
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

4-8-2011 

A Human Visual System-Driven Image Segmentation Algorithm A Human Visual System-Driven Image Segmentation Algorithm 

Renbin Peng 
Syracuse University, pengrenbin@hotmail.com 

Pramod Varshney 
Syracuse University, varshney@syr.edu 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Peng, Renbin and Varshney, Pramod, "A Human Visual System-Driven Image Segmentation Algorithm" 
(2011). Electrical Engineering and Computer Science - Technical Reports. 21. 
https://surface.syr.edu/eecs_techreports/21 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215673781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/21?utm_source=surface.syr.edu%2Feecs_techreports%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


  

SYR-EECS-2011-04 April 8, 2011 

 

A Human Visual System-Driven Image Segmentation Algorithm 
 
 
 

 
Renbin Peng, Student Member, IEEE 

  
Pramod K. Varshney, Fellow, IEEE 

 
 
 
  

 

 

 

 
rpeng@syr.edu 
  
varshney@syr.edu 

ABSTRACT:    This paper presents a novel image segmentation algorithm driven by human visual system (HVS) 
properties. Quality metrics for evaluating the segmentation result, from both region-based and boundary-based 
perspectives, are integrated into an objective function. The objective function encodes the HVS properties into a 
Markov random fields (MRF) framework, where the just-noticeable difference (JND) model is employed when 
calculating the difference between the image contents. Experiments are carried out to compare the performances 
of three variations of the presented algorithm and several representative segmentation algorithms available in the 
literature. Results are very encouraging and show that the presented algorithms outperform the state-of-the-art 
image segmentation algorithms.  
 
 
KEYWORDS:    Image segmentation, human visual system, Markov random fields, just-noticeable difference 
 
 
 
 

Syracuse University - Department of EECS, 
4-206 CST, Syracuse, NY 13244 

(P) 315.443.2652 (F) 315.443.2583 
http://eecs.syr.edu 



                                                                                                                                                                                     1  

A Human Visual System-Driven Image 
Segmentation Algorithm1

Renbin Peng*, Student Member, IEEE, and Pramod K. Varshney, Fellow, IEEE

 
2

     Abstract—This paper presents a novel image segmentation algorithm driven by human visual system (HVS) 

properties. Quality metrics for evaluating the segmentation result, from both region-based and boundary-

based perspectives, are integrated into an objective function. The objective function encodes the HVS 

properties into a Markov random fields (MRF) framework, where the just-noticeable difference (JND) model 

is employed when calculating the difference between the image contents. Experiments are carried out to 

compare the performances of three variations of the presented algorithm and several representative 

segmentation algorithms available in the literature. Results are very encouraging and show that the presented 

algorithms outperform the state-of-the-art image segmentation algorithms. 

  

 Index Terms—Image segmentation, human visual system, Markov random fields, just-noticeable difference 

 EDICS—ARS-RBS 

I. INTRODUCTION  

    Image segmentation plays a critical role in image analysis. It subdivides an image into its constituent 

parts in order to extract information regarding objects of interest, and has an impact on all the subsequent 

image analysis tasks, such as object classification and scene interpretation [1]. Image segmentation is a 

challenging problem in computer vision, and a wide variety of solutions have been presented. These 

include thresholding techniques [2], Markov random fields (MRF)-based approaches [3][4], multi-

resolution algorithms [5] and partial differential equations (PDE)-based methods [6]. Surveys of image 

segmentation techniques can be found in [1][7][8]. Based on the image information being employed for 

the segmentation task, image segmentation algorithms can be classified into three categories: region-based 

segmentation, boundary- or edge-based segmentation and the methods combining both region and 

                                                 
1 This work was supported by AFOSR under grant FA9550-06-C-0036.  
2 Renbin Peng and Pramod K. Varshney are with the Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, 
NY, USA. (Emails: rpeng@syr.edu, varshney@syr.edu; phone: (315) 443-1060; fax: (315) 443-4745; mailing address: 4-206 Center for Science 
and Technology, Syracuse University, Syracuse, NY, 13244.)  
*: Corresponding Author. 
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boundary (edge) information.   

Region-based segmentation methods aim at exploiting the image contextual information, such as 

spatial dependency or spatial distribution. The segmented images are expected to consist of regions within 

which the image content is homogeneous, while the contrast between neighboring regions is high. Typical 

methods falling into this category include region growing, watershed, some MRF-based methods [3], 

mean-shift [9] and the recently presented lossy data compression-based approach [10]. Segmentation 

methods based on the boundary or edge information are designed to exploit the discontinuity of the image 

features, such as difference in texture or pixel intensity, on the two sides of the boundary. Typical methods 

in this group include gradient-based methods, such as the Canny edge detector [11], line detection 

methods, such as the Hough transform [12], those taking into account the interaction between boundaries 

(or edges) [13][14][15], and the methods derived from physics models [16][17]. There also exist 

algorithms that combine region-based and boundary-based segmentations in order to benefit from fusing 

these two complementary approaches. There are two types of algorithms that belong to this category. The 

first type of algorithms carries out region and boundary segmentations sequentially [18][19][20], where 

one segmentation method is employed as the preprocessing or initialization step of another. The second 

type performs segmentation by considering region and boundary information simultaneously [21][22].  

      Design of a suitable objective function is crucial to the performance of image segmentation 

approaches. Good segmentation algorithms require an efficient scheme for parameter adjustment and an 

appropriate description of the desired properties of the segmentation result, which, of course, are all very 

challenging tasks. In real-world applications, the performance of some segmentation algorithms is 

influenced by their dependence on the parameters of these algorithms. But the optimum parameters and, 

therefore, satisfactory segmentation results are not easy to obtain. Some segmentation algorithms only 

partially incorporate the feature information from region and boundary perspectives, and fail to fully take 

advantage of fusing the two types of information. For example, Markov Chain Monte Carlo (MCMC) has 

been employed [23] to solve the maximum a posteriori (MAP)-MRF estimation problem for generative 
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image segmentation. Due to many constraints involved in this generative approach, the selection of 

suitable parameters for satisfactory segmentation becomes difficult. It is also not easy for the objective 

function in [13] to yield a satisfactory balance between connecting the boundary and labeling the pixels, 

since there are many parameters which need to be chosen carefully. In [15], the proposed objective 

function does not exploit fully the connectivity property of the neighboring edge components. The 

normalized cut methods [24][25] can capture salient parts of an image. However, due to the ad hoc 

approximations introduced when relaxing this NP-hard computational problem, these methods do not 

exploit well the image content information which is useful for segmentation. As a result, the algorithms 

often perform unsatisfactorily.  

