
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

5-1985 

A Meta-Level Extension of Prolog A Meta-Level Extension of Prolog 

Kenneth A. Bowen 
Syracuse University 

Tobias Weinberg 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Bowen, Kenneth A. and Weinberg, Tobias, "A Meta-Level Extension of Prolog" (1985). Electrical 
Engineering and Computer Science - Technical Reports. 36. 
https://surface.syr.edu/eecs_techreports/36 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/36?utm_source=surface.syr.edu%2Feecs_techreports%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


A Meta-Level Extension of Prolog*

Kenneth A. Bowen
Computer & Information Science
313 Link Hall
Syracuse University
Syracuse, NY 13210
kabowen%syr@csnet-relay

Tobias Weinberg
AI Technology Group
Digital Equipment Corp.
77 Reed Road
Hudson, MA 01749
weinberg%logic.DEC@DECWRL

SCHOOL OF COMPUTER

AND INFORMATION SCIENCE



Technical Report CIS-8S-1

School of Computer and Information Science

Syracuse University

A Meta-Level ExteDsioD or Prolog*

May 1985

Kenneth A. Bowen
Computer &; Information Science
313 Link Hall
Syra.cuse University
Syra.cuse, NY 13210
kabowen%syrCcsnet-relay

Tobias Weinberg
AI Technology Group
Digital Equipment Corp.
77 Reed Road
Hudson, MA 01749
weinberg%logic.DECCDECWRL

* Work on this project was supported in part by AFOSR grant AFOSR-82-0292. The authors
would like to thank Maarten van Emden and the students in Bowen's seminar at Syracuse
University for helpful and stimulating discussions.

o



I. Introduction

Prolog has many attractive features as a programming tool for artificial intelligence. These
include code that is easy to understand, programs that are easy to modify, and a clear
relation between its logical and procedural semantics. Moreover, it has proved possible '0
create clear and efficient implementations. Nonetheless, we perceive several shortcomings.
Chief among these is difficulty representing dynamic databases (databases which change in
time) and an apparent restriction to backward chaining, backtracking, depth-first search.
Our intent in this paper is to present an extension to Prolog, called metaProlog, which
preserves the virtues of Prolog while introducing powerful constructions to attack these
problems. This work is a direct continuation of the investigation into meta-level program
ming in logic begun by Bowen and Kowalski (1982).

Many applications of artificial intelligence demand facilities which amount to ihe ability to
dynamically manipulate databases. Databases are naturally represented in Prolog as a set
of assertions and clauses. This exploits all the advantages of Prolog's inherent deductive
machinery. However, the logicai core of Prolog provides no conceptual basis for segment
ing or modifying the database. Most implementations (:.~ Prolog have provided ad hoc
extensions to the basic logic programming paradigm which allow for dynamic modification
of the program database by the program itself. But since the database is the program,
the use of these facilities introduces difficulties similar to those introduced by global vari
ables and self-modifying code in conventional programming languages. The effect of these
features on the virtues listed above is catastrophic. Programs become difficult to under
stand, reliable modification of the code is almost impossible, and the logical semantics is
utterly destroyed. We know of no mathematical or philosophical definition of first-order
proof where the collection of axioms is not fixed. We would suspect any such notion to be
in,coherent. We believe these difficulties can be overcome by the introduction of theories
as first-class objects which can be dynamically created and passed as parameters. In stan
dard Prolog, goals are invoked with respect to a single background theory. In metaProlog,
goals must be proved in an explicitly identified theory. We regard this system as simply a
first-order logical theory of axiom sets and proofs.

The means of indicating that a metaProlog goal G should be solved in a particular theory
T is an explicit calIon the proof predicate demo. From a logical point of view, the proof
predicate is really a relation between three objects: the theory T, the goal G, and the
proof P which attests to the solvability of G in T. But logic programming is not only
concerned with the static existence of proofs, but also the process of discovering them.
That is, it is also concerned with the notion of search space and search strategies. Thus,
for logic programming, the deep central relation is the one which holds between a theory
T, a goal G, and the complex object consisting of a proof for G in T seen as a portion of
a search space explored by a particular search strategy. Our investigations have led us to
the conclusion that all of these entities must be treated as first-class objects (metaProlog
terms) capable of being manipulated and passed as values of parameters.

