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Performance Limit of Image Segmentation Algorithms 

 Renbin Peng, Student Member, IEEE, and Pramod K. Varshney, Fellow, IEEE1  

       Abstract—Image segmentation is a very important step in image analysis, and performance evaluation of 

segmentation algorithms plays a key role both in developing efficient algorithms and in selecting suitable 

methods for the given tasks. Although a number of publications have appeared on segmentation methodology 

and segmentation performance evaluation, little attention has been given to statistically bounding the 

performance of image segmentation algorithms. In this paper, a modified Cramér–Rao bound combined with 

the Affine bias model is employed to determine the performance limit of image segmentation algorithms. A 

fuzzy segmentation formulation is considered, of which hard segmentation is a special case. Experimental 

results are obtained where we compare the performance of several representative image segmentation 

algorithms with the derived bound on both synthetic and real-world image data. 

       Index Terms— Image segmentation, Cramér–Rao bound, Affine bias model  

 

I. INTRODUCTION  

Image segmentation plays a critical role in image analysis. It subdivides an image into its constituent 

parts in order to extract information regarding objects of interest, and has an impact on all the subsequent 

image analysis tasks, such as object classification and scene interpretation [1]. Image segmentation is a 

challenging problem in computer vision, and a wide variety of methodologies for it have been presented, 

which include thresholding techniques [2], Markov random fields (MRF)-based approaches [3][4], multi-

resolution algorithms [5] and partial differential equations (PDE)-based methods [6]. Surveys of image 

segmentation techniques can be found in [1][7]. Based on the image information being employed for the 

segmentation task, image segmentation algorithms can be classified into three categories: region-based 

segmentation, boundary- or edge-based segmentation and the methods combining both region and 
                                                 
1 Renbin Peng and Pramod K. Varshney are with the Department of Electrical Engineering and Computer Science, Syracuse 
University, Syracuse, NY, 13244. (Emails: rpeng@syr.edu, varshney@syr.edu; phone: (315) 443-1060; fax: (315) 443-4745; 
mailing address: 4-206 Center for Science and Technology, Syracuse University, Syracuse, NY, 13244.) 
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boundary (edge) information.   

Region-based segmentation methods aim at exploiting the image contextual information, such as 

spatial dependency or spatial distribution. The segmented images are expected to consist of regions within 

which the image content is homogeneous, while the contrast between neighboring regions is high. Typical 

methods falling into this category include region growing, watershed, some MRF-based methods [3], 

mean-shift [8] and the lossy data compression-based approach [9]. Segmentation methods based on the 

boundary or edge information are designed to exploit the discontinuity of the image features, such as the 

difference in texture or pixel intensity, on the two sides of the boundary. Typical methods in this group 

include gradient-based methods, such as the Canny edge detector [10], line detection methods, such as the 

Hough transform [11], those taking into account the interaction between boundaries (or edges) [12][13], 

and the methods based on physics models [14][15]. There also exist algorithms that combine region-based 

and boundary-based segmentations in order to benefit from fusing these two complementary approaches. 

There are two types of algorithms that belong to this category. The first type of algorithms carry out 

region and boundary segmentations sequentially [16][17], where one segmentation method is employed 

as the preprocessing or initialization step of another. The second type of algorithms perform segmentation 

by considering region and boundary information simultaneously [18][19].  

While development of efficient segmentation algorithms is highly desirable, the assessment of their 

performance is also very important. There are basically three groups of methods for segmentation 

evaluation [1]. These include analysis methods, empirical goodness methods and empirical discrepancy 

methods [1]. The analysis methods treat the algorithms for segmentation directly, such as the evaluation 

of the convergence rate, the computation speed and the reasonability of the objective function design. 

Empirical goodness methods judge the segmented image so as to indirectly assess the performance of 

algorithms using quantities such as intra-region uniformity, inter-region contrast and region shape. 

Empirical discrepancy methods compare the segmented image with the reference image and use their 

difference to evaluate the performance of algorithms. For instance, position and number of mis-

segmented pixels and feature values of segmented objects are all performance indicators falling into this 
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class. Surveys of the evaluation techniques for image segmentation can be found in [1][20][21]. 

 Much progress has been made recently in evaluating the segmentation results, but performance of such 

methods tends to vary as widely as the techniques themselves. As a result, the performance of the 

evaluation methods is far from being satisfactory. In [1], the authors listed some of the factors which limit 

the advancement of evaluation methods and, in turn, the performance improvement of segmentation 

algorithms. These factors include a lack of common mathematical models or general strategy for 

evaluation, the challenges in defining wide-ranging performance metrics and statistics, the difficulties in 

defining the ground truth, large costs in performing comprehensive evaluations and the fact that the 

testing data are not representative enough for actual applications.  

     We note that given a specific image, among all the factors possibly affecting the performance 

assessment of segmentation algorithms, the most important factor is the image content. Therefore, an 

investigation of the performance bound, which is only associated with the available image data and is 

independent of the segmentation algorithms, will be very helpful to evaluate the efficiency of image 

segmentation techniques. A tight performance bound can tell us what the best achievable performance of 

any image segmentation algorithm is for the specific image content. Thus, performance bounds can serve 

as benchmarks for the image dataset and segmentation algorithms. They can also be used to study how the 

image content or image preprocessing operations affect segmentation performance. The gap between the 

actual segmentation error of an approach and a tight bound can provide us with the efficiency of that 

segmentation approach and available room for improvement.  

      There do exist efforts on bounding the segmentation performance from a statistical perspective. The 

work in [22] is based on the finite normal mixture (FNM) model assumption, where the model parameters, 

means and variances, are estimated using Expectation-Maximization (EM) and Classification-

Maximization (CM) algorithms. Cramér–Rao bounds (CRB) on the variances of these estimates are 

derived. However, the FNM model is not universally applicable to all the images, and also, the unbiased 

estimator assumption made in [22] does not hold for many real-world segmentation algorithms, which 
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will be seen in our experimental results. While studying multi-spectral image segmentation [23], the 

performance of the Markov random fields (MRFs)-based segmentation algorithms was predicted using 

false alarm rate which was based on Rissanen’s minimum description length (MDL) criterion. The 

analysis in [24] covered many detailed scenarios of segmentation, but the computational complexity, the 

MRF-based assumption and the use of multi-spectral image data constrained its application. In [24], the 

true segmentation label and two performance level parameters (sensitivity and specificity) were estimated 

using the EM algorithm. This scheme did not decouple the performance bound, i.e., the best achievable 

segmentation result for the given image data, from the specific segmentation algorithm, i.e., the EM 

algorithm used in [24]. In addition, the EM algorithm only guarantees to yield a locally optimal solution, 

which may not be appropriately used as a performance benchmark or bound, a global concept. 

In this paper, we formulate image segmentation as a statistical parameter estimation problem and 

derive CRB on the performance measure, namely on the mean square error (MSE) of the resulting pixel 

labels, based on the biased estimator assumption and Affine bias model. In addition, an approximation is 

made when computing the expectation of the inverse Fisher information matrix to reduce the 

computational burden. Bootstrapping technique and empirical approximation to the second-order statistics 

are employed to overcome the difficulty that the probability distribution of the images is unknown. Our 

final goal is to derive a tight performance bound for the image segmentation problem and compare the 

bound with the performance of various segmentation algorithms when applied to different image datasets. 

The effect of the factors, such as the intensity contrast in an image on the segmentation result, are 

investigated via the bound, which give us insights into the achievable accuracy of a segmentation 

algorithm in segmenting a specific image. 

