
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

1989 

Computing Hough Transforms on Hypercube Multicomputers Computing Hough Transforms on Hypercube Multicomputers 

Sanjay Ranka 
Syracuse University 

Sartaj Sahni 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ranka, Sanjay and Sahni, Sartaj, "Computing Hough Transforms on Hypercube Multicomputers" (1989). 
Electrical Engineering and Computer Science - Technical Reports. 57. 
https://surface.syr.edu/eecs_techreports/57 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/57?utm_source=surface.syr.edu%2Feecs_techreports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


SU-CIS-89-06

Computing Hough Transforms
on Hypercube Multicomputers

Sanj ay Ranka

1989

Sartaj Sahni

School of Computer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology

Syracuse, New York 13244-4100



Abstract

Efficient algorithms to compute the Hough transform on MI1\lD and SI1\1D hypercube

multicomputers are developed. Our algorithms can compute p angles of the Hough

transform of an N x N image, P 5 N 1 in O(p + log N) time on both ~1I~'1D and

SIlv1D hypercubes. These algorithms require O(N2) processors. \Ve also consider the

computation of the Hough transform on MIMD hypercubes ,vith a fixed number of

processors. Experimental results on an NCUBE/7 hypercube are presented.
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1 Introduction

Hough transforms are used to detect straight lines or edges in an image, Let 1[0 · .. N 
], f) ••• N - 1] be an N x N image such that l[x,y] = 1 iff the image point [x, y] is a

possible edge point. l[x, y] = 0 otherwise. The.p angle Hough transform of 1 is the

array· H such that

7r
H[i,j] = /{(x,Y)li = lxcosBj + ysinBjJ,Oj = -(j + 1) and l[x,y] = I}l.

p

j takes on the integer values 0, 1, ... ,p - 1. These correspond to the p angles OJ =
;(j + 1),0 < j < p. Hence 0 < OJ ~ 1r. For OJ in this range and x and y in the range

0 ... N -1, lXCOSOj + ysinBjJ is in the range -.f2N ... ..J2N. Hence H is at most

a 2V2,N x p matrix.
The serial algorithm to compute H has complexity O(N2p). Parallel algorithms

to compute H have been developed by several researchers. Rosenfeld, Ornelas,

and Hung [ROSE88], Cypher, Sanz, and Snyder [CYPllS7], Guerra and Hambrush

[GUERR87], and Sildberg [SILD86] consider mesh connected multicomputers; Fish

burn and Highnarn [FISH87] consider scan line array processors; Ibrahim, Kender, and
Shaw [IBRA86] consider SIMD tree machines; and Chandran and Davis [eHAl'S/]

consider the use of the Butterfly and Ncube multicomputers to compute the Hougll

transform.
In this paper we develop algorithms to compute the Hough transform on hy'per-

cube multicomputers. First, in Section 2, we describe our model for fine·grail1ed

~1IMD and SIMD hypercubes and how to perform certain fundamental data mo\~e·

ment operations on a hypercube. These are used in our subsequent development of

hypercube algorithms for the Hough transform. In Section 3 we describe our Hough

transform algorithm for an MI11D hypercube. The case of an SI!\1D h)'percube is

considered in Section 4. Section 5 considers the computation of the Hough trans

form on a medium-grained MIMD hypercube. Experimental results on an NCUBE/7

hypercube are also presented in this section.

1



r
I
r

I
I
I
I
I
I
I

~ I
e I
~v I
o I
r I
k ,

c
C

~
1
o
n

I
I

~--

]

•

Processing
Element

Processin~
Element

Memory ]

Processing
Element ~

-----.: "---
1
n
t
e
r
c
o
n
n

I/O

t
I
I
I
I
I

I
I
I
I
I
I f
IH~[emory

J

1
n
t
e
r
c
o
n
n
e
c
~
1
o
n

r Program
~Iemory

N
~

I t
I \V

I ~
I k
I I
I I
~

Control
lJnit

Proce5sin~
Element

Processin~
Element

Memory

1vfemory

r-
I ---_---i

I/O
1
I
I
I

(a) (b)

(a) SIMn Hypercube (b) MIMD Hypercube

Figure 1: Hypercube Multicomputers
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2 Preliminaries

2.1 Hypercube Multicomputer

Block diagrams of an SIMD and MIMD h)rpercube multicomputer are given in Figures

l(a) and l(b), respectively. The important features of an SIMD hypercube and the

programming notation we use are:

1. There are p = 2P processing elements connected together ,'ia a h)·percube inter

connection network (to be described later). Each PE has a unique index in the

range [0,2P - 1]. We shall use brackets ([ ]) to index an arra)' and parentheses

( 0 ) to index PEs. Thus A[i} refers to the i'th element of array A and A(i)

refers to the A register of PE i. Also, A[j](i) refers to the j'th element of array

A in PE i. The local memory in each PE holds data only (i.e., no executable

instructions). Hence PEs need to be able to perform onl.y the basic aritllTIletic

operations (i.e., no instruction fetch or decode is needed).

2. There is a separate program memory and control unit. The control unit per

forms instruction sequencing, fetching, and decoding. In addition, instructions

and masks are broadcast by the control unit to the PEs for execution. }\n in

struction mask is a boolean function used to select certain PEs to execute an

instruction. For example, in the instruction

A(i) := A(i) +1, (io = 1)

(io = 1) is a mask that selects only those PEs whose index has bit 0 equal to

1; i.e., odd indexed PEs increment their A registers by 1. Sometimes ,\"e shall

omit the PE indexing of registers. The above statement is therefore equivalent

to the statement:
A:= A + 1, (io = 1).