This approach appears to provide a logically sound programming formalism 8ufficiently

1



powerful to write clear reliable programs for experimental and applied artificial intelligence.
We also believe it possible to construct efficient implementations of such a system, but will
leave this question to a later paper. Although problem of efficient implementation has
been of deep concern throughout our design process, our concern in this paper is with
questions of conceptual and logical foundations. (Various portions of the system have
been simulated by implementations in Edinburgh Prolog and paris of a prototype system
have been written in e.)

Let us close this introductory section with an example illustrating the power of the ap
proach. Suppose that one has two collections of goals, GI,...,Gn and HI,...,Bm and
that one wishes to solve GI,...,Gn in theory Tl under one search strategy MI, and to
solve HI,...,Hm under another strategy M2 in theory T2, where both M2 and T2 depend
on the state of the computation resulting from the solution of GI,...,Gn, as well as on
TI, GI,...,Gn, and HI,...,Hm. Let F be the problem to be solved by this work and let
'next-strategy' be some procedure acting on theories, goals, and computation states which
will be used to compute T2 and M2. Then we could describe F as follows:

F is solvable if
Gl&... &:Gn is solvable in Tl using strategy Ml
and S1 is the resulting computation state,
and next-strategy acting on TI, Gl&...&Gn,

Hl& &Hm, and 81 yields T2 and M2,
and HIk Hm is solvable in T2 using strategy M2.

Let vi,... ,vk be the variables of GI,...,Gn,HI,... ,Hm. Then, in the metaProlog formalism
we will introduce below, this could be expressed by:

all [vI,...,vk,T2,M2,Sl]:
F(vl,... ,vk) +-

demo(Tl, Gl&...&Gn, strategy(Ml)+comp(Sl))
& next..strategy(Tl, Gl&...kGn,

Hl& &Hm, 81, T2, M2)
& demo(T2, Hl& &Hm, strategy(M2))

D. Meta-Level Programming

It is important to make clear our notion of meta-level programming. Briefly, one distin
guishes between the formal language being used to conduct some (unspecified) axiomatic
investigation (the object language) and the language used to carry on any discussion about
the object language (the metalanguage). For many purposes (including those of this pa
per), the metalanguage need only be powerful enough to discuss the combinatorial syn
tactic properties of the object language. The essential point is that the relations of the
metalanguage are about the syntactic entities of the object langua.ge: the variables of the

2



metalanguage range over various syntactic entities of the object language. In contrast,
the variables of the object language either have no specified range (when it is viewed as
a formally uninterpreted language) or (when the object language is treated as being in
terpreted) range over the members (possibly extremely mathematically complex) of some
specified set.

Properly viewed, an ordinary Prolog interpreter is already a meta-level object. The object
level consists of a fragment of ordinary first-order logic, a language and proof predicate.
The latter describes which formulas of the language are consequences of lets of other
formulas of the language. The meta-level of a theorem-prover is concerned with the ma
nipulation of sets of object-level formulas in the search for a collection of formulas which
witnesses the derivability of a given goal formula from a given set of axiom formulas. The
prover proper is a meta-level object because its variables range over formulas (and other
syntactic classes) of the object level language.

Thus a Prolog interpreter really defines a relationship between sets of formulas (the pro
gram database), goal formulas, and proofs, namely the relation that the proof witnesses
the deducibility of the goal formula from the program database. (Note that the standard
Prolog interpreters return a portion of the proof to the user, namely that part of the sub
stitution applying to the variables occurring in the goal). As commonly implemented, pure
Prolog interpreters incorporate the program database as a fixed part of the interpreter.
Thus, from a meta-level point of view, a standard Prolog interpreter provided with a fixed
program database defines a certain meta-level unary predicate applying to goal formulas.
This meta-level unary predicate holds for just those goal formulas which are deducible from
the program database by the interpreter. The fundamental operator of standard Prolog
systems is thus a one-place operator (usually written call(...» which invokes a search for
a deduction of its argument from the implicit program database parameter. The heart of
the proposal set forth by Bowen and Kowalski was to utilize a system implementing the
full deducibily relation described above. Such a system would have metavariables which
not only range over formulas and terms, but would also allow the metavariables to range
over sets of formulas (called theories). The fundamental operator of such a system is a
three-place operator, usually written demo(Theory,Goal,Proof), which invokes a search for
a proof of the goal formula appearing as its second argument from the theory (or program)
appearing as its first argument.