   This paper is structured as follows. In Section II, the image segmentation problem is shown to fit the 

varying coefficient model (VCM) [25] and image segmentation is formulated as a parameter estimation 

problem. In order to derive the biased bound later, the CRB based on the unbiased estimator assumption 

is discussed in Section III as a necessary intermediate step. In Section IV, the biased bound and the 
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optimum parameters for the Affine bias model are determined, where the methods used to calculate the 

bound are also discussed. In Section V, the derived biased bound is compared with several representative 

image segmentation algorithms using synthetic and real-world image data. We also show in Section V the 

comparison of these segmentation algorithms with the unbiased bound, and demonstrate the unsuitability 

of the unbiasedness assumption. Concluding remarks and suggestions for future work are provided in 

Section VI. 

 

II. PROBLEM FORMULATION  

Image segmentation is a very challenging problem, and many segmentation algorithms have been 

proposed. However, there is a fundamental question to be asked as to whether there exists a theoretical 

limit to image segmentation performance and, more importantly, how much room do we have to improve 

the existing algorithms. In this section, as a first step to attempt to answer this question, we model the 

image segmentation problem as a linear estimation problem using a VCM, where the parameters of 

interest, i.e., the pixel labels indicating which region a pixel belongs to, are considered to be the 

coefficients of the VCM.  

A. Varying-Coefficient Model [25] 

In this subsection, we briefly introduce the VCM. Consider a random variable s whose distribution is 

dependent on a parameterη . In the VCM, η can be expressed as  

)()( 1110 MMM FhFhF χχη +++= L                                                 (1) 

where Mhhh ,,, 21 L   and Mχχχ ,,, 21 L  are known as the predictors for η , and MFFF ,,, 21 L are functions 

that enable the representation of η . 0F  is the intercept term. Thus, the model is linear in the regressors, 

while their coefficients are allowed to change smoothly with the value of other variables which we call 

“effect modifiers”.η is called the linear predictor, which is related to the mean { }sE=Λ  via the link 
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function ( )Λ= κη  . In the simplest case of the Gaussian model, ( ) Λ=Λκ and the data s is normally 

distributed with meanη , and model (1) has the form 

                                                             εχχ +++= )()( 111 MMM FhFhs L                                                  (2) 

where { } 0=εE , 2)var( εσε = . Other commonly used models are log-linear models, for which ( )Λ= logη and s 

has a Poisson distribution, and the linear logistic model with { } { })1/(log Λ−Λ=Λκ  and s is a binomial 

variable. A special case occurs when kχ ’s are the same variable, such as time, age or pixel coordinates as 

used in our work.  

There are many ways to model the functions )( kkF χ . For example, we could use flexible parametric 

representations, such as Fourier series, piecewise polynomials, or otherwise and more generally 

nonparametric functions. In our work, the B-spline function (tensor product B-splines) is employed. 

 

B. Image Segmentation Model 

      In this subsection, we model the image segmentation problem using VCM. Suppose we have an image 

with N pixels whose observed intensity values are )(xy , where x are pixel indices and ordered through zig-

scanning, starting from the top-left to bottom-right in an image, and Nx ,,2,1 L= . The image 

segmentation problem can be formulated, based on Gaussian model (2), as 

[ ]
)()()()()(

)(')()()()(
)(')()(

11

11

xwxFxhxFxh
xwxFxhxFxh

xwxsxy

MM

MM

+++=
++++=

+=

L

L ε                                (3) 

where )(xs are the noise-free intensity values of the pixel x. This model has the signal effect modifying 

variable x , where M is the number of segmented regions, and NM ≤ . (Note that the pixels which have the 

same features or characteristics should be classified into the same class, but these pixels classified into the 

same class need not be connected to each other, that is, they may be located in separate regions. The 

method used to calculate the bound in this paper is based on regions, not on classes, so we will consider 
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regions one by one, no matter whether they belong to the same class or not.) )(xhk  is the pixel label of x, 

which can be considered as the membership function, representing the degree to which the pixel x belongs 

to the thk region, 1)(0 ≤≤ xhk  and 1)(
1∑ =

=
M

k k xh for every x . In the rest of the paper, the terms “label value” 

and “membership function value” will be used interchangeably. This definition enables the model to 

represent a general image segmentation scenario, i.e., fuzzy segmentation [26] where each pixel can 

belong to different regions at the same time. As a special case of fuzzy segmentation, a pixel in hard or 

crisp segmentation has the membership function { }1,0)( ∈xhk . In addition to providing a more general 

formulation, another important reason to study fuzzy segmentation is that the CRB fails to limit the MSE if 

the space of a parameter becomes finite [27], i.e., the hard segmentation case.  

In (3), the noise term )(xw consists of two parts, the image noise )(' xw  and the smoothing error ε . We 

assume that we have a very powerful smoother and the smoothing error is very small compared with the 

additive noise, so the image noise dominates the noise term, i.e., )(')(')( xwxwxw ≈+= ε . In this work, the 

noise is considered to be independent and identically distributed (i.i.d.) Gaussian random variable with 

zero mean and variance 2σ . Also, in our work, )(xFk is modeled using the 2D B-spline function with the 

coefficient vector kβ . Let );()( kk xxF βφ=  represent the intensity of the pixel x in the thk region, and 

∑=
=

m

l lklk xbx
1

)();( ββφ , where )(xbl are B-spline basis functions and m is the number of knots in an image. l 

is the index of the knots which are ordered through zig-scanning starting from the top-left to bottom-right 

in an image. For simplicity, the knots are uniformly deployed on the entire image plane. 

Thus, (3) can be written in a matrix form as  

)()()(
)();()()(

xwxbxh
xwxxhxy

T

T

+⋅⋅=

+⋅=

β

βφ                                                          (4) 

where T denotes the matrix transpose, T
M xhxhxhxh )](,),(),([)( 21 L=  and 

T
Mk xxxxx )];(,),;(,),;(),;([);( 21 βφβφβφβφβφ LL= . Here, )();( xbx T

kk ⋅= ββφ , where T
kmkkk ],,,[ 21 ββββ L= and 
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T
m xbxbxbxb )](,),(),([)( 21 L= . So )()(],,,[);( 21 xbxbx TT

M
TT ⋅=⋅= βββββφ L , where TT

M
TT ],,,[ 21 ββββ L= . 

We note that a similar formulation has been used in [28][29] for developing image segmentation 

algorithms. In [28][29], )(xhi is considered to be equal to or very close to 0 or 1, that is, hard 

segmentation, while in our formulation we consider a more general segmentation configuration, i.e., fuzzy 

segmentation where )(xhi  lies in [0,1]. In addition, in [28][29], it was argued that the pixel label, with 

the given Gibbsian distribution as the prior, is independent of the image content represented by β . In 

contrast, we do not make any assumptions on the dependence or the prior distribution. 

There are several advantages to represent the image using the smoothing coefficients β , instead of the 

original pixel intensity information: (i) we can denote regions with various shapes and sizes, i.e., different 

number of pixels, using a “uniform” representation, i.e., the basis )(xb and the smoothing coefficients kβ  

with known or controllable dimensions. Thus, the segmentation problem can be conveniently represented 

by some linear models, like VCM, and the analysis can be simplified; (ii) smoothing can reduce the 

impact of a small number of pixels with large difference in intensity from their neighboring pixels, i.e., 

outliers, so as to enhance the homogeneity of the image regions. It is also helpful in reducing the 

possibility of yielding regions with very small size, i.e., region with very few pixels; (iii) spatially varying 

intensity and interactions between the neighboring image areas can be taken into consideration by the 

smoothing representation to some extent; (iv) the smoothing procedure can represent the image content 

using much smaller number of coefficients compared with the number of original image pixels, and, 

therefore, simplifies the computation. 

