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Abstract

The design and implementation of a relatively portable Prolog compiler .achieving 12!( LIPS on
the standard benchmark is described. The compiler is incremental and uses decompilation to im
plement retract, clause, and listing, as well as support the needs of its four-port debugger. The

system supports modules, garbage collection, database pointers, and a full range of built-ins.

1. Introduction

In the course of exploring implementation techniques for metalevel extensions of
Prolog (cr. Bowen and Kowalski [1982], Bowen and Weinberg [1985], Bowen
[1985]), it became apparent that a fast flexible Prolog compiler would be a useful
tool to serve as a starting point for developing experimental implementations of
the extended systems. Consequently, in late 1984 we began exploring just such a
project. We planned to base the system on the designs of Warren [1983], imple
menting a byte-code interpreter for the abstract machine in C, while implement
ing the compiler itself in Prolog. \Ve worked initially in C-Prolog on the Data
General MV/8000 which \\ras the machine available to us at that time. V\Te were
fortunate to join forces ,\\7ith the group working at Argonne ,National Laboratory
(Tim Lindholm, Rusty Lusk, and Ross Overbeek) who were interested in the im
plementation of Prolog on multiprocessor machines. They had already imple
mented a byte-code interpreter for a system which would support multiple ver
sions of Warren's abstract Prolog machine (WM1), different machines running on
different processors, but using shared physical memory and implementing ap
propriate logical memory spaces. The system was parameterized as to the

This work supported in part by US Air Force grant AFOSR-82-0292 and by US Air Force contract F30602-81
C.0169. The authors are very grateful to the following people for numerous valuable conversations on the to-
pics of this paper: Hamid Bacha, Aida BatarekhJ Jim Kajiya, Keyin Larue, Jacob LevYJ Tim Lindholm, Rusty
Lusk, Jon Mills, Hidey Nakashima, Ross Overbeek, Karl Puder, and Toby Weinberg.
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number of physical processors, so that we could run a version with that parame
ter set to one, yielding a sequential byte-code interpreter for the abstract
machine. Thus, in principle, we could focus our efforts on the construction of
the compiler. Naturally, life being what it is was not quite that simple. The Ar
gonne group had implemented their byte-code interpreter in C on a VAX 780.
While they had striven for portability, one serious hardware assumption had
crept into the code, namely that the underlying machine was byte-addressable.
Since the :MY/8000 is not a byte-addressable machine, we found that we had to
devote considerable energy to porting the Argonne WAM to the :MY/8000. How
ever, the changes necessary to achieve this port were propagated back into the
original Argonne code, so that the present Argonne WAM is in all liklihood an
extremely portable system. The Argonne system includes a "WAM assembler"
which will assemble and load "WAM assembly code". (This was revised by
Cicekli to remove limitations on the sizes of programs which could be assembled
and loaded.) Thus we were able to hand-compile and run test examples. We were
disappointed in the resulting performance, the naive reverse benchmark (nrev)
performing at only about 4K LIPs. We concluded that the relatively slow speed
was due to a combination of the portability requirements and the data structures
necessary for multi-processor implementation (even though we were making no
use of those facilities)! Performance improved somewhat when we moved to a
newly acquired VAX 780 running Berkeley UNIX 4.2, but was still disappointing.
This disappointment, coupled with an interest in implementing a Prolog system
on 6800o-based machines, led Turk to begin exploring a new implementation of a.
byte-code interpreter written in C, vlhile as a group we continued work on the
compiler.

