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Abstract

In this work we investigate the weight structure

of cyclic codes of composite length n = n l n 2 , where

n1 and n2 are relatively prime. The actual minimum

distances of some classes of binary cyclic codes of

composite length are derived. For other classes new

lower bounds on the minimum distance are obtained.

These new lower bounds improve on the BCH bound for

a considerable number of binary cyclic codes.
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I. Introduction

The problem of constructing cyclic product codes has been

considered by Burton and Weldon [1] and by Abramson [2]. The

factoring of eylie codes was considered by Assmus and Mattson [3,4],

and Goethals [5]. Goethals found new lower bounds on the minimum

weight of a subclass of cyclic codes of composite length

n = 0ln2 with GCD(n l ,n2 ) = 1. Kasami [6] extended Goethals

result. In both papem [5,6] a factorization is applied to the

polynomials obtained from the Mattson-Solomon formulation [7].

By using a factorization applied directly to code vectors

the actual minimum distances of some classes of binary cyclic

codes of composite length are derived. For other classes new

lower bounds on the minimum distance are obtained. The minimum

distance and the lower bounds are given in terms of the minimum

distance of cyclic codes of length n1 and n 2 - In many cases, the

new lower bounds improve on the BeH bound, dO [8] •

Some preliminaries are introduced in Section II. In Section

III the minimum distances and the lower bounds are derived. In

Section IV tables with numerical examples are presented.

Concluding remarks are contained in Section V.
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II. Preliminaries

Let Vn be a cyclic code over GF(q) of length n = n1n 2 ,

GCD(n1 ,n2) = 1, and minimum distance d generated by g(x). Since

01 and n2 are relatively prime, there exist integers a and b such

that
anI + bn2 = 1 •

Let a be an element of order n in an extension field GF(qm) of

GF(q) and let

Th d ·· t · n th
l

and n t
2

h t f · t t · 1en, ~ an yare pr1m1 1ve roo S 0 un~ y respec 1ve y,

and
ay = S

Let p(e,~), 0 ~ p(e,~) < n, be the unique solution of the following

congruences given by the Chinese remainder theorem:

Let

vex) =
n1-1 n 2-1

" \' a xp{i,j) a £ GF(q)L L ( .. ) , (t.)
i~O j=O P 1,J P 1,J

be a code vector of Vn . Associated with the polynomial vex),

polynomials V(y,z), V.(y) and V. (z) are defined as follows:
J 1



- iV.(z)y,
J

v. (y) zj
J

n2-1

V(y,z) = L
j=O

nl-l

= .l
J.=o

where

v. (y) =
J

n -11
L

i=O

i
a (. .) yP J.,J

andV.(z) =
1

n -12
l

j=O

j
a (. .) zP ~,J

4

Similar to Kasami's derivation [6], it can be shown that

v(BP(e,~» = v(ae,y~) •

In the next section we will derive the minimum distances and

the lower bounds on the minimum distance of some classes of cyclic
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III. Theorems

At first we will present a new lower bound on d which is a

= 0,1, ••• ,n2-1,o for ep

generalization of Elias' bound [9] for cylie product codes. In

order to prove this bound we require two technical lemmas. The

proofs of these lemmas are similar to the proofs of [10, Lemma 1]

and [10, Lemma 2], respectively.

n -1
e 1 is

Lemma 1: If V, «l ) = L ap(i,]') a, = 0 for e = 0,1, ••• ,n1-1,
] i=O

then a (' ') = 0 for i = 0,1, ••• ,n1-1.p 1.,]

n -1

Lemma 2: If v(aP(a,~» = I v.(aa)yj~ =
j=O J

ethen vj(a ) = 0 for j = O,1, •.• ,n2-l.

Let Vn be a cyclic code over GF(q) of length n = 0ln2 and

minimum distance d generated by g(x), where GCD(n1 ,n2 ) = 1. For

each a, 0 < a < n l , we define J a = {~lg(aP(a,~» = O} and define
m

rna to be the least nonzero integer such that 6q a - a (mod nl). Thus
_ ma

if ~ E Jet then ~l E J a, where ~l = q $ (mod n2). Define

51 = {a/Ja = {O,1, •.• ,n2-l}}. For each a ¢ 51 and such that J a
is nonempty we define v(a) to be the cyclic code over GF(qma) of

°2

length n2 and minimum distance d~a)generated by

g~a) (x) = IT (x-y~)
epEJe

For each a ¢ 51 and such that J a is empty we define V~~) to be the

m
cyclic code over GF(q a) of length n2 and minimum distance d~a) = 1



generated by

6

g~8) (x) = 1 .

Further, for each 8 ¢ Sl define S8 = SluSJ8) , where
A.

si8) = {alo ~ a < n l ; a ¢ Sl and d~8) > d~8)}. Now, for each 8

such that Sa is nonempty define V(8) to be the cyclic code over GF(q)
°1

of length nl and minimum distance di8) generated by

LCM{ II m. (x) }
· S l.1.E e

iwhere mi(x) is the minimum polynomial of ~ over GF(q). Further,

for each e such that Sa is empty define v(8) to be the cyclic coden 1

over GF(q) of length n l and minimum distance dJ8) = 1 generated by

gJ8) (x) = 1 .

We are now in the position to prove the following theorem.

Theorem 1: d > min (d ( e) d (e) let s )
- 121

Proof: Let vex) be a nonzero code polynomial of weight w in V _n

Then n -1
2

L
j=O

First, we note, by Lemma 2, that for each e E Sl we have

v j (a8) = 0 for j = O,1, ••• ,n2-l. By Lemma 1, if v j (a8) = 0 for

j = O,1, ••• ,n2-l and for e = 0,1, ••• ,n1-1, then vex) = 0, contradicting

the assumption that vex) is a nonzero code polynomial of Vn • Hence

Sl # {O,l, ••• ,nl-l} and there must exist at least one

a ¢ SI' 0 e < 01 such that e :I 0 for j , 0 < j In< Vj (a ) some < n 2 --
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general for each e such that J e is nonempty and e ¢ 51 we have

n -1

ve8pes,~» = r v.(aS)yj~ = 0
j=O ]

n -1

for ~ E J S- Now since (vj(as»qmS = v].(aS), v2 (z) = r vJ.(aS)zj
j=O

is a code polynomial of V'S). For cases where V. (ae) I 0, for somen 2 ]

j, 0 ~ j < n 2 , we actually must have Vj(ae) I 0 for j = jl,j2, ••• ,j~

where ~ ~ dJ6) So it is possible that Vj(Y) 1 0 for j = jl,j2,-.-,j~

f -- d
2
(S) and VJ-(y) - 0 f - - - - B t - th-or ~ = or ] = J~+1,J~+2, ••• ,Jn. U 1n 18

A 2

case v j (a6) = 0 for j = 0,1, ••• ,n2-l and for all e E Ss. Thus,

V.(y) is a code polynomial of vee) for j = 0,1, ••• ,n2-1. Hence the
J n 1

weight of Vj(y), for j = jl,j2, •• -,j~ is at least dia). It follows

that w ~ dia)dJS). The case where Vj(Y) 1 0 for j = jl,j2, ••• ,j~

for ~ > dJa) is considered when we analyze the case Vjeaal) # 0 for

(a l ) (a)
some j, 0 ~ j < 02' and 61 is such that d2 > d2 • By a similar

argument, when e i~ such that J e is empty and a ¢ 51' we obtain

w > die) since dJS) = 1. Thus we conclude that

d > min (d (a ) d ( e) Ie ¢ 5 )
- 121

Q.E.D.