From (4), we can see that there are two sets of parameters )(xh and β in the model, but we are only 

interested in the estimation of )(xh . We pack )(xh into a large vector H and 

obtain T
MMM NhNhNhhhhhhhH )](),(),(,),2(,),2(),2(),1(,),1(),1([ 212121 LLLL= . In this paper, we 

assume that the segmentation algorithms are biased estimators, that is, the output, )(ˆ xh , of a 

segmentation algorithm is a biased estimator of the true pixel label )(xh . More details about this 
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assumption as well as its justification can be found in Section IV and Appendix C. Before deriving the 

MSE bound under the biased estimator assumption, we first discuss the Fisher information matrix and the 

bound based on the unbiased estimator assumption in the next section, where the segmentation algorithm 

is assumed to yield an unbiased estimate of the true pixel label. We will see that the bound under the 

unbiasedness assumption is very useful in finding the bound under the biasedness assumption and is also 

helpful in the experimental part to verify the validity of the biased estimator assumption. 

 

III. FISHER INFORMATION AND CRAMÉR–RAO BOUND FOR UNBIASED ESTIMATOR 

 In this section, we derive the Fisher information matrix and the Cramér–Rao bound based on the 

unbiased estimator assumption.  

 For an estimation problem with two unknown parameters, like H and β  in our work, one parameter, 

say, H , can be considered to be the wanted parameter and the other one, β , can be considered as the 

unwanted one. Both of them are assumed to be random. Based on this formulation, the performance of 

four variations of the Bayesian bound for estimating the wanted parameter was compared in [30][31]. 

However, determination of all of the bounds requires either the computation of derivatives and 

expectation over the joint probability distributions of the observation Y and the wanted parameter or the 

observation and the whole parameter set, i.e., ),( HYP or ),,( βHYP , which is a very challenging task 

given the variety of image contents. Here .)](,),1([ TNyyY L=  

     In our work, we assume H and β to be random so as to find a bound with reasonable complexity. We 

first determine the conditional CRB given H and β , and then find the expectation of the conditional 

bound with respect to H and β  to obtain the global one. We will see that during the computation of 

expectation it is not necessary to determine the joint probability ),( βHP  and to even consider the 

potential dependence between H and β .  
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A. Fisher Information Matrix 

In this subsection, we derive the Fisher information matrix conditioned on H and β , and propose a 

scheme to deal with the singularity of the matrix which may exist in the single image segmentation 

scenario. Assume that the noise )(xw  is i.i.d. Gaussian random variable with zero mean and variance 2σ , 

and the observed pixel intensity is also i.i.d. given the membership function H and the smoothing 

coefficient β . Then the conditional pdf of the observation is 

                                     

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⋅⋅−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∑
=

2
1

2

2 2

)]()()([
exp

2
1),;(

σ

β

πσ
β

N

x

TN xbxhxy
HYP                             (5) 

  So the log likelihood function is given by 

                       ∑
=

⋅⋅−−−==
N

x

T xbxhxyNHYPL
1

2
2

2 )]()()([
2

12ln
2

)],;(ln[ β
σ

πσβ                      (6) 

     We are only interested in estimating H  and assume that the information about β  is available, which 

can be estimated from the image contents and the ground-truth segmentation results. This assumption on 

the availability of β  is helpful in simplifying the determination of the bound and also in eliminating the 

ambiguity in model (4) due to the multiplication of H and β . So we focus on the Fisher information 

matrix corresponding to H and obtain 

                                            
⎪⎭
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⎦
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     The detailed derivation and the resulting Fisher information matrix are provided in Appendix A.  

     We notice from (A.6) that )(HJ F is singular, which can be verified by multiplying the first row of 

)(HJ F by )1(2 bTβ and the second row by )1(1 bTβ . This is because the dimension of H is usually higher 

than the available observation Y, especially for the case of single image segmentation, which can be seen 

more clearly from (4). For multi-spectral image segmentation, there may not exist such a problem, since 
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we have more observed image data, and the resulting Fisher information matrix for this case is shown in 

Appendix B. In this paper, we focus on the derivation of the bound for the segmentation of single images, 

and the bound for multi-spectral image segmentation can be derived in a similar manner. 

To overcome the singularity problem, we transform the multi-region segmentation problem, where 

M>2,  to a binary-region segmentation problem, i.e., M=2, by maintaining the information regarding the 

region of interest, say, the ith region, and by considering the remaining regions as a single “super” region. 

That is, the membership functions and the smoothing coefficients corresponding to the pixels in the ith 

region remain fixed, and the rest of the regions are merged to form a “super” region whose membership 

functions and the smoothing coefficients are recalculated based on the image contents of the “super” 

region. Thus, the segmentation model (4) can be written as  

( )

)()()()()(

)()()()()(

)()()()()(
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,1

xwxbxbxh
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where )(xhi and iβ are the original parameters of the ith region, and )(xh Si
and T

iSβ correspond to the 

“super” region. ( ) )()()()(
,1

xbxhxbxh
M

ijj

T
jj

T
ii SS ⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅=⋅⋅ ∑

≠=

ββ , with 0)( ≥xh Si , and 1)()( =+ xhxh Sii , 

.,,2,1 Mi L=   

Based on (8), the Fisher information matrix of )](,),1([ NhhH iii L= , corresponding to the ith region, 

can be calculated as (9), by following a similar procedure as in Appendix A but with the “super” region 

considered. 
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which is not singular if 0)()( ≠− xbxb T
i

T
i sββ . Since the resulting bound also requires the determination 

of the expectation of )()( xbxb T
i

T
i sββ −  with respect to β , which will be seen in (14), we discuss the 

invertibility of the Fisher information matrix in the next subsection. 

      Thus, for 0)()( ≠− xbxb T
i

T
i sββ , we have 

         
( )

( )

( )

( )
NN

T
i

T
i

T
i

T
i

T
i

T
i

T
i

T
i

iF

NbNb

NbNb

bb

bb

HJ

s

s

s

s

×

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−

−

=

2

2

2

2

21

)()(

1000

0
)1()1(

100

00
)2()2(

10

000
)1()1(

1

)(

ββ

ββ

ββ

ββ

σ

L

L

MMOMM

L

L

     (10) 

  The same result can be obtained using the constrained CRB [32] with the “super” region scheme 

where the constraint is 1)()( =+ xhxh Sii . 

 

B. Cramér–Rao Bound for Unbiased Estimator 

      In this subsection, we derive the Cramér–Rao bound under the unbiased estimator assumption, and 

employ Jensen’s inequality for matrix measures [33] to simplify the expectation determination procedure. 

We assume that the segmentation algorithms yield unbiased estimates of the pixel labels. Based on the 

above formulation in Section III. A, the unbiased bound of multi-region segmentation can be calculated in 

a region by region manner. For the ith region, we calculate the Fisher information matrix )( iF HJ  and its 

inverse )(1
iF HJ − which corresponds to the conditional bound of the covariance matrix of iĤ . We find the 

expectation of )(1
iF HJ − with respect to H and β , and obtain the global bound for iĤ , which is different 

from the bounds discussed in [30][31]  as mentioned at the beginning of Section III. Repeating the 

procedure for all the regions and averaging the resulting bounds, we obtain the average unbiased bound 

for the entire image. In this way, we decompose the estimation problem with the dimensionality equal to 
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MN into M sub-problems, each of which has the dimensionality N, the same size as the number of 

observations (the total number of pixels in an image), and therefore overcome the ambiguity due to 

insufficient number of observations. 

 Now, we study the bound on the covariance of the estimate Ĥ  under the unbiasedness assumption. 