3. The topology of a 16-node hypercube interconnection net'\\?ork is shown in Figure

2. A p dimensional hypercube network connects 2P PEs. Let- il'-l i p- 2 • • • io be

3



the binary representation of the PE index i. Let lit be the complement of bit

ike A hypercube network directly connects pairs of processors whose indices

differ in exactly one bit; i.e., processor ip- t ip - 2 ••• i o is connected to processors

i p- 1 .• . llc ... io, 0 ~ k ~ p - 1. We use the notation i(b) to represent the number

that differs from i in exactly bit b.

4. Interprocessor assignments are denoted using the symbol +-, while intrapro

cessor assignments are denoted using the symbol :==. Thus the assignment

statement:

Figure 2: A 16-Node Hypercube (Dimension =4)
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is executed only by the processors with bit 2 equal to o. These processors

transmit their B register data to the corresponding processors v.rith bit 2 equal

to 1.

5. II.1 a unit route, data may be transmitted from one processor to another if it is

directly connected. We assume that the links in the interconnection net,,'ork are

unidirectional. Hence, at any given time, data can be transferred either from

PE i(ib=.0) to PE i(b) or from PE i(ib= 1) to PE i(b). Thus the instruction

B(i(2») +- B(i), (i 2 =0)

takes one unit route, while the instruction

takes t\VQ unit routes.

6. Since the asymptotic complexity of all our algorithms is determined b)~ tIle

number of unit routes, our complexity analysis ,,,,ill count onl~y tllese.

The features, notation, and assumptions for MIMD hypercubes differ from those

of SIMD hypercubes in the follo\ving way:

There is no separate control uriit and program memory. The local memory' of each

PE holds both the data and the program that the PE is to execute. At any given

instance, different PEs 111ay execute different instructions. In particular, PE i may'

transfer data to PE i(b), while PE j simultaneously transfers data to PE j(a), a =I b.

2.2 Image Mapping

Figure 3(a) gives a two-dimensional grid interpretation of a dimension 4 hypercube.

This is the binary-reflected gray code mapping of [CHAN86]. An i bit binary gra~r

code Si is defined recursively as below:
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(a) (b)

(a) gray code mapping

(b) row major mapping

Figure 3: Mapping of the Image

where [Sk_l]R is the reverse of the k -1 bit code Sk-l and b[S] is obtained from S by

prefixing b to each entry of S. So, 82 = 00, 01, 11, 10 and 53 = 000, 001, 011, 010,

110, 111,101,100.

If N = 2", then 8 2ft is used. The elements of 8 2ft are assigned to the elements of

the N x N grid in a. snakelike row major order [THOM77]. This mapping has the
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property that grid elements that are neighbors are assigned to neighboring hypercube

nodes.
Figure 3(b) shows an alternate embedding of a 4 x 4 image grid into a dimension

4 hypercube. The index of the T'E at position (i,j) of the grid is obtained using

the standard ro\\' major mapping of a twcrdimensional array onto a one-dimensional

arra~y [HOR085]. I.e., for an N x N grid, the PE at postion (i,j) has index i ..N + j.

Using the mapping, a t\vo-dirnensional image grid 1[0. · . N, 0 .. · N] is easily mapped

onto an N 2 hypercube (provided N is a power of 2) ,,"ith one element of I per PE.

Notice that, in this mapping, image elements that are neighbors in I (i.e., to the

north, south, east, or ,vest of one another) may not be neighbors (i.e., rna)? not be

directly connected) in the hypercube. This does not lead to any difficulties in the

algorithms \\'e develop.

'Ve will assume that images are mapped using the gray code mapping for all

rvlI~1D algorithms and the ro\v major mapping for all SIMD algorithms.

2.3 Basic Data Manipulation Operations

2.3.1 SIMD SHIFT

SHI FT(A, i, l11 ) shifts the A register data circularl)~ counter-clock,,,ise by i in ,\·in

do\\"s of size 11'; i.e., A(qlV+j) is replaced by A(qW+(j -i) mod lV), 0 :5 q < (pIll"-).

SHI FT(A, i, W) on an SI1\1D computer can be performed in 210g 11' unit routes

[PRAS87]. A minor modification of the algorithm given in [PRAS87] performs i = 2m

shifts in 2log(~V/i) unit routes [RANK88]. The wraparound feature of this shift op

eration is easily replaced by an end-off zero fill feature. In this case, A(qw +j) is

replaced by A(qW + j - i) as long as 0 :5 j - i < W, and by 0 other,vise. This

change does not increase the number of unit routes. The end-off shift "'ill be denoted

ESHIFT(A,i, 111).

7



2.3.2 MIMD SHIFT

When i is a power of 2, SHI FT(A, i, W) on an MIMD computer can be performed in

0(1) unit routes. An MIMD shift of 1 takes 1 unit route, of 2 takes 2 unit routes, of

N /2 takes 4, and the remaining power of 2 shifts take 3 routes each. For any arbitrary

i the shift can be completed in 3(log W)/2 + 1 unit routes on an MIMD computer

[R..~NK88]. As in the case of the SIMD shift, the MIMD shift is also easily modified

to an end-off zero fill shift without increasing the number of unit routes.

