Syracuse University

SURFACE

Electrical Engineering and Computer Science -

Technical Reports College of Engineering and Computer Science

7-1989

Analysis of a Parallel Mergesort

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

6‘ Part of the Computer Sciences Commons

Recommended Citation

Hansen, Per Brinch, "Analysis of a Parallel Mergesort" (1989). Electrical Engineering and Computer
Science - Technical Reports. 55.

https://surface.syr.edu/eecs_techreports/55

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/55?utm_source=surface.syr.edu%2Feecs_techreports%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-89-03

Analysis of a Parallel Mergesort

Per Brinch Hansen

July 1989

School of Computer and Information Science
Syracuse University
Suite 4-116
Center for Science and Technology
Syracuse, New York 13244-4100

ANALYSIS OF A PARALLEL MERGESORT

PER BRINCH HANSEN

School of Computer and Information Science
Syracuse University
Syracuse, New York 13244

July 1989

SUMMARY

The paper describes a performance model of a fine-grained,
parallel mergesort which sorts N elements in O(N) time
using O(logN) processors. The model predicts both the
communication time involved in merging the elements and the
decomposition time required to activate and terminate the
binary tree of processes. The parallel algorithm is written
in Joyce and runs on an Encore Multimax.

KEY WORDS Parallel mergesort Multiprocessor algorithm
Performance analysis Communication time
Decomposition time

INTRODUCTION

The parallel mergesort is an extreme example of
fine-grained parallelism. Its performance is 1limited not
only by the speed of process communication, but also by the
overhead of process creation.

The algorithm recursively activates a binary ¢tree of
parallel processes. The 1leaf processes input a finite,
unordered sequence of elements and split it into sequences
of 1length 1. The branch processes gradually merge smaller,
ordered sequences into longer, ordered sequences until a
single, ordered sequence has been output by the root
process. While this is going on, the process tree gradually
terminates from the top down.

Knuth attributes the sequential mergesort to John von
Neumann [1]. Several researchers have analyzed the running
time of the parallel mergesort under the assumption that
the overhead of process creation is negligible [2, 31].

We will describe an exact model of the parallel mergesort
which predicts both the communication time involved in
merging the elements and the decomposition time required tg
activate and terminate the binary tree of processes.

Copyright (c¢) 1989 Per Brinch Hansen

ANALYSIS OF A PARALLEL MERGESORT 2

The parallel algorithm is written in the programming
language Joyce which supports recursive processes and
synchronous communication [4]. The Joyce program runs on an
Encore Multimax [51.

The parallel mergesort pushes the multiprocessor to its
technological limits in two ways:

1. The number of parallel processes is several orders of
magnitude larger than the number of processors.

2. The processes exchange the smallest possible messages
(single integers) with minimal computation.

PARALLEL ALGORITHM

The parallel mergesort uses a binary tree of processes to
sort a finite number of elements. The processes communicate
by messages only. The number of elements to be sorted is
known a priori.

Figure 1 shows a binary tree that sorts four integers.
The tree consists of seven processes (the nodes) connected
by eight communication channels (the edges). The sorting
t akes place in several stages which are partially
overlapped.

First, the tree is created recursively. The environment
activates the root which then activates its two children
which, in turn, activate their own children, and so on,
until the leaves have been activated. All processes in the
tree now run in parallel.

At the top of the tree the leaves input an unordered
sequence of four integers

(3, 1, 2, 4)

from a common input channel and split it into four
sequences of length 1

(3) (1) (2) (4)

This is achieved by 1letting each 1leaf input a single
integer and output it to its parent in the tree.

At the next 1level in the tree each process inputs two
sequences of length 1 from its children and merges them
into a single, ordered sequence of length 2. We have now
combined the four elements into two ordered sequences

(1, 3) (2, 4)

ANALYSIS OF A PARALLEL MERGESORT 3

Fig. 1. Parallel merge tree.

At the root of the tree a single process inputs two
ordered sequences of length 2 from its children and merges
them into a single ordered sequence of length 4

(1, 2, 3, 4)

which is output to the environment. This completes the
sorting.

During the sorting each process terminates as soon as it
has output the last element to its parent.

JOYCE PROGRAM
The parallel mergesort is written in the programming
language Joyce.
A leaf 1is defined by a procedure that copies a single

element from an input channel to an output channel

type sequence = [element(integer)];

procedure COPY(input, output: sequence);

yYar x: integer;

begin input?element(x); output!element(x) end;

The two channels

ANALYSIS OF A PARALLEL MERGESORT 4

input, output: sequence

are both of type sequence. Each channel can transmit a
sequence of messages. Each message is called an element and
carries an integer value.