The conditional covariance matrix of iĤ , i.e., ),|ˆ( βHHCov i , for the unbiased estimator can be written 

as 

)(})ˆˆ)(ˆˆ{(),|ˆ( 1
,|ˆ,|ˆ,| iF

T
HHiHHiHYi HJHHEHHCov

ii

−≥−−= βββ µµβ                     (11) 

where ),|ˆ(ˆ
,|ˆ βµ β HHEHHi
= , and the corresponding conditional bound ),|ˆ( βHHCRB iUnbiased is 

[ ] ( )21

21

)()(

1 )(Tr),|ˆ(
xbxb

HJHHCRB
T

i
T

i

N

x
iFiUnbiased

sββ
σβ

−
== ∑

=

−                  (12) 

where Tr(U) denotes the trace of the matrix U.  

      The global bound for iH  is determined by finding the expectation of ),|ˆ( βHHCRB iUnbiased  with 

respect to H and β , i.e., { }),|ˆ(, ββ HHCRBE iUnbiasedH .  

The average bound for the unbiased estimator for an individual region can be found by averaging the 

global bounds of all the regions, that is, 

( ) { }

[ ]{ }

[ ]{ }∑

∑

∑

=

−

=

−

=
−

=

=

=
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i
iF
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i
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i
iUnbiasedHAveUnbiased

HJE
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HJE
M

HHCRBE
M

HCRB

1

1

1

1
,

1
,

)(Tr1

)(Tr1

),|ˆ(1ˆ

β

β

β β

                       (13) 

where the last equality holds since [ ])(Tr 1
iF HJ − is not a function of H. 

 In our paper, we further average ( )HCRB AveUnbiased
ˆ

−  over all the pixels in an image and the average 

pixel-level bound serves as the bound on the performance of image segmentation. Since iH ’s have the 
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same dimensions, i.e., the number of pixels included in an image, we obtain the average pixel-level bound 

by dividing ( )HCRB AveUnbiased
ˆ

−  with the total number of pixels, N, in an image, which is shown in (14).  

                                           
( ) ( )

[ ]{ }∑
=

−

−−−

=
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i
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HJE
MN
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1 )(Tr1

ˆ1ˆ

β

                                   (14) 

    We notice from (10) that it is not easy to find the expectation of )(1
iF HJ − over β , so we employ an 

approximation when calculating the bound, by performing the expectation operation on )( iF HJ first and 

then finding its inverse, i.e., [ ]( ) 1)( −
iF HJEβ . According to Theorem 4.2 (Jensen’s inequality for matrix 

measures) and the Tracial Jensen inequalities in [33], we have  

                    [ ] [ ]( ) 11 )()( −− ≥ iFiF HJEHJE ββ and [ ]{ } [ ]( ){ }11 )(Tr)(Tr −− ≥ iFiF HJEHJE ββ                    (15) 

where 
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(16) 

Thus, a looser bound is found to ease computation, which is called the modified CRB in this paper and is 

indicated by the superscript Mod. Therefore, from (14) we have 

                                                 ( ) [ ]( ){ }∑
=

−=
−−

M

i
iF

Mod HJE
MN

HCRB
AveUnbiasedP

1

1)(Tr1ˆ
β

                                           (17) 

     We now discuss a special situation, where ( ){ }2
)()( xbxbE T

i
T

i sβββ −  in (16) has very small values such 

that its inverse is very large. In this case, the resulting average CRB value might be large. We note that 

the very small values of ( ){ }2
)()( xbxbE T

i
T

i sβββ −  correspond to an extreme situation where two image 
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regions are not distinguishable at x. Because ( ){ }2
)()( xbxbE T

i
T

i sβββ −  evaluates the average intensity 

difference between the two regions with the center at x (due to the expectation operation with respect to 

β ), it reduces the effect when the two different regions have similar pixel intensities at x, by making use 

of the intensity information of a group of pixels. Therefore, there are very few components of 

( ){ }2
)()( xbxbE T

i
T

i sβββ −  in (16) with very small values, given that the two image regions are reasonably 

separable, which has also been verified by our experiments. Thus, in our work we simply ignore the 

contribution of the components to the bound when they have very small values. This operation yields a 

reasonable tight bound. However, if we do not incorporate the expectation operation when calculating the 

bound, the performance of the resulting bound might be deteriorated when different regions have similar 

pixel intensities at x, which can be seen in the experimental results shown in Figs. 1 (c), 2(c) and 3(c). 

From (16), we can see that ( ){ }2
)()( xbxbE T

i
T

i sβββ −  actually measures the square of the difference 

between the intensities at pixel x contributed by the region of interest and the “super” region. It indicates 

the interaction between different regions at x. A smaller difference means a higher similarity between the 

two image regions. This result corresponds to the image content which is more difficult to segment apart, 

and the variance of the segmentation label is larger. Here, the intensity difference evaluation is carried out 

by using the spline coefficients and the expectation operation, and, thus, the effect of the contribution of 

the neighboring pixels to the intensity at x, i.e., the correlation between neighboring pixels, is also taken 

into account. It is also interesting to notice that the separability of the two regions, which is reflected by 

the segmentation variance, is independent of the membership values and only related to the contrast 

between the intensities of the neighboring regions overlapping at a pixel. Additionally, a larger noise 

energy, i.e., larger 2σ , has a larger negative influence on the segmentation result, which corresponds to a 

higher value of the bound. We can see that the bound of (17) is consistent with these intuitive 

expectations. 
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The bound (17) has been obtained under the unbiasedness assumption but as we will see in the next 

section that a biased estimator is a more reasonable assumption for real-world image segmentation 

algorithms. Therefore, the result obtained in this section is not applicable in practice. However, it will be 

very useful in deriving the bound for the biased estimator case.  

 

IV. CRAMÉR–RAO BOUND FOR BIASED ESTIMATOR 

In this section, we assume the estimator of H to be biased, and derive the bound on the MSE of the 

segmentation results. We continue to consider the transformed binary segmentation problem in this 

section. 

 A. Cramér–Rao Bound for Biased Estimator 

From both theoretical and practical points of views, unbiased estimators do not always exist. 

Moreover, biased estimators often have the advantage of lower MSE over unbiased ones if they exist [34]. 

MSE actually includes the tradeoff between bias and covariance. In addition, unbiased estimators tend to 

yield very large variance, especially for some ill-posed problems, such as image segmentation. 

Regularization is widely used to solve ill-posed problems and the resulting estimators are often biased 

[35]. Many state-of-the-art image segmentation algorithms are designed under a regularization 

framework, in which an objective function consisting of both a fidelity term and a penalty term is 

optimized, resulting in biased estimators.  

Following the same steps as when deriving the average bound for the unbiased estimator in the last 

section, we first write the expression of the conditional MSE in terms of bias and covariance, as shown in 

(18) 

{ }),|ˆ(Tr)(,|ˆ 22
ββ HHCovHgHHHE iiii +=

⎭⎬
⎫

⎩⎨
⎧ −                                 (18) 

where { } iii HHEHg −= ˆ)( is the bias vector of iĤ . 
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     Under suitable regularity conditions on ),|( βHYP , the covariance of a biased estimator of Ĥ is 

bounded by the CRB [30] 

T
iFi AHAJHHCov )(),|ˆ( 1−≥β                                                  (19) 

where  

H
gIA

∂
∂

+=                                                                    (20) 

and I is the identity matrix. 