The need to devote resources to the port to the :MY/8000 had slowed our
development of the compiler, so it was ~ot until late February of 1985 that we
had a first version of the compiler itself constructed and operational in C-Prolog.
While writing the compiler in Prolog was of course a joy, we found ourselves
somewhat hampered by C-Prolog's restricted memory size and apparent lack of
significant tail recursion optimization and garbage collection. Consequently, ,\\Te

were forced to somewhat unnaturally segment parts of the compiler, store inter
mediate results in files, etc. The compiler itself had grown fairly large, reflecting
our explorations of various optimization techniques. When we began to attempt
to boot the compiler on itself, we were frustrated to discover that we immediately
overran the maximum allowable local and global stack spaces. While we found
that by a combination of breaking the compiler into many small files and using
Prolog assert/retract hacks to reclaim stack space we could begin jamming it
through, we were quite upset by the butchery this was performing on what we
originally regarded as relatively clean code. At this time, Buettner had been de
voting some time to exploring the implementation of a Prolog compiler on 16-bit
machines, in particular the design of a byte-code interpreter for that environ
ment. In a burst of enthusiasm, he roughed out a ne'\v byte-code interpreter for
the abstract machine coupled with an implementation of a moderately sophisti
cated compiler, all written in C, in the space of a month. We now found our
selves in the (perhaps enviable) position of possessing three distinct implementa-

-2-



tions of the abstract machine (all written in C) and two compilers, one ,vritten in
C and the other in Prolog.

While there were some differences in structure between the compilers, they both
operated on basically the same principles. On the other hand, our two home
grown implementations of the abstract machine appeared to use significantly
different techniques, and of course differed markedly from the Argonne implemen
tation. Since both of our local \\TAMs executed nrev at better than 6K LIPS and
both authors asserted that not all opportunities for optimization had been ex
ploited, we decided to pursue development of both machines and compilers in
parallel. In the course of the summer of lQS5, we saw both machines evolve to
wards a more common structure, and begin achieving speeds in nearing 10K LIPS
on nrev. We also had the interesting experience of booting the Prolog-based ver
sion of the compiler using the C-based Prolog compiler. We were able to do this
without introducing any of the ugly adjustments we had found necessary when
using C-Prolog. Since the two abstract machines seemed to be evolving to\\'ards
a common structure, we decided in July (at a breakfast meeting at the Logic Pro
gramming Symposium) to coalesce the two efforts, making a final incorporation of
the remaining clever techniques of Turk's machine into Buettner's. From that
point on, we focused most of our efforts on developing the C-based Prolog com
piler and abstract machine. \\Te did complete the Prolog-based version of the
compiler and delivered a copy to the Arg~nne group in late August. It is expect
ed that this version will be made publicly available along with the Argonne
WAM sometime in the near future. The rest of this paper will be devoted to
describing the design, structure, and facilities of the C-based system.

2. Organization of the System

We will assume familiarity with Byrd, Pereira and Warren [1980], Pereira,
Pereira, and Warren [1978], and Warren [1983]. To the user, our system presents
the appearance of a standard Edinburgh-style interactive interpreter. However,
it is really an incremental compiler. Thus we have no need to support a separate
interpreter with all the difficulties of consistency between compiler and inter
preter which are normally entailed. Briefly, the major services provided by the
system are as follows:

• The compiler is resident in the system, incrementally compiling original and
added program clauses (including those added by assert) as well as goals.

• Programs may be organized into n10dules which are relatively independent of
file structure in that multiple modules may be included in a single file (a sin
gle module can also be spread over several files); visibility of procedures is
controlled by use of import/export declarations; clauses not appearing within
a module declaration are stored in a default global module; constants and
functors are globally visible; modules may appear as submodules within oth-
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er modules;

• Garbage compaction of the global stack (heap) and trail is provided using a
pointer-reversal algorithm of Morris[1978]; no garbage collection is provided
for the code space;

• Run-time use of retract, clause, and listing is accomplished via a general
decompilation technology (described in detail in Buettner [1985]); this tech
nology is also used to support the debugging subsystem;

• A full four-port debugging model (cf. Byrd[19S0]) is provided; it relies on the
decompilation technology mentioned above and accomplishes its task by con
structing linked lists representing local stack frame entry and exit on the glo
bal stack (heap); it is largely complete, though some standard commands
remain to be implemented;

• Database pointers are supported; these exist as Prolog terms which can occur
in other terms and predicates;

The system supports the full range of built-ins standard in Edinburgh-style Pro
log systems. Some are implemented in C, with the rest being written in Prolog
and compiled by the system.