Another weakness of many existing segmentation algorithms is that they are developed based on the 

information provided only by the image data and neglect the fact that the human is the best and usually the 

ultimate evaluator of the segmentation result. That is, these algorithms do not consider the impact of the 

human visual system (HVS) on object interpretation and information extraction. As a result, many 

algorithms are inconsistent with the preferences of human vision. There do exist efforts to incorporate 

HVS information into image segmentation, e.g., [26][27][28], but their performances were constrained by 

the simplistic computational models as well as an insufficient consideration of the HVS properties when 

designing the objective functions. 

Our work aims at designing an image segmentation algorithm based on HVS properties, with the 

segmentation performance robust to the variations in the parameter values of the algorithm. More 

specifically, we integrate region label estimation for each pixel with boundary localization for each region, 

according to the quality metrics for region-based and boundary-based segmentation evaluations. These 

metrics attempt to mimic the preferences of human vision to good segmentation and thus make the 

segmentation HVS-driven. Under a Bayesian framework, the HVS-driven quality metrics are encoded in 

the MRF as the priors of the a posteriori distribution which is the objective function for segmentation. 

Segmentation is carried out by optimizing the objective function which reflects the desired properties of 
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segmentation from both global and local perspectives. Three variations of the algorithm are developed. 

The first one integrates the region and boundary information simultaneously during segmentation. The 

second one carries out region-based segmentation and boundary-based segmentation iteratively. The third 

one takes advantage of only the boundary information for segmentation. To the best of our knowledge, the 

presented algorithms incorporate a more comprehensive consideration of HVS properties as compared to 

existing segmentation algorithms, from both region-based and boundary-based perspectives.  

The performance of the presented algorithms is compared against several representative segmentation 

and clustering methods available in the literature. These include Gaussian assumption-based dynamic 

clustering algorithm [29] (GADCA), iterative mode separation algorithm [29] (IMSA), higher-order 

statistics method based on local maxima detection and adaptive wavelet transform [30] (HOSLW), the 

conventional MRF-based algorithm, Otsu thresholding [31][32], the level set evolution-based method 

without reinitialization (LSEWRI) [33], the region-based active contour model (RACM) [34], and the 

multi-scale normalized cuts-based segmentation (MNCut) [35]. Experiments and analyses are carried out 

on medical and natural images, where the medical images are two typical mammogram and MRI brain 

images, and the Cameraman image is used as the representative image of a natural scene. 

    This paper is structured as follows. Section II introduces the HVS-driven image segmentation model 

under the MAP-MRF framework. The criteria for evaluating region-based segmentation and the resulting 

energy function are discussed in Section III. In Section IV, the boundary-based evaluation criteria are 

discussed and encoded into the energy function via the development of a novel concept, called boundary 

element in this paper, which describes the interaction between pixel labels, boundary configuration and 

the image content. The integrated objective function that includes both region and boundary information is 

described in Section V, where the optimization method and the three variations of the HVS-driven 

segmentation algorithm are discussed. Experimental results and performance comparisons between the 

presented algorithms and other representative segmentation and clustering algorithms are presented in 

Section VI. Concluding remarks are provided in Section VII. 
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II. HVS-DRIVEN IMAGE SEGMENTATION AND MAP-MRF FRAMEWORK 

      In this section, we first introduce the motivation for HVS-driven image segmentation, and then discuss 

our segmentation model under the MAP-MRF framework, which incorporates the information from both 

region-based and boundary-based segmentation perspectives. The components of the model will be 

discussed in detail in Sections III and IV.  

A. HVS-Driven Image Segmentation  

HVS-driven segmentation, considered in this paper, is motivated by the fact that, in most 

circumstances, humans are the ultimate judge of the quality of a segmentation result. So a segmentation 

algorithm is likely to yield satisfactory results if the objective function is designed by including HVS 

preferences within the context of segmentation. In this work, the MAP-MRF framework, to be discussed 

next, is employed for the segmentation problem. More specifically, several HVS-based segmentation 

quality evaluation metrics are incorporated into the objective function as prior information, which are 

encoded in the MRF model to obtain the a posteriori probability distribution of the segmentation result 

given the observed image data. The segmentation is carried out in an iterative manner, which aims at 

finding the MAP solution to the optimization problem. In the segmentation procedure, the “better” 

intermediate segmentation result, as evaluated by the metrics to be discussed in the next two sections for 

region and boundary, is assigned a higher survival probability.  

      B. MAP-MRF Framework  

      Under the MAP framework, image segmentation can be obtained by solving the following 

optimization problem 

                                            ( ) ),(),|(maxarg)|,(maxargˆ,ˆ
,,

BLPBLYPYBLPBL
BLBL BLBL Ω∈Ω∈Ω∈Ω∈

==                                    (1) 

where )|,( YBLP is the a posteriori distribution of the label field, L, and the boundary field, B, given the 

observed image, Y. L and B are assumed to have the MRF property, and they consist of pixel labels and 
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boundary elements, respectively. The boundary elements will be defined in Section IV. LΩ and BΩ are the 

configuration spaces of L and B. { }ML lll ,,, 21 =Ω , where il  is the label of the pixel with the index i. 

{ }1,,1,0 −= Ali  , and A is the number of possible region types. For example, for binary segmentation, 

A=2. { }MB bbb ,,, 21 =Ω , where ib is the boundary element of the pixel with the index i. M is the total 

number of pixels in an image. A segmented image region is composed of the pixels with the same label. In 

this paper label-based segmentation is equivalent to region-based segmentation, and the two terms will be 

used interchangeably. 

