
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

2-1977

A Time- and Space-Efficient Garbage Compaction Algorithm A Time- and Space-Efficient Garbage Compaction Algorithm

F. Lockwood Morris
Syracuse University, lockwood@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Morris, F. Lockwood, "A Time- and Space-Efficient Garbage Compaction Algorithm" (1977). Electrical
Engineering and Computer Science - Technical Reports. 43.
https://surface.syr.edu/eecs_techreports/43

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/43?utm_source=surface.syr.edu%2Feecs_techreports%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

1-77

A TIME- AND SPACE-EFFICIENT

GARBAGE COMPACTION ALGORITHM

F. Lockwood Morris

February 1977

SCHOOL OF COMPUTER

AND INFORMATION SCIENCE

A Time- and Space-Efficient Garbage Compaction Algorithm

F. Lockwood Morris
Syracuse University

Abstract: Given an area of storage containing scattered
marked nodes, one may wish to rearrange them
into a compact mass at one end of the area,
meanwhile revising all pointers to marked nodes
to show their new locations. An algorithm is
here described which accomplishes this task in
linear time relative to the size of the storage
area, and in space of the order of one bit for
each pointer. The algorithm operates by reversibly
encoding the situation that a collection of loca
tions point to a single location by a linear list,
emanating from the pointed-to location, passing
through the pointing locations, and terminating
with the pointed-to location's transplanted con
tents.

Key Words and Phrases: Garbage collection, compaction,
compactification, storage reclamation,
storage allocation, record structures,
relocation, list processing, free storage,
pointers, data structures.

CR Categories: 4.34, 4.49, 5.32

This research was partially supported by NSF Grant MCS75-22002.
Author's present address: School of Computer and Information

Science, 313 Link Hall, Syracuse University, Syracuse, New
York 13210.

1

A Tirne- and Space-Efficient Garbage Compaction Algorithm

The Problem and Existing Solutions

Given an area of storage divided into nodes, which are

some of them marked as to be preserved, and which may be

"pointed to" by addresses (pointers) stored in nodes or in

other known locations outside the area, the gapbage compaction

problem is to rearrange the storage area so as to bring all

marked nodes to contiguous positions towards one end, leaving

the remainder of the area as a single block of "garbage". In

the process of compaction, since the "points ton relation is

to be preserved, pointers to nodes which are moved have to be

updated - that is, revised to give the new locations of the

nodes to which they point - and here the difficulty arises:

the only time when it is natural to know where a given node

is going to be moved is just when one is about to move it;

this time will be determined by the distribution of marked

nodes in the store and by the intended pattern of node move

ment, and cannot to all appearances be made to coincide with

times of encountering all the arbitrarily distributed pointers

to the given node.

Previous solutions [1, 2, 3, 4, 5, 6, 7, 8, 9, 11] -

see Steele's article [10] for descriptive references to most

of these - rely on recording "forwarding addresses" for nodes

at or near their original locations as their destinations are

discovered (the actual moving mayor may not occur at this time).

2

A summary of existing solutions follows; each suffers

from requiring a non-trivial amount of additional working

storage, or from taking time which either is worse than linear

in the size of the storage area or is governed by the speed

of secondary storage devices, or from placing restrictions

on the allowed sizes of nodes.

(i) One may simply reserve a IIforwarding address" field

in each node, but this will be extravagant of space if

mean node size is small.

(ii) One may recognize that any block of contiguous

marked nodes logically requires only a single "fo,rwarding

increment" to be recorded, and that necessarily at the

end of each such block will be a finite quantity of

garbage, presumably large enough to store the increment.

This method, however, requires for the updating of each

pointer a search to the end of its target block, and

therefore has running time worse than linear in the sum

of the storage size and the number of pointers.

The preceding two schemes favor "planning to move" - i.e.,

recording forwarding addresses - followed by pointer updating,

followed by moving. Alternatively, one may begin moving at

once, and record each node's forwarding address in the space

it formerly occupied, provided that the spot vacated by one

node will not subsequently be required by another. This idea

gives rise to the following two schemes:

3

(iii) Temporarily acquire an empty storage area, and

copy all marked nodes into it compactly. In practice

this method pays a time rather than a space penalty,

either by using a paged virtual memory, or by explicitly

writing the compacted nodes onto secondary storage and

then reading them back.

