This gives the following
sequence:

(23)(2301)

(12)(1302)

(01)(03.12)

Thus node (3,0,1) is mapped to node (0 3 1 2) on the star graph. The complexity of
the algorithm is O(n?).

The algorithm in Figure 6 can be seen as to reverse the sequence of exchanges in
Table 1 to rearrange (p(n—1)p(n—2)---p(0)) into (n—1 n—2---10). The difference
(operation d(z) := 7 — ¢(i)) means there are d(7) symbols greater than ¢(i) between
g(: — 1) and ¢(0), t.e., it must takes exact d(z) exchanges to rearrange 7 into ¢(z).

Consider the inverse mapping of (02 1 3) on D,,. Since p(3) =0,d(3)=3-0=3
and we need to perform a (0 1) exchange followed by (1 2) and (2 3) exchanges to get
p(3) = 3. This gives the following sequence:

(01)(1203)
(12)(2103)
(23)(3102)

Then p(2) =1, d(2) = 2—-1 =1 and a (1 2) exchange is performed on (3 1 0 2)
giving (320 1). Now p(1) =0,d(1) =1—-0=1 and a (0 1) exchange is performed
on (3 20 1) resulting in (3 21 0). Thus node (0 2 1 3) is mapped to node (3,1,1)
on the mesh. The complexity of this algorithm is also O(n?). Figure 7 describes the
mapping between V(D,) and V(S,).

10

Sa

S4

(0,0,0)
(0,0,1)
(0,1,0)
(0,1,1)
(0,2,0)
(0,2,1)
(1,0,0)
(1,0,1)
(1,1,0)
(1,1,1)
(1,2,0)
(1,2,1)

(3210)
(3201)
(3120)
(3102)
(3021)
(301 2)
(231 0)
(2301)
(2130)
(210 3)
(203 1)
(201 3)

(2,0,0)
(2,0,1)
(2,1,0)
(2,1,1)
(2,2,0)
(2,2,1)
(3,0,0)
(3,0,1)
(3,1,0)
(3,1,1)
(3,2,0)
(3,21)

(1320)
(1302)
(1230)
(1203)
(1032)
(1023)
0321)
0312)
0231)
021 3)
(0132)
(0123)

__—"(2310) —"1(2301)

- _—"|(0321)__~—"1

301
(0312)

200

(1320

(1302)

201 b—"1

101

-\

-

310
(0231))

000

(3210)

210 |---~

1¢ 230)9 (1203)

211 b1

1
]
]

311
(0213)

010 ¢

(3120)

-

q(2130)_—"1(2103)

\
\
pury
-
-

-

320
~l(0132)

-

(1032)

220 |---~

321
(0123)

(1023)

020
(3021)

L--"T1121

(2013)

--To21 }p—

(3012)

221 b—

Figure 7: Mapping of V(D) into V(S,)

11

Definition 1: Let 7 ;) denotes the node by exchanging symbols ¢ and j, ¢ # j,
0<1i,5<n-1o0f anoder.
Ezample: Let 7 = (314 20), then 733 = (214 3 0).

Lemma 2: The shortest distance between 7 and 7(;) is either 1 or 3.

Proof: If # = (i---) or (j---) the distance is easily seen to be 1. Without loss
of generality 7 = (k--+i-+-j-+-). Let ;= (i-+-k--j--)and mp = (j---k---3---).
Then one of the shortest path of 7 to =(; ;) is via 7; and 7, as the only intermediate
nodes. Thus the shortest distance between 7 and 7(; ;) in this case is 3. O

Definition 2: Let 7 = (a,—;---ao) be the node corresponding to the mesh node
(dn—1,dn—2,"--,d;). Let my and m;_ represent the nodes corresponding to mesh
nodes (dp-1,--dr+1,dk—1,*-+,d1) and (dn-1,-- - dx — 1,dg-1, - - d1), respectively (if
they exist).

Lemma 3: 7, and m,_ satisfy the following properties:
Tht = (Gno1"** Qk41WBk—1 * * - Qr41Gx Gy * * * Gg),

where a; = max { a;la; < ax,0 <t < k },and

Tk- = (@n-1"" " Ck418mak—1"** Bm41QkEm—1 """ Q0),

where a,, = min { a;|a; > a;,0 <t <k }

Thus 744 = (a0

and Th- = W(ak,am)

Proof: Let 7* denote the node corresponding to the node (0,0, --,0,dk, -+, d;).
From Table 1, dj implies taking the sequence of exchanges (k—1 k) (k—2k—1) ---
(rr+1)wherer=k—dy. Let ¥ =(n—1n—2---k+1r jr_y---r—1---Jo). mf,
requires one more exchange (r —1 r). Thus nf = 7rf, ey =(n—-1n—-2---k+1r—
1 jkc e o1+ o).

