
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

1976

The Definition of Programming Languages The Definition of Programming Languages

J. A. Robinson
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Robinson, J. A., "The Definition of Programming Languages" (1976). Electrical Engineering and Computer
Science - Technical Reports. 44.
https://surface.syr.edu/eecs_techreports/44

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/44?utm_source=surface.syr.edu%2Feecs_techreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

6-76

THE DEFINITION OF PROGRAMMING LANGUAGES

J. A. Robinson

October 1976

SCHOOL OF COMPUTER

AND INFORMATION SCIENCE

THE DEFINITION OF PROGRAMMING LANGUAGES*

J. A. Robinson

October, 1976

School of Computer and Information Science
Syracuse University

Syracuse, New York 13210

*This work supported by the Rome Air Development Center under contract
F30602-75-C-012l.

THE DEFINITION OF PROGRAMMING LANGUAGES

o. Introduction

There is no need to argue in favor of concise, clear, complete,

consistent, descriptions of programming languages, nor to recite the

cost in time, energy, money and effectiveness which is incurred when a

description falls short of these standards. Reliable, high-quality

computer programming is impossible without a clear and precise under

standing of the language in which the programs are written -- this

being true quite independently of the merits of the language as a

language.

In this study we tried to discover the current state of the method

ology of definition of programming languages. We sought to separate

the question (as far as it can be done) of definition from that of

design. Our goal was to get at ways of specifying programming languages

rather than ways of inventing them or of impZementing them on machines.

We realise however that these questions are not completely separable.

Many programming languages are poorly defined. Nowadays -- indeed

ever since the influential and pioneering example of the formal defini

tion of ALGOL-60 -- one finds (usually) that the syntax of a programming

language is defined very clearly and compactly, but that the semantics

is (usually) explained badly.

This discrepancy seems to be due to the fact that the BNF notation

(with its accompanying framework of concepts for dealing with sets of

1

2

strings over a given alphabet of characters) has become a powerful,

standard tool for specifying a syntax; whereas nothinK comparable has

yet received universal acceptance for specifying a semantics. Unl!l

relatively recently, indeed, nothing comparable existed. However, since

about 1970 there has been a fruitful research effort under way in

fo~al semantias which has produced a sound mathematical theory of con

siderable power and elegance. The product of this research has been

a system of notation (with an accompanying framework of concepts and

results) which, in the opinion of the present writer, more than redresses

the imbalance between the methodology of syntax and that of semantics.

There has also been, over the past decade or so, a trend towards

improving the technique of syntax-specification, summed up in the

distinction between concrete and abstpact syntax. The earlier BNF

influenced notion was that a syntax was a system of sets of strings

of characters. The structure of a given string had to be computed (as

a labelled tree figure of some kind) by means of the operation of parsing

the string. The details tended to be fussy, minute, many, and yet

inessentiaZ to the overalZ mission of the Zanguage.

The best current practice is to present the syntax of a language

in as abstract a form as is consistent with the objective of creating

suitable vehicles for the intended semantic roles of the various syntactic

constructs. Thus, one might specify, for example, that a conditional

expression is simply a "thing" that has three immediate constituents: a

premiss, a conclusion, and an alternative; and that the premiss is a sentence

while the conclusion and the alternative are both expressions. Only two

basic requirements on one's abstract specification need be imposed explicitly:

3

the requirement of unique decomposition and the requirement of finite

composition.

The first requirement, for example, means that two conditional ex-

pressions are the same conditional expression if and only if they have the

same prem~ss, the same conclusion, and the same altePnative.

The second requirement says that there must be no infinite sequences

of expressions in which each next expression x
j
+l is an immediate con

stituent of the preceding expression, x ..
J

With such an abstract specification, the particular details of how a

conditional expression shall be written, e.g. whether as one of the following

A ~ B, C

If A then B eZse C

si A aZops B ou C

B provided that A and otherwise C

or some other flsyntactically sugared" bit of text, does not matter: so

long as the premiss A, the conclusion B and the alternative C are computable

from the text by the selection functions provided as part of the concrete,

sugared representation.

The benefits of using abstract syntax specification are obvious and

will not be argued here. Suffice it to remark that, in cases where the

language being specified is intended (as, e.g., with JOVIAL) to be implemented

4

on a wide variety of machines and for a large community of users, one

gains jtexibiZity and portabiZity at the expense merely of the writing of

"concrete-to-abstract" translators, and "abstract-to-concrete" representor's.

The abstract syntax is a suitable interZingua between the different imple

mentations of the same language.

In the opinion of the present writer there is a widespread understanding

of and adherence to the principle of specifying syntax abstractly. At any

rate, the techniques appropriate for doing so are not new or difficult. In

the sequel a relatively unorthodoxviewpoint (that syntactic objects are

functions, namely from a finite set of seZectors to a set of other syntactic

objects as their immediate constituents) is presented as part of a general

approach to programming language definition in-which every entity is construed

as a function of some kind, or else as unanalyzed, primitive. However, there

is nothing particularly novel in this point of view. It is the method of

handling semantic definitions which is new and important.

The main content of this study will therefore be a summary of the best

current principles and practice of fOPmaZ semantic specification.

5

0.1 Abstract vs. Concrete Semantics

In preparing the critical survey we studied several contrasting

methods of programming language definition: (a) the method used by the

VIENNA group to define PL!T and which has subsequently been applied to

other languages, such as ALGOL-60; (b) the SEMANOL method, developed

by a group at TRW for RADC, as a method for specifying the language

JOVIAL; (c) the SEeD method devised by Landin [7] for defining the

semantics of programming languages based on the lambda-calculus; and

subsequently [8] elaborated to a method based on the SHARING machine;

(d) the AXIOMATIC method introduced by Hoare [9] for specifying the

semantics of isolated programming language constructs such as assign

ment, while-do, and if-then-else, principally for the purpose of pro-

viding a formal basis for proving properties of programs built out of

these constructs; (e) the OXFORD method devised by Strachey and Scott

[6] as an extension of the well-established TARSKI set-theoretic semantics

[10] used in mathematical logic for several decades.

The literature on these various methods is extensive, and is only

just beginning to include expositions designed for the general computing

public (as opposed to the specialist research workers in the field of

programming language design and implementation).

