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ABSTRACT

1

This paper presents a method of using hardware

redundancy to ease the problem of fault testing in

sequential logic networks. Sequential logic networks

are constructed using two kinds of dual-mode logic gates,

one of which is specifically required to initialize a feed

back loop to some logic value. Initially, it is shown that

these networks can be tested for all single stuck-at-faults

with six function-independent tests. Next, this method is

generalized to detect large classes of multiple faults with

six function-independent tests. In both cases, the network

must have the proper number of extra inputs.
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I. Introduction

This paper presents the concept of function-independent fault

testing of sequential networks. This is an extension of the theory

of function-independent fault testing [1] previously presented by

the same authors for combinational logic only. While one needs to

consider signal flow in one direction only when deriving test

patterns for a combinational network, the process is severely com

plicated by the presence of feedback loops in sequential networks.

Thus, though existing techniques [2,3,4] work adequately for small

networks with few feedback loops, they do not lend themselves well

to large sequential networks where derivation of a single pattern may

require multiple iterations through each loop in the network to

determine a consistent set of input values.

In this paper, however, we present a method that fits into the

present specter of increasing complexity of test pattern generation

and decreasing component costs_ This method uses redundancy, as in

[1], to create a network structure where the tests for the network

are no longer dependent on its functional definition or layout, thus

eliminating the need to study signal propagation to determine the

tests and prove their consistency_ Since this paper is based

primarily on the results of [1], we will briefly discuss its highlights

here as a prelude to what is to be presented in this paper.

The basic idea of function-independent testing lies in the use of

dual-mode logic gates. As Figure 1 shows, these gates have two

distinct kinds of inputs - one set for data inputs and another set for

control inputs which determine the mode of operation, i.e., test or
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normal mode. These gates will be referred to as 2T(r) gates, where

the number in parenthesis refers to the number of controls in that

gate. As in [1], all gates in any network will be assumed to share

identical controls to minimize the number of extra inputs but no

control input of a gate can be fed from the same source as one of its

data inputs.

Control Inputs

Data Inputs f

Figure 1. A 2T(r) gate

Although these gates can perform varied functions in normal mode,

in test mode all the gates perform either an OR operation or an AND

operation of the data inputs. So in test mode, all networks degenerate

to either a massive OR function or an AND function of the data inputs,

depending on the logic values at the control inputs. Thus, in the

former condition, an all-O pattern at the data inputs will test for

any pattern of faults containing at least one stuck-at-l (s-a-l) fault

that can propagate to a network output. Likewise, in the latter

condition, an all-l pattern at the data inputs will test for any

pattern of faults containing at least one stuck-at-O (s-a-O) f~ult

that can propagate to a network output. Furthermore, as Table I

shows, the same tests would detect faults in control inputs independent

of faults in the data inputs, where the maximum number, t, of control
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input faults detectable in a network with r controls is expressed

by the relation,

where LxJ denotes the largest integer less than or equal to x. In

fact, these two tests will detect any pattern of faults as long as

there are no more than t faults appearing at the control inputs of

any 2T(r) gate in any network.

In this paper, we use the 2T(r) gates to build sequential net

works because of its unique property that two function-independent

tests can test for all data input and output faults and upto a certain

number of control input faults. As we shall show later, 2T(r) gates

alone are not enough to make a sequential network testable with a

function-independent test set since this gate does not have the

capability of presetting a memory loop prior to application of a

test. Thus, we shall develop another gate to do just that, specifying

how and where it can be used and subsequently show that any network

built with these two gates can be tested with six function-independent

tests for at least all single faults in any network, extending this

concept later to cover large classes of multiple faults.

In Section II, we discuss the problem of building sequential

networks with 2T(r) gates only and then develop the theory of the

dual-mode sequential network and the new gate to preset a memory loop.

Section III contains conclusions and discussions.
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II. The Dual-Mode Sequential Logic Network

In this section we will develop the dual-mode sequential (DMS)

network so as to extend the concept of function-independent testing [1]

to sequential networks. Since we have proven the characteristics of

the 2T(r) gate, shown in Table I, regarding function-independent

testing [I], we will assume that the DMS network is built with 2T(r)

gates. In the combinational sections of the network, use of 2T(r)

gates satisfies the requirements for function-independent testing

but problems arise when feedback loops are built with 2T(r) gates

only.

To understand the problem, consider the simple loop of Fig. 2.

From [1], the two tests for the network would appear to be:

k, -........-- _

.......- ......-~f

Fig. 2. Simple memory loop with 2T{r) gates

and

(kl , ..• ,kr ,d
l

,d
2

) = (al, •.. ,ar,l,l) = T with expected output 1.

Now if test ! is applied and there exists a 1 at the output of one

of the gates, (say gate 1), then as Table I indicates, that 1 will

force a 1 at the output of gate 2 and thus give the indication of

an error. But the 1 at the output of gate 1 may not be the result of
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a stuck-at-fault (s-a-fault) but rather the result of the inherent

memory of the loop. Thus, ~ alone cannot test for s-a-l faults in

the loop. A similar case can be made for test ! also. The first

step, therefore, in testing a sequential network is to initialize

it, i.e., before the all-O pattern can be applied to the data inputs

of the network, we must ensure that all gates in all fault-free

loops have output O. Similarly, all gates in fault-free loops must

have output 1 before the all-l pattern can be applied to the data

inputs of the network.