2.3.3 Data Circulation on an SIMD Hypercube

The data in the A registers of each of the R processors in an R processor subhypercube

is to be circulated through each of the remaining R-l PEs in the subhypercube.

This can be accomplished using R-I unit routes. The circulation algorithm uses the

exchange sequence X r , R = 2T defined recursively as [DEKE81]:

This sequence essentiall:y treats a q-dimensional hypercube as two q - I-dimensional

hypercubes. Data circulation is done in each of these in parallel using Xq- 1 • Next.

an exchange is done along bit q - 1. This causes the data in the two halves to 1)€

s\vapped. The swapped data is again circulated in the two half hypercubes using

X q-1- Let f (r, i) be the i th number (left to right) in the sequence X r, 1 ::5 i < 2r
. TIle

resulting SIMD data circulation algorithm is gi\'en in Figure 4. Here, it is assunled

that the r bits that define the subhypercube are bits 0, 1, 2, ... , r - 1. Because of

our assumption of unidirectional links, each iteration of the for loop of Figure 4 takes

2 unit routes. Hence Figure 4 takes 2(R - 1) unit routes. The function f can be

computed by the control processor in O(R) time and saved in an array of size R - 1

(actually it is convenient to compute f on the fly using a stack of
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procedure CIRCULATE(A);
[data circulation]

for i := 1 to R - 1 do
A(j/(r,i») ~ A(j);

end

Figure 4: Data circulation in an SI~1D h)tpercube

height log R). The follo\ving Lerruna allows each processor to compute the origin of

the current A value.
Lemma 1: [RANK88] Let Ao, AI,.··, A2r-l be the values in A(O), A(l), ... ,A(2T

-

1) initially. Let index(j, i) be such that A[index(j, i)] is in AU) following the i'th

iteration of the for loop of Figure 4. Initially, index(j,O) = j. For ever:y i"! i >
O,indexU, i) =indexU, i - 1)02!(r,i) (0 is the exclusive or operator).

2.3.4 Data Accumulation on MIMD Hypercube

For this operation, PE j has an array A[O ... M -1] of size 1\1. In addition, each PE

has a value in its I register. After the data accumulation, the At elements of A in

each PE j are such that:

Ali) (gray (j)) = I (gray ((j + i) mod P)),O ~ i < M,O ~ j < P.

This can be accomplished in M - 1 unit routes (for P > 2) b:y repeatedly shifting by

-1 in windows of size P. The algorithm is given in Figure 5.
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procedure ACCUM(A,I,M)
{each PE accumulates in A, the I values of the next

M PEs, including itself; P is the window size}

begin

A[O] := I;
for i := 1 to M - 1 do

begin

SHIFT(I, -1, P) :
A[i] := I;

end

end {ACCUM}

Figure 5: Data accumulation

2.3.5 Data Accumulation on SIl\1D Hypercube

After the data accumulation, the M elements of A in each PE j are such that:

A[i](j) = I((j + i) mod P), 0 :5 i < M, 0 ~ j < P.

Data accumulation may be done efficiently by modifying the data circulation al

gorithm. It can be completed in 2(M - 1) + log2(N/M) unit routes on an SI~1D

hypercube.

2.4 Initial and Final Configurations

We shall explicitly consider the computation of H(i,j) only for i > o. The computa

tion for the case i :5 0 is similar. Hence i is in the range [0, v'2N) and j is in the range

[O,p). We assume that N is a power of two and that 2N2 PEs are available. These

10



are viewed as an N x 2N array as discussed in §2.2 for SIMD and ?\1IMD hypercubes.

Actually, only N x -I2N PEs are needed; however, a hypercube must have a power

of 2 processors. Furthermore, it is assumed that p divides N.
Tl~c image pixel I[i,j] is initially stored in' PE [i,j] 0 :$ i,j < N in the aboye

array view. H[i,j] is stored in PE[j, i] on completion.

3 MIMD Algorithm

Conceptually, our algorithm is similar to that of Cypher and Sanz [CYPHSSJ. It
computes the Hough transform in O(p +N) time on an N x N SIMD mesh connected

computer. V\'e sho\v ho,v this algorithm can be mapped onto an MIl\1D h)"percube

with 2N2 processors. The complexity of the resulting hypercube algorithm is O(p +
log N).

For simplicity, we divide the computation of H[i,j], i > 0, 0 :$ j < pinto

four parts. These, respectively, correspond to the cases 0 :$ j < p/4, p/4 :$ j <
p/2, p/2 < j < 3p/4, and 3p/4 :$ j < p. First, consider the case p/4 :$ j < p/2.

NQ\V, 1r/4 < f) j < 1r /2. The follo\ving t\\1'O lemmas ,viII suggest a computational scheme

for this case.

Lemma 3.1: When 7r /4 < OJ :$ 7r/2, two pixels (x, y) and (x, y + z), z > 0, can
contribute to the count of the same H[i,j] only if z = 1.

Proof: If (x, y) and (x, y +z) both contribute to the count of H[i,j], then

for some j, p/4 :$ j < p/2. Hence

(y + z) sin OJ - y sin OJ :$ 1

or z sin OJ < 1.

