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Abstract 

We develop algorithms for mapping n-dimensional meshes on a star graph of degree n 

with expansion 1 and dilation 3. We show that an n-degree star graph can efficiently 

simulate an n-dimensional mesh. 
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1 Introduction 

One of the primary design considerations for a large multiprocessor system is the 

topology of the interconnection network used for communication between processors. 

Some of the important interconnection networks which have been studied so far are 

hypercube, meshes, trees, mesh-of-trees and pyramids [HWAN84). Hypercube is one 

of the more popular general purpose networks due to its small degree, short diameter, 

symmetry, optimal fault tolerant properties, embedding of other networks, and a fast 

sorting algorithm [RANK88] [AKER87]. Akers, et al. [AKER87] presented a new 

interconnection network "star graph" as an alternative to hypercube. They showed 

that with degree-n, (n + 1)! nodes could be connected using a star graph as compared 

to only 2n nodes for a hypercube. The diameter of star graph is asymptotically 

superior to the hypercube. It has also been shown that the star graph is maximally 

fault tolerant [AKER87). 

One of the important properties of any general interconnection networks is that 

it should be able to embed other interconnection networks with low overheads. Most 

of the problems, which utilize parallel processing, use n-dimensional matrices (n :;::::: 
2) as one of the primary data structures. This is especially true in the areas of 

numerical analysis, image processing, computer vision and pattern recognition. These 

applications require operations which utilize data which is proximate from the point 

of view of the mesh topology. Thus efficient embedding of n-dimension meshes is an 

important feature of any general purpose interconnection network. 

It has already been shown that meshes can be efficiently embedded in hypercubes 

[SAAD88] [CHAN88). In this paper we develop algorithms for mapping an (n- I)

dimensional mesh on a star graph of size N = 2 * 3 * 4 * · · · * n. This mapping has a 
dilation 3 and expansion 1. 

One of the important data movement operations on an SIMD n-dimensional mesh 

is a unit route [NASS81). In a unit route on an SIMD n-dimensional mesh, data can 

be moved along any one of the n dimensions by each processor. This is one of the 

primary operations used for development of almost all parallel algorithms on a mesh. 

We show that our mapping can perform this operation efficiently on the star graph. 
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Thus most algorithms for the ( n - 1 )-dimensional mesh of size 2 * 3 * 4 * · · · * n can 

be efficiently simulated on the star graph of size N = n!. There have been a great deal 

of research done on parallel algorithms on meshes [ATAL84], [NASS79], [NASS80], 

[THOM77]. However most of these algorithms assume n-dimensional meshes which 

are equal in size along all the n dimensions. At this stage, it does not seem very 

obvious that uniform meshes can be efficiently mapped on the star graph. We use the 

results of Atallah [ATAL88] to give weak upper bounds on the mapping of uniform 

meshes on the star graph. 

The rest of the paper is described as follows. In section 2, we describe the star 

graph and the model of computation. In section 3, we describe the embedding of 

an n-dimensional mesh on an n degree star graph. In section 4 we show that this 

embedding can be used efficiently to simulate a mesh on a star graph. 

2 Model of Computation 

A block diagram of an SIMD multicomputer is given in Figure 1. The features and 

programming notations used to describe data movement operations on the star graph 

are as follows: 

1. There are N = n! nodes connected together via an "n-star graph", Sn (to be 

described later). Each PE has a unique representation (an_1an_2 • • • a1a0 ) which 

is a permutation of (n-1 n-2 · · ·3 21 0) (i.e., ai # aj, i # j and 0 ~ ai ~ n-1). 
We shall use A( rr) to refer to a register value in PE with a representation rr. The 

local memory of each PE holds data only. Each PE is capable of performing 

only the basic arithmetic operations. 

