
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

5-1990

Dynamic Range Partitioning in Multiprocessor Database Dynamic Range Partitioning in Multiprocessor Database

Implementations Implementations

Ophir Frieder

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Frieder, Ophir, "Dynamic Range Partitioning in Multiprocessor Database Implementations" (1990).
Electrical Engineering and Computer Science - Technical Reports. 50.
https://surface.syr.edu/eecs_techreports/50

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/50?utm_source=surface.syr.edu%2Feecs_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-13

Dynamic Range Partitioning in Mutiprocessor
Database Implementations

Ophir Frieder
Bellcore
445 South Street
Morristown, NJ 07960

Kishan G. Mehrotra
Suite 4-116
Center for Science and Technology
Syracuse, NY 13244-4100

May1990

School of Computer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology

Syracuse I New York 13244-4100

Dynamic Range Partitioning in Multiprocessor Database Implementations

Ophir Frieder
Bellcore
445 South St.
Morristown, NJ 07960

Kishan G. Mehrotra
School of Comp. W. Sci.
Syracuse University
Syracuse, NY 13244

Keywords: Multiprocessing, Join Processing, Data Partitioning

1. Introduction

Multiprocessor implementation of the relational database operators has recently received

great attention in the literature [1-4, 8, 11]. As the complexity of implementing the

relational operators rests on the inter-node communication patterns involved in an

operation, greater research attention has been focussed on Join algorithms. The Join traffic

patterns subsume those of the remaining relational operators.

To effectively exploit parallelism in bucket based join implementations, the domain of

the joining attributes must be partitioned into equal subranges. That is, the processing of

each subrange requires roughly an equal amount of time. A skewed distribution of

workload significantly hinders perfonnance. As relations exhibit a non-unifonn attribute

value distribution, possibly resulting from a pre'lious operation, a priori determination of

subrange boundary conditions results in a non-balanced workload across the processors.

Perfonnance degradation in parallel systems employing such static boundary subrange

partitioning is demonstrated in Lakshmi and Yu [6] .. That study exemplified that even a

low degree of attribute skew results in a significant perfonnance penalty. This paper

proposes a statistical algorithm for dynamic determination of domain partitioning in bucket

based join implementations. This statistics-based approach guarantees a near-uniform

processor workload. A parameterization of the sample size versus the number of tuples is

developed, and a proof of the validity of the approach is discussed. A simple illustrative

example is presented.

-2-

2. Bucket-Based Join Implementations

Briefly, an attribute is any symbol from a fmite set £ = (Ao, AI, A2t ..., An). A

relation 9t on the set £ is a subset of the Cartesian product of dom (Ao) x dom (AI) x dam

(A2) x ... x dom (An), where dom (Ai) is the domain of Ai. R[Ao Al A2 •.. An]

represents 9t on the set (Ao, AI, A2•••., An). In R[Ao-Al A2 ... An], each column Ai

is called an attribute of R, an..! is denoted as R.Ai. Each row of R, namely a tuple, is

designated by <ao, aI, 82, ..., an>, where ai £ dom (AU. Finally, the Join of two relations

R[A B] and S[B el, denoted as R[A B] Ixl S[B el, is defmed by R[A B] Ixl S[B C] ={x I

x[A B] E R and x[B C] £ S }, where A, B, and C are a disjoint set of attributes [7].

Bucket based multiprocessor implementations of the join operator, e.g., hash and sort-

based algorithms, partition the tuples into subranges (buckets), as follows.

1. Partition the domain of the joining attributes into non-overlapping subranges.

2. Assign each subrange to a unique processor.

3. Route all tuples based on their corresponding joining attribute values to the

appropriate processor.

4. Compute the local join.

All tuples residing at a given processor have attribute values within a limited subrange.

Thus, as compared to nested loop join implementations [1, 3], few redundant comparisons

are performed.

3. Dynamic Buckel Partitioning Algorithm

The Dynamic Bucket Partitioning Algorithm (DBPA) corresponds to frrst 2 steps of the

bucket-based multiprocessor join implementations described in Section 2 where step 1

consists of 4 steps. Let T[A B C] =R[A B] Ixl S[B el, with relations R and S horizontally

partitioned over M processors, Rt, R2, R3, ..., RM and SIt 52, S3, ..., SM. Any Rj or

Sit 1 ~ iSM may be null.