Since tr /4 < OJ :$ 7r /2, sin OJ > sin 7r/4 > o· 5· Since z is a positive integer, only z = 1
can satisfy the relation z sin OJ :$ 1.

11



Lemma 3.2: When 1r/4 < OJ :$ 7r/2, two pixels (x,y) and (x +1,z) can contribute

to the count of the same H[i,j] only if z E {y, y - I}.

Proof: IT (x,y) and (x + 1,z) contribute to the same H[i,j], then i = Lx cos Bj +
ysinOjJ = L{x + 1)cos9j + zsin8jJ.

So, l(x+ l)cosOj-XCOSOj + (z-y)sin6j l :S 1

or Icos OJ + (z - y) sin 6j l $ 1

or I cot 8j + (z - y) 1~ cosec9j

or - cosec()' - cot (). < z - y < cosec(}· - cot 9.J J- - J J

Since y and z are integers and OJ is in the above range, it follo\vs that -1 ~ z - y ~

O. HencezE{y,y-I}. 0

The computation of H[i,j] for i > 0 and tr/4 ~ OJ < tr/2 can be done in t,,'o

pllases. In the first, subhypercubes of size p x 2N compute

h[i,j] = I{(x,y)fi = lXCOsOj+ysinOjJ, 1r/4 $ OJ < 1r/2, I[x,y] = 1, and (x,y) is

in this subhy·percube.

In the second phase, the h[i, j] values from the different subhypercubes are summed

to get

H[i,j] = L h[i,j], i > 0, p/4 $ j < p/2.
subhypercubes

The phase 1 algorithm for each PE in a p x 2N subhypercube is given in Figure 6.

In this algorithm, [x, y] denotes a PE index relative to the whole N x 2N hY'percube

and [w, y] denotes the index of the same PE relative to the p x 2l\T subhypercube it

is in. Note that w = x mod p.

12



1 for l := 0 to 5p/4 - 1 do

2 if(w = 0) and (l < p/4) ~hen

3 [{row 0 initiates next OJ}

4 create a record Z = (i,j, sine, cosine, q)
5 with

6 sine=sin(O), cosine= cos(O), where 0 = ;(p/2 - f +m)

7 i = lx cosine + y sineJ, j = p/2 - l - 1

8 q = I[x,y]]
9 else [ifmax{l,l - p/4 + I} ~ w :51 and y < N

10 then {add in this PE's contribution}

11 [Let Z be the record received from PE[w - 1, y]
12 Let i' = lx cosine +y sine J and q' = I[x, y]
13 if i = i' then set q = q +q'

14 else ifi = if> then set i = i' and q = q'

15 else [send q to PE(x, (y - 1) mod 2N]

16 set Z = (i',j, sine, cosine ,q')]
17 if a q is received from PE[x, y +1J update o\vn q

18 to q+ received q]
19 else if y > N and a Z is received from PE(x, (y + 1) mod 2N]
20 then send old Z (if any) to PE on left]

21 {combine records \\rith same (i, j) values}

22 if(lx cosine +y sineJ = Lx cosine +(y -1) sineJ) and (0 < y < N)
23 then send h to PE[x, y - 1] and set i = <p

24 else if a q value is received set q = q+ received q;

25 send Z to PE[(w + 1) mod p, yJ]
26 end

Figure 6: MIMD Algorithm
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The h values are computed in a pipeline manner.. The PEs in ro'" 0 of a p x 2A'

subhypercube initiate a record Z = (i,j, sine cosine, q) such that h[i,j] = q is the

number of pixels on this row that contribute to h[i,j]. This is done by first computing

i for each pixel in row zero (line 7) for a fixed j = p/2 -l - 2. Lemma 3.1 is used

in lines 22-24 to combine records that represent the same h [i, j] entry. This ro,"' of

Z records created in row zero moves down the p x 2N subhypercube one ro\v per

iteration (line 25). Lines 10-21 update the row of Z values received. Each such TO'V

corresponds to a fixed j. For this j, PE[w, y] determines the h entr)' [i',j] it is to

contribute to (line 13). If this is the same entry as received from PE[w - 1,y] then

the t\VO are added together. If i = 0 for the received entry, then [i' ,j] can occupy this

Z space. If i # 0, then from Lemma 3.2 we know that Z can combine only ,\~ith the

new entry [i',j] of PE[w,y -1].
Follo\ving the iteration l = 5p/4 - 1, the last initiated ro,,· (i.e., j = p/4) has

passed through row p - 1 of the p x 2N subhypercube.. At this time, the PEs in ro\v

r of the subhypercube contain records with j = p/4 + r, 0 ::; r < p/4 .. The records in

each row may be reordered such that the record in PE[w, y] has y = i by performing

a random access write ([NASSSl]). Because of the initial ordering of i values in a

row, this random access write can be performed in O(log N) time [RANI( 88] rather

than in O(log2 N) time as required by the more general algorithm of [NASS81).

The phase 2 summing of the h[i,j] values is now easily done in O(log N) time

using window sum. Since the phase 1 algorithm of Figure 3.1 only shifts by' 1 along

columns and/or rows, each iteration of this algorithm takes only 0(1) time. Hence

the complexity of the phase 1 algorithm is O(p). The overall time needed to compute

H for p/4 :::; x < p/2 is therefore O(p + logN).

The remaining three cases for j are done in a similar way. Actually, the four

cases need not be computed independently as suggested above. In particular, all the

computation following phase 1 can be done in parallel for all the cases.