It is appropriate at this point to present and discuss the

properties required of the initializing patterns:

Property 1: The initializing pattern for any test must

have the same expected output as the test.

Property 2: All feedback loops must be initialized

independent of the data inputs.

Property 3: The initializing pattern and its related

test pattern must have the same values

specified for the data inputs of the network.

Property 4: If the initializing pattern is Hamming distance

two or more away from its related test pattern,

then all patterns in between must have the same

expected output as the initializing and test

patterns.

Property 1 follows from the fact that before the test with the all-O

pattern in the inputs can be applied, the network has to be initialized,
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i.e. all gates in the loops must have output 0 so that the all-O

pattern can then be applied. But this test has output 0, hence the

property. Similarly, the output for the initializing pattern preceding

the test with the all-l pattern in the data inputs must be the same

as the test that it precedes. This property also implies that the

initializing pattern and its related test pattern cannot be from the

same segment of the truth table as specified by Lemma 1 for p = n in [1].

Property 2 follows from the argument that if initializing depended

on a specific pattern in the data inputs of the gates in a loop,

then any other pattern caused by the memory of the loop would prevent

initialization. Hence there must be a pair of control conditions,

one for each test, which would initialize the loops independent of

the data inputs.

Though Property 2 gives near complete independence in selecting

an initializing pattern for a particular test, Property 3 specifies

that both should have the same pattern for the data inputs so as to

prevent critical races from occurring when changing from the

initializing pattern to the test pattern. For example, if

(al, •.. ,ak,a
k

+
l

... ar,O, ,O,O) is one of the tests and

(al, ... ,ak,a
k
+l , ..• ar,O, ,O,I) is the initializing pattern, then

if in switching from the initializing pattern to the test pattern, an

intermediate state is (al, ... ,ar,O, ... ,O,l), then as Table I shows,

this pattern will circulate a 1 around a loop and give the indication

of an error.

Property 4 implies that if the initializing pattern in Hamming

distance [5] two through, say, k away from its related test pattern
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then all patterns Hamming distance one through (k-l) from the

initializing pattern and also Hamming distance (k-l) through one from

the test pattern must have the same output. For example if

(al, ... ,ak,ak+l ar,O, ,O) is the test and

(al, ••• ,ak,ak+l, ,ar'O, ,O) is the initializing pattern both with

expected output 0, then if (al, ... ,ak_l,ak,ak+l, .•. ,ar'O' ..• 'O) has

output 1 and is the intermediate state in changing from the

initializing pattern to the test, then the intermediate state would

force a 1 into the loop and destroy the result of initialization.

A study of the 2T(r) gate of Table I clearly proves that it cannot

be used to initialize a network. Thus, a new gate is needed which
A A

will henceforth be referred to as a 4T(r) gate, where r is the number

of control inputs in the gate. In what follows, a bound will be develop-

ed for the minimu~ number of control inputs that a DMS network requires

to detect all single s-a-faults with a minimal set of function-independent
A

tests. Then, the truth table of a 4T(r) gate will be presented that

satisfies the above bound and which later will be shown to follow a

bound similar to the bound in [1] for multiple faults. Later, another
~

4T(r) gate will be presented whose use in a DMS network helps to reduce

the number of required control inputs and tests under certain restric-

tive assumptions.

The following theorem develops a lower bound for the number of con-
A

trol inputs required by a DMS network built with 4T(r) gates, where re-

quired, and 2T(4) gates, (as defined in Table II), where the 2T(4) gate is

the gate with the minimum number of controls that permits single fault

detection with a function-independent test set. Note that here, as in [1],
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2T(r) gates are assumed to share corresponding controls, some of
A

which may be used by 4T(r) gates also:

A

Theorem 1: A DMS network built with 2T(4) gates and 4T(r) gates,

where necessary, requires at least five control inputs so that all

single faults can be detected with a function-independent test set.

Proof: Since 2T(4) gates have four control inputs, a DMS network

must have at least four control inputs. Now suppose that it is

possible to have a DMS network with four controls such that all

single faults can be detected with a function-independent test set.
A

Therefore, a 4T(r) gate exists with four or fewer control inputs

such that it shares all these controls with those of the 2T(4) gates

so that the network can have four controls in all. It will now be

shown that this limit is not achievable.

From [1], it is evident that the two function-independent

tests for the 2T(4) gates are:

T = (kl,k2,k3,k4,dl,···,dm) = (a l ,a 2 ,a 3 ,a4 ,O, ... ,0)

with expected output 0 and

f = (kl,k2,k3,k4,dl,···,dm) = (~1'~2'~3'~4,1, ... ,1)

with expected output 1. Then three choices exist for each of the

initializing patterns for the two tests. With respect to test !,

these choices are:

(i) The control values for T and the initializing pattern

are the same.
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TABLE II

k
1

k
2

k
3

k
4

d
1

d f
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(ii) The control values for T and the initializing pattern

are Hamming distance one apart.