-3-

To achieve a perfectly balanced processor workload distribution. an exact global

histogram of the data element values is required. As collecting such infonnation is likely to

require more time than the savings resulting from an even processor workload, a statistical

algorithm that requires limited global knowledge is proposed. The algorithm proceeds as

follows:

1. Detennine the common range of R.B and S.B.
Let min Ri • max Rj • min Si • and max Sj be the minimum and maximum
local Ri and Si values, 1 S i ~ M, respectively.
Let MIN =maximum (minimum (min Ri)' minimum (min Si)), 1 ~ iSM.
Let MAX = minimum (maximum (max Ri)' maximum (max Si)), 1 SiS M.
The common range ofR.B and S.B is [MIN, MAX].

2. Remove items not in the common range of R.B and S.B. Detennine global
count of the remaining R and S tuples.

Defme R'i and S'i, 1 SiS M, as the local Ri and Si values within the
common range ofR.B and S.B, respectively.
Let niR = number of R'i, 1 S i ~ M.
Let DiS = number of S'i, 1 S i ~ M.
The total number of R' and Sf respectively is:

M

nR=L niR and
i =1

M

ns = L niS
i =1

3. Choose a sample size, N'. Clearly, the larger N' is, the more representative is
the randomly selected sample of the global tuple distribution. However, as
shown in Section 5, a relatively small N' suffices.
Detennine, the number of randomly selected data points belonging to R'i, and
S'i , 1 SiS M, to represent N'.

Let NR =rN'(n: n) 1 and Ns = N' - NR.OR S
Then, at each node i, 1 ~ iSM, the number of Rti and S'i to be drawn is:

M M

LetN= L NiR + L NiS
i =1 i =1

-4-

4. Fonning the bucket boundaries.
Draw the random samples of sizes NiR and NiS from all processors it 1 ~ i
~ M. A possible random sampling algorithm is described in [9].

Let Z be the union of all the samples drawn from all the processors. Recalling
that N =cardinality(Z), sort the Z values such that Z[O] S Z[l] S ... Z[N] .

The range of values for processor it 1 ~ i ~ M, are [BOUN[i-ll, BOUN[i]],
where BOUN[k] is defmed as:

BOUN[k] =

Z[O],

z[W].
Z[N],

if k = 0,

if l~kSM-l,

if k = M.

4. Analytical Justification of Partitioning Algorithm

To optimize the exploitation of parallelism, an equated processor workload is required.

Thus, initially a workload function must be defined. In the case of a bucket join, the

workload function consists sorting both relation fragments and then linearly comparing the

sorted fragments. Assume that each node i, 1 S i ~ M, contains IRi110cai Ri and ISit local

Si tuples after the data are redisnibuted according to attribute values. Then, the workload at

node i, Wh in comparison time units is:

Wi = TillE (sort (Ri)) + TIME (sort (Si)) + TIME (merge(Ri + Si))
= (IRillog2lRil + 1Ril - 1) + (ISillog2 ISi' + ISil - 1) + (IRiJ + ISil - 1)
= IRil1og2 1Ri1+ ISillog2 ISi1+ 21Ril + 2JSjl - 3.

The proposed solution attempts to minimize (1Ril + 'Sil) log2 (JRil + lSi') at each node i,

1 S i ~ M.

To equally partition the total workload across all processors, for each processor i, 1~ iSM,

IR+SI
M

-5-

1

n-1/n

n-21n

3/n

2/n

1/n

o
MIN Z(1) 2(2) Z(3) Z(4) Z(N-1) Z(N) MAX

Figure 1. FN as an Estimator of F.

When fonnally specified the bucket partitioning problem is:

Given a large population, R u S, of cardinality N*, with an unknown
distribution function, F, partition the population into M equal, non-overlapping
regions. That is, detennine the boundary conditions BOUN[O], BOUN[l], ...
BOUN[M], where the range of values for processor i, 1 SiS M, are
[BOUN[i-l], BOUN[i]].

To detennine the boundary values, a sample of size N is drawn from the total

population, and a sample distribution function, FN, an estimator of F, is constructed. The

relation between FN and F, shown in figure 1, is a graphical argument justifying the

approach. For notational convenience, denote BOUN[k] of the previous section by ~k.

Then,

OSiSM,

-6-

where ~ =MIN and~ =MAX, i.e., precisely ~of the sample values fall between

(~i-l , ~i 1, for 1 ~ i ~M. As FN is a closed approximation to F, it is expected that~ of

the population values will fall between (~i-l , ~i], for 1 ~ i ~ M. This last statement is

made precise in the following discussion.

Let Q = the proportion ofpopulation Z values in tt e inteIVal (t-l , ~i 1, and

let Pi = ~, i.e., the desired proportion of population Z values in inteIVal (~i-l , ~i 1,

for 1 ~ i ~ M.

Finally, denote by ~i, the unknown i 1h boundary point for the population Z values, i.e.,

F(~i>=~, l~i~M,

where ~O =MIN and ~M =MAX.