2. There is a separate program memory and control unit. The control unit per

forms instruction sequence, fetching, decoding. In addition, instructions and 

masks are broadcasted by the control unit to the PEs for execution. An in

struction mask is a boolean function used to select certain PEs to execute an 

instruction. For example, in the instruction : 
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A(i) := A(i) + 1, ( f(i) = y ) 

only PEs' i satisfying the condition f(i) = y will execute the instruction. 
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Figure 1: SIMD multicomputer 
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3. The topology of a 4-star graph is shown in Figure 2. An n-star graph, Sn, 
connects N = n! PEs. Each PE 1r = (an-I··· a0), a permutation of (n - 1 

n - 2 · · ·3 2 1 0), is connected to nodes (aian-2an-3 · · · ai+Ian-Iai-1 · · · ao ) ( 
0 :5 i :5 n- 2 ). We will use the notation 7r(i) to represent these nodes 

The topology of a 2 * 3 * 4 mesh is shown in Figure 3. An m-dimensional 

mesh M of size N = /1 * /2 * · · · * lm can be represented by an m-dimensional 
array D(lm, lm-1!" · ·, 11 ) where li is the size of the ith dimension. Each PE 

d = (dm, dm-l, · · ·, d1) is connected to PEs (dm, · · ·, dj ± 1, · · ·, d1 ), 1 :5 j :5 m, 
provided they exist. 
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Figure 2: A star graph of degree 3 
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Figure 3: A 2 * 3 * 4 mesh 

4. Interprocessor assignments are denoted using the symbol +- while intraprocessor 

assignments are denoted using the symbol :=. Thus the assignment statement: 

B(iC2>) +- B(i) 

implies that all processors transmit their message to neighbor along dimension 

2. 

5. In a unit route, data may be transmitted from one processor to another if it is 

directly connected. We will assume two models of computation SIMD-A and 

SIMD-B. In model SIMD-A each processor can transmit data along a particular 
dimension i, 1 < i < n- 1, in a unit route. In model SIMD-B each processor 
can transmit data to any one neighbor in one unit route. 
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6. The asymptotic complexity of all our algorithms is determined by the number 

of unit routes. Thus our complexity analysis will only count these. 

Some of the important properties of the star graph are as follows [AKER87L 

[AKER89]: 

1. Each node is symmetrical to every other node. 

2. The diameter kn of the star graph Sn is l3<n;t> J. 

3. Broadcasting can be performed on the star graph in at most 3( n log n - ~) unit 

routes in a star graph Sn. 

4. A star graph is maximally fault tolerant. 

3 Mapping 

3.1 Definitions 

A set of interconnected processors may be modeled as an undirected graph in which 

each vertex denotes a unique processor and there is an edge between two vertices iff 

the corresponding processors are directly connected. Let G and S be two undirected 

graphs that model two sets of interconnected processors. For any undirected graph 

G we use V(G) and E(G), respectively, to denote the vertices and edges in G. An 

embedding of G into S is a mapping of V(G) into V(S) and of E(G) into simple 

paths of S. We will denote this mapping from G to S by m. Thus any vertex x of G 

is mapped to m( x) of S. The vertex mapping is such that each vertex of G is mapped 

to a distinct vertex of S (i.e., m(x) =/:- m(y), x =/:- y, where x,y E V(G)). Note that 

for an embedding to exist lSI ~ IGI. Also, if S is connected and lSI ~ IGI then an 

embedding always exists. As an example, consider the graphs G and S of Figure 4. 

The vertex mapping( I -+ a, 2 -+ b, 3 -+ c, 4 -+ d) and the edge to path mapping ( 

(1, 2)-+ ab, (2,4)-+ bad, (4, 3)-+ dac, (3, 1)-+ ca) defines an embedding of G into S. 
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(a)G (b)S 

Figure 4: Example of graphs 

The ratio ISI/IGI is called the expansion. The dilation is defined as follows: 

dilation= max {length of the shortest path from m(x) to m(y)} 
Y(r,y)EE(G) 

The congestion of any edge e of S is the number of paths (each path representing an 

edge of G mapped to S) of G which contain e. The maximum of the congestions of all 

edges of S is the congestion of the embedding. For the above example, the expansion 

is 1 while the dilation and congestion are both 2. In the remainder of this section the 

graph S will always be the graph corresponding to a star graph interconnection. Sn 
will denote the n-star graph. This graph has n! vertices and each vertex has degree 

n-1. 