The execution of the statement

input?element(x)

inputs an element from the input channel and assigns its
value to the variable x.
The execution of
output!element(x)

outputs the value of the element x through the output
channel.

The channels do not buffer messages. When a process is
ready to input a message from a channel, it is delayed
until another process is ready to output a message from the
same channel. When two processes are ready to communicate,
a communication takes place between them.

The next procedure merges a left sequence of length L and
a right sequence of length R into a single output sequence
of length L + R

procedure MERGE(left, right,
output: sequence; L, R: integer);
var x, y: integer;
begin
{L>0and R > 0}
left?element(x); right?element(y);
while (L > 0) and (R > 0) do
if x <y then
ADD(x, L, left, output)
else
ADD(y, R, right, output);
{L=0o0orR=201}
while L > 0 do
ADD(x, L, left, output);
while R > 0 do
ADD(y, R, right, output)
{L=0and R=0}
engd;

The procedure inputs the first elements x and y of the left
and right sequences. The smaller of these elements, say X,
is added to the output sequence and replaced by the next
element of the corresponding input sequence (in this case,
the left one). The comparison and copying of elements
continue until one of the input sequences has been

ANALYSIS OF A PARALLEL MERGESORT 5

exhausted. The rest of the other input sequence 1is then
added to the output sequence.

The following procedure adds an element x to the output
sequence and replaces it by the next element (if any) from
an input sequence of length N

procedure ADD(yar x, N: integer;
input, output: sequence);
begin { N > 0 }
outputlelement(x); N := N - 13
if N > O then input?element(x)
end;

These sequential procedures are the basis for the
parallel mergesort

agent MERGESORT(input, output: sequence;
N: integer);
var left, right: sequence; L, R: integer;
begin
if N > 1 then
begin
L ¢:= Ndiv 2; R := N - L;
+left; +right;
MERGESORT(input, left, L);
MERGESORT(input, right, R);
MERGE(left, right, output, L, R)
end
else COPY(input, output)
end;

This procedure defines a class of identical processes known
as mergesort agents. Each process sorts a sequence of
length N, where N is a process parameter,
If N> 1, a mergesort process creates a left and a right
channel
+left; +right

and activates two children

MERGESORT(input, left, L);
MERGESORT(input, right, R)

which then run in parallel with the parent. Each child
sorts half of the N elements and terminates., The parent
merges the input from its children into a single output
sequence of length N.

If N = 1, a mergesort process behaves as a 1leaf which
copies a single element from an input channel to an output
channel.

When a mergesort process reaches the end of its agent

ANALYSIS OF A PARALLEL MERGESORT 6

procedure, it is delayed until both of its children have
terminated. At this point, the process terminates and the
local left and right channels cease to exist.

When these pieces are put together we obtain a single,
recursive process (Algorithm 1).

type sequence = [element(integer)];

agent MERGESORT(input, output: sequence;
N: integer);
yar left, right: sequence; L, R, x, y: integer;
begin
if N > 1 then
begin
L ¢= Ndiv 2; R := N - L;
+left; +right;
MERGESORT(input, left, L);
MERGESORT (input, right, R);
left?element(x); right?element(y);
while (L > 0) and (R > 0) do
if x <y then
begin
outputlelement(x); L := L - 1;
if L > 0 then left?element(x)
end
else
begin
output!lelement(y); R := R - 1;
if R > 0 then r1ght°element(y)
end;
while L > 0 do
begin
outputl!element(x); L := L - 1;
if L > 0 then left?element(x)
end;
while R > 0 do
begin
outputl!element(y); R := R - 1;
if R > 0 then right?element(y)
end
end
else
begin input?element(x); output!element(x) end
end;

Algorithm 1. The parallel mergesort.

The branches in the tree do not use the common input
channel. They only pass it as a parameter to their children
so that it eventually becomes accessible to every leaf. If
several leaves attempt to input a single element from the

ANALYSIS OF A PARALLEL MERGESORT 7

same channel simultaneously, the channel will interleave
these inputs in unpredictable order [4]. However, the order
in which the elements are distributed among the leaves is
jrrelevant since the input sequence is assumed to be

unordered.

PERFORMANCE MEASURES

The running time T(P,N) is the time required to sort N
elements on a multiprocessor with P processors where

1 £ PN
The running time per element is
t(P,N) = T(P,N)/N

To simplify the analysis we will assume that P and N are

powers of two
p n
P=2 N=2
The speedup
S(P,N) = £t(1,N)/t(P,N) (1)

defines how much faster the algorithm runs on P processors
compared to a single processor.