(iii) The control values for ~ and the initializing pattern are

Hamming distance two or more apart.

Case (i): If T and its related initializing pattern are the same,

then T will not detect any s-a-l fault at the data inputs of the
A

4T(r) gates since its output is independent of data inputs when the

initializing pattern is applied. Then, extra test is required with

control values at least Hamming distance one away from those for T.

But as Table II shows, a s-a-l fault propagates through a 2T(4)

gate as an erroneous logic value only when

(k
1

,k
2

,k
3

,k
4

) = (a
1

,a
2
,a

3
,a

4
). Hence, no fault is detected.

If ! and the initializing pattern differ in data inputs, as

Table II shows, a pattern that is not all-O in the data inputs may

force a 1 at the output of one or more 2T(4) gates and may not be

able to initialize all loops in all networks.

Case (ii): with reference to !' no control condition Hamming

distance one from (k1 ,k
2

,k
3

,k
4

) = (a
l

,a2 ,a
3
,a

4
) can be used to

initialize a loop since as Table II shows, the output of a 2T(4)

gate is 1.

Case (iii): Finally, no control condition Hamming distance two or

more from (k
1

,k
2

,k
3

,k
4

) = (a
1

,a
2
,a

3
,a

4
) can be used to initialize a

loop to 0 since in changing from the initializing pattern to test

!, one intermediate control condition may be Hamming distance one

away from that of ! for which, as Case (ii) shows, all 2T(4) gates

have output 1. Thus, the effect of initializing is destroyed.
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Hence, none of these options listed above are applicable.

A similar case can be made for test T also.

Q.E.D.

The above theorem shows that a DMS network needs at least five

controls for function-independent testing. The following theorem

develops a lower bound for the number of function-independent tests,

a bound that will subsequently be shown to be achievable:

Theorem 2: DHS networks built with 2T(4) gates and 4T(r) gates,

where necessary, and containing at least five control inputs cannot

be tested with less than six tests.

Proof: Let the five controls be denoted kl,k2,k3,k4,kS of which

k
1

,k
2

,k
3

,k
4

drive all 2T(4) gates. Control k S and one or more of

the remainder drive all 4T(r) gates~ Since as far as 2T(4) gates

are concerned, one of the tests for the network is

:£0 = (kl,k2,k3,k4,dl,···,dm) = (a1 ,a2 ,a3 ,a4 ,O, ••• ,O)

with expected output 0, the related initializing sequence is either

(kl,k2,k3,k4,kS,dl,···,dm) = (a1 ,a2 ,a3 ,a4 ,O,O, ... ,O)

or

(kl,k2,k3,k4,kS,dl,···,dm) = (a1 ,a2 ,a3 ,a4 ,l,O, ... ,O)

with expected output 0 in either case. Let the initializing sequence,

without loss of generality, be

!i = (kl,k2,k3,k4,kS,dl,···,dm) = (a1 ,a2 ,a 3 ,a4 ,O,O, ..• ,O)

with expected output O. Then the complete specification for To above

is
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with expected output 0 also. Since!O will test all 2T(4) gates

for s-a-l faults, an erroneous logic value must be able to

propagate through a 4T(r) gate. HenCe!O will test all s-a-l faults

at the data inputs of the 4T(r) gates. However if k S is s-a-O r it

will appear as if !i is applied, irrespective of whether !o or !i is

applied, and the output will be 0 since T. is the initializing
~1

pattern and hence the fault will be undetectable. Again, if k S is

s-a-l, the network cannot be initialized since it will appear as if

!o is applied irrespective of whether !o or !i is applied, i.e.

the network cannot be initialized to O. Hence, the fault will be

detected if an erroneous value appears in the loop because of its

memory, i.e. this fault cannot be detected with certainty and

therefore is an undetectable fault. A similar argument can be made

- -to show that the complement pair of patterns, !O and !i' where one

is to initialize loops to I and the other to test 2T(4) gates for

s-a-O faults, cannot detect any fault in k S - Hence, two more tests

are required - one to test k
S

for a s-a-O and another to test for a

s-a-l fault - thus requiring a total of at least six tests.

Q.E.D.

A 4T(r) gate is now presented such that the DMS network in

which it is used satisfies the bounds set by Theorems land 2. Also,
A

the properties of a DMS network that uses this 4T(r) gate will be
A

discussed. Evidently, this 4T(r) gate and all others like it must

have at least two control inputs to satisfy the minimum requirement
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of two initializing modes - one to set all loops to a and another

to set all loops to 1 - and at least one condition for normal mode,

assuming that normal mode can somehow be used to test this gate

also.

So consider the truth table of Table III. Since the lower

bound for single fault detection is five controls, one of the control

inputs must be shared with one of the controls of 2T(4} gates in the

network. Since the controls for 2T(4) gates have to be in test mode

during initializing also, the control input of the 4T(2) gate that

must be shared with 2T(4) gates must have the property that it cannot

change in transferring from initializing to test mode. As Table III

shows, k 1 is the control input that can be so shared. Control k 2

then becomes the control that switches the 4T(2) gate and the

network from initializing to its related test mode. Table III also

shows that in either test mode, i.e. (k1 ,k2 ) = (~1'~2) and (a1 ,a2),

the output of the gate is the same as the data input. Thus, in test

mode, this gate will propagate the logic value appearing at its data

input, which is the property required to propagate a fault to an

output. Note also that either test mode can represent normal mode.