All metaProlog program databases are the values of metaProlog variables and are set up
either by reading them in from files or by dynamically constructing them using system
predicates. Besides the built-in predicate demo/3, the system predicates include

add_to(Theory, Axiom, NewTheory)

drop.Jrom(Theory, Axiom, NewTheory)

which build new theories from old ones by adding or deleting formulas. Thus for example,
one might find the body of a clause containing calls of the form

3



· .. , add_to(Tl, A, T2), demo(T2, D, P), ..•

where the theory which is the value of Tl has been constructed by the earlier calls. The
effect of (*) would then be to construct a new theory T2 resulting from Tl by the addition
of the formula A as a new axiom, and then the invokatioD of a search for a proof of the
formula D from the theory T2. Since demo implements the proof relation, such programs
as (*) preserve the logical semantics of Prolog while providing for the dynamic construction
of new databases from old.

The correctness and completeness of an implementation of demo are expressed by wbal
were called reflection rules by Bowen and ~{owa1ski:

If demo(T, A, P), then A is derivable from T via proof P.

H A is derivable from T via proof P, then demo(T, A, Pl.

These rules provide the justification for the implementation of calls on demo in the abstract
metaProlog machine as context switches. In essence, at most times the machine behaves as
a standard Prolog machine with the current theory (the analogue of the usual fixed program
database) indicated by a register. When a call demo(T, A, P) is encountered, the database
(theory) register is changed to point to T and a new search for a deduction of A is begun.
Thus the efficiency of standard Prolog computations is preserved and the overhead of meta
level computation is localized in the construction of new theories from old. This approach
provides a meta-level programming methodolgy suitable for constructing other methods
of exploring the search space of derivations of A from T besides the top-down depth-first
approach of standard Prolog. Exploitation of this approach will ultimately provide the
meta-level programmer with a library of search strategies which can be (programmatically)
invoked depending on the particular problem and context.

In order for any language M to serve as a metalanguage for another language L, M must
contain names for all the appropriate syntactic entities of L. Thus, since metaProlog is to
serve as its own metalanguage, it must contain names for all of its own syntactic entities,
just as any natural language does. To this end, constants act as names of themselves. For
non-constant items, metaProlog provides structural or non-structural names (and some
times both), where the former are compound terms whose structure reflects the syntactic
structure of the syntactic item they name. Facilities for manipulating names are provided,
such as methods of obtaining the name of a compound expression from names of its com
ponents. And methods for moving between a name and the thing it names are included,
analogous to univ (= ..) of ordinary Prolog.

One further subtle point regarding variables must be treated at this point. The logical
interpretation of Prolog's theorem prover stipulates that variables actually occurring in the

4



program's clauses are in fact implicitly universally quantified object level variables, even
though they are syntactically indicated by metavariables. In using a clause, the interpreier
replaces these universally quantified object level variables by existentially quantified meta
level variables. The syntactic conftation of object- and meta-level variables is acceptable
for pure Prolog deductions, but causes difficulties as soon as asseri and retract are added to
the system. If an expression (say p(X» contains a metavariable X which is uninstanliated
at the time when assert(p(X») is executed, there is a natural sense in which the call
assert(p(X» is incoherent: the formula to be added to the database is not fully specified.
The Prolog approa.ch to this problem is to once again conflate the existentially quantified
metavariable X with a corresponding universally quantified object-level variable, actually
asserting (all X)[p(X)]. This approach destroys the logical semantics of clauses in which
such calls occur. Assuming that there are no clauses for the predicate p already in the
database, the goal statements of the following two clauses should be logically equivalent:

h : - X = CI, a8serl(p(X», pCb).

h : - assert(p(X», X = a, pCb).

(AI)

(A2)

But the first fails, since it only adds pea) to the database, while the second succeeds, since
it adds (all X)[p(X)]to the database. To avoid such difficulties, the metaProlog system
requires that programmers be explicit about their intentions, clearly indicating universally
quantified object variables. Thus, to add (all X)[p(X) Ito a theory T, one would write

add_to(Theory, allX : p(X), NewTheory).