These performance measures will be expressed in terms of
three constants:

a The average activation time of a process and its
output channel.

b The average termination time of a process and its
output channel.

c The average execution time of two processes for
each communication between them.

The running time has two components
T(P,N) = Tec(P,N) + Td(P,N)
the communication time Tc which is used to transfer and
merge elements in the tree, and the decomposition time Td
which is used to activate and terminate the processes.

PROCESS COMMUNICATION

A leaf is a sequential process that sorts a single element

ANALYSIS OF A PARALLEL MERGESORT 8

by copying it from one channel to another. Its
communication time

Te(P,1) = 2¢

is independent of the number of processors used.

Consider a process tree running on a single processor.
The tree consists of a root process and two subtrees. The
subtrees sort N/2 elements each. The root inputs and
outputs all N elements. According to the definition of c
the input time of the root is included in the communication
time of the subtrees.

The corresponding recurrence relation

Tc(1,N) = 2Te(1,N/2) + Nc
has the solution
Tc(1,N) = NTc(1,1) + (NlogN)c

where logN = n is the binary logarithm of N.
By combining these results we obtain

te(1,N) = (logN + 2)c (2)

which simply says that each element must pass through a
channel at each level in the tree.

Now think of a tree running on P processors and assume
that the multiprocessor automatically divides the
computational load evenly among the processors [5]. The two
subtrees of the root are identical processes running in
parallel., Each subtree uses the equivalent of P/2
processors to sort N/2 elements in time Tc(P/2,N/2). In
addition, the root must output N elements sequentially,
that is

Tc(P,N) = Tc(P/2,N/2) + Nc
This recurrence has the solution
Tc(P,N) = Te(1,N/P) + 2N(1 - 1/P)c
From Eq. (2) we have
Tc(1,N/P) = (N/P)(1log(N/P) + 2)c
Consequently

log(N/P)
tc(PsN) = (2 + ==ceemm= e (3)

This shows that the communication time of a process tree

ANALYSIS OF A PARALLEL MERGESORT 9

always exceeds the communication time of the root (which is
2c per element). The remaining communications are speeded
up by a factor of P (approximately).

We have implicitly assumed that the use of a common input
channel for the 1leaves does not affect the parallel
execution of subtrees. If several processors attempt to
access this channel simultaneously, each of them is delayed
until it obtains exclusive access to the channel for a
single communication. If processor conflicts are
significant, we must use queuing theory to predict the
communication time.

We can make a rough estimate of the probability of such
conflicts by viewing the shared channel as a single server
with random arrivals and exponential service times [6]. The
proportion of the communication time, during which the
shared channel is busy, is c¢/tc(P,N). The probability of
more than one processor being ready to wuse this channel
simultaneously is

2
Pdelay(P,N) = (c¢/tc(P,N))

In practice the probability of conflict is fairly small as
illustrated by the following examples

Pdelay(10, 8192) = 0.11 Pdelay(N,N) = 0.25

We will therefore assume that the processors interleave
their inputs from the common channel with communications on
other channels without experiencing noticeable delays. The
performance measurements presented 1later show that this
assumption is realistic for a multiprocessor.

The absence of conflicts has the surprising consequence
that the algorithm cannot be speeded up by letting the
leaves input the elements in parallel from N channels
(instead of one).

The communication speedup is

Sc(P,N) = te(1,N)/tc(P,N)

that is

SC(PyN) = =cmmmmec——e- (%)

Sc(NsN) = ==e= + 1 (5)

ANALYSIS OF A PARALLEL MERGESORT 10

For N = 8192, we have Sc(N,N) = 7.5. Since Sc(P,N) <
Sc(N,N) for P < N, we conclude that the parallel merge sort
is effective only on a multiprocessor with a modest number
of processors.

PROCESS DECOMPOSITION

The decomposition time of a (sequential) leaf is the sum of
its activation and termination times

Td(P»1) = a + b

To activate a tree, a single processor must activate and
terminate both the root and its two subtrees

Td(1,N) = 2Td(1,N/2) + a + b
The solution of this equation
Td(1,N) = NTd(1,1) + (N - 1)(a + b)

shows that the tree consists of N leaves and N - 1
branches.
The above can be rewritten as

Td(1,N) = (2N - 1)(a + b)
We will use the approximation
td(1,N) = 2(a + b) if N >> 1 (6)

The situation is more subtle when multiple processors are
used. We assume that the processors share the memory
(although they may wuse 1local caches to speed up memory
acccess). A lock ensures that a processor has exclusive
access to memory while allocating (or reclaiming) space for
a process [5].