At this stage, it is necessary to define a property to be applied

to all DMS networks in this chapter since the 4T(2) gates in this

chapter are basically of the same nature. The subsequent discussion

justifies the need for this property.
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Property 5: Every feedback loop must have one and only one
A

4T(r) gate to initialize the loop so that a logic

value in propagating once along the shortest path
A

in any loop encounters one and only one 4T(r) gate

in that loop.

It is evident from what has been presented so far that every loop

must have a 4T(r) gate to initialize it. At the same time, a loop
A A

cannot have more than one 4T(r) gate since then a fault in one 4T(r)
A

gate will be blocked by a fault-free 4T(r) gate in the same loop and

which will also prevent storing that information during initializins

in order to transmit that information to an output at a later time.

This also explains why an all-purpose gate, formed by merging the
A

properties of 2T(r) and 4T(r) gates, cannot be used to build

sequential networks since that would amount to having multiple gates
~

with the properties of 4T(r) gates in the same loop.

The need for all loops, not just memory loops, i.e. those loops
A

that store information, to have 4T(r) gates fits well with the

general Huffman model of a sequential network shown in Figure 2 where

all loops are considered alike. Property 5 is also necessary to

initialize all fault-free loops in any DMS network configuration.

For example, if in the network of Figure 3, the loop formed by the

memory loops feeding each other 'did not contain a 4T(2) gate, then

it would be impossible to initialize any of the loops. As specified

by Property 5, one loop is formed by gates 1, 2 and 3, a second loop

with gates 5, 6 and 7 and a third loop with gates 2, 3, 4, 6, 7, 8

and 9.



x m

Combinational

Network

I-------t..~ Z
1

z
p

18

-------16.

-----------16.

Fig. 2. Huffman Sequential Network Model

1

'"

Memory
/,/'f"

Loops

\
\

\
\

\\ 5 a

Fig. 3. Sequential Network satisfying Property 5



19

A

Now suppose it is assumed that control k
l

of the 4T(2) gate

shown in Table III is driven from the same network control input

that drives the k 4 input of all 2T(4) gates in a DMS network. Then

in relation to Table II and III,
A

a 4 = a l ·

Note that this sharing arrangement in no way limits control k
4

since

there exists a normal mode for the 4T(2) gate both for k
l

= a
l

and a
l

.

Hence the logic value assumed by control k
4

in normal mode is

determined only by the truth table of 2T(4) gate. However, selection

of a suitable value for k 4 also determines the proper value that k 2

must have in reference to Table III.

It is now shown that a DMS network built with 2T(4) gates and

4T(2) gates, where necessary as per Property 5, can be tested with

a set of function-independent tests:

Theorem 3: Given any m-data input DMS network with five controls,

kl,k2,k3,k4,kS where k 4 ,kS controls all 4T(2) gates and k1 ,k2 ,k3 ,k4

controls all 2T(4) gates, any single fault is detected by the

following test set:

-~e = (kl,k2,k3,k4=kl,ks=k2,dl,···,dm) = (a l ,a2 ,a3 ,a4 = al ,a2 ,O, ... ,O)

with expected output 1,
-

!i = (kl,k2,k3,k4=kl,ks=k2,dl,···,dm) = (al,a2,a3,a4=al,a2'O, •.. ,O)

with expected output 0,

with expected output 0,
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"" ""= (kl,k2,k3,k4=kI,kS=k2,dl,···,dm) =

with expected output 0,

!i = (kl,k2,k3,k4=kl,ks=k2,dl,···,dm) = (al,a2,a3,a4=~1'~2,1, ... ,1)

with expected output 1 and
-"" /\.

!O = (kl,k2,k3,k4=kl,kS=k2,dl,···,dm) = (al,a2,a3,a4=~1,a2,1, ..• ,1)

with expected output 1, where subsets {T ,T.,T
O

} and {T ,T.,To}
~e ~l ~ ~e ~1 ~

represent ordered sequences of tests.

Proof: Noting that the expected outputs for !o and ~O are

complements of each other, all network outputs are testable by !o

or ~O since a fault in an output would force it to have the same logic

value when either test is applied. Also since a fault in the output

of a gate internal to the network is indistinguishable from

corresponding faults in the inputs of gates fed by the faulty output,

only input faults will be considered in proving this theorem. More-

over, faults in control lines that affect more than one gate can be

considered as distributed faults in the control inputs of the affected

gates since there is no way to distinguish between the two as far

as stuck-fault testing is concerned.

In proving this theorem, four different types of faults need

to be considered:

(i) a single fault that affects only 2T(4) gates,

(ii) a single fault at the data input of a 4T (2) gate,
A

( iii) a single fault affecting the k l
input of one or more

4T {2} gates and

(iv) a single fault affecting the k 2 input of one or more

4T (2) gates.
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Case (i): Consider some single fault that affects 2T(4) gates only.