There is, in the opinion of the present writer, one outstanding

issue which forces itself on the attention of the reader of the programming

language definition research literature: the issue of whether to specify

semantics in a concrete, or an abstract, way.

Concrete specifications are those which t in one way or another,

involve the description of a MACHINE or INTERPRETER, and take the form,

in one way or another, of stating how the interpreter behaves when given

a program text, together with some data-describing text, as input.

The interpreter may be described at various levels of conceptual

abstraction -- at one end, details of behavior being insisted upon;

at the other, merely broad essentials being laid down -- but the general

principle at work is the same one: to specify an OPERATIONAL semantics

by saying what wilZ happen when the defining machine is driven by the

defined program in the presence of given data objects.

Abstract specifications of semantics avoid the introduction of the

definitional interpreter [11]. They proceed instead by describing the

entity denoted by the program text -- the "meaning" of the text -- in

a way that is independent of any particular concrete realization or

representation of that entity.

The advantages of abstract over concrete semantics are similar

to those of abstract over concrete syntax: essential features are

isolated from the irrelevant detail which accompanies particular

realizations of them; a wider range of implementations -- possibly

involving completely different conventions, eodings, and software tech

nologies -- is admitted; correctness proofs for compilers and inter

preters are immeasurably simplified and shortened; documentation of the

language is made concise and transparent.

It is in the OXFORD methodology of definition that the principle

of abstract semantics reaches its highest development to date. The

Oxford definition method will in the opinion of the present writer

evolve, with use, into the standard tool of the professional programming

language designer for specifying, developing, analyzing, and explaining

not only constructs but entire languages.

We therefore turn to a closer look at the ideas involved.

6

7

1. The Oxford Definition Method

A recent paper by R. D. Tennant [1] is a good tutorial introduction

to what will in this study be referred to as the Oxford Definition Method,

(ODM) originated by D. Scott and the late C. Strachey at Oxford University

in England. Accordin~ to Strachey [2] their collaboration began in the

autumn of 1969. It ended with Strachey's recent untimely death (1975).

The ODM approach takes as its main mathematical point of departure a

beautiful and important new mathematical theory, due to Scott, which deals

with the foundations of our ideas about computation, especially as these

bear upon apppoximating (describing) infinite objects by means of finite

ones. The details of Scott's theory are quite difficult and will not be

given here. In any case, Scott's theory is rather like Dedekind' s "Schnitt"

theory of the real numbers, in two respects: not only technically, but

also in that one is assured,by its existence, that certain intuitive con

ceptions are "consistent" and "safe", and may be "rigorously justified by

precise constructions, without having to perfoPm the constructions when

using the conceptions routinely and intuitively.

The intuitions addressed by Scott's theory concern the collections

of functions which appear to be the subject-matter of such rich programming

languages as the full ("typeless") lambda-calculus of Church and Curry,

which underlies so many of the modern high-level programming languages in

use today. For the purposes of this study we need only say that Scott's

theory rigorously justifies the use, as one's defining metalanguage, of the

typeless, classical lambda calculus enriched with a suitable collection of

primitives such as the conditional expression and the traditional set-

theoretical notation for denoting the set of all functions with a given

8

domain and range. We shall rely on this justification in the simplest

and most direct way, namely by using such a metalanguage freely and un

critically in an intuitive, informal fashion. We proceed by going through

some examples of the use of ODM.

1.1 Environments

The ODM approach is to define every significant structured entity of

a programming language as a mathematical function. This is a deliberate

attempt to avoid unnecessary specification and to employ abstract objects,

rather than representations of them, as elements of the specified system.

An easy introductory example of this is the analysis of an environment

of a computation -- namely the association between the identifiers in a

program and their values or denotations -- as a function from the set ID

of identifiers to the set D of denotable values. Thus, the environments

form a set ENV, and the equation defining it is

ENV = (ID ~ D)

where the notation on the right is the traditional one for the set of

functions from ID to D. In the ODM framework of ideas, the set (ID ~ D)

does not in fact contain aZZ functions whatsoever from ID to D, when ID is

an infinite set, but only those which, in Scott's theory, qualify as II con

tinuous". In the present study we can safely neglect this foundational

aspect of ODM and proceed on an informal intuitive basis.

A particular environment p:

P £ ENV

behaves as one would expect: it gives the denotation

p~

of every identifier; in the set ID. By p~ we mean the vaZue of the function

9

p at the argument ~, and we indicate the appZication of a function f to

its argument a in general by writing down f followed by a:

~

When fa is again a function g (as we shall see, in ODM applications this is

very often the case), and when a is itself a function (same comment) we may

write

to indicate

(fa)b

i.e.

g b

but if ab is a function h then we would write

f(ab)

to signify that the intended result is !h, not gb. This convention is called

association to the Zeft. It is convenient to have an explicit notation for

application of functions to arguments; and we shall sometimes use the solid

wedge ~ for this. Thus

means the same as

and we can even reverse the direction of the wedge if we like, writing

x·f

The wedge points from the function being applied, to the argument.

1.2 Stores

It is easy to give, using the ODM approach, a clear and satisfactory

10

analysis of a computer memory setup, and of the mechanism of assignment

which is present in virtually all programming languages.

A store is taken to be a function a in the set

S = (L -+ V)

of functions from locations a in L to storabZe vaZues 8 in V.

A particular a is thus a possible state of the memory.

Two particular functions may then be defined.

(1) define:

by:

and

contents € L ~ (8 ~ V)

(contents ~ a). a =- a • a

(2) define:

by:

where:

update € (L x V) ~ (S ~ S)

(update. (a, 6». a = a'

a' = A a'. if ex - ex' then a els. (0 .. a 1)

The use of the lambda notation

A x.a

to denote the function whose value at t is the result of evaluating the

expression a in an environment in which x is bound to t, is assumed to

be familiar.

1.3 Expressions

The expressions of a programming language comprise a set EXP of things which,

as we shall see in the example of the next section, can also be construed,

in the spirit of ODM, as functions. For the present discussion we assume

nothing about the structure of expressions, but proceed to discuss the

11

processes involved in assignment under the assumption that each expression

£ in EXP, when evaZuated, yields some vaZue which depends on the particular

structure of € and on the environment in which the evaluation takes place.