14



4 SIMD Algorithms

'ATe develop two O(p+log N) SIMD hypercube algorithms. One uses O(log N) memor~t

per PE while the other uses 0(1). The 0(1) memory algorithm is sl.e:htly more com

plex than the o(log N) memory one. Both algorithms are adaptations of our MI11D
algorithm. The computations following phase 1 (Figure 6) are easily performed in

O(log N) time on an SIMD hypercube using 0(1) memory per PE. So we concentrate

on adapting phase 1. The phase 1 algorithm performs O(p) unit shifts along ro,vs and

colunms of p x 2N subhypercubes. In an SIMD hypercube, each such fO\V shift takes
O(1og N) time while each unit column shift takes O(log p) time. So a direct simulation

of phase 1 takes O(p Iog(]\'p)) time.

4.1 O(log N) Memory per PE

In this case, Vle divide the 5p/4 iterations of the for loop of Figure 3.1 into blocks

of log N consecutive iterations. In each such block, a Z record initially in PE[~·, y]
can be augmented by pixel values in PEs [x + l, y - m), 0 :5 l < log f{, -1 :5 m <
log N. To avoid unit shifts along the ro,vs, each PE[q, r] begins by accumulating the

pixel value in PE[q,r - m], -1 ~ m < logN. No\v it is necessary to route the Z
records only down a column; i.e., a Z record initially in PE [x, yJ needs to visit PEs

[x +/, y], 0 < f < log N. These PEs contain the pixel values needed to update Z to its

values following the block of iterations in Figure 3.1. This routing is done using the

circulation algorithms in windows of size log N rather than by unit shifts. The initial

pixel accumulation takes O(log N) time and the circulation and Z updates also take

O(log N) time. Following the circulation, the Z records return to their originating

PEs and need to be routed left and down by a distance of O(log N). This can be

accomplished in O(log N) time on an SI11D hypercube. In this \vay, ,,'e are able to

simulate O(log N) iterations of the MIMD algorithm in O(log N) time on an SIn'lD
hypercube. Hence the overall asymptotic run time of the SIMD simulation is the

same as that of the original MIMD algorithm.
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4.2 0(1) Melllory per PE

\Vhen log2 N / p :s; c for some constant, a careful analysis shows that using the strategy

employed in the O(log N) memory algorithm, the memory requirements can be reduced

to 0(1). In any logN block of iterations, two pixels [x,y] and [w,z] contribute to the

same Z record only if

Lx cos () + y sin 6J = Lw cos () + z sin ()J·

Since w ~ x + log N - 1 during the log N iterations, v.,re get

I(log N - 1) cos 0 + (z - y) sin 01 ::; 1

or - cosec () ~ (log N - 1) cot () + z - y ~ cosec f)

or - cosec () - (log N - 1) cot B :5 z - y < cosec () - (log N - 1) cot () ~

For an:y fixed () E [1r/4,1r/2],

z E [y - (log J.l - 1) cot () - cosec (J, y - (log N - 1) cot () + cosec OJ

or z E [y - (log N - 1) cot 0 - vI2, y - (log N - 1) cot 0 + -/2].

There are only a constant number of integers in this range. During a log AT block

of iterations, Z records with j value differing by up to log N - 1 ma:r pass throug11 a

given PE~ This corresponds to a () variation from 91 to (}2 )\7here O2 - (}1 = 1: (log AT -1).
p

Hence the leftmost column from which a contributing pixel is required has a

maximum range of

cosec 81 + (log N - 1) cot 8] - cosec ()2 - (log N - 1) cot 82

::; cosec ()1 - cosec 82 + (log N - 1)(cot ()1 - cot 82)

< cosec 1r/4 + (log N - 1)cos61 si~8?-~os92 sinO,- ~~~~

< cosec 1r / 4 +2(log N - 1) sin(82 - 01 )

< cosec 1r/4 + 2(logN -1)(82 - 81 )

= cosec ~ + 2(log N - 1)(log N - 1)11"/ P

< cosec 1r /4 + 21rc~
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Hence each PE need accumulate only a -constant number of pixels from its ro\v rather

than the O(log N) pixels being accumulated in the O(log N) memory algorithm. This

accumulation is done in O(log !'l) time. The run time is the same as that of the

O(log N) mt:.mory algorithm, but the memory requirements are reduced to O{l).

5 Hough Transform on the NCUBE Hypercube

5.1 NCUBE Architecture

In the previous sections 'Y-'e have developed algorithms to compute the Hough trans

form on a fine grain hypercube. Such a computer has the property that the cost

of interprocessor communication is comparable to that of a basic arithmetic opera

tion. In this section, we shall consider the Hough transform on a h)'percube in \yhich

interprocessor communication is relatively expensive and the number of processors

is small relative to the number of patterns N. In particular, \ve shall experiment

with an NCUBE/7 hypercube \vhich is capable of having up to 128 processors. The

NCUBE/7 a'7ailable to us, howev'er, 11as ool:y 64 processors. The time to perform a

two-b:yte integer addition on each hypercube processor is 4.3 microseconds, \vhereas

the time to communicate b bytes to a neighbor processor is approximately 447 + 2.4b

microseconds.
Figure 7 shows the block diagram for the NCUBE/7 hypercube multicomputer.