Then there exists at least one 2T(4) gate such that all gates in the

path from the faulty gate to a network output are fault-free. Then

after T. or T. has initialized the network, TO or TO' being tests
~1 ~l ~ ~

for 2T(4} gates as in [1], will propagate the fault to the output of

that faulty gate and from there to the network output via the fault

free path since both ~O and fo puts the entire network in test mode.

Case (ii): Once T. or T. has initialized the network to 0 or 1
~l ~1

respectively, application of ~o or fo forces a single data input

fault at a 4T(2) gate to appear at its output and hence as a fault

at an input of the 2T(4) gate fed by the faulty 4T(2) gate. This

condition is now identical to that in Case (i) and hence this fault

is detectable by !o or !o·

Case (iii): A fault in k l may affect either 2T(4) gates or 4T(2)

gates or both since this control is shared with k 4 of 2T(4) gates.

Also, a single fault may affect one or more gates. Once again then,

there must be at least one faulty gate such that all gates in the

path from the faulty gate to a network output are fault-free. Then

after T. or T. has initialized the network, TO or TO will propagate
~1 ~1 ~ ~

the fault to the output of that gate, irrespective of the type of

gate it is, and then to the network output via the fault-free path

since fault-free 2T(4) and 4T(2) gates will propagate a fault when

!o or !o is applied.
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Case (iv): Because of the unique characteristics of control k
2

A

a fault in k 2 is tested by first storing an erroneous value in all

the loops by applying tests T or T followed by T. or T. respectively
~e ~e ~1 ~1

which initializes only those loops with fault-free 4T(2) gates to

the desired logic value while leaving the erroneous value still

stored in the loops with faulty 4T(2) gates. Then there exists

at least one loop with a faulty 4T(2) gate which has a path to a network

output such that all gates from that loop to the network output are

fault-free. Now when !o or !o respectively is applied, the erroneous

value previously stored in the fault loop will propagate to the

output via the fault-free path since both %0 and r
O

force all gates

into test mode. Thus, all single faults are detectable.

Q.E.D.

Note that a fault in k
2

may be detectable after T. or T. is
"'1 "'1

applied. That would happen when the path from a faulty loop to a

network output does not traverse through a fault-free loop since

then the fault-free 4T(2) gate in the latter loop would block the

Propagation of the erroneous value when T. or T. is applied .
....... 1 ....... 1

The concept of function-independent testing will now be extended

to the problem of multiple fault detection. The following theorem

shows that at least (r+2) controls are needed to detect any pattern

of faults as long as no gate in the DMS network has more than t faults

in its control inputs where r is the number of controls required by

the 2T(r) gates and the relation between rand t, as defined before

in [1], is,

t = L(r-2) /2J

Note that while the necessity for five controls has been proven
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earlier for single faults, it differs from the bound mentioned

above, and soon to be proven, in that for t=l, at least six controls

are required. This is because in the former case, only single

faults were considered while the latter case covers all patterns

of faults provided no gate has more than one fault in its control

inputs.

Theorem 4: A DMS network built with 2T(r) gates and 4T(~) gates,

where necessary, requires at least (r+2) control inputs so that any

pattern of faults, provided no gate has more than t faults in its

control inputs, can be tested with a set of function-independent

tests, where rand t satisfy the relation,

t == Ur-2) /~

Proof: Using the same approach as Theorem 1, it can be shown that

a DMS network needs at least (r+l) controls, where r controls are
A

required, as shown in [1], by the 2T(r) gates while the 4T(r) gates

use the extra control and share upto r controls with the 2T(r) gates.

It will now be shown by contradiction that at least (r+2) controls

are required to detect all the faults specified in the theorem. So

assume that (r+l) controls are sufficient. Let one of the tests for

the 2T(r) gates, without loss of generality, be,

with expected output 0, where the values specified for k 1 through

k and d 1 through d are as specified by Table I in [1]. Then ther m

related initializing pattern must be
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with expected output O. Then there exists two choices for the pair

of complement tests:

(i) !O = (kl,···,kr,kr+l,dl,··~,dm ) = (~l'···'~r,l,l, ... ,l)

is the test with expected output 1 and

T. = (kl,···,kr,kr+l,dl,···,dm) = (~l'···'~r,O,l, ... ,l)
~1

is the initializing pattern with expected output 1 or

is the test with expected output 1 and

!i = (kl,···,kr,kr+l,dl,···,dm) = (~l'···'~r,l,l, ... ,l)

is the initializing pattern with expected output 1.