We will deliberately oversimplify the model by assuming
that the tree is activated and terminated in two
non-overlapping phases

Td(P,N) = Te(P,N) +« Tf(P,N)

1. In the first phase the processors activate the N = 1
parents (but not the leaves). No communication takes place
since the leaves do not exist yet. Since the memory 1lock
serializes the activations we have

Te(P,N) = (N - 1)a

ANALYSIS OF A PARALLEL MERGESORT 11

which can be approximated by
te(P,N) = a if N >> 1

2. In the second phase the N leaves are activated and the
2N - 1 processes terminate one by one. So far we have
assumed that it is possible to discuss process
decomposition and process communication as unrelated
events. However at this point we need to make an assumption
about how communication influences decomposition.

Process communication begins to take place as soon as the
first 1leaf has been activated. Process activations and
terminations are now relatively rare events compared to
communications. Only one activation and two terminations
take place for every logN + 2 communications in phase two.
So it 1is not very 1likely that several processors will
attempt to lock the memory simultaneously. Since leaf
activations and process terminations seldom are delayed by
locking conflicts we can analyze them as if they were
operations that c¢an be speeded up by using more than one
processor. This is the only assumption we need to make
about the effect of communication on decomposition.

We will therefore assume that the decomposition of two
subtrees is distributed evenly among the processors. When
both subtrees have terminated, the corresponding root also
terminates. So the decomposition time in phase two is

Tf(P,N) = Tf(P/2,N/2) + Db
or
Tf(P,N) = Tf(1,N/P) + (logP)b

Tf(1,N/P) is the overhead of activating N/P leaves and
terminating 2N/P - 1 processes sequentially

Tf(1,N/P) = (N/P)a + (2N/P - 1)b
From these equations we obtain
Tf(P,N) = (logP - 1)b + (N/P)(a + 2b)
or approximately
tf(P,N) = (a + 2b)/P if N 5> 1
Finally we combine these results to obtain the

decomposition time per element

td(P,N) = a + ====w- if N >> 1 (7)

ANALYSIS OF A PARALLEL MERGESORT 12

which shows that half of the activations and all the
terminations are speeded up by a factor of P.
The decomposition speedup is

Sd(P,N) = td(1,N)/td(P,N)
or

SAd(PyN) = =cecceaaa- if N >> 1 (8)

The upper bound on the decomposition speedup is
Sd(N,N) = 2(1 + b/a) if N >> 1 (9)
If we make the reasonable assumption that the termination
time of a process does not exceed its activation time, we
nave Sd(P,N) < Sd(N,N) < 4 if b £ a

which is not too encouraging.

COMPLETE MODEL

The running time of the algorithm is the sum of the
communication and decomposition times

t(P,N) = tc(P,N) + td(P,N)

According to Eqs. (2) and (6) the single processor time
per element is

t(1,N) = 2(a + b) + (logN + 2)c (10)
From Eqs. (3) and (7) we derive the parallel running time
a + 2b + log(N/P)lc
t(P,N) = 2 4 2C + =—ccmcmmmcccceeem if N>> 1 (11)
The speedup S(P,N) is defined by Eq. (1). The upper bound
on the speedup is
2(a + b) + (logN + 2)c
S(NsN) =2 coccmcrccrrnacrcrceee if N >> 1 (12)

By using Eqs. (5) and (9) we can rewrite this as

ANALYSIS OF A PARALLEL MERGESORT 13

aSd(N,N) + 2cSc(N,N)

S(N)N) = ~mememccccccccccc e
a + 2¢

If logN 2> 2 + Ub/a then Sd(N,N) £ Sc(N,N) and
Sd(N,N) < S(N,N) £ Sc(N,N)

that is
2(1 + b/a) £ S(N,N) < (logN)/2 + 1 (13)

THEORY AND PRACTICE

The parallel mergesort written in Joyce runs on an Encore
Multimax 320 at Syracuse University. This multiprocessor
has 18 processors and a shared memory of 128 Mb. The Joyce
compiler generates portable code which is interpreted by a
kernel written in assembly language. An elementary
operation, such as pushing an integer on a process stack,
takes about 5 us.

The activation and termination times of a mergesort

process
a = 270 us b = 190 us

were estimated from the program text using the elementary
execution times listed in [5].

Most (but not all) of the activation time 1is serialized
by a memory 1lock. This small error 1is corrected by
replacing the first a in Eq. (11) by the locked part of the
activation time

a' = 210 us

The communication time of a mergesort process
¢ = 290 + 10P us

increases slightly with the number of processors P. This is
due to the load balancing mechanism, After each
communication the Joyce Kkernel scans a table of length P
and enters the process blocked by the communication in the
shortest processor queue.