We remark that [10, Theorem 2] is a weak version of this

theorem.

We now give an example of the application of Theorem 1.

Example 1: Consider the (55,35) binary BCH code generated by

g(x) = m1 (x). For this code n1 = 5, n 2 = II, J O = empty set,

J l = J 4 = {1,3,4,5,9}, J 2 = J 3 = {2,6,7,8,10}, 51 = empty set, and



dO = 4.

d(O) = 1,1

with d(!)
2

8

Thus V(O) is the (11,11) binary cyclic code with
n 2

vel) = v(4) is a (11,6) quadratic residue code over GF(4)n2 n2
= d

2
(4) = 5 and v(2) = v(3) is also a (11,6) cyclic code

02 °2

over GF(4) with dJ2) = dJ3) = 5 since it is equivalent to v~~) •

Thus we obtain the following table:

a d(S) d(S)
1 2

0 5 1

1 1 5

2 1 5

3 1 5

4 1 5

Hence, by Theorem 1, d ~ 5. We remark that for this example the

generalized BCH bound [11] also gives d ~ 5 and that in this case

both bounds achieve the actual minimum distance [12]. If we apply

[10, Theorem 2] to this code we obtain only d ~ 1.

We are now interested in the investigation of the minimum

weight of odd-weight code vectors and the minimum weight of even

weight code vectors of binary cyclic codes of composite length

n = 0102' GCD(nl ,n2 ) = 1. Thus from now on we assume q = 2.

In order to continue our development we need to introduce some

definitions. Let d dd' de be the minimum weight of odd-weighto ~n

and the minimum weight of even-weight code vectors of V In

respectively. Further, for i = 1 and 2, let d. be the minimum
1

distance of V and let d;odd' d. be the minimum weight ofn. • ~even
1
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odd-weight and minimum weight of even-weight co-de vectors of V ,n.
l.

respectively. Where V is a binary cyclic code of length n.n. l.
~

generated by 9i(x).

The next theorem gives the exact value on dodd and d wheneven

Vn is a binary cyclic product code of V and V •n 1 n 2

Theorem 2: Let Vn be the binary cyclic product code of V and Vn 1 n 2
generated by g(x) such that g(1) # O. Then,

and

Proof: Let vex) be a nonzero code vector of V. Thus, we haven

that n -1
2

L
j=O

e .~

V.(a )yJ'f'
J

Let

then

n 2-1
2 v

J
' (1) zj ,

j=O

According to [13, Theorem 3] we have that

V(Sp(O,~» = 0 for ~ E 8
2

where 8
2

= {</>lg(SP(8,~» = 0 for 8 = O,1, ••• ,n
1
-1L Thus, by [13]

v
2

(z) is a code polynomial of Vn • Furthermore, by [13, Theorem 3]
2

n 2-1

v(Sp(8,</») = L v.(a8 )yj</> = 0
j=O J
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for a £ 51' where 51 = {alg(BP(e,~» = 0 for ~ = O,1, ••• ,n2-l}.

e ·Thus, by Lemma 2, Vj(a ) = 0 for a £ 51 and J = O,1, •.•• ,n2-l.

Hence by [13], Vj(y) is a code polynomial of V
n1

for j = O,1, ••• ,n
2
-1.

First let us assume that vex) has odd weight. Hence, Vj (l) # 0 for

at least one j, 0 < j < n 2 • So, v 2 (z) has weight at least d
20dd

and since Vj(y) is a code polynomial of V
nl

we can conclude that

dodd ~ d rOdd d2odd • Now we assume that vex) has even weight. Two

cases must be analyzed, Vj (l) # 0 for some j, 0 < j < n 2 and

Vj (l) = 0 for j = O,1, ••• ,n2-1. If Vj(l) # 0 for some j, 0 < j < n2 ,

then v 2 (z) F 0 and v 2 (z} must have even weight. Thus,

d > d d2 • Now, ifV.(l) = 0 for j = O,1, ••• ,n2-1, theneven - lodd even ]
n -1

v(BP(O,~»
2

yj~= L V. (1) = 0
j=O J

for ~ = O,1, ••• ,n2-1.
n2Thus, vex) is divisible by x + 1. According

to [13] vex) is a code polynomial of the binary cyclic product code

of V and V(E), where veE) is the binary cyclic code of length n
1n 2 n 1 n 1

generated by (x+l)gl(x), gl(x) is the generator of V Hence, by
0 1

the Elias bound [9] for cyclic product codes we obtain

deven ~ dleven d2 • In conclusion

Now we will show that if w(vI(x» = WI is the Hamming weight of vl(x),

a nonzero code polynomial of V
n1

and w(v2 (x» = w2 is the Hamming

weight of v 2 (x), a nonzero code polynomial of V , then there exists
n 2
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a code polynomial vex) of Vn such that w (v(x) ) = w1w2 • Let

w -1 k.1
v 1 (x) 1 + I 1

0 < k. <= x , n
1

,
i=l

1

w -1 t.2
v

2
(x) = 1 + I x J 0 < 2. < n 2j=l J

M1
= {O,kl ,k2 ,···,kw -l} and M

2 = {O'£1'~2'···'£w _IJ·
1 2

Now we construct the following polynomial

n1-l n 2-1
v(x} = I L a xp(i,j)

i=O j=O p(i,j)

i
a (. .) yP 1,)

A

V . (y) =
J

A

V(y,z) =

such that ap(i,j) = 1 if i £ Ml and j £ M2 , otherwise ap(i,j} = O.

Hence w(v(x}) = wl w2 • Associated with the polynomial v(x} we have

n 2-1

I
j=O

n1-l

l
i=O

where

In this case we have
w -1 k.A A A-

I
VO(y) V (y) Vt

(y) 1 + 2 1
= = = = y

~1 w -1 i=l2
A

and Vj(y) - 0 for j ¢ M2 and 0 < j < n 2 • Hence

A

V(y,z) = (1 +

w -1
1
I

i=l

k.
Y ~) (1 +

w -1
2

I
j=l

and
w -1

2

I
j=l
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Thus, ~(Sp(e,~» = 0 for e E 8
1

and ~ = O,1, •.• ,n2-1i and for

~ E 8 2 and e = O,1, ..• ,n1-1. According to [13] v(x) is a code

polynomial of Vu · Hence dodd ~ d 10dd d 20dd and deven ~ min

(dleven d 2 , d 1 d2even)·
Q.E.D.

Example 2: As an example of application of Theorem 2 let us

consider the (105,44) binary cyclic product code of the (7,4) and

the {15,ll} binary cyclic codes. In this example d 10dd = 3,

d leven = 4, d 20dd = 3 and d2even = 4. Thus, by Theorem 2

= 9 and d = 12.even The BCH bound gives dodd ~ 7 and deven > 10.

A lower bound on the minimum distance of a

In order to avoid proving special cases of the following

theorems, we define the following three quantities to be infinity:

the minimum distance of the (n,O) code, the minimum weight of even-

weight code vectors of the binary cyclic (n,l) code and the

minimum weight of odd-weight code vectors of the binary cyclic codes

which have 1 as roots of their generator polynomial.