     Thus, we obtain our segmentation model under the MAP-MRF framework with the region label MRF L 

and the boundary MRF B. In our work, the label field L and the boundary field B are defined as functions 

of the image data Y, that is, )(YLL =  and )(YBB = . )(YL  and )(YB will be precisely defined in the next 

two sections. Therefore, the likelihood term in (1) has the form 

                                                                    1))(),(|(),|( == YBYLYPBLYP                                                   (2) 

So (1) is reduced to  

                                                               ( ) ))(),((maxargˆ,ˆ
,

YBYLPBL
BL BL Ω∈Ω∈

=                                                (3) 

  Since both L and B have been assumed to exhibit MRF properties, according to the Hammersley-

Clifford theorem [36], they can be represented in terms of the Gibbs distribution and the optimization 

problem of (3) can be written as 

                                                             ( ) ( ){ })(),(exp1maxargˆ,ˆ
,

YBYLU
Z

BL
BL BL

−=
Ω∈Ω∈

                                           (4) 

where ( ))(),( YBYLU is the energy function, denoting the interaction between label and boundary 

configurations as well as the observation. Z is included for normalization and is a function of the MRF 

parameters. For given MRF parameters, (4) is equivalent to  
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                                                                ( ) ( ))(),(minargˆ,ˆ
,

YBYLUBL
BL BL Ω∈Ω∈

=                                                    (5) 

The energy function ( ))(),( YBYLU consists of two factors, corresponding to region-based and boundary-

based segmentations. Here, as in some prior work [1][21], we express the energy function in the following 

additive form 

                                                           ( ) ( ) ( ))()()(),( YBUYLUYBYLU BL +=                                             (6) 

where the energy functions ( ))(YLUL  and ( ))(YBU B  can be considered as the quality metrics corresponding 

to region- and boundary-based evaluations, respectively. We want to emphasize that L and B here are two 

different aspects of the same segmentation result, and the corresponding metrics are the complementary 

evaluations for the same segmentation result from region and boundary perspectives, respectively.        

III. ENERGY FUNCTION FOR REGION-BASED IMAGE SEGMENTATION 

      In this section, the energy function ( ))(YLUL in (6) corresponding to region-based segmentation is 

developed. The approach is based on human preference for good segmentation, from a region-based 

segmentation perspective.  

      We note that a human often evaluates the segmentation result in both global and local manners, that is, 

the fitness of a segmentation result to the entire image content and the local image region are considered 

simultaneously. Therefore, both region-based and boundary-based segmentation evaluations should be 

taken into account. In this section, we only consider region-based evaluation, and postpone the 

consideration of boundary-based evaluation to the next section. We summarize the desirable properties for 

good segmentation in terms of region-based evaluation as follows. 

(i) The contrast of pixel intensities between two neighboring regions, i.e., inter-region contrast,       

should be large; 

(ii) The contrast of pixel intensities within a region, i.e., intra-region contrast, should be small; 
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(iii) The pixel labels should correspond to homogeneous regions, that is, neighboring pixels prefer     

having the same label.   

  Criteria (i) and (ii) represent the global properties of a good segmentation, and criterion (iii) is a local 

property which indicates that the segmentation should yield large-sized regions. 

  Thus, the region-based segmentation evaluation metric ( ))(YLUL  should consist of two types of 

measures, namely, global inter- and intra-region contrast measures and a local label homogeneity measure. 

We express the composite measure also using an additive form as follows 

( ) ( ) ( ))()()( YLUYLUYLU LocalGlobalL +=                                                 (7) 

      We can see from the three desirable properties that the contrasts between the neighboring regions and 

those between the neighboring pixels need to be calculated in order to obtain a quantitative metric for 

evaluating segmentation quality. In this work, we incorporate the HVS properties into the contrast 

measure via the JND model [37][38][39]. HVS is capable of only perceiving pixel intensity changes above 

a certain visibility threshold, which, in turn, is determined by the underlying physiological and 

psychophysical mechanisms. JND refers to the minimum visibility threshold above which visual contents 

can be distinguished. The JND model plays an important role in perceptual image and video processing, 

and has been successfully used in measuring the difference or distortion of the image contents [40][41]. In 

this paper, we use the spatial JND model, i.e., pixel-wise JND, presented in [42], which is defined as a 

nonlinear additive model, 

                                          { })(),(min)()()()(JND , iTiTiCiTiTi tLtLtL
p ⋅−+=                                      (8) 

where )(JND ip is the JND threshold of the pixel indexed by i. )(iT L and )(iT t are the visibility thresholds 

due to luminance adaptation and texture masking, respectively,  and )(, iC tL represents the overlapping 

effect in masking where 1)(0 , ≤< iC tL . Details on the definition of JND and its computation are available 

in [37][42]. 
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A. Energy Function for Global Contrast 

In order to incorporate the desired characteristic of global inter- and intra-region contrasts into the 

energy function, we define a global neighborhood system, 61 pixels by 61 pixels in this paper, with pixel 

of interest at the center. The segmentation quality metric based on criteria (i) and (ii) can be expressed as 

   IntraInterGlobal CaCaQ ⋅−⋅= 21                                                         (9) 

where InterC  and IntraC  denote the inter- and intra-region contrasts of the pixel intensity based on JND, 

respectively, and 1a and 2a are two non-negative weights that control the contributions of the two types of 

contrasts to the energy function. A higher value of GlobalQ  means a better segmentation quality. 

Due to the Markov property assumed in this paper, the quality metric value corresponding to a single 

pixel, s, is independent on other pixels given the segmentation result in the global neighborhood system of 

s. Therefore, we have the energy function for the global contrast as  

         ( ) [ ]∑∑
=

Γ−Γ−
=

Γ−
⋅−⋅−=−=

M

s
sIntrasInter

M

s
sGlobalGlobal sCasCasQYLU sss

1
|2|1

1
| )()()()(                         (10)  

where
s

s Γ|  means that the contrast is a function of the label of the pixel s and is calculated given that the 

labels of the rest of the pixels in the global neighborhood system of s, s
Γ , are fixed. To speed up the 

computation, instead of calculating the contrasts in a pixel-wise manner, the following region-wise 

measure of the inter-region contrast is employed,  

{ }),()( 01|| μμsC ss ssInter ΓΓ−
Ξ= ϕ                                                  (11) 

where the calculation is carried out on { }ss ∪Γ , the set consisting of the pixels included in s
Γ plus pixel s, 

and “∪ ” means “union”. Here, )]0(JND),1(JNDmin[/),( 0101| RRs μμμμs −=Ξ
Γ

. )(/
 and ,1

sNyμ u
N

uli iu
u

i
∑ ==

= , 

which is the mean value of the pixel intensity in the uth type region, { }1,0∈u  for binary segmentation, 

and )(sNu is the number of pixels with the label u. iy is the ith pixel with the label u. 
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)(/)(JND)(JND
 and ,1

sNiu u
N

uli pR
u

i
∑ ==

= , which is the average JND value of the regions with the label u. 