     In our work, we assume that the behavior of the bias model can be approximated by an Affine 

function. The Affine model has been justified and employed to study the MSE bound for estimation 

problems in [36]. The details of the justification of the Affine bias assumption in image segmentation can 

be found in Appendix C. Formally, we have 

      iiii uHKHg +=)(                                                                (21) 

where iK and iu are Affine parameters for the ith region. So, following the same steps as in the last 

section and considering (18)-(21), we have the conditional MSE bound of a biased estimator for iĤ as 

follows 

     ( ) ( ) ( ) ( )( )T
iiFiiii

T
iiiii KIHJKIuHKuHKHHHE +++++≥

⎭⎬
⎫

⎩⎨
⎧ − − )(Tr,|ˆ 12

β              (22) 

     Therefore, the global MSE bound for iĤ , i.e., )ˆ( iBiased HCRB , is given by  

  ( ) ( ) ( ) ( )( ){ } ββ dHdHPKIHJKIuHKuHKHCRBHHE T
iiFiiii

T
iiiiBiasedii ),()(Tr)ˆ(ˆ 12

∫ +++++=≥
⎭⎬
⎫

⎩⎨
⎧ − −   (23) 

 The average MSE bound, i.e., ( )HCRB AveBiased
ˆ

− , can be found by averaging the global bound for each 

region, and we, therefore, obtain  

( ) ( ) ( ) ( ) ( )( ){ }∑∫
=

−
− +++++=

M

i

T
iiFiiii

T
iiiAveBiased dHdHPKIHJKIuHKuHK

M
HCRB

1

1 ),()(Tr1ˆ ββ    (24) 
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     B. Optimum Affine Bias Model 

     In this subsection, we determine the optimum { }** , ii uK  of the Affine bias model which yield the 

minimum value of the bound in (23), that is, 

{ } ( ) ( ) ( ) ( )( )[ ]{ }ββ dHdHPKIHJKIuHKuHKuK T
iiFiiii

T
iii

uK
ii

ii

),()(Trminarg, 1

,

** ∫ +++++= −       (25) 

 There are basically two schemes to find the solution of the optimization problem posed in (25). The 

first one is to assume that Ki and ui are functions of H or β and { }**, ii uK  are found as the solution to the 

following optimization problem, as discussed in [36],  

{ } { }),0,0(),,(minarg,
,

**
iiii

uK
ii HMSEBHuKMSEBuK

ii

−=                                (26) 

where ( ) ( ) ( ) ( )( )T
iiFiiii

T
iiiiii KIHJKIuHKuHKHuKMSEB +++++= − )(Tr),,( 1 , and ),0,0( iHMSEB  

corresponds to the unbiased estimator case. As derived in [36], the resulting optimum Affine bias 

parameters are { } { }( )IcHJHJK iiFiFi +−= −− )(Tr/)(Tr 11* and { } { }( ) iiiFiFi vcHJHJu +−= −− )(Tr/)(Tr 11* , where 

iii cvH ≤− 2 for some vector iv and scalar ic >0. The calculation of the bound requires the expectation 

of the function in (23) over ),( βHP , which is usually not tractable.   

We, therefore, use the second scheme, in which we assume that iM  and iu  are not functions of H 

and β . As a further simplification, by using the result of (15) and also observing that 

( ) [ ] [ ]( ){ }( )TiiFiFi KIHJEHJEKI +−+
−− 11 )()( ββ are positive semi-definite, we obtain a modified bound 

)ˆ( i
Mod
Biased HCRB for the biased estimator, which is looser than )ˆ( iBiased HCRB  shown in (23). Thus, we have 

( ) [ ]( ) ( )( ){ } ( ) ( )

( ) [ ]( ) ( )( ) ( ) ( )∫
∫∫

+++++=

+++++=≥
−

−

dHHPuHKuHKKIHJEKI

dHdHPuHKuHKdHHPKIHJEKIHCRBHCRB

iii
T

iii
T

iiFi

iii
T

iii
T

iiFii
Mod
BiasediBiased

)()(Tr

),()()(Tr)ˆ()ˆ(
1

1

β

β ββ (27) 

The last equality in (27) holds because ( ) [ ]( ) ( )( )T
iiFi KIHJEKI ++

−1)(Tr β  is not a function of H and 
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( ) ( )iii
T

iii uHKuHK ++  is not a function of β .  

      Inspired by [37], the optimum Affine model parameters can be obtained by setting the derivative of 

)ˆ( i
Mod
Biased HCRB  with respect to the two parameters to zero, i.e.,  

0)ˆ(
=

∂
∂

i

i
Mod
Biased

K
HCRB  and 0)ˆ(

=
∂

∂

i

i
Mod
Biased

u
HCRB                                               (28) 

 Thus, we obtain the optimum parameter pair 

[ ]( ) [ ]( ) ( ){ } 111* )()(
−−−

+−= iiFiFi HCovHJEHJEK ββ                                     (29) 

and  

[ ]( ) [ ]( ) ( ){ } ( )iHiiFiFi HEHCovHJEHJEu
i

111* )()(
−−−

+= ββ                              (30) 

 Substituting *
iK and *

iu into )ˆ( i
Mod
Biased HCRB , we obtain the modified bound for the ith region  

[ ]( ) [ ]( ) [ ]( ) ( ){ } [ ]( )
⎭
⎬
⎫

⎩
⎨
⎧ +−=

−−−−− 11111* )()()()(Tr)ˆ( iFiiFiFiFi
Mod
Biased HJEHCovHJEHJEHJEHCRB ββββ

       (31) 

 The details of the above derivation for the parameters and the bound can be found in Appendix D. 

So the average MSE bound is 
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 (32) 

     As before, we obtain the average pixel-level MSE bound by averaging )ˆ(HCRBMod
AveBiased −  with respect 

to the total number of pixels, N, in an image, and we have 
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(33) 
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     We notice from (33) that the decomposition of the terms containing H and β  makes the solution 

easily computable and no explicit expression of the joint probability ),( βHP is required. It also avoids the 

study of the dependence between H andβ . 

 

C. Calculation of the MSE Bound 

Computation of (33) requires the determination of [ ])( iF HJEβ  and ( )iHCov for the ith segmented 

region. In this subsection, we discuss the schemes to calculate these quantities. 

1) Calculation of [ ])( iF HJEβ  

We notice that calculation of [ ])( iF HJEβ  is not straightforward even if we are able to find the 

distribution of β , which, of course, is also a challenging task given various image contents. So we 

propose to use an empirical approximation to find the expectation value.  

[ ])( iF HJEβ  is a diagonal matrix, with the diagonal elements ( ){ }2
)()( xbxbE T

i
T

i sβββ − . Therefore, 

without loss of generality, we only investigate this term.  
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     Thus, we may use empirical estimation to approximate the second-order statistics in (34) and thereafter 

find the overall expectation of ( )2)()( xbxb T
i

T
i sββ − , which avoids the step of finding the probability 

distribution of β . More specifically, given the noise-free image with the segmentation label H, we 

determine iH and si
H as well as the pixels belonging to ith and isth regions. In this way, we separate an 

image into two layers, one corresponding to the ith region, called the ith layer, and another corresponding 

to the isth region, called the isth layer. In particular, if 1)( =xhi , the pixel intensity at x of the ith layer is set 
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equal to s(x), which is the pixel intensity of the original noise-free image at x; if 0)( =xhi , the intensity 

at x of the ith layer is set equal to zero. Otherwise, for a fuzzy pixel )()()()()( xsxhxsxhxs Hard
i

Hard
i si

si
+=  

with ( )1,0)( ∈xhi , the pixel intensity at x of the ith layer is set equal to )(xsHard
i

. Here )(xsHard
i

is the 

“original” hard component from the ith region, which contributes to the fuzzy pixel. This is motivated by 

the result of (16) in Section III. B that the segmentation error is only dependent on the intensity difference 

between the original regions, irrespective of the membership function values. The same procedure is 

carried out for the isth region. We then use the tensor B-splines to find the smoothing coefficients iβ  and 

si
β for the two layers, respectively.  