(iv) Arrange that each moved node will be written over

what was initially garbage. To be sure of compacting

completely in one step, one must require all nodes to be

of the same size.

Development of the NewiAlgorithm

The algorithm to be presented here operates in linear

time and requires about one additional bit per pointer field

for its own bookkeeping purposes. Its pattern of node movement

will be that which naturally suggests itself for compaction of

arbitrary-size nodes: "sliding", that is, movement of marked

nodes to their new positions without alternation of their

original linear order. (Note that the image which springs to

mind - that of a bulldozer pushing an ever-growing mass of

material in front of it - applies only to the garbage, the holes

between the marked nodes; the experience of the nodes being

compacted is like that of the potatoes in a potato race,

successive ones being fetched from ever more remote locations.)

Sliding has the great virtue that the slid nodes hold together

of themselves; our compactor can be so much the simpler in

that it may be entirely ignorant of the structure of nodes, and

4

regard storage as merely a succession of recognizable fields,

each containing or not containing a pointer, and each inde-

pendently (for all it knows) marked or not, subject to the

constraint that any marked pointer lead to a field which is

also marked.

The algorithm manages updating by a reversible rearrange-

rnent of pointers, according to the following idea. Suppose

locations a, b, 0 all point to location z, and z has some con-

tents X

Fig. 1

c:

(Figure 1).

Then by successive visits to a, b, and a we may re-represent

the situation without loss of information by constructing a

list of locations which mean to point to a, emanating from z,

and with the original contents of z saved at the end of the

list

Fig. 2

(Figure 2).

x

5

On a subsequent visit to 8, at a time when the spot to which

the field now at z will be moved is known, the status quo· ante

can be restored, but with updated values of the pointers (Figure

3), provided X is recognizably not a continuation of the list.

Fig. 3
a:

a:

r_X~ z ' :
r-----'
I IL --'

The restrictions which the representation of nodes and

pointers must obey for these manipulations to be possible

should be evident: we must be able to recognize a pointer,

all pointer fields must be the same size and not too small

(e.g. half words in a word-addressed machine) to be individually

pointed at, and each pointer must claim a pointer-sized "target

area" such that unequal pointers claim disjoint areas. In

the common case, all pointers to a node point to the same end

of it, and this last requirement becomes just that the smallest

node be large enough to store a pointer. Moreover, when travers-

ing a list, one must be able to distinguish the value at the end

from the constituent links; this requires an additional bit of

information for each of the locations involved (including 2,

even though it may not have contained a pointer originally) •

6

The updating scheme just described appears likely to lead

to chaos when applied to the entire storage structure, as

soon as one observes that the same location may temporarily

be given an unnatural content for two different reasons - because

it is pointed at and because it points. The way out of this

difficulty lies in realizing, first, that if only all pointers

pointed in the same direction (say from low-numbered locations

to higher ones) one could arrange that each location had done

with its role as a list head, with all pointers to it updated,

before it needed to be considered in its role as container

of a pointer; second, that one can in effect achieve this

desirable state of affairs by performing the whole process

twice, each time ignoring the pointers in the "wrong" direction.

(Pointers from locations to themselves are an annoying special

case, but are easily handled as such.) Updating, then, can

be performed in two end-to-end sweeps of the storage area; if

the first is made in the direction of compaction, then the

actual movement of nodes (which necessarily progresses in the

opposite direction) can be combined with the second updating

sweep.

Impleme'ntation

In the version of the compaction algorithm which follows,

it is supposed that the area to be compacted is a segment M[l]

through M[h] of an integer array M, and that a Boolean array

marked contains in positions Z through h a mark bit for each

7

corresponding word of M. For convenience, all pointers

into the node storage area from outside are taken to lie

in a disjoint segment of M, in locations sZ through sh.

All values in M which themselves lie in the range Z through

h are understood to be pointers. It is convenient to allow

for the bookkeeping demands of the algorithm not by the

allocation of an additional Boolean array, but by the under

standing that there is a constant shift such that the range

of values Z + shift through h + shift and st + shift through

sh + shift are guaranteed not to occur in M. The marking

routine is supposed to have done its work so as to establish

the truth of the assertion

~k) «BZ~k~8h ~ (l~k~h and marked [k]» and

Z~[k]~h) implies marked [M[k]].