Note that in the above expression, the symbols X, Theory, and NewTheory are metaProlog
constants. There is no way a metaProlog programmer can write the name of a metaProlog
variable. He or she can only indicate the position of such variables to the metaProlog
interpreter by using the explicit universal quantifier which is represented by the symbol
all/I. From the syntactic point of view, allli is just a function symbol used to form terms.
The symbol ali/l functions as a quantifier only when a term fonned with it occurs as
a clause in a theory or as an argument to certain meta-level predicates. As an example,
consider the following two metaProlog clauses which achieve the same effects as the clauses
(AI) and (A2) above:

all [X,Tl,T2]:
h(Tl, T2) +-

X = a &; add_ to(Tl, p(X), T2)
&; demo(T2, pCb), _).(Bl)

all [Tl,T2]:
h(Tl, T2) .-

add_ to(Tl, all X : p(X), T2)
& demo(T2, pCb), _).(B2)

5



(N.B. There is. no sense in which the symbol X as it occurs in (B2) is a variable - it is a
metaI~)rolog constant.)

m. The metaProlog System.

The metaProlog system is syntactically similar to the Edinburgh system. We use +- for
the implication symbol (instead of :-) and use & as the conjunction operator, rather than
comma. The major diffarence lies in our treatment of variables and constanta. For the
reasons we discussed above, we require that the implicit universal quantifiers on clauses be
made explicit. Quantification is indicated by applying the function symbol allll (which is
parsed as a prefix operator) to a term whose principal functor is the binary infix operator
:/2 and whose first argument is either a metaProlog constant or a .list of metaProlog
constants and whose second ~.rgument is an arbitrary metaProlog term (we call such ~hings

"indicated terms"). Thus, for example, the Edinburgh clause

append([Head I TailL Rt, [Head I R_Tail]) :
append(Tail, ~i.t, R_Tail).

could be written
all [Head, tail, Rt, r _Tail]:

append([Head I tail], Rt, [Head I r_Tail]) 4

append(tail, Rt, r_Tail).

If the clause contains onl)' one variable, the list brackets in the quantifier can be dropped ..
(Dropping the convention of regarding symbols beginning with upper case as variables
reduces the need for single quotes and the awkwardness that entails.)

The set of built-in predicates of pure Prolog exists as a subset of the metaProlog built-ins.
(Indeed, pure Prolog is a subset of metaProlog, modulo the conventions regarding variable
naming and quantification.) As is clear from the preceding sections, the three predicates
demo, add_to, and drop_ from constitute the core built-ins for manipulating theories and
proofs (replacing call, assert, and retract from Prolog). We have already discussed add_to
and drop_ from. We need to discuss demo in somewhat greater detail.

Calls on demo support a convenient idiom for describing implicit unions of theories. Specif
ically, a call of the form

demo(Theoryl&Theory2, Goal, Searchlnfo)

is logically equivalent to the call

demo(Theory3, Goal, Searchlnfo)

where Theory3 is the ordered union of Theory1 and Theory2 in the following sense: If
theories are regarded as the ordered list of their axioms, then Theory3 satisfies

append(Theory1, Theory2, Theory3).

6



However, the system does not physically create Theory3, but regards the expression The
oryl & Theory2 as a description of a virtual theory. In effect, when searching for a rule
or fact to apply to a selected subproblem of th~ current goal, it first searches Theoryl
for a candidate, and only on failing to find such a candidate in Theoryl, it then searches
Theory2. Another usage supported is the explicit indication of the axioms of the theory.
Namely, if it is desired to search for a deduction of G from AI,...,An, this is achieved by
the call

demo([Al, ... ,An], G, Searchlnfo).

The two usages can be combined, as in the calls:

demo([Al, ... ,An]& Theory2. Goal, Searchlnfo).

demo(Theoryl &, [AI, ... ,An], Goal, Searchlnfo).

We have stated earlier that the proof predicate demo is a three-place relation holding
between a Theory, a Goal, and a Search Space/Proof. We need to explain further the
nature and use of the third argument. It may be used for a variety of purposes. These
include extracting pieces of the proof or search space, controlling the search strategy, and
introducing or extracting annotations to the proof, such as confidence factors. We intend
this facility to be user-extensible. As a first step in this direction, search information
expressions can be combined using the infix operator +/2, as in

demo(Theory, Goal, Searchlnfol + Searchlnfo2).