     As we know that the empirical statistics will be closer to the true ones if more samples from the same 

distribution are used. To obtain enough valid samples of iβ  and si
β , we use a “non-local” technique. 

That is, for iqβ , we search the coefficients with statistics similar to iqβ in the ith layer. iqβ together with 

the other similar coefficients are collected to form an ensemble, and they are considered to be various 

realizations of the same random variable. Then the terms including the second-order statistic of iqβ in (34) 

are calculated empirically using the collected coefficients in the ensemble. For example, ( )2
iqi

E ββ
 is 

approximated by ( ) DD

d diq /
1

2
)(∑ =

β , where )(diqβ is the dth collected coefficient in the ensemble of iqβ , and 

D is the number of these coefficients, i.e., the size of the ensemble. The same procedure is carried out for 

si
β . The second-order statistics including iβ  and si

β are calculated using the collected coefficients from 

both the ith and isth layers.  

     Ignoring the approximation error, the smoothing coefficients and the pixels are two ways to represent 

the same image content, so we use pixel level features to search for similar coefficients because usually 

the number of pixels is much larger than the coefficients and, therefore, the statistics of the pixel level are 

more reliable. For example, when we search for coefficients similar to iqβ , we divide the image into 
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patches centered at each knot with a fixed size, that is, the location of each smoothing coefficient is at the 

center of the patch. A suitable metric is employed to find the patches with a similar structure to the patch 

centered at iqβ , and the corresponding smoothing coefficients will be put in the ensemble of iqβ .  As will 

be seen in Section V, we will use a metric called structural similarity (SSIM) index [38]. In other words, 

we use the similarity of the patches to represent the similarity of the smoothing coefficients. 

 

2) Calculation of ( )iHCov  

      The analytical solution to estimate ( )iHCov requires the knowledge of the distribution of iH which is 

unknown and also not easy to find. Therefore, we use the bootstrapping technique [39]. Bootstrapping is 

an approach for statistical inference, and used to estimate the properties of an estimator ( ( )iHCov  in our 

work) by measuring those properties when sampling from an approximating distribution. It generates the 

empirical distribution of the observed data by constructing a number of resamples of the observed dataset, 

i.e., iH  in our work, with the same size as the observed dataset. These resamples are obtained by random 

sampling with replacement from the original dataset. Bootstrapping procedure is independent of the 

distribution, and provides an indirect method to assess the properties of the distribution which determine 

the sample and the parameters of interest [40]. Besides, bootstrapping is robust with respect to possibly 

small number of samples. 

     In our work, random sampling with replacement is carried out L times on iH , and we obtain L 

bootstrap samples, from which the covariance matrix is calculated. This procedure is repeated R times, 

and the resulting R calculated covariance matrices represent an empirical bootstrap distribution of 

( )iHvCo ˆ  obtained from the available dataset. We accept the average of the estimated covariance 

matrices as the estimate of ( )iHvCo ˆ . From this empirical bootstrap distribution, we can derive a 

bootstrap confidence interval which is also the confidence interval of the estimate of the bound and can be 
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considered as the variance of the bootstrap estimates. 

Formally, we have 
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and  

( ) ( )∑
=

=
R

r

r
ii HvCo

R
HvCo

1

ˆ1ˆ                                                        (36) 

where 
lr

iH  is the lth bootstrap sample of the same size as iH  when generating the rth covariance matrix 

from the empirical bootstrap distribution, and rL
iH

µ̂ is the mean vector of L bootstrap samples 
lr

iH . 

      Repeating the above procedure of estimating [ ])( iHJE β and ( )iHCov for all the M regions, and 

plugging these results into (33), we obtain the average pixel-level MSE bound of image segmentation for 

the whole image. By substituting the estimated [ ])( iHJE β into (17), we can also obtain the average 

pixel-level unbiased bound, which will be used in the next section for comparison purposes. 

 

V. EXPERIMENTAL RESULTS 

      In this section, we verify the efficiency of the presented MSE bound by comparing it with the 

segmentation results of several representative image segmentation algorithms using both synthetic and 

real-world image data. 

A. Experiment Configuration 

The two synthetic images considered here include one image with hard labels and one with hybrid 

labels. Hybrid here means that some pixels have hard labels and others have fuzzy labels. The real-world 

image is a cut of a mammogram, containing micro-calcifications, which is from the Digital Database for 

Screening Mammography (DDSM) [41]. The micro-calcifications are identified by the radiologists, 
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which are used as the ground-truth in our work. 

When calculating the empirical second-order statistics, we employ the SSIM index [38] to find similar 

image patches, as mentioned before. SSIM measures the similarity between two images using structure 

information, as shown in (37) 

))((
)2)(2(

),(
2

22
1

22
21

21
2121

2121

CC
CC

YYSSIM
YYYY

YYYY

++++

++
=

σσµµ
σµµ                                         (37)  

where 
1Yµ , 

2Yµ and 
1Yσ ,

2Yσ as well as 
21YYσ  denote mean intensity and contrast as well as the correlation 

coefficient of images 1Y and 2Y , respectively; 1C and 2C are constants used to avoid instabilities for very 

small µ or σ . The value of ),( 21 YYSSIM is between 0 and 1. A higher value means more similarity 

between two images. In our work, 1Y and 2Y  are two image patches under comparison. 

Admittedly, the patch size, the number of similar patches found for one coefficient, the spline type 

and even the distance between two neighboring knots have an impact on the resulting bound. We have 

carried out the experiments by varying these parameters over reasonable ranges and found that the 

following configuration yields robust and efficient bounds. The patch size is 13 by 13 pixels, the knots are 

deployed every 4 pixels in both horizontal and vertical directions, and the spline function is cubic B-

spline. There are two constraints to determine the number of patches: i) the patches with the SSIM index 

larger than 0.7 are considered as patches similar to the underlying patch; ii) the first 20 patches with the 

largest index values are considered as similar patches if the number of patches selected by i) exceeds 20. 

As a further verification of the biased estimator assumption and Affine bias model, the unbiased 

bound discussed in Section III is also calculated for comparison purposes. 

 

      B. Segmentation Algorithms 

The algorithms for hard image segmentation include the MRF-based algorithm [42], Otsu 

thresholding [43][44], dynamic clustering [45], the region-based active contour model (RACM) [46], and 
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the multi-scale normalized cuts-based segmentation (MNCut) [47], where RACM and MNCut are more 

recent and can be considered as the state-of-the-art segmentation algorithms. Those for fuzzy image 

segmentation include fuzzy C-means [48], fuzzy k-nearest neighbor (fuzzy k-NN) [49], and the Gath-

Geva algorithm [50]. These algorithms are briefly described as follows. 

      MRF models have been used to represent contextual information in many pixel-based segmentation 

problems. A statistical method, namely the maximum a posteriori (MAP) approach, is often used during 

MRF-based image segmentation, which maximizes an objective function consisting of the a priori 

density in terms of the Gibbs distribution and the conditional probability density function  of the observed 

image data given the distribution of the segmented region [42][51]. In this paper, we model the 

conditional probability density function as Gaussian and its parameters are estimated from the image data 

in a window centered at the pixel of interest. An adaptive window size is employed to improve its 

performance. The label optimization procedure is interrupted by the update of the parameters of the Gibbs 

field. The optimization method we used is simulated annealing. 

Otsu thresholding is a classical and effective method for image segmentation. It searches for the 

threshold that minimizes the intra-class variance.  