The binary cyclic product code of V and V , where V isn1 n 2 n 1

the (nl,n1 ) binary cyclic code will be called the one-dimensional

product code of V
n 2

subcode of a one-dimensional product code can now be derived.

Let Vn be a subcode of the one-dimensional product code of V ,
n

2
generated by g(x) such that g(l) f O. Let J

o
= {elg(Sp(e,O» = a},

J o = {~lg(SP(O,~» = O} and 8
2

= {~lg(Sp(e,~» = 0 for e = O,1,: .. ,n
1
-1}.

According to [13], Vn ~s generated by g2(x) = IT (x+y~). Now
2 ¢ES 2
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we define V to be the binary cyclic code of length n1 generatedn 1

by gl(x} = IT_ (x+a 8)* and v(O} to be the binary cyclic code
8£J

O
n 2

generated by g(02) = IT (x+y$). F· 11 1 t d(O) d(O) t b1na y we e 2odd' 2even 0 e
¢£JO

the minimum weight of odd-weight and of even-weight code vectors of

v{O}, respectively. Now we are in the position to prove the following
n

2

theorem:

Theorem 3: (0)
dodd ~ max (d1odd d 2odd ' d 2odd} and

d > min (d (0) 2d d d }
even - 2even' ~even' leven 2odd·

Proof: Let vex) be a nonzero code polynomial of V . Thusn
n -1

v(sp (8 ,¢» 1
V.{y¢)aie

= l = 0
i=O 1

for ¢ E 8 2 and 8 = O,1, .•. ,n1-l. 80, by Lemma 2 Vi{Y¢) = 0 for

~ E 8
2

- Hence, v. (z) is a code polynomial of V [13]. Let
1 n

2
n -11

L
i=O

- iV. (1) Y
1

If vex) has oddWe note that v1(Y) is a code polynomial of Vn 1

weight, then, similar to the proof of Theorem 2, we obtain

(0)
dodd ~ d10dd d2odd - By [14, Theorem 3] dodd ~ dZodd • Hence

(O)
dodd ~ max (d1odd d2odd ' d 2odd)- If vex) has even weight, then we

*If J o is empty, then gl(x) ~ 1.
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consider two cases. Vi(l) ~ 0 for some i, 0 < i < n l and Vi(l) = 0

for i = O,l, .•. ,nl-l. If Vi(l) ~ 0 for some i, a < i < n l , then

as in the proof of Theorem 2, we obtain deven ~ dleven d2odd -

n 1Similarly, if Vi(l) = 0 for i = O,l, ... ,nl-l then x + 1 divides

v(x). Thus, by [13] vex) is a code polynomial of the binary cyclic

one-dimensional product code of veE) , where veE) is the binary
n 2 n 2

o forv. (l)yj<P =
J

n -12

L
j=O

cyclic code of length n 2 generated by (x+l)g2(x), and g2(x) is the

generator of V For this v(x) we can also writen
2

<P £ J O U {O}. Let us define

n -1
2

L
j=O

v . (1) zj
J

Thus, v2 (z) is code polynomial of even weight of v(O) • Now ifn 2

Vj(l) ~ a for some j , 0 < j < n
2

, then d > d (0) IfV.(l) = 0- even - 2even· J

for j O,l, ... ,n
2
-l, then x

n2 + 1 divides v(x) and, by [13] , vex)=

is a code polynomial of the binary cyclic product code of v~ , the
1

binary cyclic code of length n 1 generated by gi(x) = (x+l), and

V(E), the binary cyclic code of length n 2 generated by (x+l}g2(x).
n2

Thus d > 2d2 . Henceeven - even

d > min (d (0) 2d d d )
even - 2even' 2even' leven 20dd ·

Q.E.D.

Examp~e 3: As an application of Theorem 3 let us consider the

(21,7) binary cyclic code generated by g(x) = m1 (x)m3 (x)nry (x)mg(x).
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For this case n 1 = 3, n 2 = 7, J
O

= {1,2}, J
O

= {l,2,3,4,5,6} and

52 = {1,2,4}. Thus, V is a (7,4) binary cyclic code, V(O) is then 2 n
2

(7,1) binary cyclic code. Since d lodd = 3, d = 00, d 20dd = 3,leven

d = 4 , d(O} = 7 and d (O) = 00, by Theorem 3 dodd > 92even 20dd 2 even

and d > 8. The BCH bound gives dodd :. 5 and d > 6.even even

Now we will investigate the weight structure of a class of

binary cyclic codes which will be called the class of binary cyclic

quasi-product codes. These codes are defined in the following manner:

consider the binary cyclic product code of V , with d 1 > 2 andn1 -

gl(l) ~ 0, and V
n2

' with d 2 ~ 2 and g2(1) ~ 0, generated by

n 1 n2g(x), such that d l d 2 > 4. Let g(x) = GCD(g(x), (x +1) (x +1)).

The binary cyclic code of length n generated by g' (x) = (g(x)/g(x»

is defined to be the binary cyclic quasi-product code of Vn1
That is, if 8 1 = {elg(Sp(e,¢)) = 0 for ¢ = 0,1, .•• ,n

2
-1}and

8
2

= {¢lg(Sp(e,¢)) = 0 for e = O,l, •.. ,nl-l}, then g' (Sp(e,¢)) = 0

for e ~ 8
1

and ¢ = 1,2, •.• ,n
2
-1, and gl (Sp(e,¢)) = 0 for ¢ ~ 8

2

and e = 1,2, ... ,n1-l.

We are now in the position to prove the following theorem.

Theorem 4:

and V •n 2

and

Let Vn be the binary cyclic quasi-product code of Vn l
Then

deven = min (2nl,2n2,dlevend2,dld2even,n2+ (dlodd-2)d2odd,nl+ (d2odd- 2 ) x

d1odd) ·



Proof: Let n1-l n2-1
vex) = I I a xPii,j)

i=O j=O p(i,j)

16

e .cp
v. (a. )yJ , where V. (y) =

J J

be a nonzero code polynomial of Vn • Hence

n 2-1

L
j=O

n -1
1
I

i=O

i
a (. .) yP ~,J

v(8) (z) =
2

Since v(B P(8,0», 8 £ Sl' can be zero or nonzero and since

v(BP(O,$», $ £ S2' can be zero or nonzero, we must inspect several

cases.

Case 1. In this case we consider the possibility of having

v(B P (8,0» = 0 for 8 £ Sl and v(BP(O,$» = 0 for $ £ S2. Hence,

v(B P (8,$» = 0 for 8 £ Sl and $ = 0,1, ••• ,n2-1 and v(B P (8,$» = 0

for ~ E 8 2 and e = O,l, •.. ,n l -l. This implies that vex) is a code

polynomial of the binary cyclic product code of V and V (13].n 1 n 2

Thus, by Theorem 2, dodd = d 10dd d 20dd and deven = min(dleven d2 ,

d l d2even)·

Case 2. In this case we consider the possibility of having

v(B P (8,O» ¥ 0 for 8 £ Sl and v(BP(O,~» = 0 for ~ £ S2. Hence,

v(BP(8,~» = 0 for ~ £ S2 and 8 = O,1, ••• ,n
1
-1. Let us define

n 2-1

I
j=O

Thus, v(8) (y~) = 0 for 8 £ Sl and ~ = 1,2, ••• ,n2-l. This implies
2 n -1 n-2

that for e £ 51' v2(8) (z) is divisible by z 2 +z 2 + ••. + z+l.
n -1

Hence, for 8 £ Sl' vJ8) (z) = V. (a.
8 ) (r zj). Since

J j=O
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v~e) (1) = v(BP(e,o» # 0 for e E Sl we can conclude that

for e £ Sl.