Thus, ),( 01| μμss ΓΞ is the measure of the average intensity difference of the two types of regions weighted 

by the minimum of the average JND values of the two types of regions. )(Dϕ is a robust function that 

reduces the impact of outliers and is defined in [15] as 

                                                                        4

4
)(

DG
DD
+

=ϕ                                                                  (12) 

where G is a small positive constant. 

     For the intra-region contrast, we define and employ the metric, 

                        { })1()0(
)()(

1)( ||
21

| sss sssIntra sNsN
sC

ΓΓΓ−
Φ+Φ

+
=                                       (13) 

Still, the calculation is carried out on { }ss ∪Γ , where ( )∑ ==Γ
−=Φ 0

0 and 1 0| )(/JND)0( N

li Pis i
s iμyϕ  and 

( )∑ ==Γ
−=Φ 1

1 and 1 1| )(JND/)1( N

li Pis i
s iμyϕ . Here, )(JND/ iμy Pji − , j=0 and 1 for binary segmentation, is 

the weighted difference between the intensity of the ith pixel and the average intensity of the region to 

which the pixel belongs. So )0(| ssΓΦ and )1(| ss ΓΦ  in (13) measure the “variation”, or the inhomogeneity, 

of the two types of regions.  

 We can see that (11) and (13) measure how the segmentation result of a single pixel s, i.e., the label of 

s, affects the segmentation in a global manner, and take into account the inter- and intra-region contrasts at 

the same time. Therefore, the energy function defined in (10) reduces the risk of being too biased when 

segmenting an image [24]. For example, an algorithm may become very greedy in finding small but tight 

clusters in the image data if only intra-region contrast is considered [24]. Additionally, (11) and (13) do 

not require modeling of the probability distributions of the noise and the image data, which may improve 

the robustness of the presented algorithm. 
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B. Energy Function for Local Homogeneity 

      In this sub-section, we discuss the energy function based on criterion (iii), incorporating local 

homogeneity for good segmentation. A second-order neighborhood system, that includes 8 nearest 

neighboring pixels of the pixel of interest s, is employed for describing local homogeneity. The pixels, 

excluding s, included in the solid (yellow) rectangular shown in Fig. 1 (b) is a configuration of the second-

order neighborhood system of s. Besides the label homogeneity, we also incorporate information about the 

dynamics of the pixel intensity in order to make the metric adaptive to non-stationary image contents. The 

energy function is defined as  

      ( ) ( )[ ]∑ ∑
= ∈ 








∆−−=
M

s sNB
ssLocal

s

ss
yllYLU

1 )(
,

2

)(exp),()(
η

ηη ϕψ                                  (14) 

where )](JND),(JNDmin[/)(, sPPss syyy
ss

ηηη −=∆  represents the JND-weighted contrast between pixel s 

and its second-order neighbor sη . )(2 sNB  denotes the set of all of the second-order neighbors of s. The 

cost function for the label configuration of the neighboring pixel pair is denoted by ),(
s

lls ηψ  and defined 

in (15) for binary segmentation. 

                                                                 



−

=
=

otherwise.   ,
 if ,

),( ,

β
β

ψ η
η

s

s

ll
ll s

s
                                                      (15) 

where β is a non-negative real number and is the cost used to define the label homogeneity measure of the 

neighboring pixel pair. Eq. (14) has a form similar to the generalized Potts model [43], except for the 

additional robust estimation shown in (12) and the JND-weighting operation.  

IV. ENERGY FUNCTION FOR BOUNDARY-BASED IMAGE SEGMENTATION 

      In this section, we develop the energy function for boundary-based segmentation, which is also 

derived from the desirable properties for good segmentation in terms of a boundary-based evaluation. 

These properties are listed below,  
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(i) Region boundary should be smooth and of as small a length as possible. In other words, the 

boundary should avoid containing too many sharp angles or turns; 

(ii) The intensity contrast of a neighboring pixel pair on the two sides of the boundary should be large, 

while the contrast within a region enclosed by the boundary curve should be small; 

(iii) The pixels lying on the boundary curve should be connected.   

      Criterion (i) represents a property which is characterized by the image contents in both global and 

local manners. Criteria (ii) and (iii) are properties of a good segmentation in small regions, and can be 

measured locally.    

When designing the energy function ( ))(YBU B , due to the huge computational burden for the global 

boundary-based feature measure, we only employ the local properties described in the boundary-based 

segmentation evaluation.  That is,  

( ) ( ))()( YBUYBU LocalB =                                                          (16) 

      Before deriving the energy function, we first discuss the neighborhood system and define a novel 

concept called the boundary element in the next sub-section. 

A. Boundary Element and Neighborhood System  

The energy function of boundary-based segmentation is calculated based on a novel concept, the 

boundary element, defined for each boundary pixel. A boundary pixel is a pixel for which at least one of 

its second-order neighbors has a label different from it.  A boundary element consists of an angle together 

with its two directed edges. Suppose s is a boundary pixel, the angle of the boundary element of s 

originates from s, and two edges of the angle point to the two neighboring boundary pixels of s which 

have the same labels as s. The two edges separate the pixels into different regions according to whether 

their labels are different from or same as that of s. Some examples of the angles are shown in Fig. 2. The 

value of the angle is constrained to be in the range ],0[ π , and is related to the smoothness of the boundary 

curve. Small angles correspond to sharp turns and therefore to a wiggly boundary, while large angles 
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correspond to a smooth region boundary. Naturally, we prefer large angles. The edges of the boundary 

element are related to the connectedness of the boundary pixels and thus the continuation of the boundary 

contour. The edges also play an important role in determining the cross-boundary pixel pair, which will be 

discussed in Section IV.B. The boundary elements for two special segmentation configurations, isolated 

segmentation and interior pixel segmentation, will be discussed in the subsection IV.B.b, where the pixel 

of interest has either a different label from or the same label as its second-order neighbors. 