3.2 Mapping Strategy 

In this section, we describe a mapping of an (n - I)-dimensional mesh (no wrap 

arounds), Dn, of size 2 * 3 * 4 *···*non a star graph Sn. Since the number of nodes 

in the both graphs are equal, we are considering a mapping of expansion 1. 

Lemma 1: There is no dilation 1 embedding existing for Dn on Sn for n > 2. 
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Proof: In any dilation 1 embedding the degree of a node in Dn should be less 

than or equal to the degree of a node in Sn. A node in Dn (namely (1, 1, · · ·, 1 )) can 

have a degree (2n- 3 ). Thus there is no dilation 1 embedding of Dn on Sn when 

2n - 3 > n - 1 (or n > 2). D 

Let the mapping of a node ( dn-b dn_ 2, • • • , dt) in Dn be mapped on to (p( n - 1) 
p(n - 2) · · · p(O)) node on a star graph (Thus the array p[O .. n - 1] represents the 

mapping). Assume that node (0, 0, 0 · · ·, 0) gets mapped to (n- 1 n- 2 · · · 2 1 0). 
The algorithms for mapping any node of Dn on Sn and for inverse mapping any of 

node of Sn on Dn are described in Figure 5 and Figure 6 respectively. 

procedure CONVERT-D-S(d, n,p) 

for i := 0 to n - 1 do 

end 

q(i) := i 
end 

for i := 1 to n - 1 do 

for j := 1 to d(i) do 

exchange q(i- j) and q(i- j + 1) 

end 

end 

for i := 1 to n - 1 do 

p(q(i)) := i 
end 

Figure 5: Algorithm for mapping any node in Dn on Sn 

8 



procedure CONVERT-S-D(p, n, d) 

for i := 0 to n - 1 do 

end 

q(i) := p(i) 
end 

for i := n - 1 to 1 do 

if i > q(i) then 

[ d(i) := i- q(i) 
for j := i- 1 to 1 do 

if q(j) ~ i then q(j) := q(j) - 1 

end) 

else d(i) := 0 

end 

Figure 6: Algorithm for mapping any node in Sn on Dn 

Let (a b) represent the exchange of symbols a and b. The algorithm in Figure 5 

can be explained by Table 1. The row i represents the sequence of exchanges along 

dimension i. 

z Sequence of exchanges 

1 (0 1) 
2 (1 2) (0 1) 

. . 
n-1 (n- 2 n -1) (n- 3 n- 2)· · ·(2 3) (1 2) (0 1) 

Table 1: Sequence of exchanges 
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Consider the mapping of (3, o, 1) on S4 • Since d1 = 1 a (0 1) exchange is performed 

on (3 2 1 0) giving (3 2 0 1). In the next iteration since d2 = 0 there is no need to 

perform any exchange. In the next iteration d3 = 3, thus we need to perform a (2 3) 

exchange followed by a (1 2) exchange and a (0 1) exchange. This gives the following 

sequence: 

(2 3) (2 3 0 1) 
(1 2) (1 3 0 2) 

(0 1) (0 3.1 2) 

Thus node (3,0,1) is mapped to node (0 3 1 2) on the star graph. The complexity of 

the algorithm is O(n2). 

The algorithm in Figure 6 can be seen as to reverse the sequence of exchanges in 

Table 1 to rearrange (p(n -1 )p(n- 2) · · · p(O)) into (n -1 n- 2 · · ·1 0). The difference 

(operation d(i) := i- q(i)) means there are d(i) symbols greater than q(i) between 

q(i- 1) and q(O), i.e., it must takes exact d(i) exchanges to rearrange i into q(i). 
Consider the inverse mapping of (0 2 1 3) on Dn. Since p(3) = 0, d(3) = 3- 0 = 3 

and we need to perform a (0 1) exchange followed by (1 2) and (2 3) exchanges to get 

p(3) = 3. This gives the following sequence: 

(0 1) (1 2 0 3) 

(1 2) (2 1 0 3) 

(2 3) (3 1 0 2) 
Then p(2) = 1, d(2) = 2- 1 = 1 and a (1 2) exchange is performed on (3 1 0 2) 

giving (3 2 0 1 ). Now p(1) = 0, d(1) = 1 - 0 = 1 and a (0 1) exchange is performed 

on (3 2 0 1) resulting in (3 2 1 0). Thus node (0 2 1 3) is mapped to node (3,1,1) 

on the mesh. The complexity of this algorithm is also O(n2). Figure 7 describes the 

mapping between V(D4 ) and V(S4 ). 
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010 .... ~ 