The system occupies approximately 135I( bytes of virtual memory (and 76I(
bytes of physical memory) when loaded. Performance of the system on the naive
reverse benchmark is shown in Table 2.1 (measured in LIPS) for lists of length
100 and 1000. The slower figures for lists of length 1000 of course reflects the
need to perform garbage collection.

Unoptimized
100 Q.6I(
1000 8.5I(

Optimized
12.0I(
lO.5I(

Table 2.1. Benchmark performance.

The "unoptimized" column represents the performance of the system running
with the output of the UNIX 4.2 C compiler unchanged. The"optimized"
column represents the performance of the system with the output of the C com
piler slightly hand optimized. The only optimization specific to a Prolog system
is a tightening of the dereference loop. All of the rest of the optimizations are of
a generic sort that could be performed by a highly optimizing C compiler, such as
shortening branches to branches (to branches... ). Another such optimization
involves reclaiming poorly used machine registers. In the compiler output, the
10\\1 numbered machine registers are only used for scratch values and are not
saved on procedure entry /exit. The usage of these registers Vlas reorganized and

-4-



code added before calls and exits to render tllem safe. Most of these optimiza
tions were performed on the code simulating abstract machine instructions. A
native code compiler could get it right from the beginning, while of course per
forming many other optimizations. It vlould not surprise us to see a speed
increase factor of 3-4 resulting from native code compilation.

3. Compiler Organization

While the principles on which the two compilers operate are quite similar, their
internal or.ganization is somewhat different.

3.2 Clause Compilation

The overall action of the Prolog-based compiler is divided into three major
passes:

(1) compilation of individual clauses to intermediate code,
(2) organization of groups of intermediate clause code into procedures, and
(3) generation of instructions for the abstract machine.

During the first pass, the compiler treats each clause for a procedure separately,
producing intermediate code representing the action of that clause. This pass is
organized into three phases: lexical analysis, parsing, and intermediate clause
code generation. The lexical anal)rsis phase outputs a list of annotated tokens.
The parsing phase processes this list, more or less in a definite clause grammar
style, to produce a complex Prolog term representing the clause; a considerable
amount of variable anal~y"sis is also performed during this phase. The third phase
processes this term, producing another Prolog term representing the required
sequence of abstract machine instructions. Considerable use of difference lists
and uninstantiated logical variables representing machine addresses is made dur
ing these phases. During the second pass, the intermediate code for the individual
clauses constituting a procedure is connected using the indexing instructions.
OUf method of indexing, which differs from Vlarren [1983], will be described later.
The output of the second pass is a complex Prolog term representing the pro
cedure. Consequently, assem bl~y amounts to a traversal of this term, calculating
symbolic addresses as necessary, and linearizing the entire structure; loading is
then straight-for\vard.

The C-based version of the compiler utilizes a standard Prolog reader to read the
clauses as terms. It makes one pass through the term, performing its variable
analysis and building appropriate tables. On a second pass through the term,
this compiler generates and loads tile instructions for the clause, linking them
into the naive try-me-else indexing chain for the procedure (see Section 3.2). Full
indexing for the procedure is generated when the nl0dule containing the pro
cedure is sealed.
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Examination of the examples supplied in \Varren [1983] shows that the required
get- and put- instructions occur in the order corresponding to the left-to-right
ordering of the corresponding terms in the source clause. In an effort to minimize
the number of instructions generated and to optimize A-register usage, our com
pilers reorder these instructions. They also make a very serious attempt to set
up the arguments to the first call in the body Vi' hile carrying out the head match
ing. They also perform the now-standard \\Tarren-style optimization of per
manent variable allocation by trimming environments. (The permanent variables
used in implementing cut are also included in this optimization -- cf. Section 4.)