Assignment involves an expression EO which denotes a location, ,and an

expression E 1 which denotes a value; and the assignment command:

causes the value of El to be stored in the location which is the value of

EO. (Eo might be arbitrarily complex; e.g. it might be

A [i+j -' B[k+i]]

where A and B are arrays).

Two functions, Land R (for "left-value" and "right-value") are intro-

duced to analyse this operation.

define:(1) L € (EXP ~ (ENV ~ (8 ~ (L x S»»]

~__b_Y_:__(_d_et_a_i_l_e~,.~ificationof L) __

(2) define: R E (EXP ~ (ENV ~ (5 ~ (V x S»»

by: (detailed specification of R)

The detailed specifications of Land R will depend on the syntactic structures

of the expressions £ in EXP. But the general idea is straight forward.

(L • £0). p is, as the type specification in (1) shows, a function in

(5 -.. (L x S»

which, when applied to a store 0 0 , yields a Zocation a and a (possibly altered)

store 01

(3) «L • E) ~ p) -~ a = (n, 01)
o 0

The possibly altered store 01 is to allow, in the analysis, for possible

12

side-effects which may occur during the evaluation of £0 in p. Intuitively,

a is the location in the memory which EO denotes in p.

In carrying out the operatio]l £0 : = E
1

, then, the first step is· to do

equation (3). The second step is to get the value of £1 by using the func

tion R. By referring to the type of R given in (2), we see that

(R E1)p

is a function in

(5 -+ (V x S)

which, when applied to a store 0
1

, yields a vaZue a and a (possibly altered,

again because of side effects of the evaluation process) store 02:

(4) «R E1)P)01 = (8, 02)

Intuitively, a is the value denoted by £1 in the environment p of identifier

bindings when the memory is in state a
1

• In this model of storage and assign

ment, the environment is not changed by assignments, but rather the state of

the memopy, (the stope), is what changes.

With a and B as given by (3) and (4), the remaining work involved in

the meaning of £0 := E1 is given by:

(5) (update (a, 8 ») 02 = 03

That is, the overall effect of executing £0 := E
1

when the environment is p

and the store is 00 is to change the store to °3 -

If the meaning of commands ~ in the set CMD of the language is given

by a function:

C € (CMD -+ (ENV ~ (5 ~S»

i.e.(C y)p is a state transition function e in (8 -+ S) for each command y

and environment p, then part of the detailed specification of C would be:

13

(C(€o := £l)P)oO = °3 where

03 = update (a, 6) °2 where

(6, a) • «R £l)P)ol where
2

(a, o) - (L E:o)p) a
1 0

or equivalently
___ . ~~ ___ ... ~ '._____ .~---t_~

C(E o := E
1

)p = Aoo• update (a. , 6)°2 UJhere (6, (2) = « R El)P)ol

where (a. , °1) = « L EO)P)Oo·

using the lambda notation to define the state transformation e explicitly.

1.4 Commands

In general, commands are program elements y in a set CMD thereof whose

syntax will be part of the specification of the programming language. There

will be a semantic function C which gives the meaning of a command y, just

as the semantic functions Land R gave the "left" and "right" meanings of

expressions e: in EXP.

The specification of the language will largely consist of the detailed

definition of these semantic functions and of the syntactic structure of

their (te~ual) domains.

A command y is construed as denoting, in each environment p, a state

transition function e = Cyp

e € (5 -+- S).

the execution of a sequence y yo 1 • Yn of commands thus corres-

ponds to the transition of the initial state 00 successively to 01 =CYo 00'

to 02 = CY1 01' etc. The open wedge ~ notation represents composition of

functions: f ~ g being the function whose application to x yields the result

14

given by:

(f ~ g) • x = f. (g • x).

As with ., the di~ection of ~ may be reversed without changin~ the meaning,

provided we also reverse its two operands:

ft> g = g 4 f

Then the composition of state transitions 80 ••• en (in the order of their

app1ication)is the state transition:

and we may write the entire transition as:

With this notation, the sequence of commands Yo ••• Yn corresponds to the

state transition

1.5 Sequencing

One of the more troublesome aspects of programming language semantics

is the specification of "flow of control".

Suppose that y = Yo ; Y1 is the command consisting of "Yo followed by

y " -- to use the notation standard in many programming languages. Now in
1

order to specify the state-transition for y:

C(Yo ; Yl)p = 8

we shall have to know whether the execution of Yo will involve a jump or

not -- which in general we cannot know until Yo is actually being executed,

since, in general, whether Y1 is the (dynamically) next command after Yo'

or whether some other command somewhere else in the program will be the

15

dynamically next one, is not a fixed feature of the command Yo ; Y
1

, but of

the entipe ppogram and its detailed potential interactions with possible

environments and stores.

The ODM approach deals with this complication via an ingenious device,

known as the device of continuation function8~ which was hit upon independ

ently around 1970 by several authors, including F. L. Morris [3] of Syracuse

University.

The essential idea of the continuation function method is to define the

semantics of a program element (such as a sequential command Yo ; Y
1

) not

in isolation but rather in context as part of a complete program. (There is

a flavor here of passing from context-fpee semantics to context-sensitive

semantics.) To specify the transition function denoted by Yo ; Y
1

, in an

environment p we must therefore, according to the continuation method, supply

a context 6, the nature of which will be derived as the discussion develops,

and define the transition as depending upon 6.

(1) (P(Y
o

; y1)p)e

as weZZ as upon p. The analysis, by F. L. Morris and the others, of the

nature of e in this application, leads to the construing of its as a transi

tion. Since (1) must also denote a transition, i.e. must be in the set

C=S-'S

we have that the type of P is

(CMD ~ (ENV ~ (C ~ C»).

The intuitive interpretation of the "continuation function" a in (1)

is that it is the function corresponding to the remainder of the operation

specified by the entire program, factored out (literally: in the sense of

functional composition) and to be executed in the event that Yo Y
1

does

not invoZve a jump to Bome other part of the ppogram. That is, e repre

sents the "normal continuation" of the flow of control.

16

As F. L. Morris remarks: [3]

lithe function compiled for the subexpression should be
passed as an argument something which says what more is
waiting to be done, so that the 8ubexpression can decide
whether to do it or not."