Let m(k) denote the symbol in the position k of 7 and n[k] denote the position of
symbol k in . e.g., 7*(k) = r and 7§, [r—1] = k. We make the following observation:

ift—d;>r,k+1<t<sandk+1<s<n-1(r=k—-d)

thenmp, =7f 4, k+1<t<s

This is true since there is no exchange (r r+1) (or (r—1 r)) among these sequences

of exchanges along t dimensions. Hence we only concentrate on the following cases:

12

s—d, <7 Uk), k+1<s<n-1

We will use mathematical induction to prove our result. Let d; be the first di-
mension such that s — d, < 7*~1(k). Let (r = n*~1(k)).

Thus nj7! = Ly ,1_1) when d, is the first dimension such that s — d, < 7*~1(k).
When s —d, =r:

(k) =r+1, 73 (k) =r—1,

r=1=n"r - 1), 7l [r + 1] =73 r] == r - 1]
Thus 7}y = 7, 41,-1) and 7°[r] = s > k.
When s — d, < r:

wo(k) =7 +1, 7, (k) =,

w[r] = 77 r — 1] = mP], 7y [r + 1] = M)
Thus 73y = 741 0y-

Assume d, be the m** dimension such that u — d, < 7*!(k) and 7}, = =f,
where z > y, n*(k) = z,m%[y] < kand 7*[t] > k, y+1 <t <z -1

Let d, be the (m + 1)** dimension such that v — d, < #*~}(k).

Thus 737" = 77y, 777N (k) =z, 77 y] < kand 77 [t] > k, y+ 1<t <2 -1
Consider the following cases:
When y <v—-d, <z:

R(F) =2 +1, 7t () =,

wfy] = 77yl mRyle + 1] = mi o] = 707 y]
Thus 7}, = 78,41, and T[] = 77t = 1] > k, v —d, <t L z; [t = 7°7'[t] > &,
y<t<wv-—d,;rv—d,)=v.
Whenv ~-d, <y:

m(k)=z+1, 7j (k)=y+1,

mly + 1] = 77 y] = =i z], mple + 1) = 71 2)
Thus 7}, = 7041 441) and [t =a*" Mt~ 1] >k, y+2<t <.

From the above 7y, = 7(,, q,) and satisfies the condition of the lemma. The proof
of 7;_ is similar. D

As an example, consider 7=(2 3 4 0 1) (corresponding to node (2,1,0,1)), then

13

734 =(21403) and 73— =(24301). And the edge to path mapping is ({(2,1,0,1),
(2,2,0,1)) - (23401)(32401)(12403)(21403),((2,1,0,1),(2,0,0,1)) — (2
3401)(32401)(42301)(24301)).

Theorem 4: The above embedding, m, of an (n — 1)-dimensional mesh D, on S,
has a dilation 3.

Proof: From lemma 2 and lemma 3. O

From theorem 4 we know that the maximum distance between any two neighboring
nodes in D,, are mapped onto nodes such that distance between the mapped nodes
in S, is at most 3. A unit route for data movement in an SIMD-A mesh is defined
to be the movement of data along either the positive or negative direction along
dimension ¢z, 1 < 1 < n —1, by all the PE’s in the mesh. This definition is similar
to the definition of a unit route on the star graph defined in the previous section.
The following lemma shows that a unit route of an SIMD-A mesh can be simulated
on an SIMD-B star graph in a constant number of unit routes. Thus any algorithm
which can be computed in T(n) communication steps on an SIMD-A mesh can be
completed in at most 37(n) communication steps on the SIMD-B star graph.

Lemma 5: Let d; and d; represent two distinct nodes in D,,. Let 7! = m(d,) and

w2

= m(d;) corresponding to the nodes on S,. Then the path from 7! to «}, (if 7},
exists) is not blocked at any node by a path from 72 to n7,_ (if 72, exists).

Proof: We assume that 7}, and 77, exist. Since d; and d; are distinct 7! # #2. In
the case k = n—1 the two paths are, (7' — 7, _,).) and (7> — #f _,)), respectively.
Since 7! # 72 the paths do not block each other.

Consider the case k < (n —1). Let the path between 7! and i, be (7! — X; —
Y, — =},) and the path between #? and #?, be (x? — X, — ¥, — =xZ.). Since
7t # 7%, 7wk, # 72, Thus (71X,) # (7%Y;) and (Yi7p,) # (Yon2,). We have to now
show (X 1Y)) # (X.Y2). Clearly X; # X, as the first edge represents exchange of the
k* symbol with the 1** symbol and #! # 72 (Similarly Y; # Y; because 7}, # 7Z.).
So (X1Y:) # (X,Y2). Thus the path from 7? to 72, does not block the path from !
tomi,. O

14

Theorem 6: A unit route of an SIMD-A mesh, D,, can be performed in 3 unit
routes on an SIMD-B, S,..