The marking routine is also expected to have computed the

quantity g of garbage, i.e. the number of indices Z<i~h for

which mapked [i] is false. Compaction is to be towards h.

The notation used here is meant for good Algol 60 with

the following exceptions in favor of readability:

1) Each f'or clause is taken to declar·e its own controlled

variable implicitly, with scope limited to the body of the

for statement.

2) The while do ••• form of iterative statement is

employed.

3) Conjunctions of inequalities are telescoped, e.g.

a<b<Cc.

8

procedure compact (M, mapked, l, h, al, Bh~ shift, g);

integer array M;

Boolean array marked;

integer value l, h, aZ, sh, shift, gi

begin integer ni comment new location counter;

for i:= al s'tep 1 until sh do

for j:= M[i] do

if l~j~h then begin M[i]:=M[j]; M[j]:=i+shift end;

n:=Z+g; comment prepare for sweep updating upwards

pointers and those from outside;

n:=hj comment prepare for sweep updating remaining

pointers and compacting;

9

for i:=h step -1 until Z do if· marked [i] then

begin

while l+nhirt<M[i]<h+ahi{t or Rt+8hift~M[i]~8h+8hiftdo

for j:=M[i]-shift do

begin M[i]:=M[j]; M[j]:=n end;

for j:=M[i] do

if Z~j<i then begin M[i]:=M[j]; M[j]:=n+shift end

else if j=i then M[i]:=n;

M[n]:=M[i];

n:=n-l

end

end compact

To provide the raw material for a proof of correctness of this

procedure, we may state an invariant for each of tpe two main

loops which gives the current representation of a "typical

fact" about the original contents of M, of the form

M[k]=m

where k is between Z and h and marked [i] is true, or kis

between sZ and she Each invariant is true immediately after

every assignment to i by its for clause, including -assignment

of the final excessive value with which the loop body is not

executed.

For any q between Z and h with marked [q] true, let q'

be the compacted location of q, i.e.

h

q' = q + L if marked [i] then 0 else I .

i~q+l

(Note that both loops maintain n=i'.)

10

For the loop from l up to h:

(i) If Bl<k~sh and Z~m<i, or l<k<m<i, then M[k]=m'.

(ii) If sZ<k<nh and i~m<h, or l~k<i~m<h, then for some

p>O there exist k l , •.. , kp with M[m]=kl+shift,

M[kl]=k2+shift, ... , kp=k.

(iii) If i<k<h, then for some p>O there exist k l , ••• , kp

with M[k]=kl+shift, .•. , M[kp]=m.

(iv) Otherwise, M[k]=m.

Initially, with i=Z, every word from M[Z] through M[h] falls

under case (iii) with p=O; every word from M[sl] through M[sh]

under (ii) or (iv). Each execution of the loop body first

(via the while statement) removes the word M[i] from the domain

of case (iii) to that of case (iv), simultaneously bringing

any words which fell under case (ii) and originally contained i

into the domain of case (i). M[i] having recovered its original

value, it is then if necessary placed under case (ii). When

finally i=h+l, only (i) and (iv) are possible.

The preparatory loop from at to sh has a similar but

simpler invariant: case (ii) applies for BZ~k<i with Z~~k,

case (iii) for Z~k~h, and case (iv) otherwise.

For the loop from h down to Z:

(v) If sl~k~sh and Z~~h, or Z~k<m~h, or h~k~m>i, then

M[if h~k>i then k' else k]=m'.

(vi) If h>k>i>m>Z, then for some p>O there exist k l , ••• , kp

with M[m]=kl+shift, ... , kp=k l
•

(vii) If i>k>Z, then for some p>O there exist k l , ••• , kp

with M[k]=kl+shift, •.• , M[k]= if k<m~h then m' else m.
p - --

(viii) Otherwise, M[if h~k>i then k' else k]=m.
. -

11

Cases (v)-(viii) here and the transitions of words between them

are homologous with cases (i)-(iv) for the previous loop. When

finally i=Z-l, we have

M[if Z~k~h then k' else k] = if Z~m~h then m' else m.

The running time of the algorithm would be self-evidently

linear in the size of M, but for the embedded while loops. One

quickly observes, however, that the while's cannot be gone

round in total more times than there are words in M, because

each while iteration " unshifts" a pointer which can only have

been shifted during a previous iteration of the enclosing for

loop, or of the initial loop from sZ up to sh.