5.2 Two NCUBE Algorithms

'0le view the P hypercube nodes as forming rings. Figure 8 sho\vs this ring for the

case P = 8. For any node i, let left (i) and right (i), respectively, be the node

counterclockwise and clock\vise from node i. Let logical (i) be the logical index of

node i in the ring. The N x N image array is initially distributed over the nodes \\"ith

each node getting an N x N / qp block. Logical node 0 gets the first block, logical node

1 the next block, and so OD. Similarly, on completion, the 2..;2N x p Hough arra)"

H is distributed over the nodes in blocks of size 2..;2N x piP. V'le assume that the
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number of hypercube nodes P divides the number of angles p as well as the image

dimension N. It is further assumed that the thresholding function has already been

applied to the pixels and each node has a list of pairs (x,y) such that l[x,.y] passes

the threshold. We call this list the edge list for the node.

Peripheral

Peripheral I(

-----~!
I,
1
I

lIo5t

, I ~o ..---__

H--
I

!....:. _~i uO i1__~_To_de__

I IProcessor~

I t (
I I I

t I
I l

I ·-I~:'\_~Od_e_I-·--"1

Figure 7: NCUBE/7 hypercube

H~"percl1be
Interconnect ior

:'\et"'ork

000 001 all 010 110 111 101 100

Figure 8: A ring (of size 8) embedded in & hypercube of 8 nodes
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procedure UpdateHpartition (H)

for each (x, y) in edge list dr
fOT (j := jBegin to jBegin + size -1 do

o= ~(j + 1)p

i = x cos () + y sin (}

increment H[i, OJ by 1

end;

end;

end; {of UpdateHpartition}

f. := logical index of this node, size:==pjP;

j Begin:= size *i
initialize own H partition to zero;

fOT i := 0 to P - 1 do
UpdateHpartition;

send o\vn H partition to node on right;

receive H partition from node on left;

j Begin:= (j Begin - size) mod p;

end;

Figure 9: Non-o\rerlapping aIgorithrrl to compute H

Our first algorithm is given in Figure 9. This algorithm is run on each hypercube

node. As remarked earlier, each node has an edge list and an H partition.

The H partitions move along the ring one node at a time. '\Then an H partition

reaches any node, the edge list of that node is used to update it, accounting for all

contributions these edges make to this H partition. Procedure UpdateHPartition

does precisely this. jBegin is the j value corresponding to the first angle (column)

in the H partition currently in the node. size = pIP is the number of columns in an

H partition.
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In the algorithm of Figure 9 no attempt is made to overlap computation \vith

communication. Following the send of an H partition to its right neighbor, the node

is idle until the receive of the H partition from its left neighbor is complete. Figure

10 shows the activity of a node as a function of time.

Compute send/receive compute send/receive

o time~

Figure 10. Nonoverlapping Algorithm to Compute H

During the compute phase, an H partition is updated. Let t c be the time needed

to do this. Let tt be the time for an H partition to travel from a sending node to its

destination node. So tt is the elapsed time between the initiation of the transfer and

the receipt of the partition. The time required by the nonoverlapping algorithm of

Figure 9 is P(tc + tt).
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l := logical index of this node; size = pIPj

j Begin := size*f;

for i := 0 to P - 1 do

if i = 0 then [initialize own H partition to zero

Update H Partition (H)]
else [initialize T to zero

Update H Partition (T)
Receive H Partition from left (f)
H :=H +T]

send H to right (l);
jBegin := (iBe.gin-size) mod p

end;

Figure 11. Overlapping Algorithm for H

Our second algorithm, (Figure 11), attempts to overlap as much of the trans

mission time tt with computation. This, unfortunately, results in an increase in the

computation time as some additional work is to be done. At the end of each iteration

of the for loop, the H partition in a node l is sent to the node on its right. The next

iteration proceeds while the H partition is in transit. For this, a temporary space

T of the same size as H is used to accumulate the contribution of this node's edge

list to the H partition it has yet to receive from its left neighbor. Following this

computation, the received H portion and T are added as the resulting H partition
transmitted to the right.

Relative to the nonoverlapping algorithm, the overlapping algorithm does P - 1

initializations of T and executions of H := H +T extra computational work. Let tinit

be the time to initialize T and ta.dd the time to execute H := H +T. If tt ~ tinit +t
e

!

the time diagram has the form shown in Figure 12(a). The overa.ll tin1e for the
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algorithm is Pte + (P - 1)(tinit + ta.dd) + tt when tt ~ tinit + tc • So if tinit + ta.dd < tt,
the overlapping algorithm will outperform the nonoverlapping algorithm.

Figure 12 (a) t, ~ tinit + tc

When tt = tinit +t c+ f1t, D..t > 0, the time diagram is as in Figure 12 (b). In this

case, the algorithm run time is tc+(P-l)tadd+Ptt = Ptc+(P-l)(tinit+tadd+~)+tt.

For the overlapping algorithm to outperform the nonoverlapping algorithm, \ve need

tinit + tadd +~ < tt.

Figure 12 (b) tt = tinit + tc +~, D. > 0

5.3 Load Balancing

The preceding analysis is somewhat idealistic as it assumes that t c is the same in each

node. Actually, the size of the edge list in each node is different and this difference

significantly impacts the performance of the algorithm. The node with the maximum

number of edges becomes a bottleneck. To reduce the run time, one ma~y attempt to

obtain an equal or near equal distribution of the edges over the P nodes. Note that

even though the image matrix I is equally distributed over the nodes, the edge lists

may not be, as a different number of pixels in each I partition will pass the threshold.