(I)

one for j

e= Vn _1(0, ) ~ 0
2

So, the Hamming weight of Vj(y), w(Vj(Y», is at least

= O,1, ... ,n2-l. Hence w(v(x) ~ n2 , which implies that

dodd ~ n2 and deven ~ n2+1. Now let us obtain a better bound

for d , for this we assume that vex) has even weight. Thuseven

w(v(x)} ~ n2+1. Furthermore let us assume that vex} is a code

polynomial such that there exists at least one j, 0 ~ j < n 2 ,

satisfying w(Vj(y» = 1. Because of the cyclic property we can,

without loss of generality, assume that VO(y} = 1. Thus, by

Equation 1
e e 8

VO(a) = v 1 (a ) = ... = Vn _lea ) = 1
2

for e E Sl. Now based on the code polynomial vex) we construct the

following polynomial:

where a' (" ") = a (' ') for i = 1,2, ... ,n1-l and j = O,1, ... ,n2-1p 1,J P 1.,J

a~(O,j) = ap(O,j) + 1 for j = O,1, ••• ,n2-1. Associated with the

polynomial v' (x), polynomials V' (y,z), V~(y) and V! (z) are defined
J .1.

as follows:

where VI. (y)
J

Thus

n -1 n -1
2

V~ (y) zj
1 iV' (y,z) = L = I Vi(z)y

j=O J i=O
n -1 n -11

i 2 , j= L at c .)y and V~ (z) = L a (" .) z
i=O p 1,J 1

j=O P 1,J

V' (y,z) =
n2-!
I (V . (y) +1) z j

j=O J
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and VI (SP(8,¢» = VI (a 8 ,y¢). This implies that

n -1
2
L

j=O

Hence, v , (QP(8,~» -- 0 f·or e £ S and ~ 0 1 n 1
IJ 1 '+' = , , ••• , 2- · In addition

n -1
2 e· rhL V.(a)yJ'r+

j=O J

n -1I yj¢ =
j=O

Thus for ¢ ~ 0 we have
n -11
L

i=O

- ep ieV. (y ) Ct •
1.

v' (x) has odd weight

Since Vi (x) has

Now, since v(SP(8,¢» = 0 for ¢ € 52 and 8 = O,l, ••• ,nl-l, by Lemma 2,

Vi(Y¢) = 0 for ¢ € 52 and i = O,l, •.• ,nl-l. Hence, since 0 ¢ 52

because g2(1) t 0, we can conclude that VI (SP(8,¢» = 0 for ¢ € 52

and e = O,1, ••• ,n1-1. By [13] v' (x) is a code polynomial of the

binary cyclic product code of V and V
n 1 n 2

because vex) has even weight. Now we investigate the w(v ' (x».

Similar to the proof of Theorem 2 we can conclude that V~(y) is a
J

code polynomial of V for j = O,1, ••• ,n2-1 and that
n 1

n -1
2 .

v 2' (z) = L V~(l)zJ is a code polynomial of V
j=O J n 2

odd weight, there exists at least one j, 0 ~ j < n 2 , such that

V~(l) # O. This implies that we must have V~ (1) ~ 0 for
J J 2

2 = 1,2, ••• ,r, with d 20dd < r 2 n 2 and r odd. Let us assume that

VI. (1) = 0, with V.' (y) t 0, for 2 = r+l, r+2, ••• ,r+s, with
J Jl, J £ .
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r ~ r + s ~ n 2 - Since V~ (y) is a code polynomial of V ,
J n 1

n
w (VI (x» > r d lodd + s dleven. Since v (x) = VI (x) + 1 + x 1 +

(n2 -1)n1+ x , then, for a given w(v' (x», the minimum

weight of v(x) is going to be achieved when w(V~(z» is maximum.

w(VO(z» is maximum when for each Vj(Y) 1 0 we have a~(O,j) = 1.

Now the number of j such that Vj(Y) 1 0 is r+s. Thus

w(v(x» > r(dl dd-l) + s(dl -1) + n 2 - (r+s) =
- 0 even

= r(d1odd-2) + s(dleven-2) + n 2 - Since d 10dd ~ 3, dleven ~ 2,

r ~ d20dd and s ~ 0, the minimum is achieved for r = d 20dd and s = o.

Thus for this case we have shown that dodd ~ n 2 and

deven ~ min(n2 + (d1odd-2) d2odd ' 2n 2 ). Now we will show the

existence of vex) with Hamming weights n 2 , 2n 2 and n 2 + d2odd(dlodd-2).

n 1 2n1 (n2 -1)n lAt first consider vex) = 1 + x + x + + x Let us

show that vex) is a code polynomial of Vn of weight n 2 . Now

VA«(3p(e,~» __ y¢n+ l Since GCD(n1 ,n2 ) = 1 and 0 < ¢ < n 2 ,
<Pn 1 ·

y +1

y¢nl + l = 0 if and only if ¢ = O. Thus, v(SP(8,¢» = 0 for

8 = O,l, ••• ,nl-l and ¢ = 1,2, •.• ,n2-l which implies that v(x)

is a code polynomial of V. Now we consider the following polynomialn n 1 (n 2-1)n1of weight 2n2 : ~(x) = (l+x + + x ) (l+x). By a similar
A

procedure we can show that vex) is a code polynomial of Vn - To prove

the existence of a code polynomial of weight n 2+ (dlodd-2) d 20dd we

will show that if w(v1(x») = WI' where v1(x) is a nonzero code

polynomial of V
nl

, and w(V2(x» = w2 , where v 2 (x) is a nonzero code
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polynomial of V , then there is a code polynomial of V withn 2 n

weight n
2 + (w1 -2) '\v2 · Let

'tv -1
k.1

v
1

(x) 1 + L 1
0 k.= x < < n 1i=l 1

w -1
~.2

v 2 (x) = 1 + L x J 0 < ~. < n
2

,
j=l J

HI = {O,k1 ,k 2 ,···,k,,, -I} and H2 = {O,9- l ,9- 2 ,···,9-w _lL Nmv we
1 2

construct the following polynomial.

v(x) =
n -1

2

L
k=O

such that ap(i,j) = 1 if i E Ml and j E M2 otherwise ap(i,j) = O.

Hence w(v(x)) = n 2 + (wl -2)w2 • Now

V~(Sp(e,¢» + y¢n+ l ~
= where v{x)

¢n '
y 1+1

As shown in the proof of Theorem 2 we can conclude that

v(Sp(e,¢)) = ° for e E 8 1 and ¢ = O,1, •.• ,n2-li and for ¢ E 8
2

and

y<Pn +le = O,l, ... ,nl-l. We also know that = a for ¢ = 1,2, ... ,n2 -1.
cP n ly +1

Thus, since ° ¢ 8 2 , we can conclude elat~(SP(e,<p)) = ° for e E 8 1 and

<P = 1,2, ... ,n2-li and ~(Sp(e,<p)) = ° for <p E 8 2 and e = O,l, .•. ,nl-l.