The curve in Fig. 2 shows the execution times predicted
by Eq. (11) for 8192 elements sorted on 1 to 10 processors.
The plotted points are execution times measured on the
Multimax,

ANALYSIS OF A PARALLEL MERGESORT

t(P, 8192) ms

| | L LB LI
8

Fig. 2. Parallel running times.

Figure 3 shows the corresponding speedup.

ANALYSIS OF A PARALLEL MERGESORT 15

S(P, 8192)

Fig. 3. Parallel speedup.

On a single processor the Joyce program activates 16,383
processes, which exchange 122,880 messages in 43 s. On 10
processors the speedup is 3.2 and the running time is 13 s
(or 1.6 ms/element).

Similar agreement between theory and practice was
obtained for 1024, 2048 and 4192 elements,

CONCLUSION

We have described an exact performance model of the
parallel mergesort. This algorithm sorts N elements by
spawning almost 2N processes which perform roughly NlogN
communications. The analytical model accurately predicts
the running time of the algorithm on a multiprocessor.

The performance of this highly parallel algorithm is

ANALYSIS OF A PARALLEL MERGESORT 16

dominated by the overhead of process activation,
termination, and communication. On a multiprocessor with
shared memory these operations take about the same amounts
of time. In this final argument we will assume that they
take exactly one unit of time each, that is

a=bz=c¢=1

In that case the minimum running time of the mergesort is
approximately
T(N,N) = 3N if N >> 1

according to Eq. (11). This result suggests that it takes N
processors to sort N elements in O(N) time. However this
view of the parallel performance is too pessimistic.
If we use
P = (logN + 3)/3

processors only, we obtain the following approximate
running time from Eq. (11)

T(P,N) = 6N if N >> P/8

In other words the parallel mergesort needs only O(logN)
processors to sort N elements in O(N) time. (The exact
sorting time is about twice the minimum time.)

For example a multicomputer that sorts a million elements
on a million processors runs only twice as fast as a
multiprocessor that sorts the same elements on eight
processors.

We conclude that the parallel mergesort performs well on
a small multiprocessor but is unable to utilize a large
multicomputer efficiently.

The main purpose of the paper has been to illustrate the
analysis of an algorithm with dynamic parallelism.

ACKNOWLEDGEMENTS

The paper has been improved by valuable comments from Nawal
Copty, Jonathan Greenfield, Anand Rangachari, Sanjay Ranka
and Tapas Som.

This work was conducted using the computational resources
of the Northeast Parallel Architectures Center (NPAC) at
Syracuse University, which is funded by DARPA, under
contract to Rome Air Development Center (RADC), Griffiss
AFB, NY.

REFERENCES

[1l

[21]

[3]

(a1

[51

[61

ANALYSIS OF A PARALLEL MERGESORT 17

D. E. Knuth, The Art of Computer Programming. ¥Yol. 3.
Sorting and Searching. Addison-Wesley, Reading, MA,
1973.

J. T. Robinson, "Some analysis techniques for
asynchronous multiprocessor algorithms," IEEE Trans.
on Software Engineering, vol. 5, pp. 24-31, 1979,

D. J. Evans and N. Y. Yousif, "The parallel neighbour
sort and 2-way merge algorithm," Parallel Computing,
vol. 3, pp. 85-90, 1986.

P. Brinch Hansen, "Joyce - A programming language for
distributed systems," Software - Practice and
Experience, vol. 17, pp.29-50, 1987.

P. Brinch Hansen, "A multiprocessor implementation of
Joyce," Software - Practice and Experience, vol. 19,
pp. 579-592, 1989.

L. Kleinrock, Queueing Systems. ¥Yol. 1. Theory. John
Wiley & Sons, New York, NY, 1976.

	Analysis of a Parallel Mergesort
	Recommended Citation

	SU-CIS-89-03_001c
	SU-CIS-89-03_002c
	SU-CIS-89-03_003c
	SU-CIS-89-03_004c
	SU-CIS-89-03_005c
	SU-CIS-89-03_006c
	SU-CIS-89-03_007c
	SU-CIS-89-03_008c
	SU-CIS-89-03_009c
	SU-CIS-89-03_010c
	SU-CIS-89-03_011c
	SU-CIS-89-03_012c
	SU-CIS-89-03_013c
	SU-CIS-89-03_014c
	SU-CIS-89-03_015c
	SU-CIS-89-03_016c
	SU-CIS-89-03_017c
	SU-CIS-89-03_018c