(3120) 

020 ...... ~ 
(3021) (3012) 

D4 s4 D4 s4 
(0,0,0) (3 2 1 0) (2,0,0) (1 3 2 0) 
(0,0,1) (3 2 0 1) (2,0,1) (1 3 0 2) 
(0,1 ,0) (3 1 2 0) (2,1,0) (1 2 3 0) 
(0,1,1) (3 1 0 2) (2,1,1) (1 2 0 3) 
(0,2,0) (3 0 2 1) (2,2,0) (1 0 3 2) 
(0,2,1) (3 0 1 2) (2,2,1) (1 0 2 3) 
(1 ,0,0) (2 3 1 0) (3,0,0) (0 3 2 1) 
(1 ,0,1) (2 3 0 1) (3,0,1) (0 3 1 2) 
(1,1,0) (2 1 3 0) (3,1,0) (0 2 3 1) 
(1,1,1) (2 1 0 3) (3,1,1) (0 2 1 3) 
(1,2,0) (2 0 3 1) (3,2,0) (0 1 3 2) 
(1,2,1) (2 0 1 3) (3,2 1) (0 1 2 3) 

Figure 7: Mapping of V(D4 ) into V(S4 ) 
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Definition 1: Let 'lr(iJ) denotes the node by exchanging symbols i and j, i # j, 

0 ::5 i, j ::5 n - 1 of a node 1r. 

Example: Let 1r = (3 1 4 2 0), then '1r(2,a) = (2 1 4 3 0). 

Lemma 2: The shortest distance between 1r and 'lr(i,j) is either 1 or 3. 

Proof: If 1r = ( i · · · ) or (j · · · ) the distance is easily seen to be 1. Without loss 

of generality 1r = (k ... i ... j .. ·). Let 1r1 = (i ... k ... j .. ·) and 1r2 = (j ... k ... i .. ·). 

Then one of the shortest path of 1r to 'lr(iJ) is via 1r1 and 1r2 as the only intermediate 

nodes. Thus the shortest distance between 1r and 'lr(i,j) in this case is 3. D 

Definition 2: Let 1r = ( an_1 · · · a0 ) be the node corresponding to the mesh node 

( dn-b dn_ 2 , • • • , di). Let 'lrk+ and 'lrk- represent the nodes corresponding to mesh 

nodes (dn._1, · · · dk + 1, dk-1, · · ·, d1) and (dn.-1, · · · dk -1, dk-1, · · · di), respectively (if 

they exist). 

Lemma 3: 1rk+ and 'lrk- satisfy the following properties: 

'lrk+ = (an_1 · · · ak+Ialak-1 · · · a,+Iaka,_1 · · · a0 ), 

where a, = max { atlat < ak, 0 < t < k },and 

'lrk- = (an-1 · · · ak+1amak-1 · · · am+1akam-1 · · · ao), 
where am =min { atlat > ak,O ::5 t < k} 

Thus 'lrk+ = '1r(at,a1) 

and 'lrk- = 'lr(at,llm) 
Proof: Let 1rk denote the node corresponding to the node (0, 0, · · ·, 0, dk, · · ·, d1). 

From Table 1, dk implies taking the sequence of exchanges (k -1 k) (k- 2 k- 1) · · · 

(r r + 1) where r = k- dk. Let 1rk = (n -1 n- 2 .. · k + 1 r ik-1 · .. r -1· .. io). 1rZ+ 

requires one more exchange (r -1 r). Thus 1rZ+ = 1r~ ,._1) = (n -1 n- 2 · · · k + 1 r-

1 ik-1 · · · r · · · io). 
Let 1r(k) denote the symbol in the position k of 1r and 1r[k] denote the position of 

symbol kin 1r. e.g., 1rk(k) =rand 'lr~+[r-1] = k. We make the following observation: 

if t- dt > r, k + 1 ::5 t <sand k + 1 ::5 s < n -1 (r = k- dk) 

then 'Jfi+ = 1ft,. r-1)' k + 1 ::5 t < s 
This is true since there is no exchange ( r r+ 1) (or ( r -1 r)) among these sequences 

of exchanges along t dimensions. Hence we only concentrate on the following cases: 
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s- d8 ~ 7r 8 - 1(k), k + 1 ~ s ~ n- 1. 