Thus v(x) is a code polynomial of V. We have shown for this case
n
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Case 3. In this case we consider the possibility of having

v(SP(8,O» = 0 for 8 £ 8
11

and v(SP(8,O» ~ 0 for 8 £ 8
12

, where 8
11

and 8 12 form a partition of 8 1 • By the same argument used in the

analys,is of the previous two cases \1e can conclude that

e e evj(a) = 0 for 6 £ 811 and j = O,1, ••• ,n2-1 and VO(a ) = V1 (a ) =
e... = Vn _l(a ) ~ 0 for e E 5 12 • Hence w(v(x}) > 2n2 -

2

Case 4. In this case we consider the possibility of having

v(SP(8,O» = 0 for 8 £ 8
1

and v(Sp(O,¢» ~ 0 for ¢ £ 8 2 " As proved

in Case 2 we can show that dodd = n 1 and

deven = min(2n1 ,n1 + (d2odd-2}dlodd)-

Case 5. In this case we consider the possibility of having

v(SP(O,¢» = 0 for ¢ £ 8
21

and v(SP(O,¢» ~ 0 for ¢ £ 8
22

, where 8
21

and 8 22 form a partition of 8 2 - As proved in Case 3 we can show

that w(v(x» > 2n1 •

Case 6. At last we consider the possibility of having

v(Sp(8,O» ~ 0 for 8 £ 8
1

and v(SP(O,¢» ~ 0 for ¢ £ 8
2

• As proved

in Case 2 we can show that

Vo (a
8 ) v

1
(a8 )

8 :j 0= = = Vn -1 (a )
2

for e £ SI' and

Vo(y¢) - V (yep) = = Vn -l(Y¢) ~ 0- 1
1

(2)

(3)

for ¢ £ 8 2 • Hence, w(v(x» > rnax(n1 ,n2}, which implies that

dodd ~ max(n1 ,n2 ) and deven ~ max(n1 ,n2 )+1. Now let us obtain a

better bound for d , for this we assume that vex) is a codeeven

polynomial of even weight such that there exists at least one j,
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o < j < n 2 , satisfying w(Vj(y» = 1; and also there exists at least

one i, 0 ~ i < n 1 , satisfying w(Vi(z» = 1. Because of the cyclic

property we can, without loss of generality assume that VO(y) = 1.

Thus, by Equation 2

e
::: Vn _l(a. ) = 1

2
(4)

(5)

for 8 £ 51 and by Equation 3

~ ~ ~ ~j2
VO(Y) = V1 (y ) = ... = V

n1
- 1 (Y ) = Y , 0 ~ j2 < n 2 ,

for ¢ £ 8 2 . Now, based on the code polynomial vex) we construct the

following polynomial

v' (x) =

nl-l n -1
2 (. . )I La'.. xP .1., J

i=O j=O p(l,J)

where a~(O,j) = ap(O,j) + 1 for j = O,1,···,j2-1 , j2+1 , •.• ,n2-1;

a~(i,j2)cap(i,j2) + 1 for i = 1,2, ••• ,n1-l; a~(O,j2) = a p (O,j2)

and a~(i,j) = ap(i,j) for i = 1,2, .•. ,n1-l and j = O,1,···,j2-1 ,

j2 + 1, ••. ,n2 - 1. Associated with the polynomial v' (x), polynomials

V' (y, z), V'. (y) and V! (z) are defined as follows:
] 1

Vi (y,z) =

n -1
2
I

j=O
v~ (y) zj =

J

n -1
1
L

i=O

- ivl<z)y

n1-l

where VI. (y) = L
J i=O

Thus,

, i
a (. .) yP 1,J

andV!(z) =
1.

n -1
2

L
j=O

I zja (. .)P 1.,J

and
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VI (y,z) =
n -12 _

I (V . (y) +1) zJ+ (V. (y) +y+y2
j=O ] J2

j~j2

+.•• +

Hence,

V'(Sp(8,¢» =

n -1

I (v.(a 8)+1)yj¢(V. (a8)+a8+a28+ ••• +a (nl -l)8)y¢j2
j=O J J2

j;i j 2

e 28 (n1-l)8
But for 8 ~ 0 a + a + ... + a = 1, which implies

n -1

I (V. (a8)+1)yj ¢ for 8 =I O.
j=O J

Since 0 ¢ 51 because

VI (SP(8,¢» =

gl(l) =I 0, we conclude, by Equation 4, that VI (Sp(8,¢» = 0 for

e £ 8 1 and ~ = O,1, ... ,n2-1. We also know that

n -1
1 ~ <Pj2-SL (\1. (y'f') + Y ) a 1 +

i=l 1

(j2-1 ) ¢ (j2+ 1 ) ¢
y +Y + • •• +

Thus, by a similar procedure we can show that VI (sp(8,¢» = 0 for

~ £ 8 2 and e = O,1, ... ,n1-l. So, by [13] Vi (x) is a code polynomial

Vi (x) has even weight

I f v I (x) =: 0, then w (v (x» =

of the binary product code of V and Vn 1 n 2

because vex) has even weight and vex) = Vi (x) +

n1-l (- · )P 1.,J 2L x
i=l

n -1
I xp(O,j)+

j=O

jij2
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If v' (x) t 0, then we must consider two cases:

a~(0,j2) = 1. At first let us assume a~(0,j2) = O. Now if

If w(VO(z» = 0 and w(Vj 2(y» = wI' then there exists i k ,

o < i k < n l , k = 1,2, .•• ,wl , such that w(Vi (z}) ~ d 2 . Thus,
k

w(v(x» ~ n2-1+wl(d2-1)+nl-l-wl ~ n 1+n2 -2+d1 (d2 -2) ~ n 1+n2-2.

Similarly, if w(VO(z}} = w2 and w(V~ (y» = 0, then
J2

w(v(x}} ~ nl+n2~2+d2(dl-2} ~ n l +n 2-2. If w(Vo(z}} = w2 and

w(v~ (y» = wI' then there exists i k , 0 < i k < n 1 , k = 1,2, ... ,w1 ,
J2

such that w(Vi (z}) ~ d 2 and also there exists j~,
k

o ~ j~ < n 2 , ~ = 1,3,4, ... ,w2+l, such that W(Vj~(Y}) ~ d l .

Thus, w(v' (x}) ~ wld2+w2+(w2-(d2-1»(dl-l) = wld2+w2dl-(d2~1) (dl-l).

Hence w(v(x» ~ nl+n2-2+wl(d2-2)+W2(dl-2)-(d2-1) (dl-I) ~

nl+n2-2+dl(d2-2)+d2(dl-2)-(d2-1) (dl-I) = n 1+n 2 -2+(d2 -1) (d1-l)-2 >

n l +n2-2,(dl d 2 >4). At last we assume ab(0,j2} = 1. Thus, we have

only to inspect the case w(VO(z}} = w2 and w(V~ (y}) = wI. So,
J2

w(v' (x» ~ w1d2+ (w2-d2 ) d1 = Wld2+W2dl-d2dl. Hence, w(v(x» >

nl+n2-2+wl(d2-2}+w2(dl-2}-d2dl+4 ~ nl+n2-2+dl(d2-2~+d2(dl-2}

d2d 1+4 = n1+n2 -2+(dl -2) (d2 -2) ~ n 1+n 2-2. Since n 1+n2 -2 ~

min(2n
l

,2n
2
), we can conclude that for Case 6 deven ~ min(2n l ,2n2}·

This completes the proof of Theorem 4.

Q.E.D.