The proposed algorithm is unlikely to result in an optimal partitioning of the workload.

Hence a characterization of the resulting partitioning from the optimal, namely, Qi - Pi, is

necessary. First, we note that

Qi - Pi = Pr [t-l < Z ~ ~i] - ~
o ~ i i-I= (Pr [Z ~ Cii] - Pr [Z S Cii-l]) - (M - M)

o i 0 i-I= (Pr [Z S Cii] - M) - (Pr [Z ~ 'ii-I] - M)

= Ui - Ui-l

where

Ui = Pr [Z ~ ~i] - ~

= F (~i) - F (~i-l), for 1 S i ~ M.

Second, we consider the distribution of Vi.

-7-

Theorem:

For large values of N, the distribution function of the random variable~ Ui is

approximated by a NORMAL distribution with a mean = 0 and a variance = ~ (l - ~.

Proof:

[The proof of this theorem is well known and is presented here for completeness only]

From Rao [10, pg 154], we observe that

where

I(x) = !x F(x) and the remainder tenn. RN. is on the order of:

Hence,

U' = F (~. + FN(~i) - F(~i) + R) _ F(J:.).
1 ~1 I (~i) N ~1

By Taylor expansion of the fIrst tenn on the right side of the above equation,

= F (~i) + (FN(~i) - F(~i) + RN) I(~i) + R ~ - F(~j)
I(~i)

•= FN(~i) - F(~i) + I(~i) RN + R N·

Here R~ is the remainder tenn in the Taylor expansion and is on the order of:

But, note that NFN(~i) is a Binomial random variable with mean NFN(~i) and

variance NFN(~j) (1 - F(~i». Then, by the Central Limit Theorem, Rao [10, pg

21]. the distribution of..JN (FN(~) - F(~ ») is approximated by a NORMAL

distribution with mean 0 and variance FN< ~) (1 - F(Q)) = ~ (1 -~).

-8-

•In addition, as N -> N* t -IN RN and {N R N converge to very small numbers and

do not make any contribution to the main tenn ~ (FN(l;i) - F(l;i »). Therefore,

uplN =..IN (FN(l;i) - F(l;i »)

and its distribution are approximated by a NORMAL distribution with mean 0 and

variance ~ (1 - ~). Q. E. D.

Similarly, it can be shown that the distribution of {N (Qj - Pi) = ..IN (Ui - Ui-l) is

approximated by a NORMAL distribution with mean 0 and variance~ (1 - ~).

Consequently, we can make the following statement regarding the error in

approximating Pi by Qj.

-2~-1 2 K-lPr [- - < Qj - p. S - --] = 95v'N w- 1 v'N W ·

In general, this states that, by varying N, it is possible to get arbitrarily close to Pi, i.e.,

a peIfectly balanced workload distribution. In the limiting case of N = N* t it is obvious

that Pi == Qj. As shown in Section 5, even a vazy small N achieves nearly an optimal

distribution.

5. Experimental Analysis

To illustrate the approach, a simulation of a 4 node system was developed. The R

values were randomly generated following UNIFORM distributions of varying range. The

S values were also randomly generated but using NORMAL distributions with varying

mean and variance. All values are randomly partitioned across the 4 nodes.

Three sample runs are presented. In all three runs, a sample size N, of 10<XX> data

elements was drawn at random, as described in Section 3. The population size consisted of

-9-

N· =1000000 Z =912344 N=10000 ei = 228086
Proc, NQ. R S. Im.al Absolute Error

0 130684 98823 229507 0.0062
1 64802 161805 226607 0.0065
2 73671 151284 224955 0.0137
3 143233 88042 231275 0.0140

N* =5000000 Z =4597114 N=10000 ej = 1149278
Proc. No, R S. I21al Absolute Error

0 653430 492285 1145715 0.0031
1 320007 797976 1117983 0.0272
2 384751 783975 1168726 0.0169
3 739206 425484 1164690 0.0134

N* = 10000000 Z =9172246 N=10000 ei = 2293061
Proc. NO. R S. I.Q1al Absolute Error

0 1285454 947809 2233263 0.0261
1 655757 1619610 2275367 0.0077
2 748183 1543630 2291813 0.0005
3 1483378 888425 2371803 0.0343

Figure 2. Experimental Results

one million, five million, and ten million data points, respectively. The results are provided

in figure 2.

Figure 2 illustrates the results of the three sample runs. N* is the size of the total

population. Z is the number of data values in common range of relations S and R. The

optimal partitioning of Z, if it was possible is represented by ei. As the optimal partitioning

may require that some of the data points whose value is Vt be routed to processor i and the

rest to processor i+l, an optimal partitioning may not always be possible. Finally, the

actual resulting partitioning, Oi, and the absolute error are presented. The absolute error is:

I e· o· Ierror = I - , •
Ci

in Figure 2, we note that the maximal error is 0.0140, 0.0272, and 0.0343. for the one

million, five million, and ten million data points, respectively. Even with examining only

0.1 % of the total data points, a near optimal partitioning is obtained.