3.2. Indexing

Access to the block of clauses constituting a procedure is handled in the usual
way with hash tables, though provision for modules and hiding of local pro
cedures complicates this a bit. Within the list of clauses constituting a pro
cedure, it is desirable to minimize the number of clauses attempted but failed
due to failure to match the head of the selected clause against the incoming goal.
Such failure can occur only when the incoming goal contains instantiated vari
ables; if all variables of the incoming goal are uninstantiated, the goal will match
the head of each clause of the given procedure. Consequently, the indexing pro
cess has two major tasks to accomplish:

(a) When the incoming goal contains uninstantiated variables in designated
indexing argument places, it must provide a means of trying each clause of the
procedure in order.

(b ) When the incon1ing goal contains instantiated terms in the argument places
designated for indexing, it must provide a means of selecting only those clauses
w hose heads satisfy the following: for each argument position designated for
indexing, the term occuring in the clause head must match the term occuring in
the corresponding position of the incoming goal.

As with all other current Prolog systems known to us, ours only supports (or
designates) indexing on the first argument of procedures. (Ho,vever, our plans for
the future include relaxing tllis restriction.) 'ATe have not modified the indexing
instructions of Warren [1983], but we do employ them in a different manner.
Focusing on the first argument of procedures, a block of clauses is a maximal sub
set of the clauses for a procedure, contiguous in the given clause ordering, all of
whose first head arguments are of the same type, wllere the allowable types are:

constant, compound term (other than list), variable, and list.

Roughly, one uses indexing instructions at the lowest level to control access to
each block, coupling these with second-level indexing instructions to control
transfers between blocks. A sequence of instructions of the form

try - retr~T - •.. - retry - trust -

-6-



specifies a group of clauses to be tried ill sequence, as does a sequence of tIle fornl

In the second case, the branch instructiollS must be physically interleaved \vith
the code of the individual clauses, while in the first, the collection of branch
instructions can be physically quite removed fron1 the code of the clauses con
trolled. We refer to these as try chain,s and try_me_else chains, respectivety.
Note that in a try_me_else chain, the label of each instruction is the address of
the succeeding retry_me_else or trust instruction. Consequently, this succeeding
instruction and its following clause code need not physically follow the code of
the preceding clause. Consequently, we can regard a trY_fie_else chain as a
linked list of clauses. In the case of try chains, while the actual try-retry-trust
instructions must physically follow one another (they constitute a vector of
instructions), the actual code blocks of the clauses they control can be distributed
in memory in any manner whatsoever. These code blocks need bear no physical
relationship to one another nor to the controlling try chain, other than the fact
that the try chain instructions reference the addresses of the clause code blocks.
We exploit both of these observations in the implementation of assert and
retract. Our method of indexing runs as follows. To cater to requirement (a)
above, we create one master try_me_else chain linking all of the clauses of the
procedure. In catering to requirement (b), we avoid using the ..._me_else instruc
tions, restricting ourselves to tlJr-retry-trust to control sequential access to both
clauses and blocks. Constant and con1pound term blocks are of course accessed
USillg switch instructions, and overall access to tIle upper-level indexing is ini
tiated ,vith the switch_on_term instruction. Sequential ordering of groups of
clauses as well as groups of blocks of clauses is indicated with try chains; no use
of try_me_else chains is made in the upper-level illdexing meeting requirement
(b). Consequently, the indexing meeting requirement (a) is totally separated from
the indexing meeting requirement (b). We feel this provides great flexibility for
insertion and deletion of clauses (by assert/retract or by a run-time editor) while
minimizing the number of choice points \vllich must be created. Figures 3.1 and
3.2 schematically indicate the structure of this scheme.

4. Abstract Machine Organization and Cut

The layout of the various machine regions is sllown in Figure 4.1.
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Code Area

~

Heap (or Copy Stack)

'"Local Stack

t
Trail

A Registers Higll Memory

Figure 4.1. Abstract Machine Organization.