Two examples of search information annotations are proof(P) and branch(D). The proof(P)
annotation causes the system to accumulate a representation of the proof branch in the
(uninstantiated) variable P, allowing the programmer to extract a successful proof for
furthur processing, such as providing explanations, etc. We see no reason to prevent the
programmer from passing a partially constructed proof cum search.space to demo through
the use of proof(P). The branch(B) expression causes the call

demo(Theory, Goal, branch(B»

to succeed in all cases, binding the uninstantiated variable B to the left-most branch of
the search tree. Note that in the case that the left-most branch is theoretically infinite,
the call will still succeed due to depth bound limitations of the system. Backtracking into
this call will cause B to be bound to successive branches of the search tree. As discussed
in detail below, the call

setOf(B, demo(T, G, branch(B»), Branches)

7



would cause Branches to be bound to the (lazy) list of all branches of the search tree for
G relative to T in the order that they are explored by the system.

As part of our program of providing powerful tools for AI programming, we seek to offer the
programmer control of stream-based communication between concurrent processes, while
still holding to our program of preserving the essential elements of Prolog semantics. In the
logic programming context, this amounts to implementing some form of and-parallelism.
The most straight-forward sort of and-parallelism to attack is simple producer - consumer
computations. However, since the implementation of producer • consumer relations in
which the producer is allowed to non-determinately reconsider the stream i-t has produced
is difficult to say the least, we restrict ourselves to determinate and-parallel situations.
Other approaches to parallelism in Prolog (e.g., Parlog (Clark and Gregory (1987]) or Con
current Prolog (Shapiro [I983l)) achieve this restriction by introducing committed choice.
However, while preserving the correctness of the computations, this approach loses Prolog's
deductive completeness. In contrast, we preserve both the correctness and completeness
by restricting ourselves to running in parallel only producer • consumer computations in
which the production of the stream is determinate. (Note that the computation of the
stream may involve non-determinate aspects; it is simply at the point of adding a new
element to the stream that the producer must act determinately. Also, consumption of the
stream may be entirely non-determinate.) The essential point appears to us that it is not
really the processes which must be forced to be determinate, but rather the communication
between them. Thus our approach is to force the producing process to determinately fill
the communication buffer; all else can be non-determinate.

We have identified two useful classes of producer - consumer computations which meet
our requirement (and the possibility of others certainly exists). The first is the (lazy)
production of sets via complete exploration of a search tree (i.e., the lazy form of Prolog's
setof construct) and the production of streams by determinate tail-recursive procedures.
These are indicated in metaProlog programs by the constructs

all..solutions(Template, Goal, Stream) and
streamOf(Goal, Stream).

We see these as entirely encapsulated independent computations: their only method of
communication with parent or sibling processes is via the stream variable. Every element
of the stream must be ground. If the producing process would have otherwise produced
a partially insta.ntiated term as a stream element, that term must be converted to a
ground term by use of the 'naming' or 'indicating' operator discussed above in c.onjunction
with quantification. The same restrictions clearly must apply to the Goal argument of
both stream-Of and all..solutions. One method of implementation is that of producer
variables. The first invokation of Goal binds the variable Stream to a buffer 'ogether with
a description of Goal and its environment. Subsequent attempts to access the variable
stream by the consumer causes Goal to be run through one cycle of its computation,
binding Stream to a cons cell whose first element is the item produced and whose second
element is a description of the rest of the buffer together with the current state of the

8



computation of Goal. It is important to recognize that the producer variable does nol
act like normal Prolog variable. Indeed, since any attempt to match a non-variable term
against an element of the stream causes the stream element to be instantiated to a ground
term by the producer, and since the producer is determinately committed to the binding it
produces, producer variables behave for all intents and purposes as ground objects. Thus
it is perfectly permissable for producer variables to appear in 'he Goal arguments of other
producer processes. This allows for two-way communication between producers. Proce88
synchronization is achieved by requests for bindings passed from process to process. It is
clear that the two communicating processes must created simultaneously. The construct

simultaneous(ProcessI , Process2)

achieves this effect. It can be invoked with any number of arguments.