Remarks

In applications it is all too likely that the compactor

will have to be adapted to decipher the node structure of

storage, for any of the reasons that the marking routine may

record only one mark bit per node, that pointer fields may

not be recognizable as such by their contents, or that the

possible pointer fields may not recur at regular intervals.

This being so, it is desirable that the ability to read off

the nodes in a linear sweep of storage should be demanded

in only one direction. We can meet this restriction by harking

back to the observation that the nodes to be preserved fall

into solid blocks separated by holes of positive size: the

first sweep, which must of course be made in the legible

direction (we suppose this is still Z-to-h) can leave a pointer

12

at the h end of each hole which links the blocks together in

h-to-Z direction. The second sweep can then proceed along this

chain, processing within each block in the l-to-h direction;

it suffices to expand the formerly isolated special case

M[i]=i to take in all pointers with M[i]~i but in the same

block as i; these can all be updated directly by addition of

the distance by which their block is to be moved. It is

probably best under these circumstances to split off moving

the nodes into a third sweep of its own, since either overall

or within each block it must disagree in direction with the

second updating sweep.

Our algorithm can easily be modified to compact each of

a collection of disjoint but mutually pointing storage areas,

by considering them to lie in an arbitrary linear order and

treating them for purposes of updating as one area.

Finally, it may be noted that there are applications in

which nodes are created at the h end of the single block of

known garbage and are never altered, though they may be abandoned.

Since any pointer created must be to an already existing node,

all will run in the Z-to-h direction, and in this case only

one updating sweep is necessary.

13

References

1. Cheney, C. J. A nonrecursive list compacting algorithm,
Comm. ACM 13, 11 (Nov. 1970), 677-678.

2. Conrad, W.R. A compactifying garbage collector for EeL's
non-homogeneous heap. Tech. Rep. 2-74, Center for Research
in Computing Technology, Harvard U., Cambridge, Mass.,
Feb. 1974.

3. Fenichel, R. R., and Yochelson, J. C.
for virtual-memory computer systems.
(Nov. 1969), 611-612.

A LISP garbage collector
Comm. ACM 12, 11

4. Hansen, W. J. Compact list representation: definition,
garbage collection and system implementation, Comm. ACM ~, 9
(Sept. 1969), 499-507.

5. Hart, T. P., and Evans, T. G. Notes on implementing LISP
for the M-460 computer. The P~ogramming Language LISP:
Its Operation and Applications. Berkeley and Bobrow '(Eds.),
Information International, Inc., Cambridge, Mass., 1964,
191-203.

6. Knuth, D. E. The Art of Computep Programming VoZ. 1 FundamentaZ
AZgorithm8~ Addison-Wesley, Reading, Mass., 1968, p. 421
Exercise 2.3.5.9 and p. 454 Exercise 2.5.33.

7. Minsky, M. L. A LISP garbage collector using serial second
ary storage. MIT Artificial Intelligence Memo No. 58
(revised), MIT Cambridge, Mass., Dec. 1963.

8. Reynolds, J. C. Description of garbage collection in the
COGENT programming system, private communication.

9. Saunders, R. A. The LISP system for the Q-32 computer. The
Programming Language LISP: Its Operation and AppZications.
Ber~eley and Bobrow (Eds.), Information International, Inc.,
Cambridge, Mass., 1964, 220-231.

10. Steele, G. L. Multiprocessing Cornpactifying Garbage Collection,
Comm. ACM 18, 9 (Sept. 1975), 495-508.

11. Wegbreit, B. A generalised compactifying garbage collector.
Computer J. 15~ 3 (Aug. 1972), 204-208.

	A Time- and Space-Efficient Garbage Compaction Algorithm
	Recommended Citation

	SU-CIS-77-01_001c
	SU-CIS-77-01_002c
	SU-CIS-77-01_003c
	SU-CIS-77-01_004c
	SU-CIS-77-01_005c
	SU-CIS-77-01_006c
	SU-CIS-77-01_007c
	SU-CIS-77-01_008c
	SU-CIS-77-01_009c
	SU-CIS-77-01_010c
	SU-CIS-77-01_011c
	SU-CIS-77-01_012c
	SU-CIS-77-01_013c
	SU-CIS-77-01_014c
	SU-CIS-77-01_015c