Thus, if the execution of y does not involve a jump, we would specify that

(((P y) p)8) a0

i.e. the next state after 00 would be reached by first going to the state

which is reached by executing the command y, and then applying to that state,

the normal continuation 8, to get:

In the event of a jump, some other ("abnormal") transition, or continuation,

will be specified as having to be applied to 01 to get 02. That is, some

commands will "ignore their normal continuations".

In terms of this idea, the definition of P for the case of a sequencing

command Yo ; Y1 is then:

p (v
'0

which says, intuitively, that if e is the normal continuation, then the

transition:

(1)

is explained as giving to the routine:

(2)

the normal continuation:

(3)

17

so that, if in the execution of (2) there are no jumps, the remainder of

the computation will be the application of the transition (3) to the state

produced by executing (2).

The analysis of the meaning of a jump command

goto e:

is now clear in terms of continuation functions. We shall have:

(P(goto e:)p)a = a'

where 8' is the transition function which is obtained by evaluating the

"label expression" £ in the environment p:

a' = (E£)p

Thus the ODM approach yields a simple and straight forward analysis of the

delicate concept of a ZabeZ vaZue. In Tennent's definition [1] of GEDANKEN [4]

this is used very effectively to explain the semantics of the control aspects

of that extremely powerful language, in which one can construct such un

orthodox control regimes as co-routines and quasiparallel processes.

18

2. AseL

The programming language ASCL ("A Small Continuation Language") is

a langua~e devised by C. Strachey and C. Wadsworth in [5] to illustrate the

ODM concept of continuation functions. It also is well Buited to illustrate

the other features of ODM definitions, and we shall now go through its

definition, as a more extended example of the ODM approach.

2.1 Syntactic Categorit3 of ASeL

Four sets of syntactic entities:

ID CMD EXP FN

are declared and given the names exhibited in the line above. Simultaneously,

four sets of (metalinguistic) variables are declared, namely the lower-case

Greek letters

y

These variables, with or without numeric subscripts, will be used in the

definitions with the ranges:

t; € ID Y € CMD £: € EXP <p € FN .

Informally, we are told that

ID is the set of identifiers of ASCL. No particular assumptions
need be made (for the purposes of the definition) about the
members of ID.

CMD is the set of commands (this is the same as what is commonly
called a statement; but the word "command" has the more appropriate
"imperative" connotation).

EXP is the set of expressions of ASCL.

FN is the set of primitive commands of AseL.

2.2 Syntax Equations for ASCL

The following two equations assert that eMD and EXP are the unions of

several disjoint sets of syntactic subcategories, or cases:

19

CMD = FN + DUM + SEQ + IFC + WDO + GTO + BLK + ESC

EXP = ID + YES + NO + IFX + eMF

These "cases equations" give part of the information contained in a BNF

equation, namely the breakdown into cases of the syntactic category denoted

by the name on the left hand side. The remaining information, namely the

structural descriptions of the syntactic subcategories, is given by a structuraZ

equation for each such subcategory. In the present example, the subcategories

are:

DUM

YES

SEQ

NO

IFC

IFX

WDO

eMP

GTO BLK ESC

Informally, we remark that:

DUM is the set whose only element is the dummy command "skip".

YES is the set whose only element is the Boolean constant"true".

NO is the set whose only element is the Boolean constant "false".

SEQ is the set of compound commands often written as the (semi
colon-separated) sequence Yo ; Y1 •

IFe is the set of conditionaZ commands often written if £ then
Yo else Y1 , or as: E ~ Yo' Y1 ·

WDO is the set of repetitive constructs often written as while
E: do y.

GTO is the set of jumps often written as goto £.

BLK is the set of bZoaks or programs often' written as:
begin Yo; ~l: Yl; ... ; ~n: Yn end, with ·each ~. being a
Zabel (or "tag") in the body of the block. 1

ESC is the set of escape commands which return a value from a
subroutine; these are often written as: result is E, or return £,

or escape with £.

IFX is the set of conditionaZ expressions, often written as
if £0 then £1 else £2' or as £0 ~ £1' £2"

eMF is the set of vaZue-~eturning computations~ sometimes written
as: val of y.

20

These informal remarks are not part of the formal definition; nor are the

particular concrete representations, such as: if E then Yo eZse Y1 , for the

various syntactic constructions. The syntactic structure is abBtpact. The

equations which follow are descriptions of each syntactic construct as a

function of se~ectorB. To decompose each construct into its immediate con-

stituents one merely appZies the construct (as a function) to the selector(s)

in its domain.

Note that FN and ID are not cited as subcategopies since they have a1-

ready been cited as categories.

Each subcategory is defined by a characteristic construction. The

general form of the construction is given by an equation whose left-hand

side is the name of the subtategory~ and whose right-hand side is a structuraZ

description showing the immediate constituents and their categories, or an

explicit listing of the members of the category (if the category is a finite

set). In the ASCL subcategories there are three of the second kind, namely:

DUM = {skip}

YES {true}

NO = {faZse}

and eight of the first kind, namely:

SEQ = {<first y >
a

IFC ~ {<test E> <positive Yo> <negative Y1>}

WDO {<condition £> <repeat y>}

GTO {<labeZ £>}

BLK { <ent:roy Yo> <tag
l

~l> <command
l

Y
1

> ••• <tag
n

~n>

ESC {<value E>}

IFX = {<premiss £0> <concZusion £1> <aZternative £2>}

eMF {<code y>}

<corrunand y >}
n n

21

These structural equations declare that DUM is a finite set, whose only

member is the entity skip. This is intended (as the semantic specifications

which follow will formally show) to be a "dummy" command whose execution

has no effect on the state of the computation. The sets YES and NO are,

likewise, singletons, whose members are intended respectively to be the

AseL constants denoting tputh (tt) and falsehood (ff).

Each of the remaining equations has a right-hand side which is a

finite set of ordered pairs, i.e., a function ~ith finite domain. The

elements of the domains of these functions are called selectors. Thus, the

domains for each of these eight functions are:

SEQ {first, next}

IFC {test, positive, negative}

WDO {condition, repeat}

GTO {label}

BLK {entry, tag, body}

ESC {value}

IFX {premis8, coneZusion3 alternative}

eMF {code}

For example, a conditionaZ command y (i.e. a member of IFC) has three imme-

diate constituents: they are found by applying y to each of the three

selectors test, positive, negative:

(: = test y

y = positive y
o

-VI = negative y

where we are writing the function y to the right of its argument.