Because we see these processes as entirely sealed computations with their own environ
ments, it is possible, in appropriate hardware settings, to run them truly in parallel,
allowing the producing process to fill the buffer up to some pre-set limit or even run to
completion when the stream is finite. On sequential hardware, the implementation is
simple co-routining of the producer and consumer, with the additional overhead entirely
localized in the communication - there is no slow down of the basic Prolog computation.
In particular, the computational children of the Goal of one of these processes do not in
herit the parallel mode: they run as normal Prolog processes. It should be possible to mix
parallel and co-routined execution with no change to the program or its behavior. Finally,
while we have not attempted to do so, it seems evident that or-parallelism could be intro
duced with a stream operator whose top level was expanded in an or-parallel manner. One
might even introduce committed-choice versions of such an operator without disturbing
the semantics of the rest of the system.

IV. A Programming Example.

In this section we describe approaches to fault-detection in digital circuits based on the
ideas of Esghi [1982]. For the purposes of fault-finding, the devices must be described in
some sort of predicate calculus formalism, for example andGate(G, Int, In2, Out), which
expresses that G is an and-gate with input lines Inl and In2, and output line Out. Similarly
for orGate. The topological description of the circuit is contained in the theory cl, which
besides expressions such as those above, indicates the lists of input and output wires for
the circuit. The behaviors of the circuit components are described in the theory tt (for
truth tables) which contains such rules as:

9



all [Gate, Inl, In2, Out):
andTable(Gate, Inl, In2, Out) +

noteexceptional(Gate»
& standardAnd(Inl, In2, Out).

standardAnd(high, high, high).

aIIIn2 :
standardAnd(low, In2, low).

all Inl :
standardAnd(Inl, low, low).

The significance of the predicate "exceptional" will be described later. The topology
and component behaviors can be used to predict the circuit outputl given the inputs as
described in the theory laws which defines a predicate predict(lnputValueList, OutputVal·
ueList) which calculates the output wire values by backchaining through the circuit from
the output wires back to the input wires. Normal simulation of circuit function would be
carried out by the call:

demo(c1&tt&laws, predict(InList, OutList), _).

The fault detection problem consists of attempting to locate the source of the fault based
on faulty input-output behavior. We will make the common simplifying assumption that
the fault is caused by a single wire of a single gate being stuck at high or low. The basic
method we will apply (due to Esghi) attempts, given a faulty input-output pair (If, Of),
to determine a theory Tf obtained by minimal perturbation of the theory tt such that Tf
correctly describes the behavior of the faulty circuit. Examination of Tf will then reveal
the location of the fault. The basic algorithm runs as follows:

1. From tt and (If, Of), construct a set HYP of theories Hi such that:
i) For all i, demo(cl &; Hi & laws, predict(lf, Of), _ ) succeeds;
ii) For some i, Hi correctly describes the faulty circuit.

2. If HYP contains only one element, halt and output HYP.
3. Otherwise, proceed as follows:

i) Choose distinct Hi and Hj from HYP;
ii) Construct a discriminating input Id which distinguishes Hi

and Hj; if no such input exists for any choice of
Hi and Hj, halt and output HYP.

4. Apply Id to the faulty circuit, obtaining output Ode
5. Delete from HYP all Hi for which the following call fails:

demo(cl & Hi & laws, predict(Id, Od), _).

6. Goto 2.

Once the set HYP is constructed in step 1, the remainder of the algorithm is basically

10



straight-forward (though we will return to it below). The let BYP is constructed by first
making the call:

setOf(B, demo(cl&tt&laws, predict(If,Of),
user...choice+branch(D)), BadBranchea)

First note that 'he goal of this setOf would fail without the control information since
tt describes the correct circuit, while (If, Of) is faulty for this circuit. But the control
branch(B) causes the setOf to produce the lis' of all branches of the search tree. The user_
choice forces these branches to be constructed according to the user choice theory uc which
describes, in the style of Pereiran, a next-goal choice procedure which delays as long as
possible selecting goals of the form

"andTable(-, .., _)" or "orTable(.,.., _)" .

Next each of the failed proof branches on BadBranches is used io guide the generation of
candidate theories Hi for HYP. Essentially, tt is modified 80 that falling calls of the form

"andTable(G,.., _)" or ·orTable(G, -t _)B

become successful: essentially the failing call is added to It 'ogether with the assertion
"exceptional(G)" to produce Hi. HYP is then filtered by steps 2-6.