Example 4: As an application of Theorem 4 let us consider the
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(119,47) binary quasi-product code generated by

and S2 = {1,2,4,8,9,13,lS,16}. Hence, V is the (7,4) binaryn1

code with d lodd = 3 and d = 4; and V is the (17,9) binaryleven n 2

code with d20dd = 5 and d - 6. Thus by Theorem 4,2even

dOQd = 7 and deven = 14. The BCH bound gives dodd ~ 7 and

deven ~ 10.

Now we will investigate the weight structure of another class

of binary cyclic codes which will be called the class of binary

cyclic semi-quasi-product codes. These codes are defined in the

following manner: consider the binary cyclic product code of V ,
n 1

That is, if

with g1(1) ~ 0, and Vn ' with d 2 ~ 2, generated by g(x). Let
n

2
2

g(x) = GCD(g(x),(x +1». The binary cyclic code of length n

generated by g' (x) = (g(x}/g(x}) is defined to be the binary cyclic

semi-quasi-product code of V and Vn l n 2

8
1

= {elg(Sp(e,¢» = 0 for ¢ = O,1, ..• ,n
2

-1} and 8
2

= {¢lg(Sp(e,¢» = 0

for e = O,1, ... ,n1-1}, then g' (Sp(e,¢» = 0 for e E 81 and

¢ = O,1, ••• ,n2-1 and g' (Sp(e,¢» = 0 for ¢ E 82 and e = 1,2, ••• ,n1-1.

We are now in the position to prove the following theorem:

Theorem 5:

and

Let V be the binary cyclic semi-quasi-product code ofn

Then
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Proof: Let

vex) =

The minimum

be a nonzero code polynomial of V
n

" 5ince v(8P(O,~)), ~ E 52'

can be zero or nonzero, we must inspect 3 cases.

Case 1. In this case we consider the possibility of having

v(Sp(O,~)) = 0 for ~ E 52" As proved in Case 1 of Theorem 4 we

can conclude that dodd = d 10dd d 20dd and deven = min(dlevend2' dld2even).

Case 2. In this case we consider the possibility of naving

v(BP(O,~)) = 0 for ~ E 5
21

and v(BP(O,~)) i 0 for ~ E 5
22

, where 5
21

and 8 22 are a partition of 8 2 • As proved in Case 3 of Theorem 4

we can conclude that w(v(x) > 2n 1 •

Case 3. In this case we consider the possibility of having

v(BP(O,~)) i 0 for ~ E 52" As proved in Case 2 of Theorem 4 we

can conclude that dodd = n 1 and deven = min(2n1 ,n1+ (d2odd-2) d 1odd) •

Q.E.D.

Let V be the binary cyclic semi-quasi-product code of Vn n l
If V

nl
is the (nl,n l ) binary cyclic code we will call

V the one-dimensional quasi-product code of V
n n 2

distance of this class of codes is specified by the following corollary.

Corollary 1:

Then

Let V be the one-dimensional quasi-product code of Vn n 2
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and

Ex,amp1e 5: As an a~p1ication of Theorem 5 let us consider the

(119,39) binary semi-quasi-product code generated by

g(x) = ml(x)mll(x)rn13(x)m21(x). In this case

n1 = 17, n 2 = 7, 51 = {1,2,4,8,9,13,15,16} and 52 = {1,2,4}. Hence,

V
n1

is the (17,9) binary cyclic code, with d lodd = 5 and

d = 6; and V is the (7,4) binary cyclic code, withleven n 2

d20dd = 3 and d2even = 4. Thus by Theorem 5 , dodd = 15 and

d = 18. The BCH bound gives dodd ~ 13 and d > 14.even even

At last we will derive a lower bound on the minimum distance

of a subcode of a one-dimensional quasi-product code of V Letn
2

V be a subcode of the one-dimensional quasi-product code of V ,n n2
generated by g(x) such that gel) ~ O. Let

J 0 = {8 Ig ( Sp (8 ,.0» = O}, J 0 = {¢ Ig ( Sp ( 0 , ¢» = O},

8 2 = {¢lg(SP(8,¢» = 0 for 8 = 1,2, ..• ,n
l
-l}, N

2
= 8

2
n J

O
and

Thus, by the definition of V , V is generated byn n2

g2(x) = IT (x+y¢). We define V to be the binary cyclic code
¢£8

2
n l

of length n l generated by gl(x) = IT (x+~8)*; v(O) to be the
8£J

O
n 2

binary cyclic code of length n 2 generated by g~O) (x) = IT (x+y¢~**;
q,e:JO

*If JO is empty, then gl(x) = 1.

**If J O is empty, then g~O) (x) = 1.
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v' to be the binary cyclic code of length n 2 generated by
n

2

gi{x) = IT (x+y¢),* and V" to be the binary cyclic code of length
~ENZ n 2

n 2 generated by gil (x) = IT (x+y¢).
¢ EP 2

At last we let d 2' odd (d2' 0'dd)' d' Cd' , ) be the minimum ,~eight2even 2even

of odd-weight, even-weight code vectors of V' (V"), respectively.n 2 n 2

Now we are in the position to prove the following theorem.

Theorem 6: Let dodd = rnax(d1odd d 2odd , di~dd) and

deven = min(d2~ven' 2d2even' dleven d 2odd}· If diodd > dieven

then dodd ~ min {dodd' max{nldieven + (diodd - dieven) d lodd ' d~~1d»

and d > rnin(d , n 1d 2' ). If d2'odd < d2'even' theneven - even even
d · (d (d' d(O»). d >

odd ~ m1n odd' max n 1 2odd' 20dd ' even

min{deven ' nldiodd + (dieven - diodd) d lodd) for N2 nonempty

and deven ~ min {deven,2nl,nl + (d2odd-2)dlodd) for N2 empty.

Proof: Let vex) be a nonzero code polynomial of Vn,· Thus

n -1
v{sP{8,¢»

1
v.(yct»ais

= L = a
i=O 1

for ¢ E S2 and 8 = l,2, ••• ,n
l
-l. Since v{Sp{O,¢», ¢ E 8 2 , can

be zero or nonzero we must inspect the following cases:

Case 1. In this case we consider the possibility of having

v{SP{O,¢» = 0 for ¢ E S2. As proved in Theorem 3 we can conclude

that dodd ~ max {d1odd d 2odd ' d2~dd) and

d >. (d" 2d d d )
even - rnln 2even' 2even' leven 2odd·

*If N2 is empty, then gi(x) = 1.
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Case 2. In this case we consider the possibility of having

v(SP(O,¢» ~ ° for ¢ £ 52' where 52 = 52 - N2 . Let

n1-l
vi¢) (y) = L V. (y¢)yi •

i=O 1

Thus, vi¢) (y) = ° for ¢ £ 52 and e = 1,2, ... ,nl-l. Hence

Vo{Y¢) = V1{y¢) = = Vn -l(Y¢) ~ ° for ¢ £ 5i and by Lemma 2
1

Vi(y¢) = ° for ¢ £ N2 , that is, Vi(z) is a nonzero code polynomial

of v~ ' i = O,l, ... ,n1-l. We notice that if w(v(x) is odd, then

viol (~) has odd weight and if w(v(x» is even, then W(ViO) (y» is

even. Thus, if Vo(z) = Vl(z) = = Vn _l(z), then
1

dodd ~ n1diodd and deven 2 nldieven° If not all Vi(z),

i = O,1, ... ,n1-l, are equal, then dodd ~ wlodd diodd + (nl-wlodd) x

d2even and deven ~ wleven diodd + (nl-wleven) dieven' where

W1odd ' w is the weight of an odd-weight, even-weight code wordleven

of V , respectively. Hence, d > n d' + (d2odd - d I ) xn1 odd - 1 2even 2even

w1odd · If diodd > d' then dodd > n d' + (d2odd - d' ) x2even' - 1 2even 2even

d1odd · If diodd < d' then dodd ~ nld2odd· For the even-2even'