A boundary element is determined from the interaction between the pixel of interest, say, s, and its 8 

second-order neighbors. The total energy of a neighborhood system centered at s is dependent on the 

boundary elements of s and its 8 neighbors. A change in the label of s may affect the boundary elements of 

its 8 neighbors. Therefore, we define the neighborhood system for boundary-based segmentation as one 

consisting of the 8 nearest neighbors in the second-order neighborhood system of s plus all the second-

order neighbors of these 8 pixels, excluding s. This is, in fact, a third-order neighborhood system of s, 

)(3 sNB , i.e., { } { } ssNBNBsNB s \)()()( 223 ∪∪= η , where “ s\ ” means “excluding s”. )(3 sNB is shown in 

Fig. 1, in which the pixels, excluding s, included in the rectangular bold dot-dash (light blue) line 

constitute the third-order neighborhood system of s for boundary-based segmentation. In Fig. 1, s lies at 

the center of the neighborhood system. The pixels represented by the solid points belong to one type of 

region with label zero (0 region). The small circles represent pixels belonging to the region with label one 

(1 region). The thin solid (green) line and the bold solid (black) line denote the boundary curves of the 0 

and 1 regions, respectively. The solid (red) directed edges, paired together with the angle between the 

edge pair, form the boundary elements of the pixels in the 0 region. The dashed (black) directed edge pairs 

and the corresponding angles form the boundary elements of the pixels in the 1 region. Now, let us 

consider the situation when the label of a pixel changes. The impact of the label change of s on the 

boundary elements of its 8 neighbors is shown in Fig. 1 (b), where s changes its label from 0 (Fig. 1 (a)) to 

1  (Fig. 1 (b)) and results in the change of the boundary elements of its second-order neighbors.  
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(a)                                                                                                              (b) 

Fig. 1 Boundary elements, second-order and third-order neighborhood systems. (a) Typical boundary elements and third-order neighborhood 
system; (b) impact of label change of s on the boundary elements of its second-order neighbors. 

 

      From Fig. 1, we can see that the boundary curve of a region is determined by the boundary pixels 

together with their edge pairs. However, not all the boundary pixels contribute directly to the boundary 

curve, and it is possible that the impact of some boundary pixels is “hidden” by the neighboring boundary 

pixels when forming the curve. For example, pixel c in Fig. 1 (a) is a boundary pixel, but the boundary 

curve, the thin solid (green) line, does not pass through c and its two edges, 
→

ca  and 
→

cd  . This is because 

the boundary elements a and d together with their edges, 
→

ab , 
→

ad and 
→

da , 
→

de , hide the contribution of c to 

the curve. However, the change in the label of c will affect the boundary elements of a and d, as 

mentioned above. Thus, we still need to consider the boundary element and the energy corresponding to 

pixel c when updating the pixel labels, the parameters of the MRF and therefore the shape of the boundary 

curve. In other words, boundary pixel c impacts the boundary curve in an indirect or implicit manner. The 

energy function corresponding to boundary elements will be discussed in next sub-section.  

      From Fig. 1, we notice that the angles of the boundary elements reflect the variation in the boundary 

shape, and the directed edges represent the interaction and the relative locations of the neighboring 

boundary pixels. 
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B. Energy Function for Boundary-Based Segmentation  

As indicated earlier, we prefer smooth boundaries, i.e., gentle “turns”. This corresponds to large angles, 

and the energy function is, thus, designed as a monotonically decreasing function of the angle value. At 

the same time, a “reasonable” turn, which results from the significant contrast of pixel intensities across 

the boundary, should also be maintained. Furthermore, the intensity contrast of pixels on the same side of 

the boundary and belonging to the same region should be small. In this way, we may make the smoothness 

measure of the boundary curve dynamic and adaptive to non-stationary image content. Thus, the energy 

function of a boundary element is composed of three terms: the first one is related to the angle between the 

two edges, the second one is related to the intensity contrast across the boundary, and the third one is 

related to the contrast on the same side of the boundary which is called intra-pie slice contrast. We define 

a “pie slice” next. 

a. Cross-boundary contrast and intra-pie slice contrast 

      Consider a boundary pixel, s. A pie-slice of s, by definition, consists of s, as the origin, and some other 

pixels in the second-order neighborhood system of s. These pixels must have the same labels as s, and 

there are no pixels with different labels from s in the pie slice. The cross-boundary contrast is calculated as 

the intensity difference between pixels in a pie slice of s and the pixels in the second-order neighborhood 

system of s but with labels different from s. All possible configurations of the single pie slice in a second-

order neighborhood system are shown in Fig. 2. The configuration in each figure is valid when rotated 

by 2/π . The configurations of the multi-pie slices, where a second-order neighborhood system contains 

more than one pie slice, can be determined in a similar manner and an example of it is shown in Fig. 3.   

      In Fig. 2, s is the pixel of interest. Crosses “× ” represent the pixels with the same label as s (including 

s), and form a pie slice of s. The remaining pixels have labels different from s, and are represented by  

“+”, “-” and “*”. The cross-boundary contrast of a pie slice is determined by averaging the contrast of the 

so-called cross-boundary pixel pairs, which are determined by the two edges of the boundary element. 

More specifically, in the figure the cross-boundary pixel pairs corresponding to the pixels represented by 
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Fig. 2. Possible configurations of the single pie slice in a second-order neighborhood system. The configuration in each figure is valid when 
rotated by 2/π . 

 

“-” and “× ” are determined by the dashed (red) edge, those corresponding to the pixels represented by “+” 

and “× ” are determined by the solid (blue) edge, and those corresponding to the pixels represented by “*” 

and “× ” are determined by both of the two types of edges mentioned above. The cross-boundary pixel pair 

configuration in each figure is valid when rotated by 2/π .    