22

In general, application of a function to its argument may be indicated

by writing the function on the left or on the right, whichever is con-

venient. To help, avoid confusion as to which direction is intended, we

use the BoZid wedge notation. for appZication. The thick end is where

the function goes; the pointed end is the "point of application", where

the argument goes. Thus

f·x

is: f appZied to x. This is exactly the same as

X of f

which is read: f appZied to x, i.e. it is read from right to left. The

application symbol • can be used in any direction, including both vertical

ones. Thus, f applied to x may also be written

f
•
x

and

x

•f
It is of course the usual convention to omit an explicit symbol for

application; we shall do so only when it is clear "which direction

application goes" in the given context.

In particular, the application of a syntactic construct to a sel-

ector goes from right to left, e.g.

first y = fipst 4 y

with the intended tf pun" that the meaning

first y = first ~ y

23

could also be thought of. It is quite usual to think of selectors as

functions which "pick out" immediate constituents from a syntactic con-

struct. For example, in LISP a nonempty list L has a head (cap) and a

taiZ (cdr). We write (car L), (cdr L) thinking of car,adr as functions

and L as argument. But in our system the same notation is used with the

opposite wedge direction intended. Each structural equation has the read-

ing: the set on the left is the set of all functions having the form

exhibited on the right. For example the equation

if written out rigorously would be:

SEQ = {fipst, next} ~ CMD

while the equation

would be

IFC = {positive, negative} CMD, {test} ~ EXP.

The second translation illustrates the "extended functionality

notation". The usual notation for the set of functions from the set A

to the set B is

A~B

so that the assertion:

f E (A -+- B)

means:

f is defined for each element x of A, and when x is in A
the value of f at x is an element of B

24

we generalise this notation to a list of such domain ~ range elements:

so that the assertion:

means:

f is defined for each element of the set A1U
uA , and when x is in A., the value of f at x

n 1is in the set B., i = 1, ••• t n
1

For this extended notati~n to Make sense it is of course necessary that the

sets AI' ••• An be disjoint.

The syntactic equations for ASeL are intended as a characterization

of a family of sets -- the syntactic classes (categories and subcategories)

of ASCL -- whose union is the set of AseL texts or program eZements. The

information essentially contained in the equations is that each program

element is either simpZe (such as an identifier or a primitive command

or a primitive expression) or composite; and that in the second case it

has a unique analysis into immediate constituents of given syntactic

classes which can be obtained formally by applying the program element

(as a function) to its selectors (as argument). Those who are wedded to

traditional mores are permitted to view this immediate constituent

analysis, by a suitably contrived symbolic pun, as the application of

the various selectors (as functions) to the text (as apgument).

So much, for the time being, for the syntax of ASCL and for the sev-

eral definitional techniques for specifying syntactic structures. We

proceed next to its semantics, the heart of the matter.

25

2.4 Value Domains of ASCL

There are six sets which are specified to be semantic domains for

AseL. They are:

T s c D E K

The first two are primitive domains.

T is the domain of truth vaZues

S is the domain of machine states.

The other five are compound domains:

C = S ~ S is the set of command aontinuationB J or
state transition functions:

D = T + C is the set of denotations, i.e., the set
of entities which can be denoted by identifiers;

E = T + C is the set of expression resuZts~ i.e.,
the set of entities which can be the results of
computing the value of an expression;

K = D ~ C is the set of expression continuations,
i.e., the set of entities which correspond to the
possible contexts which can arise in a computation
when an expression is evaluated.

In the subsequent parts of the definition of AseL the following

variables (with or without subscripts) will be used to range over the

sets shown:

e
o
o

over

over

over

over

C

D

E

K

The sets of continuations will be explained shortly. For the present,

we simply accept the declaration of six sets, two outright, and four as

simple constructs of them. D and E are identical as sets in ASCL; they

are declared separately because in general the entities which can be

26

denoted by identifiers are not always all of those which can be computed,

i.e. which can be vaZues of expre88ions.

In a richer language than ASCL there would be further value domains

such as the set of integers, the set of aharactera, and the set of

locations.

2.5 Semantic Functions of ASeL

The set ENV of envi~onments is a composite domain whose elements have

two constituents: a binding and a resumption. The binding is a function

8 € (ID ~ D)

which gives, for each identifier ~ in ID, the entity a ~ ~ to which ~ is

bound, or which ~ denotes. The resumption is a function

K E K

which is an expression continuation whose significance will be made

clear shortly.

One could therefore take (as is done, e.g. in C. Strachey and C.

Wadsworth [5]) an element p of ENV to be the ordered pair <6 K> of its

two immediate constituents. We prefer to use the same technique here

as in the case of syntactical constituents: to construe each p in ENV

as a function with domain

ID U {res}

so that we can write the equation

ENV = (ID ~ D), {res} ~ K.

27

Two particular functions, Pand E, are declared to have the func

tionalities:

P€ (CMD ~ (ENV ~ (C ~ C»)

E£ (EXP ~ (ENV ~ (K ~ C»)

and their detailed definition and explication is the central part of the

specification of ASeL. We shall now discuss the ideas underlying the

formal definition of ENV, P and E.

2.6 Oxford Semantics

The ideas underlying the formal definitions of ENV, P and E are the

heart of ODM. Certain aspects of these ideas will be unfamiliar at first,

and require faith and practice for full acceptance. Persistence is

strongly recommended: these are ideas whose time has come.

The ODM plan is to explain the meaning of programs and program ele

ments by supplying semantic functions (here, for ASeL, they are the

functions P and E; in general they are a set of functions, one for each

main syntactic category of the language being defined). The meaning of

a text is then the entity yieZded by appZying the appropriate semantic

function to that text.

Thus, in the case of ASCL, every text T is either a command y

or an exppession £. In the first case we apply P to y; in the second

case, we apply E to E. In either case, the entity yielded is the

meaning. By referring to the functionality declarations for P and E:

P € (CMD·~ (ENV ~ (C ~ C»))

E € (EXP ~ (ENV ~ (K ~ C)))

28

we see that we have:

p ... Y € ENV -+ (C -+- C)

E .. £ € ENV -II- (K -+- C)

that is, the meaning of a command y or of an expression E: is a function

which can be applied to any ~nvi~onment p. It is this function which is

the meaning of the ABeL text T.