A bit table for garbage collection is also permanently allocated. For the most
part, we have implemented the instruction set of \Varren [1983] with only minor
modifications. The most significant extension to date is the addition of a ne'v
machine register (called cutpt) and ne\v instructions to allo\v us to compile cut.
Tllese instructions and their effects are listed bela,,?:

Instruction
set_B_from_cutpt
set_B_from Yn
save_cutpt_in ,rn
save_B_in Yn'

Action
B := cutpt
B:=Yn
Yn := cutpt
Yn:=B

Figure 4.2. Instructions Necessary for Cut.

The last instruction is only necessar)r for compiling the so-called "soft
cut" .

The difficulty in dealing with cut is that at compile time, it is impossible
to know how many clloice points ,viII be created for a procedure before a
clause of that procedure is entered. Consider the following trivial progran1.

f(a).
f(b ).

f/1: S\Vitch_oll_term Cla,Ll,fail,fail
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Ll: s,vitch_on_constant 2,[a:Cl, b:C2]

CIa: try_me_else C2a % f(
Cl: get_constant a,...A.O % a)

proceed %

C2a: trust me_else fail % f(
C2: get_constant b,i\O % b)

proceed %

When the first clause Cl is executed, there can be one or zero cll0ice
points for the procedure f/1, but this cannot be detected at compile time
because it depends on the incoming value in the first argument register
AD. If the incoming value in AD is the constant a, there will be no choice
point created for the procedure f/l, but if a. is an unbound variable, there
will be one choice point created for the procedure f/l.

The new register cutpt is treated in the abstract machine as follows. The
value of the last choice point register B is automatically stored in the
cutpt register by a call or an execute instruction to record the address of
the last choice point before the procedure is invoked. The current value of
the cutpt register is saved in a choice point when the latter is created. The
cutpt register is reset from the value stored in the last choice point Vv'hen
backtracking occurs.

The following examples illustrate how the compiler uses these instructions
to compile cuts.

Example 1.

p :- ql, !, q2.

Code for the clause:

allocate
save_cutpt_in
call
set_B_from
deallocate
execute

Example 2.

p :- !.

1
YO
ql/O,l
YO

q2/0
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Code for the clause:

set_B_frOID_cutpt
proceed

Notice that the clause doesn't have an environment and that the cutpt
register contains a pointer to the last choice point before the procedure p
is invoked.

Exarrtple 3.

p :- qI, q2, !.

Code for the clause:

allocate
save_cutpt_in
call
call
set_B_from
deallocate
proceed

1
YO
ql ,1
q2 ,1
YO

This approach can be optimized.

5. Conclusions

The abstract machine design of Warren [1983] together with the compila
tion techniques suggested by his examples are a sound piece of softv.rare
engineering. We have filled in some gaps such as the implementation of
cut which were omitted in his discussion, and have introduced
modifications in the pursuit of refining and optimizing performance. The
present system provides an excellent basis for our primary goal, the pur
suit of implementations of meta-level Prolog systems. Our approach will
be to introduce modifications to the abstract machine providing the
required functionality, the primary one being a change in the treatment of
the code space. This will be coupled with appropriate changes in the com
pilers. We expect t11is to lead to efficient implementations of the experi
mental systems.
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sWi~ch_on_term T' VS, FS, LS
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constant block

list block

variable block

functor block
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try ---
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\
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Figure 3.1. Overall indexillg structure.
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c
b

CBl: switch_on_constant VS: try_me_else P2

.-----r-:::J_----------:-~~p(a,u).
P2: retry_me_else P3

~__..........p(b,v).
P3: retry_me_else P4

_________..,.. p(b ,W).

P4: retry_me_else P5
n--------~p(b,x).

P5: retry_roe_else P6
'---------------p\~)~.)~

FB: s\\1itch_on_functor P6: retry_me_else P7

~~~~~~~~~~~P~7:~.~~.p(hU~q}

I
I

Figure 3.2. Detail of indexing structure.
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