We will use mathematical induction to prove our result. Let d8 be the first di

mension such that s- d8 ~ 7r"-1(k). Let (r = 7r"-1 (k)). 

Thus 7rk+1 = 7r(;;_1 ) when d, is the first dimension such that s- d, ~ 7r 8 - 1 (k). 

When s - d, = r : 

1r"(k) = r + 1, 1rk+(k) = r- 1, 

7r 8 [r- 1] = 7r 8 - 1 [r- 1], 7rk+[r + 1] = 7rk+1 [r] = 7r8 - 1 [r -1] 
Thus 7rk+ = -n:(r+I r-l) and 7r 8 [r] = s > k. 
When s - d8 < r: 

1r"(k) = r + 1, 7rk+(k) = r, 
7rs[r] = 7rs-l[r- 1] = 7rk+l[r], 7rk+[r + 1] = 7rk+l[r] 

Thus 7rk+ = 7r{r+l r)· 
Assume du be the mth dimension such that u- du ~ 1ru-1(k) and 7rk+ = 7r(xy) 

where x > y, 1ru(k) = x,7ru[y] < k and 7ru[t] > k, y + 1 ~ t ~ x -1. 

Let dv be the (m + l)th dimension such that v- dv ~ 7rv-1(k). 
Thus 7rv-l = 7rv-l 7rv-l (k) = X 7rv-l [y] < k and 7rv-l [t] > k y + 1 < t < X - 1 k+ (x y)' ' ' - - · 

Consider the following cases: 

When y < v - dv ~ X : 

1rv(k) =X+ 1, 7rk+(k) = y, 
1rv[y] = 7rv-l[y], 1l"k+[x + 1] = 7ri;+l[x) = 7rv-1[y] 

Thus 1ri:+ = 7r(x+l y) and 1rv[t] = 1rv-1[t- 1) > k, v- dv < t ~ x; 1rv[t] = 7rv- 1[t) > k, 

Y < t < V - dv; 7r v [ V - dv] = V. 

When v - dv ~ y: 

1rv(k) =X+ 1, 1rk+(k) = Y + 1, 

7rv[y + 1] = 7rv-l[y) = 7ri:+l[x], 7rk+[x + 1] = 7ri:+l[x). 
Thus 7rk+ = 7r(x+I y+l)' and 7rv[t) = 7rv-l[t- 1] > k, y + 2 ~ t ~ x. 

From the above 7rk+ = 1l"(a,.,a,) and satisfies the condition of the lemma. The proof 

of 7rk- is similar. 0 

As an example, consider 7r=(2 3 4 0 1) (corresponding to node (2,1,0,1)), then 
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7r3+ =(2 1 4 0 3) and 7r3_ =(2 4 3 0 1). And the edge to path mapping is (((2,1,0,1), 

(2,2,0,1)) -+ (2 3 4 0 1) (3 2 4 0 1) (1 2 4 0 3) (2 1 4 0 3), ((2,1,0,1),(2,0,0,1)) -+ (2 

3 4 0 1) (3 2 4 0 1) (4 2 3 0 1) (2 4 3 0 1)). 

Theorem 4: The above embedding, m, of an ( n - 1 )-dimensional mesh Dn on Sn 
has a dilation 3. 

Proof: From lemma 2 and lemma 3. D 

From theorem 4 we know that the maximum distance between any two neighboring 

nodes in Dn are mapped onto nodes such that distance between the mapped nodes 

in Sn is at most 3. A unit route for data movement in an SIMD-A mesh is defined 

to be the movement of data along either the positive or negative direction along 

dimension i, 1 < i :5 n- 1, by all the PE's in the mesh. This definition is similar 

to the definition of a unit route on the star graph defined in the previous section. 