The dynamic clustering algorithm assumes that the different image regions obey Gaussian 

distributions with different means and variances. The clustering or segmentation labels and the parameters 

of the Gaussian model are updated in an iterative manner.  

RACM [46] is based on level set evolution, which aims at overcoming the difficulties of segmentation 

due to the intensity inhomogeneities. The authors employ a region-based active contour model which 

draws upon intensity information in local regions at a controllable scale. A contour and two fitting 

functions that locally approximate the image intensities on the two sides of the contour are defined as the 

data fitting energy. A variational level set formulation incorporates the energy with a level set 

regularization term, and then the energy minimization is carried out for the derived curve evolution 

equation. 
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     MNCut [47] uses the normalized cut graph partitioning framework of image segmentation, where a 

graph encoding pair-wise pixel affinity is constructed and partitioned for image segmentation. The 

algorithm works simultaneously across the graph scales, with an inter-scale constraint to ensure 

communication and consistency between the segmentations at each scale, such that both coarse and fine 

level details are captured. 

     The fuzzy C-means clustering algorithm is based on the minimization of the C-means functional which 

is used as the objective function. The minimization of the C-means functional is a nonlinear optimization 

problem that can be solved by using a variety of available methods. The most popular one is a Picard 

iteration through the first-order conditions for the stationary points of the C-means functional. The 

algorithm yields the weighted mean of the data items that belong to a cluster, where the weights are the 

membership values. 

Fuzzy k-NN is a fuzzy version of the crisp k-NN algorithm, in which fuzzy sets are introduced into the 

algorithm. The basic step of the fuzzy k-NN algorithm is to assign membership of a vector as a function 

of the vector’s distance from its k-nearest neighbors and those neighbors’ memberships in the possible 

classes. 

The Gath-Geva algorithm uses a distance norm based on the fuzzy maximum likelihood estimates. 

This distance norm involves an exponential term and thus decreases faster than the inner-product norm. 

The membership degrees are interpreted as the posterior probabilities of selecting the ith cluster given a 

data point. Gath and Geva [50] reported that the fuzzy maximum likelihood estimates clustering 

algorithm is able to detect clusters of varying shapes, sizes and densities.   

 

      C. Experimental Results 

      Fig. 1 (a) shows a synthetic hard image with three intensity values, where the square in the upper-left 

corner has the intensity 90, the central arc has intensity 88, and the rest has intensity 80. White Gaussian 
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noise is added into the image with zero mean and variance 2σ . Fig. 1 (b) shows the MSE curves of the 

segmentation results using the above five hard image segmentation algorithms as well as the bound 

calculated using (33) based on the biased estimator assumption and Affine bias model. Fig. 1 (c) shows 

the variance curves of these segmentation algorithms and the bound calculated using (17) where we 

assume that the segmentation algorithms are unbiased estimators. The bounds, MSEs and variances are 

calculated for the particular image of Fig. 1 (a) under different noise strengths, i.e., different SNRs. At 

each SNR, the MSE and variance of each segmentation algorithm are the averages of 100 segmentation 

results. This procedure is used for all the experiments in this paper.  

      From Fig. 1 (b) we can see that the MSE bound (the bold dashed-dot line in the lower part of the 

figure) derived under the biased estimator assumption bounds the MSEs of these algorithms from below. 

With the increase of SNR, the bound and the MSEs decrease. When the SNR is very high, the MSEs 

converge to the bound. These expected results show that the bound in (33) provides a valid performance 

prediction of the segmentation algorithms and a benchmark of the segmentation results. In comparison, 

the bound in Fig. 1 (c) based on the unbiased estimator assumption, the bold dashed line, fails to bound 

the variance of these algorithms, which again verifies the reasonability of the biased estimator and the 

Affine model assumptions. In Fig. 1 (c), we use the bound values of 0.5 to represent the invalid cases 

where the variances calculated from the unbiased estimator assumption are very large. However, the 

variance should have a small value, given that the value of the pixel membership function lies in a small 

range of [0, 1]. 

      From Fig. 1 (b), we can see that the MRF-based segmentation algorithm exploits the correlation 

between neighboring pixels and yields a better result, in terms of smaller MSE, than the methods which 

consider pixels to be independent when carrying out segmentation, such as dynamic clustering. This also 

shows the reasonability of our representation of the image using smoothing coefficients and the 

expectation operation with respect to β  when calculating the bound, which take into account the 

correlation information contained in an image. As a further verification, in Fig. 1 (c) we draw the “bound”  
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         (b)                                                                                               (c) 

Fig. 1 Bounds for hard image segmentation (synthetic image). (a) Synthetic hard image; (b) MSEs and bound under the biased 

estimator assumption; (c) variances and bound under the unbiased estimator assumption. 

 

curve, the dotted line at the right hand side of the unbiased bound, which is based on the unbiased 

estimator assumption but calculated by using ( )2)()( xbxb T
i

T
i sββ −  directly from the pixel intensity and 

without the expectation operation with respect toβ . We can see that not taking correlation into account 

yields an even worse result. Similar results can also be seen in Fig. 2 (c) and Fig. 3 (c). 
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      Fig. 2 shows the results when calculating the bounds and MSEs using the real-world mammogram 

data. We can see that the presented biased estimator-based bound performs satisfactorily in predicting the 

performance limit of the algorithms, while the one based on the unbiased assumption fails. 
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         (b)                                                                                               (c) 

Fig. 2 Bounds for hard image segmentation (real-world image). (a) Mammogram with micro-calcifications; (b) MSEs and bound 

for biased estimator assumption; (c) variances and bound for unbiased estimator assumption. 

 

Fig. 3 deals with hybrid image segmentation for the synthetic image shown in Fig. 3 (a). There are 

four basic image regions, corresponding to the intensity values of 120, 90, 60 and 20, respectively. The 
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three arc regions at the left side of the diagonal curves are fuzzy regions, denoted as Regions A, B, and C, 

and have membership values of [0.5, 0.2, 0.2, 0.1], [0, 0.6, 0.3, 0.1] and [0, 0, 0.8, 0.2], respectively. The 

rest of the four regions are hard ones with the intensity values mentioned above. Once again white 

Gaussian noise is added into the image with zero mean and variance 2σ . Fig. 3 (b) shows the MSE curves 

of the segmentation results using the three fuzzy image segmentation algorithms when the biased 

estimator assumption and Affine bias model are employed. Fig. 3 (c) shows the variance curves of the 

segmentation algorithms, the bound calculated using (17) for the unbiased estimator assumption and the 

“bound” determined by ignoring the expectation operation. We can see from the figures that the bound 

based on the biased estimator assumption is valid but those based on the unbiased estimator assumption 

fail again.  

 

VI. CONCLUSION 

      Image segmentation is a very important but challenging problem for computer vision and image 

analysis. However, performance limits of segmentation algorithms are seldom studied from a statistical 

perspective. This paper developed a systematic method to estimate a lower bound on the MSE of 

segmentation algorithms under a statistical estimation framework. The bound was based on the biased 

estimator assumption and Affine bias model, where an approximation was employed to simplify the 

computation when determining the expectation on the inverse of the Fisher information matrix. 

Additionally, non-local searching and boostrapping techniques were used to approximate the unknown 

second-order statistics during the computation of the bound. The theoretical analysis and experimental 

results show that the presented bound is efficient and robust in bounding the performance of the 

segmentation algorithms and providing a benchmark for the segmentation problem.  

      There are many future research directions that are worth pursuing. An investigation on the probability 

distribution estimation techniques may be helpful to improve the computation of the expectation involved  
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(b) (c) 

Fig. 3 Bounds for hybrid image segmentation (synthetic image). (a) Synthetic hybrid image; (b) MSEs and bound for biased 

estimator assumption; (c) variances and bound for unbiased estimator assumption. 

