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Simplifications to "A New Approach to the Covering Radius ... " 

by H. F. Mattson, Jr. 

Abstract. We simplify the proofs of four results in [3], restating two of them for 

greater clarity. 

The main purpose of this note is to give a brief transparent proof of Theorem 7 of 

[3], the main upper bound of that paper. The secondary purpose is to give a more direct 

statement and proof of the integer programming determination of covering radius of [3]. 

Theorem 7 of [3] follows from a simple result in [2], which we state with the notation 

(for the linear code A) 

(1) 

g(A): =a generator matrix of A, 

t(A) : =the covering radius of A. 

THEOREM 1 [2]. If A is a code with generator matrix 

* g(A) = 
g(Ao) 0 

X X 

then t(A) < t(Ao) + t(A1). 

To describe the codes A0 and A1 : Pick any subset X of coordinate-places of A. A1 is 

the projection of A on X; we get Ao from the subcode D of A which vanishes on X by 

projecting Don X. (Ao [A1] is sometimes called a shortened [punctured] code of A.) 

Before stating Theorem 2, let us agree that all codes B, C are binary, linear, and 

have no coordinates identically 0. (The last need not be true of C0 .) We also need the 

following notation: 
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{2.1) 

sk := (2A: - 1, k] simplex code. 

(2.2) B denotes an (n, k] code having in g(B) exactly mi > 0 copies of 

column i of g(Sk) fori= 1, ... ,2k -1. Thus n = Emi. 

(2.3) We often identify a vector in Z2 with its support. In this note the 

support is a subset of the set of columns of Sk, or a multisubset thereof. 

In that identification we may denote the weight of the vector x by lx I, the 

cardinality of the support of x. The columns of g(B) form a multisubset of 

the set of columns of g(Sk)· The vector (m~, ... ,m2~c_1 ) of multiplicities of 

the columns is called the signature of B. 

{3) The normalized covering radius (3] of B is defined as 

lmij p(B) := p(mt, ... , m2"-t) := t(B)-~ 2 · 
I 

The projective core of B is the code C for which g( C) consists of the columns 

of g( B) without any repetitions. I.e., in the signature ( ... , IIi, ••• ) of C, IIi = 1 

if mi > 0 and IIi = 0 if mi = 0. 

For any column Q of g(B) we define TJ := TJQ to be the total number of 

vectors {P, Q, R} of weight 3 in CJ. for which mp and mR are odd. The 

vectors are denoted as in {2.3). 

Before going on, we comment on {3). Recall from [1, II D] the definition of a cate

nation A of the [n17 k1] code At and the [n2, k2] code A2, with k1 :5 k2. It has generator 

matrix 

g(A) = 

and its covering radius satisfies t(A) ~ t(A1 ) + t(A2 ) [1, II D]. We take A2 , say, to be 

the "even" part of the code B. That is, write mi = 2pi + Ei, where fi = 0 or 1, and take 

A1 and A2 to have signatures ( ... , Ei, .. . ) and ( ... , 2pi, .. . ), respectively. Then B is a 

2 



catenation of A1 and A2 , and t(B) ~ t(A1) + t(A2). From [2, (11)] we get an immediate 

proof of Thm. 6 of [3]: t(A2) = E Jli, since the "double" of any code of length f. has 

covering radius f.. Therefore, t(B) ~ t(A1) + EJ.Li and p(B) ~ t(A1). (This is Thm. 5 of 

(3].) 

To state the result, choose any column Q of g(B). After row-operations (which do 

not change Beven though they permute the mi's) column Q becomes simply (10 · · · O)tr, 

and 

(4) 

+- mq -+ 

11·. ·1 * 
g(B) = 

0 g(Bo) 

where B0 has signature (m~, m~, ... , m~,.-1_ 1 ). 

THEOREM 2 ([3]). The normalized covering radius of B satisfies 

Proof. Since B1 in (4) is an [mq, 1,mq] repetition code, t(B1 ) = Lmq/2J. Thus, 

from Theorem 1, 

(5) 

t(B) ~ Lmq/2J + t(Bo). 

To express (5) in terms of normalized covering radii, we subtract L:i L md2J from both 

sides. We get 

(6) 

p(B) := t(B)- IJmi/2J ~ t(Bo)- :Llmi/2J. 
i i:I;Q 

Each pair of columns P and R of g(B) which agree except on their top coordinate have 

sum Q. That is, for some vector N, P = (0, N)tr and R = (1, N)tr. Thus mp+mR = mN, 

and { P, Q, R} is (the support of) a vector of weight 3 in C.l.. We note that 
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(7) 

unless mp and mR are odd, in which case the right-hand side of (7) must be decreased 

by 1. Thus ( 6) becomes 

p(B) 5 t(Bo)-~ l ~j J + ~· D 

Remark. Theorem 1 allowed us to avoid the notion of "height" used in [3]. We have 

also restated the result by defining TJ not with finite geometry, as in (3], but in terms of 

the code. Except for this change of language the proof after (5) is similar to that of [3]. 

Finally, we simplify the integer programming determination [3, Thm. 1] of p(B) by 

eliminating "height" from the statement and proof. 

In terms of (2), it is simple to see [1] that x is a coset leader of a code A iff 

(8) 

Va E A 2jxnal $ lal. 

Letting the [n, k] code B have signature ( · · ·, mi, · · · ), define [3,(5)] for any x E Z2\ 

x := ( xC1), ••• , xCn)), where xCi) is the "sub" vector of the coordinates of x at the mi places 

where column i appears in g(B). Define 

(9) 

It follows that 0 < wi(x) < mi for all i and x, and that wt(x) = Liwi(x). 

We also project B onto the projective core C by the rule 

b = ( ... , b(i), ... ) --+ ( ••• , Cj, ••• ) = c, 

where ci = 1 iff b(i) f:. 0. It follows that lbl = Li qmi, where Ci is regarded as real 0 or 1. 
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Using (2.3) we calculate for any bE Band any x E Z2 

x n b = Ux(i) n b(i) = U x(i>. 

Hence 

i c;=l 

lx n bl = :Ec;w;(x). 
i 

Thus we see from (8) that ·D: is a coset leader forB iff for all c = ( ... , ci, ... ) in C, 

1 
~ciwi(x) ~ 2 ~cimi· 
• • 

Since the covering radius of B is the weight of a coset leader of maximum weight we have 

proved ( cf. (3, Thm. 1)) 

THEOREM 3. The covering radius of B is the solution to the following integer 

programming problem: 

Maximize W := w1 + · · · + w2~c_ 1 subject to the constraints 

Wi E Z, 0 ~ wi < mi 

and 2:;c;w; ~! 2:;c;m; for all c = (c;) E C. 

COROLLARY. p(B) = maxW- 2: l!!fJ · 
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