We shall use the term load to refer to the number of pixels in a node that passes this

threshold~ I.e., load is the size of the nodes' edge list. Two heuristics to balance the

load are given in Figures 13 and 14.

In both, load balancing is accomplished by averaging over the load in processors

that are directly connected. The variables used have the following significance:
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1\1yLoad=current load in the node processor

HisLoad=load in a directly connected node processor

MyLoadSize=size of the load in the node processor

HisLo, dSize=size of the lcfad in a directly connected node processor

avg=average size of the load of the two processors

procedure LoadBalancel ();

fOT i :== 0 to CubeSize do

Send MyLoad to neighbor processor along dimension i;
Receive HisLoad from neighbor processor along dimension i

and append to lvlyload;

avg=(11yLoadSize+HisLoadSize+1)/2;

if (MyLoadSize > Avg) MyLoadSize=Avg;

else if (HisloadSize>Avg) 11yLoadSize+=HisLoadSize - Avg;

end;

end;

Figure 13. Load Balancing (Heuristic 1)
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procedure LoadBalance2();

for i := 0 to CubeSize do

Send MyLoadSize to neighbor processor along dimension i;

Receive HisLoadSize from neighbor processor along

dimension i;

avg=(MyLoadSize+HisLoadSize+1) /2;

if (MyLoadSize > Avg)[
Send extra load (MyLoadSize-Avg) to neighbor

processor along dimension i;

MyLoadSize = Avg; ]

else if (HisLoadSize>Avg)[

Receive extra load (Avg-HisLoadSize) from neighbor

processor along dimension i

MyLoadSize+ =HisLoadSize-Avg;]

end;

end;

Figure 14. Load Balancing (Heuristic 2)

The only difference between the two variations is that in the first one a processor

transmits its entire work load (including the necessary data) to its neighbor processor,

~7hile in the second variation only the amount in excess of the average is transmitted.

However, in order to achieve this reduction in load transmission, it is necessary to first

determine how much of the load is to be transmitted. This requires an initial exchange

of the load size. Hence variation 2 requires twice as many message transmissions.

Each message of variation 2 is potentially shorter than each message transmitted by

variation 1. We expect variation 1 to be faster than variation 2 when the number

of bytes in MyLoad and HisLoad is relatively small and the time to set up a data

transmission relatively large. Otherwise, variation 2 is expected to require less time.
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5.4 Experimental Results

The nonoverlapping and overlapping algorithms of Section 5.2, as well as the load

balancing heuristics of Section 5.3 were programmed in C and run on an NCUBE/7

hypercube with 64 nodes. We experimentec. with randomly generated images of size

N x N for N = 32, 64, 128, 256, and 512. The percentage of pixels in an N x N image

that passed the threshold was fixed at 5%, 10%, or 20%. The number of edge pixels

in each nodes I partition was determined using a truncated normal distribution \vith

variance being one of 4%, 10%, and 64% of the mean. In all cases, \\·e set p = 180.

Preliminary experiments indicated that the run time of our two load-balancing

heuristics ,vas approximately the same, with the second heuristic having a slight edge.

Furthermore, the time to load balance is less than 2% of the overall run time (load

balance followed by Hough transform computation). The run time of the nonoyer

lapping algorithm, both \vith and without load balancing, is gi\"en in Figures 16, 1i,

and 18 for the cases of P = 4, 16, and 64, respectively. We see that as the load

variance increases from 4% to 64 %, the run time of the nonoverlapping algorithm

\vithout load balancing increases significantly. In fact, it almost doubles. \\'itll load

balancing, hO¥lever, the run time is quite stable_ Furthermore, it is al\vay's less than

the run time for 4% variance without load balancing. When the ,,-ariance in load is

64%, load balancing results in a 25% to 53% reduction in run time!

Note that the average load per node when P = 4 and N = 128 is the same as

when P = 16 and N = 256 and ,vhen P = 64 and N = 512. From Figures 16, 17,

and 18 we see that run time remains virtually unchanged as P increases, pro,·ided

the load per node is unchanged. Hence the algorithm scales well.

The run times for the overlapping algorithm with load balancing are given in

Figure 19. These times are generally slightly larger than those for the nonoverlap

ping algorithm \\rith load balancing. So, the computational overhead introduced by

the overlapping algorithm more or less balances the positive effects of overlapping

computation and communication.

For comparison purposes, the run times on a single hypercube node are given in

Figure 15 for the cases N = 16, 32 and 64. The case N = 128 could not be run for
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lack of sufficient memory.

Speedup and efficiency are common measures of the goodness of a parallel algo-

rithm. Speedup is defined as:

s = run time
P time taken by a uniprocessor

while efficiency, Ep , is defined as:

81'Ep=p.