Our present task is to grasp the intention behind this. Let us

first cocfine our attention to commands. We note that the function p~ y

provides, for each environment p in ENV, a function:

(P .. y) .. P € (C'" C)

which, when applied to a state-transition-function eo in C, yields

another 8tate-t~an8ition-function8
1

in C.

Let us recall the distinction between an open subroutine and a

closed subroutine.

An open subroutine is a piece of machine code ewhich, when executed,

causes the machine to make a transition from the state 0
0

befope the

execution of a, to the state 01 after the execution of 8. Thus e is

essentially a state-transtion-function e: s ~ S from machine states to

machine states.

A aZosed subroutine ~ is a piece of machine code containing a

"return address" parameter e which must be specialized to (the address

of) an open subroutine before ~ • e becomes an open subroutine. In

other words, u ~ e is an open subroutine, for each open subroutine e;

which is to say that the functionality of ~ is "open subroutines to

open subroutines":

29

lJ € (8 -+ S) -+ (8 -+ S)

or

II € (C C).

In terms of this distinction, «P • y) • p) = II is a closed 8ub-

routine; in order to run it as part of a program we must provide it with

a 8 in C = S -+ S as a continuation, by e.g. giving it as an argument the

address of e as return address.

This account has to be slightly complicated for the case that the

text is an expression £ instead of a command y.

In order to run the "closed subroutine" 'IT = (E .. £) ... P as part of

a program we must provide it with (the return address of) a "special.

open subroutine" K which will yield a simple open subroutine ~ ... K

corresponding to the whole program.

However, since in general the meaning of n will yield both a value

o (that of the expression E in the environment p) and a new machine

state a (that produced as a side effect of the process of computing 6)

the special open subroutine K must be one which takes both 0 and a as

its inputs in order to produce the final state of the whole program. It

is convenient to construe K as a function in the set:

E -+ (5 -+ S)

that is, we regard the whole program execution as producing the state

from the state 00' where 0 is the value of E in p, and where 01 is

the state produced from a by evaluating £ in p with the machine initially
o

in a .
o

30

So the functionality of 11' is IIspecial open subroutines to open sub-

routines":

n € (E ~ (5 ~ S» ~ (8 ~ S)

.or

1T € (K'" C).

The function K is also called a continuation, since it corresponds to

the open subroutine which continues the program to completion; but it is

called an expression continuation in order to distinguish it from the

simpler kind of continuations in (8 ~ S), which are called command

continuations.

Let us summarise this discussion of continuations.

A program text, which may be a command y or an expression €,

is "compiled" into a routine by applying to it the appropriate semantic

function, P or E. The routines thus compiled are closed. They require,

at "run time", to be supplied with open routines as continuations, which

will take over from them and continue the computation to completion.

Thus the closed routines become open routines when supplied with appro-

priate open subroutines:

l.l ., 6 is open: i.e. is in S S

e is open: i.e. is in S -+ S

• lJ is aZosed: i.e. is in (5 ~ S) a+ (5 -+- S)I'
where 1-1 (p ... y) • p

• P is in (CMD -+ (ENV -+ «5 -+ S) -+ (8 -+ S»))),.
'if ... K is open: i.e. is in (8 -+ S)

K is open: i.e. is in (E -+ (5 -+ $))

" 11' is cZ.osed: i.e. is in (E -+ (5 ~ S)) ~ ($ -+ S).,
wbere 'IT = (E'" e) ... p

:. E is in (EXP ~ (ENV-+- «E-+ (5 -+ S» -+ (5 -+ S»

31

2.7 Semantic Equations

The detailed specification of P and E is given by writing equations.

We shall have eight equations, Cl to C8 for P and five equations El to E5

for E.

FN Cl. P ~ ~ • p = some given function ~ in C ~ C, to be associated with $.

A primitive command ~ in the set FN yields some constant routine ~ in each

environment p

The command skip compiles to the identity function in (C ~ C)

SEQ C3.

The sequence of two commands Yo ; Y
l

compiles to code which, when given

the continuation routine a, runs the code for y to which it gives the
o

continuation routine p. Y1 • P • 6. This latter routine is the code for

Y
1

furnished with the continuation e. Thus (running (Yo; Y1) - fol1owed

by-e) is the same as (running [Yol-followed-by-(running Yl-followed-by-8».

IFC C4. p ... {<test e:> <positive Yo> <negative Y
1

>} ... P • e

= (E" £ ... p) (cond (P • Yo'" P .. e, p.. y 1 • P ... e))

The conditional command if £ then Yo eZse Yl compiles to code which, when

given the continuation routine a, carries out either y -followed-by-e or
o

y1-followed-by-e, according as the expression E evaluates to tt or ff.

The function cond thus must be of the type

(C x C) ~ (T ~ C)

32

so that the code

has the type

(T -+ C)

of an expression continuation which can be used by the closed routine

(E ~ E ... p)

as the continuation to which it transfers control after obtaining the value

of £ in p. The function eond is of course defined by :

eond (8
1

, 8
2

) > tt = 6
1

eond (8
1

, 8
2

) > ff = 8
2

•

WDO C5. P • {<condition E> <repeat y>} • P • 8

Y • (A e'.(E • E • p) (cond (P. y • p • e', 6»))

This equation gives the semantics of the command:

; u l,e e: do y i
which is the normal while-loop which repeatedly evaluates E, and each time

£ is found to be true executes y; the first time E is found to be false

marks the completion of the event asked for by the command.

The equation says that P produces code for this command which, when

run with the continuation routine a as its follow-on, has the effect of

the code displayed on the right-hand side.

Let us examine the right-hand side:

Y • (A a' . (E. £ • p) • (cond. (P • y. p • a', e)))

and figure out what it does.

The function Y is the minimal fixed point operator which obeys the

characteristic law:

f· (Y • f) = Y ~ f

33

for every function f in its domain.

Consider the function H, where:

H • e' = (E E: ... p) .. (cond .. (P .. y .. p .. e' t e»

For any particular 8', H ~ a' is a state-transformation whose effect on

a state cr is this: evaluate E in p with state a; let the result be 0

and the new state a'. If 0 is tt, carry out y in p with initial state

a'and continuation S'; but if 0 is If, simply carry out the continuation e

on the state a'. In this account, if we identify a'with H. 8', we get

a spelling out of the pepetitive nature of the while-loop. But the argu

ment of Y in the right-hand side of equation C5 is the function H:

H = A e' . (E .. E ... p) ... (cond ... (P .. y ... p ... e', e))

and so the right-hand side of C5 describes the minimal solution of the

equation

a' = H ... a',

which is just what is required.