Proof: From theorem 4 and lemma 5. O

4 Embedding Uniform Meshes

In the previous section, we described an embedding of a 2% 3 x 4--- * n mesh on
S,. Thus any algorithm which can be executed in T(n) communication steps on an
SIMD-A mesh can be executed on the SIMD-B star graph in O(T'(n)) units of time.
We will assume the SIMD-A model for the mesh and SIMD-B model for the star
graph for the rest of this section. The results can be easily derived for the SIMD-A
model of the star graph by multiplying with a factor of O(n).

Most previous algorithms for the mesh have been designed assuming all the di-
mensions are of equal length. We will refer to them as uniform meshes. Let U denote
a d-dimensional uniform mesh of N processors, z.e., U is an NY/4 N1/d 5 ... 5 NV/d
mesh. Let R denote an Iy x I *-- - *I; mesh when IIZ; I; = N. The following theorem
by Atallah [ATALSS] shows that R can efficiently simulate U when d = O(1).

Theorem 7: [ATALS8] If d = O(1), then mesh R can simulate every step of mesh
U in O((max; I;)/N/?) steps.

Since N = n!, using Stirling’s approximation we have
N/ (n-1) — (n!)ll(n—l)

~ (vV2mn(n/e))/ o)
— (n/e)(27r)1/2(n—1)n1/2(n-1)(n/e)l/(n-l)
= 0(n)

The above theorem may suggest that R (and hence the star graph) can simulate a
uniform meshes efficiently (n/N'/* = O(1)). However the above theorem assumes
d = O(1). The following theorem modifies the above theorem to take d in account.

Theorem 8: Mesh R can simulate every step of mesh U in O((max; 1;)2¢/N/?)
steps.

15

Proof: The proof follows from the proof of theorem 7 giving in [ATAL8S8]. O

Using theorem 8 the number of steps required to simulate an N = (N)Y/(~1 x
(N)Y/=D x...x(N)Y/=1) mesh on an N = 2+ 34 - --*n mesh requires in the worst
case O(2" 'n/NV/("-1)) =0(2") =O(N™/ &N steps. This can be approximated by
O(N/logn+log; e/log? n) yging Stirling’s approximation and neglecting the lower order
terms in the exponent.

Theorem 9: Any step of an (n — 1)-dimensional uniform mesh of size N¥/("~1) «
NY=1) ...« NV/("=1) can be completed on a star graph in O(N™/1%€2 V) steps.
Proof: From theorem 7 and theorem 8. O

For the same number of processors it is typical to expect a higher dimensional mesh
to perform better than a lower dimensional mesh. This is due to smaller diameter
and higher degree of each node. Let F(N,d) be the number of steps required to solve
a problem on an SIMD-A d-dimensional mesh with N processors. Thus by theorem
8 it can be solved on an SIMD-B star graph in O((max; [;)2¢/N'/?) x F(N,d)) time
(N =104 =*ly*---x1;). This suggest that a dimension lower than n may be performed
to simulate a uniform mesh algorithm on the star graph (see Appendix).

5 Conclusion

In this paper we have developed an efficient mapping of the mesh D, on the star graph
Sy. We have also shown that S, can efficiently simulate D,,. The analysis in this paper
indicates that the algorithms developed for uniform meshes may not be efficiently
simulated on the star graph. Thus a sorting algorithm which can be executed in
O(d®*N'/4) time on a d-dimensional mesh [NASS79] may require O(nN/"N1/lgn)
time on the star graph. Further most of the sorting algorithms which sort an N1/¢ %
NV4...x N'? mesh requires N'/¢ to be power of 2 ([ATAL84], [NASS79], [NASS80],
[THOMT77]) as they used divide and conquer. When N'/? is not a power of 2, then
a factor of (2¢) needs to be multiplied to the time. When d = O(1), this can be
considered as a constant factor. However while considering the sorting on an N =
2%3%4 - - -¥n mesh, d # O(1) and hence those algorithms cannot be efficiently executed.

16

Shear sort ([SCHE89]) is one method which does not use divide and conquer, but it
does not seem that it can be easily extended to dimensions greater than 2. We are
considering the problem of sorting on a rectangular mesh under the above conditions
and have discovered an algorithm which is useful for sorting on the star graph.

Appendix

It is easy to see that an N = 2% 3 *4---*n mesh can simulate a d-dimensional mesh
of size N =1, %l %l3%--- %13 in O(1) time such that:

L=nx(n—d)x(n—2d)*---%(n— [n/d—1]d)
I, = (n=1)x((n=1)—d)*((n—1)—2d)*- - -*x((n—1)—[n/d—1]d)
I = (n—=2)x((n—2)—d)*((n—2)—2d)*- - -*((n—2)—[n/d—1]d)

ls = (= (d=1)*{(n—(d—1))=d)s- - -+((n=(d—1)) = [n/d~1]d)

Further 1;/1; < n(1 + n mod d) < nd. Thus I; < d(N'/4n'-1/4)_ Consider a problem
of size N that can be completed in F(N,d) time on a d-dimensional mesh. Thus a
d-dimensional mesh (N = N¥/4 x N'/9 % ... x N*/¢) can be simulated on a star graph
in O(dN/4p1-1/42¢ NV « F(N,d)) = O(d2¢ N x F(N,d)) (n ~ N'/%) time.