Image Size %edges Time in Seconds

5 0.3005

16 x 16 10 0.5636

20 1.1016

5 1.1597

32 x 32 10 2.2209

20 4.3527

5 4.4399

64 x 64 10 8.7194

20 17.2660

number of nodes = 1

Figure 15
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Image Size % No Load Balancing Load Balance 2

Variance

edges 4% 16% 64% 4% 16% 64%

5 0.2802 0.3138 0.3940 0.2819 0.2785 0.2804

32x32 10 0.5627 0.6035 1.1563 0.5531 0.5527 0.5527

20 1.1439 1.3364 1.7874 1.0976 1.0956 1.0967

5 1.1465 1.3044 1.7575 1.1202 1.1187 1.1176

64x64 10 2.2428 2.4485 3.4152 2.1878 2.1853 2.1818

20 4.4974 4.7970 8.0548 4.3171 4.3238 4.3190

5 4.4966 5.0359 7.8626 4.3605 4.3550 4.3564

128x128 10 8.9968 10.0017 15.5813 8.6474 8.6393 8.6423

20 18.0087 19.1119 31.7456 17.2247 17.2349 17.2108

Number of nodes=4, no overlap

Figure 16
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Image Size % No Load Balancing Load Balance 2

Variance

edges 4% 16% 64% 4% 16% 64%

5 0.2964 0.3494 0.5622 0.2981 0.3012 0.2922

64 x 64 10 0.5949 0.6803 1.1556 0.5927 0.5830 0.5712

20 1.1827 1.4140 2.0260 1.1615 1.1574 1.1313

5 1.2088 1.4113 2.2415 1.1915 1.1798 1.1570

128 x 128 10 2.3558 2.7429 5.3075 2.3256 2.3065 2.2469

20 4.6616 5.3293 9.0813 4.5909 4.5600 4.4518

5 4.6854 5.6429 9.3724 4.6283 4.5810 4.4624

256 x 250 10 9.3130 11.0024 18.0237 9.1721 9.1270 8.8296

20 18.4712 21.4809 33.9781 18.2738 18.1359 17.6917

Number of nodes=16, no overlap

Figure 17
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Image Size % No Load Balancing Load Balance 2

Variance

edges 4% 16% 64% 4% 16% 64%

5 0.3462 0.4200 0.6449 0.3416 0.3481 0.3400

128 x 128 10 0.6512 0.7735 1.3975 0.6313 0.6315 0.6232

20 1.2692 1.5239 2.8156 1.2051 1.2062 1.1960

5 1.2638 1.5371 2.7062 1.2291 1.2229 1.2057

256 x 256 10 2.4770 2.9324 5.1395 2.3543 2.3476 2.3288

20 4.9057 6.0051 11.4614 4.6170 4.6020 4.5470

5 4.9077 5.8094 10.8207 4.6485 4.6232 4.5784

512 x 512 10 9.7492 11.7256 20.7631 9.1908 9.1611 9.0623

20 19.3672 23.9020 38.0617 18.2782 18.2166 18.0306

Number of nodes=64, no overlap

Figure 18

Block % P=4

Size edges 4% 16% 64%

32 5 0.3704 0.3689 0.3708

x 10 0.6424 0.6425 0.6925

32 20 1.1862 1.1851 1.1857

64 5 1.3030 1.3011 1.3009

x 10 2.3686 2.3680 2.3614

64 20 4.4927 4.4967 4.4956

128 5 4.7045 4.6999 4.7019

x 10 8.9787 8.9760 8.9835

128 20 17.5374 17.5426 17.5304

Figure 19
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Block % P = 16 p= 64

Size edges 4% 16% 64% 4% 16% 64%

32 5 0.4081 0.4152 0.4094 0.4578 0.4619 0.4597

x 10 0.6843 0.6806 0.6810 0.7328 0.7349 0.7303

32 20 1.2211 1.2263 1.2275 1.2705 1.2752 1.2743

64 5 1.3675 1.3682 1.3685 1.4292 1.4214 1.4173

x 10 2.4359 2.4324 2.4307 2.4802 2.4848 2.4860

64 20 4.5572 4.5603 4.5570 4.6034 4.6039 4.6100

128 5 4.8167 4.8148 4.8151 4.8761 4.8691 4.8718

x 10 9.0806 9.0850 9.0970 9.1464 9.1467 9.1344

128 20 17.6483 17.6388 17.6390 17.6879 17.6730 17.6907

Overlap Corrununication and Computation

Figure 20
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edges NOA of Image= 64 X 64 Image= 128 x 128

Nodes Time Speedup Time EstASpeedup

5 1 3A8603 1.0000

4 0.9787 3A9440 0.3964 3.9440

16 0.2844 13.5728 1.0734 14.5640

64 0.1551 24.8754 6.3414 45.7945

10 1 7.6151 1.0000

4 1.91169 3.9724 8.3301 3.9724

16 0.5263 14.4682 2.2187 14A9288

64 0.2046 37.2515 0.6278 52.7058

20 1 15.6470 1.0000

4 3.9246 3.9868 17.0167 3.9868

16 1.0529 14.8604 4.4732 15.1660

64 0.3374 46.3741 1.1777 56.6400

No overlap between communication/computation

Variance of edge = 64%

Figure 21

Figure 21 gives the speedup and efficiency figure achieved by our nonoverlapping

algorithm with load balancing for the cases: variance= 64%, %edges=20, and 1\' = 64

and 128. These are plotted in Figures 21 and 22, respectively.

6 Conclusions

V\'e have developed efficient hypercube algorithms for the Hough transform prob

lem. The fine grain algorithms are optimal and the algorithms for a medium grain

hypercube exhibit n'ear-optimal speedups when load balancing is done.
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