GTO

This is the e uatio wh eh give t e m aning 0 the loot £ jeommand.

It says that if the evaluation of £ in p with state 0 is a continuation

e', and if the evaluation alters the state to a', the effect of goto E

will be

P • goto E • P • 8 • a = (Jump. e') • cr'

which in turn we want to be simply

a' II- crt

no matter what the continuation e is. For this to work out, Jump must

be the expression continuation

Jump E E -+ (5 -+- S)

34

which satisfies the equation

(Jump ~ a') = a'

for all a' 1n E. We recall that

E = T + C

= T + (S ~ S).

Application of Jump to a truth value is a run-time type error; we

therefore complete the definition of Jump by

Jump • t~ = Junp • ff = A cr.oerror

a continuation which will abort any computation in a distinguished

error state.

BLK C7.

~he~e

P • {<entry Yo> <tag! ~l> <command! Y1> ••• <tagn ~n>

<command y >} • P • e = e
n n 0

~

80 = P • Yo • p' ~ 81

61 = P • Y1 • p' ~ ez
(*)

e = P • y • p' • e
n n)

p' = p [81 ••• en / ~1 ~]
n

This is the most elaborate of the semantic equations, but its import is

straight forward. It says that the code for a block

begin Yo ; ~1 : Y1 ; •.• ~n : Yn end

must first set up an extended environment

in which the identifiers ~l ••• ~n are bound to the continuations 81 ••• en

described by the equations (*).

35

The state-transformation for the whole block (with continuation e) is

then a , where (back-substituting the above equations)
o

e = (P y p ') (P Y
1

p') ••• (P y 1 p') (P y p ') e.
o 0 n- n

Within the block, occurrences of the labels ~1 ••• ~n will be evaluated

in the environment p' set up at block-entry, and hence will be found to

denote the continuations shown, which is the intended meaning.

ESC IC.s

This equation describes the meaning of the command

Iresult is E 1
which causes control to jump out to the smallest textually surrounding

I vaLue of yl block~ with the value of the expression E. Let us therefore

consider this equation together with that for the ~~~_~f!J expression:

CMF E .~_~~~~~~~_~:~-:~~~~-:_-~._:_~_ :~~-~K/~~8]) • Fail

This equation says that, to carry out the vaZue of y in p block with

continuation K we set up a modified environment

P [K/res]

in which the continuation K is the resumption component, and run the code

for y with continuation Fail. The reason for the failure continuation

is that we do not expect the code for y to continue in this way, but

rather to terminate by executing a resuZt is € command and hence continu-

ing with the resumption code denoted by res~ namely the continuation K.

Thus C.8 can now be seen to describe the intended behavior of the resuZt is €

command: evaluation of E followed by the continuation denoted by the

identifier res.

Again, it is suitable to define

Fail. = A a.oerror

36

The remaining expression equations are straightforward:

ID = ~ ~ (p .. K) ~J

This equation says that we evaluate an identifier by first looking its

value up in the environment and then applying the given continuation to

this value.

r__------.......-..-.-.. ---.-.------.-.-.-.- -----.-.--.,- - .~-

YES

NO

E2.

E3.

E • true ~ p • K

E .. faZse .. P .. K

K .. tt

K .. If

E4.IFX

El, E2, E3 say that identifiers, and the constants tpue and faZBe~ can

be evaluated without side-effects: the machine state is the same after

their evaluation as before. E.g.

(E" true. p ... K) .. a = (K" tt) • a

says that the routine consisting of the work (evaluating true)-fol1owed-by-K

has the same effect on 0 as that of the routine (K • tt).

Finally, equation E4 describes the semantics of conditional expressions

analogously to equation C4:

E ~ {<premiss Eo> <conclusion £1> <alternative E2>} • p • K I

i
(E ~ EO ~ p) • (aond" (E. E 1 • P .. K, E. £2 .. P .. K» !

~.~~~~~~~~~~~~~~~~--~--~~--~.~---~,-.-~-~- ._~-------~~---j

37

3. The General Case for ODM

There is an important distinction which must be made between the

semantics (to say of a given program what function it computes) and the

implementation of a language (to say how a machine is to be organised so

as to carry out the actions which are specified by its programs).

The role of mathematical semantics is to give a
precise, unambiguous definition of what programs
mean, sufficient to determine their outcome, while
remaining uncororni tted as to the details of how
this outcome is to be achieved on a (real or abstract)
computing machine.

[2], p. 21.

The technique of describing the meanings of programs as functions over

certain domains is to give the same sort of "uncommitted" account of seman-

tics as an abstract syntax is able to give of syntax: only the essentiaZ

specifications are explicitly formulated, thereby leaving open alZ ques-

tions which do not need to be decided.

By contrast, other defintion methods are to a greater or lesser

extent committed to some form of implementation: even if this is only

to the SEeD-machine type of stack-oriented interpreter, or to the reduction-

rule rewriting systems of a Markov or Church-Curry kind.

38

4. SEMANOL vs. ODM

The SEMANOL system for programming language definition is subject

to several of the limitations which ODM is intended to avoid. As Strachey

remarks:

Most of the work on syntax and some on semantics
has been at the level of symbol manipulation-
that is to say it has been concerned with the
representations (generally on paper) rather than
with the mathematical objects represented.

[21, pp. 2, 3.

4.1 Concrete VB Abstract Syntax

SEMANOL is wedded to concrete syntax. Specifically it assumes that

all programming languages will have as their syntactic domains sets of

strings of ASCII characters; that a context-free grammar will be supplied

to characterize these sets.

As a consequence of this assumption a large part of a SEMANOL def-

inition is concerned wIth amass of detail which has to be abstracted away

again by the user of the definition, in order that the definition be

structured intelligibly and its complexity controlled sufficiently for

the mind to grasp its essentials.