 

in the bound, where statistical learning methods may be helpful. In our current work, we mainly discussed 

the problem of segmenting a single image, and only mentioned multi-spectral image segmentation in 

Appendix B and did not consider the 3D scenario. Future research on the extension of the developed 

bound to the multi-spectral and 3D images will be an interesting research topic. When developing the 
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bound, the ground truth information about the noise-free image and the membership value of each pixel 

label is required. Research on approaches which can reduce the dependence of the bound on such 

information will be both theoretically and practically useful. Perhaps image denoising and linear 

regression techniques will be helpful in handling it. Finally, the presented bound may also be useful in 

color images, which could be an excellent extension of our work to more real-world applications 
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APPENDIX  

APPENDIX A 

CALCULATING FISHER INFORMATION MATRIX (FOR SINGLE IMAGE) 

Assume that the noise )(xw  is i.i.d. Gaussian random variable with zero mean and variance 2σ , and 

the observed pixel intensity is also i.i.d. given the membership H and the coefficient β . Then the 

conditional pdf of the observation is 
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Fisher information matrix is determined as follows, 
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          APPENDIX B 

CALCULATING FISHER INFORMATION MATRIX (FOR MULTI-SPECTRAL IMAGES) 

For a multi-spectral image set including P images, H is the same for all of them, b can be different if 

the smoothing configuration, such as the number, position and size of the spacing of knots, are different 

from one image to another, but β  usually are different for different images. Therefore, we have the 

segmentation model  
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i ],,,[ 21 ββββ L= . The noise may be different, so we assume )(xwi are i.i.d. Gaussian noise with 

zero mean and variance 2
iσ . For simplicity, we use the same knot configuration for every image. Then the 

model is simplified to  

              )()()()( xwxbxhxy iiTi +⋅⋅= β                                                       (B.2) 

We still assume that the observed pixel intensities are i.i.d. given the membership H and the 

coefficient β , so the conditional pdf of the observation is 
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     So we have 
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APPENDIX C 

JUSTIFICATION OF THE BIASED ESTIMATOR ASSUMPTION AND AFFINE BIAS MODEL 

   The estimation problem in linear models was analyzed in [52]-[54]. The linear model is 

nQY += θ                                                                   (C.1)  



 36

where Y is the observation, θ is a parameter vector, Q is a model matrix, and n is zero-mean random 

vector. The estimator of θ  is assumed to be linear, i.e., GY=θ̂ , which estimates θ  by performing a 

weighted average operation over the observation. Linear estimators are quite frequently used for least 

squire estimation problems, whose forms have been established by solving optimization problems, with 

the constraints put on Q, θ  and even n. These constraints can be considered as the prior information on 

these parameters and the penalties under the regularization framework. 

      Similarly, image segmentation can also be modeled as a linear estimation problem, as shown in (4)     
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βφ                                                   (4) 

where Tx );( βφ can be considered as the model matrix and )(xh is the label parameter vector to be 

estimated. During the segmentation procedure, some prior information about );( βφ x , )(xh and )(xw is 

usually employed as the penalty terms of the objective functions for segmentation, to reduce the solution 

space under regularization framework. For example, the smoothness assumption is often made on the 

labels of the neighboring pixels, like that used in the MRF-based algorithms, which equivalently brings 

the constraint on )(xh . Moreover, local information is often used during the estimation procedure, that is, 

)(xh is often estimated by using the observation Y around the coordinate x. Thus, it is reasonable to 

assume that many image segmentation algorithms, especially the state-of-the-art ones, perform the label 

estimation using linear estimators GYH =ˆ .  

     Here, we consider the penalty or prior information resulting from the label smoothness assumption, 

and assume that H forms Gaussian MRF  
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where lj
x denotes the indices of the lth neighbor of the pixel jx in the neighborhood system jxη of jx , and 

)( jxω  is zero mean Gaussian noise vector. Pixel x  also belongs to jxη . 
lja and xa are the model 

parameters. In this paper, two pixels are called neighbors if they are close to each other spatially and their 

observations have an impact on the estimation of the pixel labels of each other. So it is not compulsory for 

two neighboring pixels to be deployed in a way that one is followed immediately by another spatially. 

      With the neighboring information incorporated in the segmentation procedure, the linear estimator 

finds the weighted average over the observation in a local window. We can also consider that the 

weighted average is carried out over the whole set of observations in an image, but the weights decrease 

with the increase of the distance between the coordinates of the observations and the pixel of interest. 

Here, we only consider the observations which are neighbors of the pixel of interest. We have 

                                                                           xxYGxh =)(ˆ                                                                 (C.3) 

where xG and xY are the weighting matrix and observation vector corresponding to a neighborhood system 

of the pixel at x. More specifically, [ ]TMx gggG ,,, 21 L= and T
xiCiii gggg ],,,[ )(21 L= , 

where Mi ,,2,1 L= , and C(x) is the total number of neighboring pixels of pixel x. C(x) is equal to the size 

of xη , and may be different from pixel to pixel . T
xCx xyxyxyY )](,),(),([ )(21 L= , which is the vector 

consisting of the neighboring pixels of x. 

     We claim that if pixel jx  is the neighbor of pixel x, then pixel x is the neighbor of pixel jx .  Thus, 

substituting (4) and (C.2) into (C.3), we have  
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where jg  is the jth column of the matrix xG and )(,,2,1 xCj L= . [ ]x
T

jj axg ⋅);( βφ is a MM × matrix, and 
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is a scalar. The expected value of this linear estimator, given the true 

value of )(xh , is 
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 So the bias vector of the linear estimator is 
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The subscript “x” of xK  and xu  means that these two quantities are relevant to pixel x. xK  and xu  

can be further decomposed for each region type. That is, T
Mxxxx KKKK ],,,[ :2:1: L= and 

T
Mxxxx uuuu ],,,[ :,2:1: L= . Here, for the ith region type, T

Mixixixix KKKK ],,,[ ,:2,:1,:: L= , a 1×M vector,  

and ixu : is a scalar, Mi ,,2,1 L= .  

In the “super” region scheme employed in our work, we have two regions, i.e., ith and isth regions, 

when we consider the segmentation performance for the ith region. So, M=2, T
ixixx sKKK ],[ ::= , 

T
ixixx suuu ],[
::=  and T

ixixix KKK ],[ 2,:1,:: = . From (C. 6) we have  
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where 2,:1,::' ixixix KKK −=  and ixixix uKu :2,::' +=  and we have employed the relation of 

1)()( =+ xhxh Sii  in the derivation. Therefore, we have 
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, a NN ×  diagonal matrix, 

and [ ]TiNiNixixiiiii uKuKuKuKu :2,::2,::22,:2:12,:1 ,,,,, ++++= LL , a 1×N vector .  

From the above analysis, we can see that in many segmentation problems, the bias of the 

segmentation label is an affine function of the true label. 

 

       APPENDIX D 

DETERMINATION OF THE OPTIMUM PARAMETERS FOR THE MODIFIED CRAMÉR–RAO BOUND 

      We first find the optimum values of iK  and iu  for the modified Cramér–Rao bound (27) by setting 

the derivative of (27) with respect to iK  and iu  to zero, respectively. Then the modified Cramér–Rao 

bound is obtained through submitting the resulting *
iK and *

iu into (27). 
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Using (D.1), we have 
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       So 
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    Substituting *
iK and *

iu into )ˆ( i
Mod
Biased HCRB , we obtain the modified bound for the ith region as 

follows  
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