The following lemma shows that a unit route of an SIMD-A mesh can be simulated 

on an SIMD-B star graph in a constant number of unit routes. Thus any algorithm 

which can be computed in T(n) communication steps on an SIMD-A mesh can be 

completed in at most 3T(n) communication steps on the SIMD-B star graph. 

Lemma 5: Let d1 and d2 represent two distinct nodes in Dn. Let 1r1 = m(dt) and 

1r2 = m(d2) corresponding to the nodes on Sn. Then the path from 1r1 to 1rl+ (if 1l'l+ 
exists) is not blocked at any node by a path from 1r2 to 1rl+ (if 1rl+ exists). 

Proof: We assume that 11'1+ and 1l'l+ exist. Since d1 and d2 are distinct 1r1 =/= 11'2 • In 

the case k = n-1 the two paths are, (11'1 -+ 7rln-l)+) and (1r2 --+ 7rln-l)+), respectively. 
Since 1r1 =/= 1!'2 the paths do not block each other. 

Consider the case k < (n -1). Let the path between 1r1 and 1rl+ be (1r1 -+ X1 -+ 

Yi -+ 1rl+) and the path between 1r2 and 1l'l+ be (11'2 -+ X2 -+ Y2 -+ 1rl+). Since 

1r1 =/= 11'2, 1rl+ =/= 1rl+· Thus (7r1 X1) =/= (11'2Y2) and (Yi7rl+) =/= (Y21rl+). We have to now 
show (X1Yi) =/= (X2Y2). Clearly X1 =/= X2 as the first edge represents exchange of the 

kth symbol with the 1 th symbol and 7r1 =/= 7r2 (Similarly Yi =/= Y2 because 1l'l+ =/= 1!'l+). 
So (X1Yi) =/= (X2}'2). Thus the path from 1r2 to 1rl+ does not block the path from n-1 

to 1rl+· o 
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Theorem 6: A unit route of an SIMD-A mesh, Dn, can be performed in 3 unit 

routes on an SIMD-B, Sn· 

Proof: From theorem 4 and lemma 5. 0 

4 Embedding Uniform Meshes 

In the previous section, we described an embedding of a 2 * 3 * 4 · · · * n mesh on 

Sn. Thus any algorithm which can be executed in T( n) communication steps on an 

SIMD-A mesh can be executed on the SIMD-B star graph in O(T(n)) units of time. 

We will assume the SIMD-A model for the mesh and SIMD-B model for the star 

graph for the rest of this section. The results can be easily derived for the SIMD-A 

model of the star graph by multiplying with a factor of O(n). 
Most previous algorithms for the mesh have been designed assuming all the di

mensions are of equal length. We will refer to them as uniform meshes. Let U denote 

ad-dimensional uniform mesh of N processors, i.e., U is an N 1fd * N 1fd * · · · * N 1fd 

mesh. Let R denote an 11 * 12 * · · · * ld mesh when Ilf=1 li = N. The following theorem 

by Atallah [ATAL88) shows that R can efficiently simulate U when d = 0(1 ). 

Theorem 7: [ATAL88) If d = 0(1), then mesh R can simulate every step of mesh 

U in O((maxi li)IN1 fd) steps. 

Since N = n!, using Stirling's approximation we have 

N1/(n-1) = (n!)l/(n-1) 

~ (~(nle)n)1/(n-1) 

= ( n 1 e )(27r )1/2(n-1)n1/2(n-l) ( n 1 e )1/(n-1) 

= e(n) 

The above theorem may suggest that R (and hence the star graph) can simulate a 

uniform meshes efficiently (n/N1/n = 0(1)). However the above theorem assumes 

d = 0(1). The following theorem modifies the above theorem to take din account. 

Theorem 8: Mesh R can simulate every step of mesh U in O((maxi li)2d/N1fd) 
steps. 
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Proof: The proof follows from the proof of theorem 7 giving in [ATAL88]. 0 

Using theorem 8 the number of steps required to simulate an N = (N)1f(n- 1) * 

(N)1/(n-1) * ... * (N)1/(n-1) mesh on anN= 2* 3*4 · · · *n mesh requires in the worst 
case 0(2n-1n/N1/(n-l)) =0(2n) =0(Nn/log2N) steps. This can be approximated by 

O(N1/ 1ogn+log2 e/log2 n) using Stirling's approximation and neglecting the lower order 

terms in the exponent. 