     Suppose there are )(sN PS  pie slices included in a second-order neighborhood system with the origin at 

s. The cross-boundary contrast of the ith pie slice consists of two terms, one including s and another 

without s, as shown in (17) 
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where the first summation is related to the cross-boundary contrast calculated from the cross-boundary 

pixel pairs corresponding to the pixels in the ith pie slice of s (excluding s), and the second summation is 

related to that corresponding to s. Here, ky denotes the intensity value of pixel k. 1−rP  and 2−rP denote the 

boundary pixels inside and outside the ith pie slice of s (excluding s). They form the rth cross-boundary 

pixel pair, in which 2−rP is the closest neighboring boundary pixel of 1−rP  and has a label different from 1−rP , 
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and rN denotes the number of such pairs. Here, )(,...,1 sNi PS= with 4)( ≤sNPS , where )(sNPS denotes the 

number of pie slices in the second-order neighborhood system of s and 4 is the maximum number of pie 

slices in a second-order neighborhood system. jsP − are the boundary pixels outside the ith pie slice and 

have the labels different from s. s and jsP −  form the jth cross-boundary pixel pair, and jN denotes the 

number of such pairs. By annotating the pixel in Fig. 2 (c), we show an example for calculating the cross-

boundary contrast using (17), where the four “× ” pixels form a pie slice and the cross-boundary pixel 

pairs are determined by the solid and dashed edges. Here, pixel t is not involved in the calculation since it 

is not a boundary pixel when we calculate the cross-boundary contrast of s. As mentioned before, in this 

case there is only one pie slice in the second-order neighborhood system. 

      The intra-pie slice contrast of the ith pie slice is defined as   

                                                  ∑
−

=

−−

−
− 








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

 −
=

)(

1 )(JND)(
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sN

j P

iPSji

iPS
iPS

iPS

j
μy

sN
sContr ϕ                                      (18) 

where )(sN iPS−  is the number of pixels included in the ith pie slice in the second-order neighborhood 

system of s. iPSμ − is the average intensity value of the pixels in the ith pie slice, and jiy −  is the observed 

pixel intensity of the jth pixel in the ith pie slice.   

b. Energy function for the second-order neighborhood system 

In this subsection, we develop the energy function for the second-order neighborhood system of the 

pixel of interest. 

As mentioned before, the energy function is designed to encourage a large turn angle and large cross-

boundary contrast. At the same time, we would like to have the contrast of the pixel intensity within each 

pie slice to be as small as possible. We first find all the pie slices in each second-order neighborhood 

system of the pixel of interest s, and then the contrasts across boundary and inside the pie slice are 



                                                                                                                                                                                     18  

determined by (17) and (18) for each pie slice. The energy corresponding to a second-order neighborhood 

system can then be calculated as the summation of the energy of each pie slice,  

( ) [ ]∑
=

−− ⋅+⋅−⋅−=
)(

1
543 )()()(exp

sN

i
iPSiCBi

PS

sContrasContrasas αφ                      (19) 

where )(siα , iCBsContr −)( and iPSsContr −)(  are the angle value, cross-boundary contrast and intra-pie 

slice contrast of the ith pie slice, respectively. The weights 3a , 4a  and 5a are non-negative real numbers.  

     Fig. 3 shows an example for calculating the energy of a multi-pie slice segmentation, where there exist 

two pie slices asb∆ and csed∆ . The corresponding energy is  
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Fig. 3 A typical multi-pie slice configuration, where there exist two pie slices asb∆ and csed∆ .    

 

We can see that the multi-pie slice configurations, which correspond to complicated and less preferred 

segmentation, have more terms than the single pie slice case. The larger the )(sNPS , the more “messy” the 

segmentation is. We show in the appendix that the energy function (19) assigns higher energy and 

therefore lower probability to the multi-pie slice configurations, which is consistent with our expectation.   

In many practical situations, there exist two special segmentation configurations, isolated 

segmentation and interior pixel segmentation, as mentioned before. Isolated segmentation corresponds to a 

special boundary element, where the angle of the isolated segmentation is π2− and the cross-boundary 

contrast is determined by averaging the JND-weighted intensity differences between s and its 8 second-

order neighbors (with the robust function considered).  The intensity contrast within the pie slice for the 
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isolated segmentation is zero since the pie slice includes only one pixel, s itself. Admittedly, the interior 

pixel is not a boundary pixel and does not have the boundary element as defined. However, for updating 

the pixel label we still assign a special boundary element to this type of configuration, where the angle of 

the interior pixel is set to be π2 and the corresponding cross-boundary contrast is zero. The intensity 

contrast within the pie slice can be calculated using (18), where s and its 8 neighboring pixels included in 

the second-order neighborhood system construct a pie slice. 

c. Energy function for boundary-based segmentation 

As mentioned before, a change in the label of s might impact the boundary elements and therefore the 

energy function values of the 8 second-order neighborhood systems centered at the 8 second-order 

neighbors of s, plus the second-order neighborhood system of s. Let )(2 sNB s+  denote the set of pixels in 

the second-order neighborhood system of s plus s itself, so { }ssNBsNB s ∪=+ )()( 22 , where 

)(2 sNB represents the 8 second-order neighbors of s, as defined in Section III. B. Thus, the energy 

function values of the second-order neighborhood systems of the pixels in )(2 sNB s+ are necessary to 

calculate the energy corresponding to the label configuration of s. Therefore, energy function (16) can be 

expressed as    

       ( ) ∑ ∑
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where )(/)()(

 1
sNh H

sN

h
H∑ =

φ  is the average energy of the second-order neighborhood systems included in 

the third-order neighborhood system of s. This energy function takes into account the impact of the change 

in the label of s on the local region. The pixels in )(2 sNB s+  are indexed by h, and )(sNH  denotes the 

number of pixels in )(2 sNB s+ . We can see that 9)( =sNH  if s is an internal pixel of an image. 

     To speed up the computation, only the energy function of the second-order neighborhood system of s is 

calculated in this paper, which is sufficient to produce satisfactory results and is therefore implemented in  
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the experiments. Thus, we have a simplified energy function for boundary-based segmentation, 
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V. OVERALL OBJECTIVE FUNCTION AND OPTIMIZATION 

      Having defined the energy functions for region-based and boundary-based segmentations, we 

formulate the overall optimization problem. According to the previous discussion, the image segmentation 

problem can be transformed to an optimization problem with respect to the pixel label and region 

boundary configurations,                                
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where 1γ and 2γ are two hyper-parameters controlling the contributions of the label and the boundary 

energy functions to the total energy. Finding the optimal configuration of L and B includes the 

minimization of (23) with respect to L and B followed by the maximum likelihood estimation (MLE) of 

β  if 1γ and 2γ are given. The procedure proceeds in an iterative manner. The JND weights only need to be 

calculated once before segmentation. We call this scheme HVS-driven segmentation scheme 1 (HDSS-1). 