Suppose the pair of complement tests is as defined in Case (i).
A

Then consider one of the 4T(r) gates in which control k
r

+
1

and the

data inputs are s-a-O. One way to test for this would be to have a

pattern whose output depends on the presence or absence of the fault

pattern. Evidently, neither !i nor !o tests for this since with

kr +l s-a-O and k l through k r at values prescribed by ~i or !O' the

gate will initialize the loop to 1 independent of the faults in its

data inputs. Also, since the values for k I , through kr are fixed

by Table I as required values to keep all 2T(r) gates in test mode,

no other pattern exists whose output would depend on the presence or

absence of the fault. An alternative approach to test this fault,

as used in Theorem 3, is to store an erroneous value and then test

the effectiveness of the initializing control, k r +1 - Even with this

approach, this fault pattern is not tested by the sequence {T.,TO}
~1 ~

since with the data inputs s-a-O, an erroneous 1 cannot be stored in
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the loop. Thus, the output for both !i and !o would be 0 implying

no fault exists. Also, the sequence {T.,T
O

} as defined in Case (i)
~1 ~

does not detect the fault since with k r +1 s-a-O, the gate will

initialize the loop to 1 at all times, prevent storing erroneous

data, and thus the output for both T. and TO will not indicate a fault.
~1 ~

For Case (ii), a s-a-l fault in k r +1 along with data inputs of the
A

4T(r) gate s-a-O will not be detected. Hence, the contradiction.

Q.E.D.

Theorem 2 has already shown that we need a minimum of six

function-independent tests. We will present a 4T(2) gate that allows

us to meet this bound as well as the bound set by Theorem 4. We

will also show that, independent of the value of r, any pattern of

faults in this 4T(2) gate is detectable with the specified set of

function-independent tests. So consider the truth table of the

4T(2) gate shown in Table IV. The properties of the gate are similar

to the 4T(2) gate in Table III except that the individual segments

of the table as defined by the control inputs have been changed.

Also, Property 1 must still hold. We will now define a set of tests

and prove that it satisfies Theorem 4.

Theorem 5: In any DMS network built with 2T(r) and 4T(2) gates,

the latter as defined in Table IV, any pattern of s-a-faults, provided

that faults in the control lines affect at most t = C:;J control

inputs of any 2T(r) gate, will be detected by the test set
A A A

T = {T ,T.,TO,T.,To,T } defined below:
~e ~1 ~ ~1 ~ e

A

(al,···,ar_I'~r,al,a2'O, ... ,o) = T
~e



TABLE IV

A

k1
k 2

d f

a
1

a
2

0 0

A A

a
1

a 2 1 1

A ';::

a
1

a
2 0 0

A A

1 1a
1

a
2

A

a
1

a
2 X 0

A A

a
1

a
2

X 1

26
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with expected output I,
A A

(kl,···,kr_l,kr,kr+l=kl,kr+2=k2,dl,···,dm) =
A A

(al,···,ar_l,ar,al,a2'O' ... '0) =

with expected output 0,
A A

(kl,···,kr_l,kr,kr+l=kl,kr+2=k2,dl,···,dm) =
A A

(al,···,ar_l,ar,al,a2'O' ... 'O) = :£0

with expected output 0,
A A

(kl,···,kr_l,kr,kr+l=kl,kr+2=k2,dl,···,dm) =
A A

(al,···,ar_l,ar,al,a2,1, ... ,1) =

with exp~cted output 1,
A A

(kl,···,kr_l,kr,kr+l=kl,kr+2=k2,dl,···,dm) =

T .
........ 1

-
(al,···,ar_l,ar'~1'~2,1, ... ,1) = ~O

with expected output 1 and
A A

(kl,···,kr_l,kr,kr+l=kl,kr+2=k2,dl,···,dm) =
A

T........e
A A A

with expected output 1 where the subsets {T ,T.,T
O

} and {T.,TO,T.}
""e ""1 f"o.J ~1........ e

are ordered sequences of tests and where controls, k r and k
r
+

1
drive

4T(2) gates only while controls, kl, ••. ,k
r

, drive 2T{r) gates only.

Proof: Since test TO and T have opposite outputs, all network........ ........e

outputs will be tested. Also, since a fault in a gate output is

indistinguishable from identical faults in the data inputs fed by

that output, we will consider input faults only in this proof. Finally,

faults in control lines that affect more than one gate will be

considered as distributed faults in the control inputs of the same

gates.
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Now consider any pattern of faults provided no 2T(r} gate has

more than t faults in its control inputs. Then there exists at

least one gate which has a path to a network output such that all

gates in the path from the faulty gate to that output are fault-free.

Then we need to consider three different conditions:

(a)

(b)

(e)

the faulty gate is a 2T(r) gate

the faulty gate is a 4T (2) gate in a loop containing

no faulty 2T(r) gates

the faulty gate is a 4T (2) gate in a loop with at

least one 2T(r) gate with a fault pattern at its

inputs which can prevent propagation of some desired

logic value around that loop.

Consider Case (a). In a fault free network, sequences T.,To........ 1 ........
A A

and !i'!O will force a logic value of 0 and 1 respectively at all

network outputs. In a faulty network, however, fitting the description
A

of Case (a), !o or !o will force the fault to the output of the
A

faulty 2T(r) gate since !o and !o are tests for 2T(r) gates.

Propagation of the fault to the network output via the fault-free
A

path is guaranteed because !o and !o will put all the gates in that

path in test mode.