For any realistic circuits, the lists BadBranches and HYP will be unmanagably large if
produced in their entirety. However, the lazy nature of setOf causes the production of Bad
Branches to be co-routined with the action of gen(BadBranches, HYP) which generates
HYP from the elements of BadBranches. The procedure gen is defined as a tail-recursive
streamOf construct, so that it can in turn be co-routined with the filter process imple
menting 2-6. The nature of the streamOf and simultaneous constructs allows the dynamic
generation of processes. This permits filter to be organized in a manner analogous to the
classic parallel implementations of the seive of Eratosthenes. First, each Hi making it
through the current filter is recorded on a working list. Next, as each pair Hi, Hj makes
it through the filter, the discriminating pair (Id, Od) is generated, and used to produce
a small check process check(Id, Od, H) which tests H to determine whether H correctly
predicts the i-o pair (Id, Od). This check process is attached at the current end of the
filter, much as the divisor test for the most recently generated prime is attached at the
end of the seive. Also, as each pair (Id, Od) is generated, check(Id, Od, H) is applied
to each element of the current temporary scratch list, and any H on that list which fail
the test are removed. The entire process gra.dually terminates as each of the processes,
from the initia.l setOf call through last check process gradually close down (by seeing the
streams they are consuming being closed). When the last of these processes closes down,
the elements remaining on HYP all correctly predict the faulty i-o pair and pass all the
tests for behavior of the real faulty circuit which have been generated. If HYP contains

11



more than one element, these hypothetical cannot be distinguished by i-o behavior. They
are all candidate Hi descriptions of the possible source of the fault. Finally, let us note
that these methods can be adapted to a setting of hierarchical diagnosis in the style of
Genesereth [1982].

V. ConelusloD.

We have elaborated a system called metaProlog which, narrowly conceived. is an extension
of Prolog. The real power (meta_power) of this system lies Dot in the specific system
facilities we have described, but in the programming methodology they introduce. The
example in the preceeding section only beings Jo explore the possibilities of this system.
Using this approach, we have begun to logically characterize frames and default hierarchies.
generalized networks of theories and semantic nets. and more general control strategies luch
as bottom-up or breadth-first search. There is no logical requirement· that the only Dotion
of proof in metaProlog be the Horn clause-oriented demo predicate we have introduced.
We lee no reason why other methods of proof cannot co-exist with demo. We envisage
the situation in which another method of proof would be rapidly prototyped using explicit
recursive calls on the present demo, and later integrated into the system at a low level
using the same bootstrapping methods we are adopting for the implementation of the
basic metaProlog system.

By stepping up to the full meta-level point of view wherein all components of the system
have become first-class objects, we have entered the realm of a logical construal of Theories,
Goals, and SearchSpaces in which it is possible to axiomatically and programmatically
characterize elements of the system previously regarded as parls of the implementation.
This allows us to introduce powerful logical approaches to the construction of arlificial
intelligence systems.

References

Bowen, K.A. and Kowalski, R.A., Amalgamating ItJf&guage o.f&d metalanguage in logic pro
gramming, in Logic Progremming, eds Clark and Tarnlund, Academic Press, 1982, pp.
153-172.

Clark, K., and Gregory, S~J Perlog: A parallel logic programming lo,n9uo,g e. Research
Report DOC 83/5, Imperial College, March 1983.

Eshghi, K.• Application 01 meta-language programming to fault finding in logic circuits, in
First InternatioDal Logic Programming ComereDce, 1982. pp 240-246.

Genesereth, M., Diagnosis usi"" hierQ,rchical de&ign model" Proe. Nat'l Com. OD AriiBelal
InteDigeDce, 1982, pp. 278-283.

Pereira, F., and Warren, D.H.D.• Definite elawe grammar, for language GfltJlyn. - G

12



survey 01 the formalism and a companIon with, augmented tra""ition ,rammar" ArtiBc:ial
Intelligence 13 (1980), pp. 231-278.

13


	A Meta-Level Extension of Prolog
	Recommended Citation

	SU-CIS-85-01_001c
	SU-CIS-85-01_002c
	SU-CIS-85-01_003c
	SU-CIS-85-01_004c
	SU-CIS-85-01_005c
	SU-CIS-85-01_006c
	SU-CIS-85-01_007c
	SU-CIS-85-01_008c
	SU-CIS-85-01_009c
	SU-CIS-85-01_010c
	SU-CIS-85-01_011c
	SU-CIS-85-01_012c
	SU-CIS-85-01_013c
	SU-CIS-85-01_014c
	SU-CIS-85-01_015c