The hyper-parameters 1γ and 2γ can be determined either by trial-and-error or by using the method 

presented in [22]. In our work, we use the trial-and-error method to choose these parameters and the 

experimental results show that the performance of the algorithm is not sensitive to these parameters. To 

further reduce the effort of choosing the hyper-parameters, the optimization of the energy function is 

carried out in two steps. In the first step, only the energy terms related to region-based segmentation are 

minimized. In the second step, the boundary energy function is minimized which is based on the 
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segmentation result from the first step. Steps 1 and 2 are iterated until we achieve a satisfactory result. (In 

our work, the number of iterations is determined by trial-and-error, but the experiments show that the 

performance of the algorithm is not sensitive to the number of iterations if the number is larger than a 

certain value.) We see that in this scheme only the hyper-parameter 1γ  needs to be chosen. We call this 

scheme the HVS-driven segmentation scheme 2 (HDSS-2). The two-step procedure is given by 

  Step 1:             
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In our experiments, besides the implementation of the above mentioned segmentation schemes, we 

will also present the results when only the boundary element is considered during the optimization, that is, 

when only the energy function in Step 2 of (24) is optimized. We call this segmentation method the 

boundary element-based segmentation (BEBS).   

To the best of our knowledge, HDSS-1, HDSS-2 and BEBS are distinctive from existing segmentation 

algorithms in terms of the design of the objective functions from region- and boundary-based perspectives.  

VI. EXPERIMENTS 

 In this section, comparative results of the segmentation of two types of medical datasets, mammogram 

and MRI brain images, and one natural image are shown. The comparisons are carried out between the 

presented algorithms and several representative methods. To save the space, we will not describe the 

algorithms for comparison purpose in this paper.  

The mammogram used in the experiment is from the Digital Database for Screening Mammography 

(DDSM) [44]. DDSM has 2620 cases available in 43 volumes. A case consists of between 6 and 10 

mammograms, and resolution of the images is 50 microns/pixel. The MRI brain image is T1-weighted and  
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is from SUNY Upstate Medical University. We use Cameraman image as an example of the natural image.  

In mammogram segmentation, our goal is to find the pixels which represent lesions. The segmented 

positive pixels by the presented algorithms are marked in blue. In segmenting the MRI brain image, we 

wish to segment the white matter (WM) from the gray matter (GM) and cerebrospinal fluid (CSF). The 

segmented non-WM tissues are shown using purple and black colors. For the Cameraman image, we want 

to segment out the man as the foreground from the background, i.e., the building and the meadow. We 

also treat the camera as a background object and do not attempt to segment it out. The segmentation result 

is represented by a binary image, where the dark part is the foreground.  

We test HDSS-1 and BEBS for mammogram data, HDSS-1, HDSS-1 and BEBS for MRI brain image 

data, and HDSS-1for Cameraman image. To be fair, we use the same initialization for all the algorithms 

implemented in the experiments. We set 1a , 2a , 3a and 5a to be 1, and 4a to be 15. In HDSS-1, 2γ  is 

chosen to be 1. s'1γ  in HDSS-1 and HDSS-2 are set to be 0.1. From the experimental results, we notice 

that the segmentation performance is not sensitive to the choice of these parameters. We use the iterative 

conditional modes (ICM) algorithm [46] as optimization method for all the three algorithms. 

      Fig. 4 shows the segmentation results of the mammogram with lesions, where the blue points denote 

the segmented positives. The regions enclosed by the light green curves in Figs. 4 (f) and (g) correspond 

to the segmented lesion regions by LSEWRI and RACM, respectively.        

From the figures, we can see that BEBS and HDSS-1, shown in Figs. 4 (j) and (k), yield better results 

than the other methods. Otsu thresholding, (b), yields too many false alarms. Obviously, for an image in 

which the intensity contrast is not very high, like the mammogram, intra-class variance measure is 

insufficient for yielding good segmentation. The advantage of GADCA (c) is that it converges quickly, but 

it yields many false positives. IMSA (d) may converge to local extrema and misses many lesions. 

HOSLW method (e) can find the lesions efficiently, but it still generates false alarms and fails to 

determine the shape of lesion which, however, plays a very important role in discriminating the benign  
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(a) 

     

                        (b)                               (c)                                 (d)                                (e)                               (f)   

     

                    (g)                               (h)                                 (i)                                (j)                                (k)              

Fig.4. Original mammogram and the segmentation results. (a) Original mammogram with lesions; (b) segmentation by Otsu thresholding; (c) 
segmentation by GADCA; (d) segmentation by IMSA; (e) segmentation by HOSLW;  (f) segmentation by LSEWRI; (g) segmentation by RACM; 
(h) segmentation by MNCut; (i) segmentation by conventional MRF;  (j) segmentation by BEBS; (k) segmentation by HDSS-1.  

   

tumors from the malignant ones. Moreover, the segmentation performance of HOSLW depends on how 

accurately we can estimate the number of lesion pixels, which is usually not available in real-world 

applications. The LSEWRI method, shown in (f), also performs poorly and yields many mis-

segmentations. RACM (g) finds all the lesions but with many false alarms. Besides, it also fails to 

determine the lesion shapes. The number of iterations of the two level set-based algorithms is set to be 500, 

which is sufficient for them to converge. For the MNCut method, we tried several numbers of segments, 

but did not observe any satisfactory results. A typical segmentation is shown in (h). Conventional MRF (i) 

does not find all the lesions and it also fails to determine lesion shape. This is because the conventional 

MRF only emphasizes intra-region homogeneity and label smoothness, such that it is too conservative and 

works poorly when the image contents are complex. Besides, all the methods used for comparison purpose 

fail to mimic the adaptation of HVS to the complexity and non-stationarity of the image contents.  
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As shown in Fig. 4 (j), BEBS performs satisfactorily, but the lesion contour is not smooth. This is 

because the boundary energy function does not emphasize the label homogeneity of the neighboring pixels 

as well as the global contrast of the image. On the contrary, HDSS-1 (k) integrates the boundary 

information, global contrast and pixel label homogeneity, and therefore yields a better result. 