4.2 Interpreter-based Semantics

SEMANOL is itself a programming language; and SEMANOL definitions

are programs written in it. The meaning of a program P in a language L

is to be found in the process which ensues when a pair (P, D) consisting

of P together with an input datum D is given as input to the definition

DEF. The output

DEF (P, D)

39

of DEF for this pair as input, is declared to be the output of P for

the input D. Thus DEF is a "universal machine" in the sense of Turing:

we must program it in SEMANOL, and our lJnderRtandln~ of L Is then one and

the same with our understanding of the program DEF.

For example DEF for the language JOVIAL (73) is neither concise nor

clear. It is a 32l-page book containing over 2,000 program elements.

Its complexity is very large and one is left, having struggled through

the details, with less than a firm grasp on the essentials.

In general in order that a SEMANOL program DEF shall serve as a

specification of a programming language L one must have a clear com-

prehension of the language SEMANOL itself. In the nature of the interpreter-

oriented approach this means that we have to study the SEMANOL interpreter

in order to find out what SEMANOL programs, i.e. programming language

definitions, really are saying. There are two sources available for

this: a Reference Manual for SEMANOL, and a booklet documenting the

Interpreter Program (which is written in FORTRAN).

The Reference Manual is

•.• not a tutorial; it is terse, and presupposes
considerable familiarity with the underlying ideas
of SEMANOL (73). The presentation is in a "top
down" sequence -- many structures are defined in
terms of structures not yet defined; thus it is
intended for use by experienced (or at least well
versed) SEMANOL (73) programmers.

[SEMANOL (73) Reference Manual, p. 1.]

Now it must be admitted that ODM requires the user to be "wel1-

versed" in its own intellectual and notational apparatus: but in the

case of ODM this apparatus is no more than the universal, traditional

mathematical framework of set-theoretic conventions supplemented by

the formalism of the lambda-calculus and the theory of continuous

40

functions devised by Scott.

ODM definitions are concise and precise. Those of SEMANOL are

prolix and are exact only by arbitrary fiat (in that a SEMANOL program

DEF does what the FORTRAN interpreter program makes it do: one cannot

deny that this kind of explanation of semantics does resolve ambiguities).

In Tennant [1] an ODM definition is given of Reynolds' enormously powerful

and general language GEDANKEN. The definition occupies just over two

pages of the C~rnmunications of the A.C.M. and involves 24 semantic

equations most of which are very short.

The ODM approach is a rigorous, mathematical technique for the

specification of programming languages. It offers at last a general

notation for semantic specification which is based on a language-

independent framework of semantical concepts. By comparison, previous

methods (such as that embodied in the SEMANOL system) involve a relatively

superficial semantic, and in some cases even syntactic, explication of

the language under definition. We close with a quotation summing up

the spirit of ODM:

The point of our approach is to allow a proper
balance between rigorous formulation, generality
of application and conceptual simplicity. One
essential achievement of the method we shall
wish to claim is that by insisting on a suitable
level of abstraction and by emphasizing the right
details we are going to hit squarely what can be
called the mathematical meaning of a language.

D. Scott and C. Strachey [6]

41

References:

[1] R. D. Tennant. The Denotational Semantics of Programming Languages.

C.A.C.M. 19 (1976), pp. 437-453.

[2] C. Strachey. Varieties of Programming Language. Technical

Monograph PRG-lO, Oxford University Computing Laboratory, 1972.

[3] F. L. Morris. The Next 700 Programming Language Descriptions.

(unpublished note), 1970.

[4] J. C. Reynolds. GEDANKEN - A Simple Typeless Language Based on

the Principle of Completeness and the Reference Concept. C.A.C.M. 13

(1970), pp. 308-319.

[5] C. Strachey and C. Wadsworth. Continuations, a Mathematical

Semantics for Handling Full Jumps. Technical Monograph PRG-ll,

Oxford University Computing Laboratory, 1974.

[6] D. Scott and C. Strachey. Towards a Mathematical Semantics for

Computer Languages. Technical Monograph PRG-6, Oxford University

Computing Laboratory, 1971.

[7] P. J. Landin. The Mechanical Evaluation of Expressions. Computer

Journal 6 (1964), pp. 308-320.

[8] P. J. Landin. The Next 700 Programming Languages. C.A.C.M. 9

(1966), pp. 157-164.

[9] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.

C.A.C.M. 12 (1969), pp. 576-580; 583.

[10] A. Tarski. The Concept of Truth in Formalized Languages. In

Logic, Semantics, Metamathematics, Oxford, 1956, pp. 152-278.

[11] J. C. Reynolds. Definitional Interpreters for Illgher Or~er

Programming Languages. Proceedings of the 25th ACM National

Conference, pp. 717-740.

42

	The Definition of Programming Languages
	Recommended Citation

	SU-CIS-76-06_001c
	SU-CIS-76-06_002c
	SU-CIS-76-06_003c
	SU-CIS-76-06_004c
	SU-CIS-76-06_005c
	SU-CIS-76-06_006c
	SU-CIS-76-06_007c
	SU-CIS-76-06_008c
	SU-CIS-76-06_009c
	SU-CIS-76-06_010c
	SU-CIS-76-06_011c
	SU-CIS-76-06_012c
	SU-CIS-76-06_013c
	SU-CIS-76-06_014c
	SU-CIS-76-06_015c
	SU-CIS-76-06_016c
	SU-CIS-76-06_017c
	SU-CIS-76-06_018c
	SU-CIS-76-06_019c
	SU-CIS-76-06_020c
	SU-CIS-76-06_021c
	SU-CIS-76-06_022c
	SU-CIS-76-06_023c
	SU-CIS-76-06_024c
	SU-CIS-76-06_025c
	SU-CIS-76-06_026c
	SU-CIS-76-06_027c
	SU-CIS-76-06_028c
	SU-CIS-76-06_029c
	SU-CIS-76-06_030c
	SU-CIS-76-06_031c
	SU-CIS-76-06_032c
	SU-CIS-76-06_033c
	SU-CIS-76-06_034c
	SU-CIS-76-06_035c
	SU-CIS-76-06_036c
	SU-CIS-76-06_038c
	SU-CIS-76-06_039c
	SU-CIS-76-06_040c
	SU-CIS-76-06_041c
	SU-CIS-76-06_042c
	SU-CIS-76-06_043c
	SU-CIS-76-06_044c
	SU-CIS-76-06_045c