-10 -

6. Conclusion and Future Work

To nullify the effects of data skew in multiprocessor bucket based join algorithms, a

statistical algorithm that dynamically detennines the bucket ranges was developed. The

theoretical underpinnings of the algorithm were provided. Using a simulation of a 4 node

multiprocessor, an experimental evaluation of the algorithm was performed. The results

demonstrate that with examining only 0.1% of the total data points, a near optimal

partitioning of the total join workload across the processors is obtained. Thus, the

proposed algorithm nullifies the perfonnance degradation resulting from data skew without

requiring that the total data values be examined

Utilization of dynamic bucket partitioning introduces additional overhead in join

processing. The incurred overhead results both from additional local computation and

inter-processor communication. From an initial study [5], if only a small number (roughly

3000 or less) of data items are processed at each node, the communication portion of the

overhead dominates the computational portion (sorting a large set of items is

computationally time-eonsuming). As the number of items sampled per node is small, the

incurred overhead is dependent on the communication network employed in terms of

absolute total time (seconds), and likely to depend on the communication network in tenns

of the relative percentage of the total execution time.

Thus, in brief, we remark that by off setting data skew we expect to improve the

performance of the join algorithm at the cost of some additional computation and data

communication. A detailed experimental study of the net reduction in execution time is

currently under way.

To evaluate the overhead, parallel join algorithms for various architectures were and are

being developed. Some of the distributed-memory architectures under investigation include

ring t broadcast bus, mesh, and hypercube-based multiprocessors. An investigation of the

observed perfonnance benefits of this approach on Local Area Networks is also planned.

Current experimentation consists of varying the skewness of the data while keeping the

- 11 -

number of processors and interconnection scheme fixed and studying the issue of

scalability. That is, the degree of effective parallelism in terms of the number of nodes that

can be exploited with a satisfactory improvement in performance.

Acknowledgement

We wish to thank Dr. Gideon Frieder for his technical insights in the research effort.

We also wish to thank Nick Karonis and Paul Jackson for their contributions.

References

1. Baru, C. K. and O. Frieder, 'fDatabase Operations in a Cube-Connected
Multicomputer System," IEEE Transactions on Computers, 38(6), 1989.

2. De Witt, D. and R. Gerber, 'fMultiprocessor Hash-Based Join Algorithms."
Proceedings of1985 Very lLzrge Database Conference, 1985.

3. Hillyer. B. and D. E. Shaw, "NON-YON's Perfonnance on Certain Database
Benchmarks," IEEE Transactions on Software Engineering, 12(4), 1986.

4. Kitsuregawa t M., Tanaka, H. t and Moto-Oka, T.,"Architecture and Performance of
Relational Algebra Machine GRACE," Int'l Conf. on Parallel Processing
Proceedings, 1984.

5. Karonis, N., personal communication, 1989.

6. Lakshmi, M. S. and P. S. Yu, "Effect of Skew on Join Performance in Parallel
Architectures," IEEE Int'l Symp. on Databases in Parallel and Distributed Systems,
1988.

7 . Maier, D., The Theory ofRelational Databases, Computer Science Press. Rockville,
Maryland. 1983.

8. Omiecinski, E. and E. Tien, "A Hash-Based Join Algorithm for a Cube..Connected
Parallel Computer," Information Processing Letters, 30(5), 1989.

9. Rajan, V.• R. K. Ghosh, an,'j P. Gupta, "An Efficient Parallel Algorithm for Random
Sampling." Information Processing Letters. 30(5), 1989.

10. Rao, P., Asymptotic Theory 01Statisticallnference, Wiley, 1987.

11. Valduriez, P. and G. Gardarin. "Join and Semijoin Algorithms for a Multiprocessor
Database Machine," ACM Transactions on Database Systems, 9(1). 1984.

	Dynamic Range Partitioning in Multiprocessor Database Implementations
	Recommended Citation

	SU-CIS-90-13_001c
	SU-CIS-90-13_002c
	SU-CIS-90-13_003c
	SU-CIS-90-13_004c
	SU-CIS-90-13_005c
	SU-CIS-90-13_006c
	SU-CIS-90-13_007c
	SU-CIS-90-13_008c
	SU-CIS-90-13_009c
	SU-CIS-90-13_010c
	SU-CIS-90-13_011c
	SU-CIS-90-13_012c