      Fig. 5 shows the results for MRI brain image segmentation, where the non-brain background is first 

removed from the image and segmentation is carried out only on the brain pixels. Similar to the 

mammogram case, our presented algorithms yield better segmentations than the representative ones, in 

terms of lower mis-segmentation rate and higher accuracy in object boundary determination. In the 

figures, white regions denote the WM. The regions enclosed by the light green curves in Figs. 5 (d) and (e) 

correspond to the segmented WM by the two level set-based methods with the number of iterations being 

2000, which is sufficient for them to converge.  

       
                               (a)                                      (b)                                     (c)                                     (d)                                      (e) 

    

            (f)                                      (g)                                     (h)                                     (i) 

Fig.5. Original MRI brain image and the segmentation results. (a) Original MRI image; (b) segmentation by conventional MRF; (c) segmentation 
by Otsu thresholding; (d) segmentation by LSEWRI; (e) segmentation by RACM; (f) segmentation by MNCut; (g) segmentation by BEBS; (h) 
segmentation by HDSS-1; (i) segmentation by HDSS-2. 

 

      From the figures, we can see that the conventional MRF-based method (b) is conservative, as 

mentioned before. It puts more weight on pixel label homogeneity so misses many fine structures of the 

WM. Otsu (c) yields an unsuitable threshold such that some GM and CSF regions are segmented into the 
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WM part. LSEWRI (d) produces a large number of mis-segmentations. RACM (e) includes some GM      

into WM and also yields segments with very small size in the right half part of the brain image. MNCut (f) 

fails to characterize the fine structures of the WM and GM. The result from BEBS (g) is satisfactory, but it 

also yields some isolated pixels as well as some false positives in the bottom and boundary of the image. 

In contrast, HDSS-1 (h) and HDSS-2 (i) produce better segmentations in terms of reduced number of 

isolated pixels and the strengthened homogeneity of the neighboring pixel labels.      

      Fig. 6 shows the results of segmenting the Cameraman image. For visualization purposes, the results 

of the Otsu and HDSS-1 algorithms are shown as a binary image. From the figures, we can see that Otsu 

(b) yields a good segmentation of the human body, but generates many mis-segmentations in the 

background building and meadow parts. Most of them are segments with small sizes. LSEWRI (c) 

generates no mis-segmentation in the meadow but misses part of the human legs and also segments out a 

large area of background between the man and camera. RACM (d) yields good segmentation of the man. 

It even finds some fine structures of the image. But this method generates a large number of mis-

segmentations in the meadow. We adjusted the number of segments of the MNCut method (e), and 

observed that it generates many homogeneous patches. Obviously, some post-processing algorithms, like 

region merging, need to be applied to find the human from these patches. (f) shows the result of the 

presented HDSS-1 method. We can see that the man is segmented out with fewer mis-segmentations, 

especially in the meadow part, when compared to other methods. Also, a smaller portion of the camera is 

segmented out by this method. 

      

                (a)                                   (b)                                  (c)                                  (d)                                   (e)                                     (f) 

Fig.6. Original cameraman image and the segmentation results. (a) Original image; (b) segmentation by Otsu thresholding; (c) segmentation by 
LSEWRI; (d) segmentation by RACM; (e) segmentation by MNCut;  (f) segmentation by HDSS-1.  
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VII. CONCLUSION 

      Image segmentation is a very important but challenging problem for computer vision and image 

analysis. This paper developed an image segmentation approach driven by HVS properties, where the 

objective function for segmentation was designed by considering the preference of HVS to good 

segmentation from both region-based and boundary-based perspectives. The metrics were encoded into 

the MRF and the JND model was used to calculate the contrast of the image contents. Comparative 

performance evaluation was carried out via the experiments between the three variations of the presented  

algorithm and several representative segmentation and clustering algorithms available in the literature. 

The results show that the presented algorithms resulted in highly encouraging performance in terms of 

segmentation efficiency, robustness and convergence speed. 

There are many future research directions that are worth pursuing. An investigation on the 

segmentation with multiple region types or multiple pixel labels, instead of the binary labels, 0 and 1, as 

discussed in this paper, will be an interesting extension to the algorithm. This would, of course, require the 

presented objective function to be adjusted accordingly. In our current work, we mainly discussed the 

problem of hard or crisp segmentation, that is, a pixel belongs to either region 0 or region 1. Future 

research on the fuzzy segmentation, based on the objective function presented in this paper, will be 

another interesting research topic. Perhaps, the scheme of designing the objective function for fuzzy MRF, 

as discussed in [47], will be very helpful. Finally, in this paper we employed ICM for the optimization 

task, and the research on approaches which can further improve the computational speed and segmentation 

accuracy will be both theoretically and practically useful. The graph-cut based methods [4][43] may be 

promising options. 

APPENDIX 

In this appendix, we show that the multi-pie slice configuration, with )(sN PS  pie slices, may have a 

large angle value which can be obtained by adding the angles of the )(sN PS pie slices together, but will  
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unnecessarily result in a smooth boundary and thus a lower energy due to the exponential function in (19).  

     We assume that the cross-boundary contrast and the interior contrast of each pie slice are the same as 

each other. Then (19) can be written as         

     ( ) [ ] [ ] ( )∑∑
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where iPSiCB sContrasContrasContrast −− ⋅+⋅−= )()()( 54 . Suppose we have a favorite segmentation with a 

single pie slice in the second-order neighborhood system of s. Its contrast is equal to )(sContrast , and its 

angle value, )(sfavoriteα ,  equals the summation of the angle values in (25), i.e., ∑=
=
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1
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Then, it is not difficult to prove that 
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given that 0)( ≥siα . Therefore, we have 

                                                                         ( ) ( )ss favorite φφ ≤                                                               (27) 

Thus, the favorite segmentation has lower energy than the multi-pie slice configuration and therefore has a 

higher probability to survive.  
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