Theorem 9: Any step of an (n- I)-dimensional uniform mesh of size N 1/(n-t) * 
N 1f(n- 1) * · · ··* N 1/(n-1) can be completed on a star graph in O(Nn/log2 N) steps. 

Proof: From theorem 7 and theorem 8. 0 

For the same number of processors it is typical to expect a higher dimensional mesh 

to perform better than a lower dimensional mesh. This is due to smaller diameter 

and higher degree of each node. Let F(N, d) be the number of steps required to solve 

a problem on an SIMD-A d-dimensional mesh with N processors. Thus by theorem 

8 it can be solved on an SIMD-B star graph in O((maxi li)2d/N11d) * F(N,d)) time 

(N = 11 * 12 * · · · * ld)· This suggest that a dimension lower than n may be performed 

to simulate a uniform mesh algorithm on the star graph (see Appendix). 

5 Conclusion 

In this paper we have developed an efficient mapping of the mesh Dn on the star graph 

Sn. We have also shown that Sn can efficiently simulate Dn. The analysis in this paper 

indicates that the algorithms developed for uniform meshes may not be efficiently 

simulated on the star graph. Thus a sorting algorithm which can be executed in 
0(~ N 1fd) time on a d-dimensional mesh [NASS79] may require O(nN1fnN1/ 1ogn) 

time on the star graph. Further most of the sorting algorithms which sort an N 1/d * 

N 1fd · · · * N 1fd mesh requires N 1/d to be power of 2 ([ATAL84], [NASS79], [NASS80], 

[THOM77]) as they used divide and conquer. When N 11d is not a power of 2, then 

a factor of (2d) needs to be multiplied to the time. When d = 0(1), this can be 

considered as a constant factor. However while considering the sorting on an N = 

2*3*4 · · ·*n mesh, d =F 0(1) and hence those algorithms cannot be efficiently executed. 
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Shear sort ([SCHE89]) is one method which does not use divide and conquer, but it 

does not seem that it can be easily extended to dimensions greater than 2. We are 

considering the problem of sorting on a rectangular mesh under the above conditions 

and have discovered an algorithm which is useful for sorting on the star graph. 

Appendix 

It is easy to see that an N = 2 * 3 * 4 · · · * n mesh can simulate a d-dimensional mesh 

of size N =It* 12 * 13 * · · · * ld in 0(1) time such that: 

It = n * ( n - d) * ( n - 2d) * ... * ( n - r n I d - 11 d) 
12 = (n-1)*((n-1)-d)*((n-1)-2d)*·. •*((n-1)- r n/d-1ld) 

h = (n-2)*((n-2)-d)*((n-2)-2d)*·. •*((n-2)- rn/d-1ld) 

ld = ((n-( d-1 ))*((n-(d-1 ))-d)*·. •*((n-( d-1 ))- r n/ d-11 d) 

Further lt/ld < n(1 + n mod d) ~ nd. Thus It ~ d(Nt/dnt-t/d). Consider a problem 

of size N that can be completed in F(N, d) time on ad-dimensional mesh. Thus a 

d-dimensional mesh (N = Nt/d * Nl/tl * · · · * Ntld) can be simulated on a star graph 
in O(dNtltlnt-t/tl2tl/Nt/tl * F(N,d)) = O(d2tlNt/tl * F(N,d)) (n ~ Ntltl) time. 

Let us look at an algorithm that requires O(Nt/d) time to compute on a d
dimensional mesh. Thus it can be completed in O(Ntldd2d Ntld) time on a star 

graph. In this case the optimal dimension for direct simulation can be shown to be 

(~ JlogN) which gives a total time of O(J].ogNNcl~) which can be shown to 

be asymptotically superior to the time required by simulating the sorting algorithm 

on an n-dimensional uniform mesh on the star graph. The above conversion from 

( n - 1) to d-dimensional mesh is not the best possible. We would like achieve this so 

that the mesh is as uniform as possible. We leave this as an open problem. 
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