Next consider Case (b). In a fault-free network, all network

outputs will be as defined before when sequences T ,T.,T
O

and"""""'e ........ 1 ........
A A A

T.,To,T are applied. In a faulty network fitting Case (b), any fault
"'1. '" ........ e

in the 4T(2) gate is detectable at least at the outputs of the loop,

as shown in Table V. Also, since every test sequence in Table Vends
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*

*
*

*

*

s-a- k s-a
2

d s-a-

o
1

o

1

o
1

o
1

o
1

o
1

a
1

a
1

o
1

TEST SEQUENCE

T ,T.,T
O........e ........ 1 ........

T T T""i' ....... O' ........ e
T. ,To........ 1 .......

T ,T. ,To........e ........ 1 ........
'" '"T. ,To--1. ......
T ,T.,T

O........e ........ 1 ........

T ,T.,T
O........e ~l ........

T ,T.,T
O::e ~l ........

T. ,To........ 1 ........

T ,T.,T
O"""'e ........ 1 ........'" ~

T. ,To........ 1 ......

T ,T./T
O........e ........ 1 t"V

'" A '"

T. ,TO,T........1........ ........e
'" " 1\T T T........ i' ........ O' ........e
" "T. ,To........ 1 ........

T ,T. ,To
~e ~1 ........

T. ,TO1 ........

T ,T.,T
O........e ........ 1 ........

" "T. ,To....... ). ........

T ,T.,T
OA:e ;:'1 ........

T. ,To........ 1 ........

T ,T. ,To........ e ........ 1 ........
" At

T. ,TO
~1 ~

T. ,TO........ 1 ........

T ,T"TO........ e ........ 1 ........

T ,T.,T
O........ e ........ 1 t"V

*faults requiring storage of erroneous value.
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A

with either ~O' !o or !e' all of which put the network in test mode,

the faulty logic value will propagate to the network output via the

fault free path.

Case (c) requires the most attention. since the particular 4T(2)

gate in this case still has a fault-free path to an output, according

to assumption for this case, the other faults in the same loop has

to be beyond the loop output that feeds the fault-free path. To

prove that all faults described by Case (c) are detectable, note "that,

of all faults considered in Table V, only those marked with an

asterisk require storage of an erroneous value for detection of the

fault. Those that do not depend on storage are patterns with either
-A A

k
1

s-a-a1 or the data input is at fault or both. In all those

cases, the output of the 4T(2) gate is not affected by other faults

in the loop and, as Table V shows, these faults propagate to the

output of the 4T(2) gate when !O' !o or ~e is applied, each of which

puts all gates in test mode and thus guarantees propagation to the

network output via the fault-free path. Those faults that do depend

on storage are patterns with the data input of the 4T(2) gate
A

fault-free and the k l input either fault-free or s-a-a
l

. In both
A A

cases, the 4T(2) gate will be in test mode when !O' !O or ~e is

applied, thus allowing the nearest fault in the loop to propagate to

its output and then to the network output via the fault-free path.

This is identical to Case (a). Hence all faults are detectable

provided no 2T(r) gate has more than t faults in its control inputs.

Q.E.D.
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Using the same approach as in the above theorem we can show
A A A

that the test set T = {T ,T.,TO,T1,T.,TO} will also detect the same"""'e t"W1 t"W I"'V 1"'V1 I"'V

faults as defined in above theorem where tests T ,T.,TO,T. and........ e ........ 1........ ........1

!o are as defined in the above theorem while !l is as defined below:
A

(kl,···,kr,kr+l=kl,kr+2=k2,dl,···,dm) =
A

with expected output O.

As a consequence of Theorem 5, we have the following corollary:

Corollary-!: In any DMS network with (r+2) controls, built with

2T(r) gates and 4T(2) gates shown in Table IV, any pattern of

t = lr;j 'or fewer faults will be detected by both the test sets T
A

and T defined before.

Theorem 4 and the existence of at least one 4T(2) gate, as shown

in Table IV, that satisfies the bound of that theorem implies the

following theorem:

Theorem 6: The necessary and sufficient condition for a DMS network

so that all patterns of faults so that no 2T(r) gate has more than

t faults in its control inputs can be tested with a function -

independent test set is that the network have at least (r+2) = (2t+4)

control inputs, provided that the distance between normal mode and

any test mode in a 2T(r) gate, as defined by the control values, is

at least l!:"/~.

An interesting special case arises when the output of the gate
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that drives the 4T(2) gate in each loop also serves as the only

loop output. Then under the assumption that a fault in the data

input of the 4T(2) gate also affects the output of the 2T(4) gate

driving it and hence the loop output, it is possible to show that

there exists at least one 4T(2) gate such that the DMS network

built with it needs only (2t+2) controls and four function-independent
A

tests. Consider the 4T(2) gate of Table VI. If controls k
1

and

k
2

are shared with controls k
1

and k
2

of 2T(r) gates respectively,

then it can be shown that the test set T = {T ,T ,T ,T }
s ~sl ~s2 ~sl ~s2

will detect any pattern of faults provided that no 2T(r) gate has

more than t = lr;2J faults in its control inputs, where tests

T,T I T and T are as defined below:
~s ~s ~s ~s

121 2
A A A A

(kl=kl,k2=k2,k3,k4,···kr,dl···dm) = (al=al,a2=a2,a3,a4,···ar'O, ... o)