Let us look at an algorithm that requires O(N'/?) time to compute on a d-
dimensional mesh. Thus it can be completed in O(N'¢d2¢?N'/4) time on a star
graph. In this case the optimal dimension for direct simulation can be shown to be
(=~ Tog N) which gives a total time of O(v/log NN¢/ \/m) which can be shown to
be asymptotically superior to the time required by simulating the sorting algorithm
on an n-dimensional uniform mesh on the star graph. The above conversion from
(n — 1) to d-dimensional mesh is not the best possible. We would like achieve this so
that the mesh is as uniform as possible. We leave this as an open problem.

17

6 Bibliography

[AKERS7]S. B. Akers, D. Harel and B. Krishnamurthy, ” The star graph: an attrac-
tive alternative to the n-cube,” Proceedings of 1987 International Conference
on Parallel Processing, pp. 393-400.

[AKERS9] S. B. Akers and B. Krishnamurthy, A group-network theoretic model
for symmetrical interconnection network,” IEEFE transaction on Computers, vol.
38, no. 4, pp. 555-566, Apr. 1989.

[ATAL84 | M. J. Atallah and S. R. Kosaraju, ”Graph problems on a mesh-connected
processor array,” Journal of ACM, vol. 31, pp. 649-667, July 1984.

[ATALS88 | M. J. Atallah, ”On multidimensional arrays of processors,” IEEE Trans-
action on Computers, vol. 37, no. 10, pp. 1306-1309, Oct. 1988.

[CHANSS8] M. Y. Chan and F. Y. L. Chin, "On embedding rectangular grids in
hypercubes,” IEEE Transaction on Computers, vol. 37, no. 10, pp. 1285-1288,
Oct. 1988.

[HWANS84 | K. Hwang and F. A. Briggs, ”Computer architecture and parallel pro-
cessing,” McGraw Hill, New York, 1984.

[NASS79] D. Nassimi and S. Sahni, "Biotonic sort on a mesh-connected parallel
computer,” IEEE Transaction on Computers, vol. ¢-27, pp. 2-7, Jan. 1979.

[NASS80] D. Nassimi and S. Sahni, "Finding connected components and connected
ones on a mesh-connected parallel computer,” SIAM Journal of Computing, vol.
9, no. 4, pp.744-757, Nov. 1980.

[NASS81] D. Nassimi and S. Sahni, "Data broadcasting in SIMD computers,” IEEE
Transaction on Computers, vol. ¢-30, no. 2, pp. 101-106, Feb. 1981.

[RANKSS8] S. Ranka, S. Sahni and Y. J. Won, "Programming a hypercube multi-
computer,” IEEFE Software, pp. 67-77, Sep. 1988.

18

[SAADS88] Y. Saad and M. H. Schults, ”Topological properties of hypercubes,”
IEEFE Transaction on Computers, vol. 37, no. 7, pp. 867-872, July 1988.

[SCHES9] I. D. Scherson, S. Sen and Y. Ma, ”Two nearly optimal sorting algorithms
for mesh-connected processor array using shear-sort,” Journal of Parallel and
Distributed Computer, vol. 6, pp. 151-165, Apr. 1989.

[THOMT7 | C. D. Thompsom and H. T. Kung, ”Sorting on a mesh-connected par-
allel computers,” Communication of the ACM, vol. 20-4, no. 4, pp. 263-271,
Apr. 1977.

19

	Embedding Meshes on the Star Graph
	Recommended Citation

	SU-CIS-89-09_001c
	SU-CIS-89-09_002c
	SU-CIS-89-09_003c
	SU-CIS-89-09_004c
	SU-CIS-89-09_005c
	SU-CIS-89-09_006c
	SU-CIS-89-09_007c
	SU-CIS-89-09_008c
	SU-CIS-89-09_009c
	SU-CIS-89-09_010c
	SU-CIS-89-09_011c
	SU-CIS-89-09_012c
	SU-CIS-89-09_013c
	SU-CIS-89-09_014c
	SU-CIS-89-09_015c
	SU-CIS-89-09_016c
	SU-CIS-89-09_017c
	SU-CIS-89-09_018c
	SU-CIS-89-09_019c
	SU-CIS-89-09_020c
	SU-CIS-89-09_021c
	SU-CIS-89-09_022c