weight code polynomials we obtain d > n 1d2' +even - even

(d2'odd - d t
) w • If d' > d' then d > n d t

2even leven 20dd 2even' even - 1 2even·

I f d' < d' then d > n d' + (d' d ' )20dd 2even' even - 1 2even 20dd - 2even x

( d ) d ' + (d' -d' ) d For thl'S casen 1- lodd = n 1 20dd 2even 20dd lodd·

we can conclude that if diodd > d2even' then dodd>

( d ' + (d' -d' ) d d (0» d d >max n 1 2even 20dd 2even lodd' 20dd an even

nld2even· Now if diodd < dieven' then dodd ~ max (nldiodd' d~~~d)
These bounds are
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valid for N2 empty or N2 nonempty. However when N2 is empty we

can obtain a better bound for d as follows: assume we have someeven

i, 0 < i < n l , such that w(Vi(z)) = 1, without loss of generality

we assume Vo(z) = 1. Thus, v. (z) + 1 is a code polynomial of V ,
1. n

2
i = O,1, ••• ,n1-l. Since w(v(x» > n I , there exists at least

one i, 0 < i < n l , such that w(Vi(z)+l) # O. Remembering that

viO) (Y) 1 0 and has even weight we can conclude that

w (v ( x» > \V + (n -w ) (d -1 ) =- leven 1 leven 20dd

= nl(d2odd-l) ~ wleven(d2odd-2) ~ nl(d2odd-l) - (ol-dlodd) (d2odd-2) =
= n 1 + (d2odd-2)dlodd· Thus, deven ~ min(2n1 ,n1 + (d2odd-2)dlodd).

Case 3. In this case we consider the possibility of having

v(BP(O,~» ~ 0 for ~ £ 8 21 and v(BP(O,~» = 0 for ~ £ 8 22 , where

Sil and 8 22 are a partition of Si· In this case

Vo(Y~) = Vl(Y~) == = Vn -1 (Y~) ~ 0 for cP £: S21 and

V. (yep)
1

= 0 for ¢ £ N2 u 8 22 . Thus, w(v(x» is lower bounded by the
1.

bounds found in the analyses of the last case.

Q.E.D.

Exampl~ 6: As an application of Theorem 6 we consider the (105,46)

binary cyclic code generated by

= ml(x)m3(x)m7(x)m9(x)mlS(x)ffi17(x)m49(x). In tnis case

n
l

= 7, n2 = 15, Jo = {1,2,4}, J O = {1,2,4,7,8,11,13,14},

8
2

= {1,2,3,4,6,8,9,12}, N2 = {1,2,4,8},

{1,2,3,4,6,7,8,9,11,12,13,14}. Thus

= 5 d = 6 d(O) = 3 d(O) = 6 d' - 3 d' - 4
, 2even ' 20dd ' 2even ' 20dd - , even - ,

= 5 and d2~ven = 10. By Theorem 6, dodd ~ 15 and deven > 10.



The BCH bound gives dodd > 7 and d > 8.even

In the next section we present numerical results obtained

from the application of the theorems proved in this section.

31



32

IV. Numerical Results

In Table I we give numerical results obtained from the

application of Theorem 1, Theorem 3 and Theorem 6. Numerical

results obtained from the application of Theorem 2, Theorem 4,

Theorem 5 and Corollary 1 are given in Table II. The symbols

for the tables are the following:

n = code length

k = number of information digits

roots = the powers of S that specify the generator polynomial

d Oodd = BCH lower bound on the minimum distance of odd-weight

code words

d = BCH lower bound on the minimum distance of even-weightDeven

code words

dodd = actual minimum \veight of odd-weight code words

d = actual minimum weight of even-weight code wordseven

T - a = by Theorem a

C - a = by Corollary a



Table I

n k ROOTS d = d Oodd= d > dodd~ REMARKSOeven even-

21 10 (1,7,9) 4* 5 4* 9 T-3
21 9 (1,3,9) 6* 5 6* 7* T-3
21 7 (1,3,7,9) 6 5 8* 9* T-3
33 13 (1,3) 10* 5 10* 11 T-l and [10, T-2]
35 17 (1,5,15) 6* 5 6* 7 T-3
35 16 (1,7,15) 4* 5 4* 15 T-3
35 15 (0,1,7,5) 6 8* T-6
35 13 (1,5,7,15) 6 7 8* 15* T-3
39 27 (1) 4 3* 6* 3* T-1
39 15 (1,3) 8 7 10* 13* T-l and [10, T-2]
45 31 (3,5,21) 4* 3 4* 5 T-6
45 27 (3,5,9,21) 4* 3 4* 5 T-6
45 14 (0,1,7,9,15) 8 10* T-6
45 13 (1,5,7,15) 6* 7 6* 9 T-3
45 9 (l,S,7,9,15) 10 9 12* 15 T-3
51 27 (1,3,9) 6 5 8* 17 T-1 and [10 , T-2]
51 25 (1,9,17,19) 6* 7 6* 15 T-3
51 19 (1,3,9,19) 10* 7 10* 17 T-3
51 17 (1,3,9,17,19) 10 7 12* 15 T-3
55 35 (1) 4 5* 6 5* T-l
55 25 (1,5) 8 7 8 11* T-l and [10, T-2]
57 21 (1, 3) 10 7 14* 19 T-l and [10, T-2]
63 45 (3,7,15) 4* 3 4* 7 T-6
63 43 (1,3,7,21) 6* 5 6* 9 T-1 and [10 , T-2]
63 42 (3,7,15,27) 4* 3 4* 7 T-6
63 39 (1,9,11,23,27) 6* 5 6* 7 T-l and [10 , T-2]
63 39 (3,7,9,15,27) 4*- 3 4* 7 T-6
63 37 (1,11,15,21,23) 4* 5 4* 7 T-6
63 36 ( 1 , 5 , 9 , 11 , 23) 6* 5 6* 7 T-l

*The bound gives the actual weight [12] • w
w



Table I (cont.)