= T with expected output 1,
~sl

(kl=kl,k2=k2,k3,k4,···kr,dl···dm) =

% T with expected output 0,
~S2

A A

(kl=kl,k2=k2,k3,k4,···kr,dl,···dm) =
- -
(~1=al'~2,a2,a3,a4,···ar,1, ... 1)

-= T with expected output 0 and
~Sl

A A

(kl=kl,k2=k2,k3,k4,···kr,dl···dm) =
- -
(~1=al'~2,a2,a3,a4,···ar,1, ... 1)

-= T with expected output 1.
~s2

As Table VII shows, the above test set detects all control input

faults in the 4T(2) gate of Table VI. Date input faults in 4T(2) are

ignored since by assumption they are analogous to faults occurring at



TABLE VI

k 1 k 2
d f

A A

a
1

a x 0
-A A

a
1

a 0 0
-

A A

a 1 a 1 1

::::: A

a
1

a a 0

:::::
a 1 a 1 1

A :::::
a

1
a x 1

x - don't care

33



TABLE VII

k1 s-a k 2 s-a TEST SEQUENCE

a1=a1
T ,T
...... 5 1 "'52

A - T ,Ta1=a1 "'51 ...... S2

a
2
=a

2
if ,T
...... 5 "'5

1 2-A -a
2
=a 2 T ,T

......Sl ...... 5
2

a
1

=a
1

a
2

=a
2

T ,T
....... 5

1
1'J5

2
A

A -a
1

=a
1

a
2
=a

2
T ,T
....... 5 ...... 5

1 2-A - T ,Ta1=a1
a

2
=a

2 ...... 5 ....... 5
1 2

A - A
a

1
=a

1
a

2
=a

2
T ,T
"'51 ..... S2

34



the outputs of 2T(r) gates.

35

Test set T can be shown to detect
s

all other faults provided that no 2T(r) gate has more than t faults

in its control inputs. Note that subsets {T ,T } and {T ,T }
""5 rvS ........S .......s

1 2 1 2
represent ordered sequences of tests.
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III. Conclusions and Discussions

In this paper, we have first briefly covered the unique pro-

perties of the 2T(r) gate that were developed in [1], emphasizing

the fact that the 2T(r) gate does not have the capability to

initialize loops in sequential networks. Having shown the need for
A

a second gate, referred to as 4T(r) gates, we first proved that at

least five controls are required for any DMS network so that all

single faults can be detected with a function-independent test set.

We then showed that the function-independent test set must contain

at least six tests and finally presented a particular 4T(2) gate

which satisfies both the above bounds.

Next, we addressed the problem of multiple faults. We first

showed that a DMS network needs at least (r+2) controls to detect

any kind of multiple faults. We then presented a specific 4T(2) gate

that satisfies the above bound and having two alternative sets of

six function-independent tests both of which detect all possible fault

combinations in the 4T(2) gate. Total fault coverage then becomes a

function of the number of control inputs that the 2T(r) gates have,

i.e. (r+2) controls are necessary for a function-independent test set

to detect any pattern of faults provided no 2T(r) gate has more

than t = r;j faults in its control inputs. Moreover, we showed an

interesting extension of the above idea where under certain res-

trictive assumptions, there does exist a 4T(2) gate whose use in a

network requires the network to have just r controls to detect any

pattern of faults with four tests, provided no 2T(r) gate has more
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than t = r;j faults in its control inputs.

The above results are important for two reasons - first, function-

independence of the test sets makes the test sets immune to the

function and implementation of the network and secondly, the fixed

size of the test set overcomes the problem of handling test sets

whose sizes are related to the complexity of the network. In the

case of multiple faults, it is interesting to note that as in the

case of DMC networks in [I], given a certain number of control inputs,

enlarging the test set will not increase the test coverage. This

conclusion, reached earlier in [1], applies here also since increase

in test coverage is strictly a function of the number of controls

in 2T(r) gates because all faults in the particular 4T(2) gate

defined for multiple fault detection are detectable.

Note that as in the case of DMC networks, logical redundancies

in DMS networks become invisible in test mode and hence do not affect

testing of DMS networks for all specified faults. Also the treatment

of sequential networks here does not make any distinction between the

different data inputs which have either an all-O or all-l pattern

in test mode. Hence, this approach applies just as well to

asynchronous designs as to the synchronous ones where the inputs

referred to here as data inputs represent both logic and clock inputs

in normal mode.

One must note that, as in [1], we have considered only faults

that occur at the inputs or output of a gate. We have not investigated

whether there is any fault internal to the 4T(2) gates or the 2T(r)
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gates which does not manifest itself as a s-a-fault at an input or

output of the gate since the effect of such a fault is dependent on

the specific realization of the gate on an LSI chip. In defense

of our approach, it can be said that if any fault does exist that

does not appear outside the gate, it may be possible either to

interconnect the internal elements of the gates in such a way that if

an undetectable fault occurs, it also causes a detectable fault to

occur, or to use redundancy in interconnections to drastically reduce

the probability of such an undetectable failure.
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