n k ROOTS d = d Oodd= d > dodd~ REMARKSOeven even-

63 36 (1,3,9,11,23) 6* 5 6* 7 T-1
63 36 (1,11,15,23,27) 6* 5 6* 7 T-6
63 34 (1,11,15,21,23,27) 6* 7 6* 9 T-6
63 33 (1,7,9,11,23,27) 6* 5 6* 7 T-l and [10 , T-2]
63 33 (1,7,11,15,23) 4* 5 4* 9 T-6
63 31 (1,7,9,11,21,23,27) 6 7 8* 9 T-l and [10, T-2]
63 31 (1,5,11,15,21,23) 10* 7 10* 9* T-l
63 30 (1,7,11,15,23,27) 6 5 8* 9 T-l
63 28 (1,7,9,11,15,21,23) 4* 5 4* 27 T-3
63 28 (1,7,11,15,21,23,27) 6 7 8* 9 T-6
63 27 (1,3,7,11,15,23) 6 5 8* 9 T-1
63 25 (1,7,9,11,15,21,23,27) 6 7 8* 27 T-3
63 24 (1,3,7,11,15,23,27) 6 5 8* 9 T-l
63 18 (1,5,7,9,11,13,23,31) 6* 7 6* 9 T-3
63 16 (1,5,7,9,11,13,21,23,31) 10 9* 12* 9* T-3
63 15 (1,5,7,9,11,13,23,27,31) 6* 7 6* 21 T-3
63 13 (1,5,7,9,11,13,21,23,27,31) 10 9 12* 21 T-3
65 41 (1,5) 6 7 6 13 T-1 and [10 , T-2]
65 29 (1,5,7) 8 9 10 13 T-l and [10, T-2]
69 34 (1,3,23) 6 7 8 21 T-3
69 25 (1,3,15) 8 7 14 23 T-3
69 23 (1,3,15,23) 10 9 16 21 T-3

105 4~ (1,3,7,9,15,17,49) 8 7 10 15 T-6

*The bound gives the actual weight [12].



Table II

n k ROOTS d = d Oodd= d = d odd= REMARKSOeven even

15 7 (1,7) 6 3 6 3 T-4
15 5 (I,S,7) 6 3 6 3 T-2
21 15 (1) 4 3 4 3 C-I
21 12 (1,9) 4 3 4 3 T-2
21 9 (1,5) 6 3 6 3 T-4
21 7 (1,5, 7) 6 3 6 3 T-2
33 13 (I,S) 6 3 6 3 T-4
33 11 (1,5,11) 6 3 6 3 T-2
35 23 (1) 4 3 4 3 C-l
35 20 (1,15) 4 3 4 3 T-2
35 11 (l,3) 10 5 10 5 T-4
35 7 (1,3,7) 10 5 10 5 T-2
39 15 (1,7) 6 3 6 3 T-4
39 13 (1,7,13) 6 3 6 3 T-2
45 21 (1,7) 6 3 6 3 C-1
45 15 (1,5,7) 6 3 6 3 T-2
45 13 (1,3,7,21) 10 5 10 5 T-4
45 9 (1,3,7,9,21) 10 5 10 5 T-2
45 7 (1,3,7,9,15,21) 10 11 10 15 T-2
51 35 (1,19) 6 3 6 3 C-l
51 27 (1,9,19) 6 5 6 5 T-2
51 19 (1,5,11,19) 6 3 6 3 T-4
51 17 (1,5,11,17,19) 6 3 6 3 T-2
51 11 (1,3,S,11,19) 18 9 18 15 T-S
51 9 (1,3,S,11,17,19) 18 13 18 15 T-2
55 15 (1, 3) 10 5 10 5 T-4
55 11 (1,3,11) 10 5 10 5 T-2
57 21 (1,5) 6 5 6 5 T-4

w
(Jl



Table II (cant. )

n k ROOTS d = d Oodd= d = dodd= REMARKSOeven even

57 19 (1,5,19) 6 3 6 3 T-2
63 43 (3,7,15,21) 4 3 4 9 T-S
63 39 (1,11,15,23) 4 3 4 3 C-l
63 36 (1,9,11,15,23) 4 3 4 3 T-2
63 33 (1,9,11,15,23,27) 6 5 6 7 T-5
63 33 (1,3,11,15,23) 6 5 6 7 T-4
63 31 (1,3,11,15,21,23) 6 7 6 9 T-5
63 31 (1,7,11,15,21,23) 4 5 4 9 T-5
63 30 (1,3,9,11,15,23) 6 5 6 7 T-5
63 28 (1,3,9,11,15,21,23) 6 7 6 9 T-2
63 27 (1,3,9,11,15,23,27) 6 5 6 7 T-5
63 27 (1,5,11,13,23,31) 6 3 6 3 C-1
63 25 (1,3,7,11,15,21,23) 6 7 8 9 T-5
69 47 (1) 4 3 6 3 C-l
69 36 (1, 3) 6 5 8 7 T-2
69 45 (1,23) 4 3 6 3 C-l
69 25 (1,3,15) 8 7 14 23 T-5
69 14 (1,3,5) 18 15 24 21 T-5
77 47 (1) 4 3 4 3 C-l
77 44 (l,ll) 4 3 4 3 T-2
77 41 (1,11,33) 6 5 6 7 T-5
77 37 (1, 7) 4 5 4 11 C-1
85 53 (1,9,13,21) 6 5 6 5 C-l
85 45 (1,9,13,15,21) 6 5 6 5 T-2
85 49 (1,9,13,17,21) 6 5 6 5 C-l
85 37 (1,5,9,13,15,21) 6 7 6 17 T-5

105 63 (1,9,11,25) 4 3 4 3 C-l
105 57 (1,3,9,17) 6 5 6 5 C-l



Table II (cant. )

n k ROOTS d = d Oodd= d = dodd= REMARKSOeven even

105 51 (1,9,11,17,25) 10 7 10 7 T-4
105 49 (1,7,9,11,21,25,35,49) 4 5 4 15 C-l
105 48 (1,9,11,15,17,25') 10 7 10 7 T-4
105 47 (1,9,11,17,25,49) 10 7 12 9 T-5
105 45 (1,5,9,11,17,25) 10 7 10 7 T-4
105 45 (1,9,11,15,17,25,45) 10 7 12 7 T-5
105 45 (1,3,5,9,17,25) 8 7 8 7 C-l
105 45 (1,7,9,11,25,35,49) 4 5 4 15 C-l
105 44 (1,9,11,15,17,25,49) 10 7 12 9 T-2
105 42 (1,S,9,11,15,17,25) .10 7 10 7 T-5
105 39 (1,3,9,11,17,25) 12 7 14 7 T-4
105 39 (1,5,9,11,17,25,35,49) 10 9 12 9 T-S
105 36 (1,3,9,11,15,17,25) 12 7 14 7 T-5
105 36 (1,5,9,11,15,17,25,35,49) 10 9 12 9 T-2
105 33 (1,3,5,9,11,17,25) 14 7 14 7 T-4
105 31 (1,3,9,11,17,21~25,49) 12 11 18 15 T-5
105 28 (1,3,9,11,15,17,21,25,49) 12 11 18 15 T-2
119 95 (l) 4 3 4 3 C-l
119 89 (1,7,21) 4 5 4 17 C-l
119 71 (1,13) 6 5 6 5 C-l
119 65 (1,13,17,51) 6 7 6 7 C-l
119 47 (1,11,13) 10 7 14 7 T-4
119 44 (1,11,13,51) 10 7 14 7 T-5
119 41 (1,11,13,17,51) 10 7 14 7 T-S
119 39 (1,11,13,21) 14 13 18 15 T-S
119 31 (1,7,11,13,21) 14 13 20 17 T-S
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v. Conclusions

By exploiting the minimum distance relationship between

codes of related lengths, the actual minimum distances of some

classes of binary cyclic codes of composite length has been

obtained. For other classes we were able to obtain new lower

bounds on the minimum distance. These new lower bounds are

useful in obtaining better estimates on the minimum distance of

many new cyclic codes. The simplicity o£ the application of

the theorems is apparent from the examples. In the examples

of Table II the BCH bound gives a good estimate on the minimum

distance.
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