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ABSTRACT

Rate 1/2 binary convolutional codes are analyzed and a lower

bound on free distance in terms of the minimum distances of two

associated cyclic codes is derived. Next, the complexity of

computing the free distance is discussed and a counterexample

to a conjecture on the relationship of row distance to free dis

tance for systematic codes is presented. Finally, an improved

Gilbert bound for definite decoding is derived.
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SECTION 1

INTRODUCTION

This report describes the results of an investigation of the

distance properties of convolutiona.l codes. The result of this

effort, which developed along three relatively independent lines,

are contained in Sections, 2, 3 and 4. These sections are inde

pendent of one another and relatively self-contained. It is

assumed that the reader is familiar with the basic ideas of

convolutional codes, say at the level of Lin's "Introduction to

Error-Correcting Codes." (Prentice-Hall, 1970).

section 2 contains an analysis of rate 1/2 binary convolutional

codes. The attempt here was to find new ways to characterize the

very simplest class of convolutional codes, with an eye to developing

algebraic machinery that could be used to construct good codes.

The major result in this section is a new lower bound on the free

distance of a rate 1/2 binary convolutional code in terms of the

minimum distances of two associated cyclic codes.

In Section 3, the complexity of computing the free distance

of a systematic convolutional code is discussed. previously

known results on the relationship of row and column distance to

free distance are summarized, and a new negative result on row

distance is presented.

Section 4 is concerned with deriving an improved Gilbert lower

bound for definite decoding of convolutional codes. Massey's bound

is discussed and a tighter bound is obtained.
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SECTION 2

ANALYSIS OF RATE 1/2 BINARY CONVOLUTIONAL CODES

Many of the most impressive advances in the theory of block

codes, such as the development of the BCH codes and their decoding

algorithm, have been a direct result of viewing the coding problem

in the appropriate mathematical setting- There have been relatively

few such advances in the theory of convolutional codes, and there

is a general feeling among researchers that the appropriate alge

braic framework has yet to be found. In this section, we present

the results of an effort to find new ways to look at convolutional

codes. We restricted our attention to rate 1/2 binary convolutional

cOdes because this is both the most easily analyzed case and because

these codes comprise the single most important class of convolutional

codes from an applications point of view. First, we consider mathe

matical models of the encoder for a rate 1/2 binary oonvolutional

code; three of these models are well known, one new. We next impose

restrictions to eliminate bad codes from consideration. Finally,

we derive a new lower bound on the free distance of codes in this

class.

2.1 Parallel mathematical models

An encoder for a rate 1/2 binary convolutional code is any in

formation-lossless I-input, 2-output linear sequential machine as

illustrated in Figure 2-1. Without
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Figure 2-1. Parallel encoder for a rate 1/2 code

essential loss of generality (1) , we will consider only polynomial

(loop-free) encoders.

The encoder maps an information sequence x(t) onto the pair

of code sequences (y(l) (t) ,y(2) (t». The code is defined to be

the set of all possible pairs of code sequences that can be generated

by the encoder. The encoding mapping is a linear transformation,

with memory, over GF(2), the field of two elements. It may thus be

conveniently described in terms of delay polynomials. If x(D)

is the D-transform of the input sequence and y(l) (D) and y(2) (D)

are the D-transforms of the code sequences, then the encoding mapping

may be described by the polynomial equation

[x (D)] [g (1) (D), g (2) (D)] = [y (1) (D), y (2) (D)]

wh re g i) (D = g (i)+ • g ( i D , i = 1,2 are th gene poly-

nomials of the code. (We take m to be the maximum of the degrees of

(1) (D) a d gC (D); m is called the memo y order of the code.)

An equivalent description in the time domain is given by
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where g 1 = (go ,g , ••• ,gm ), i = 1,2. We may write this

in the simpler form

The matrix Gp = (G(l); G(2» is called the generator matrix of the

code.

2.2 Serial mathematical models

A parallel encoder can be converted to a serial encoder by

addition of a switch that alternates between yell (t) and y(2) (t)

as shown in Figure 2-2.

x (t)

linear

binary

sequential

machine

Y (1) (t)

_---...) yet)

Figure 2-2. Serial encoder for a rate 1/2 code

A time domain description of the serial encoder is obtained by per

muting the columns of Gp and Yp in the time domain description of

the parallel encoder. This gives



x
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where g
(1) (2) (1) (2)

= (go ,go ,gl. ,91 , ••• )

and y s
(1) (2) (1) (2)

= (y 0 ' YO'Y1 ' Y1 ' • • .) •

The three descriptions given so far - the parallel polynomial

and matrix descriptions and the serial matrix description - are all

standard forms that appear in the literature. We next present a

fourth possibility that we feel may be useful: a serial polynomial

description.

Our intention is to convert the serial matrix description of

the encoding function into an equivalent serial polynomial descrip-

tion. We can't do this directly because adjacent rows of Gs are

shifted two time units with respect to one another. This is easily

remedied by writing the matrix description in the modified form

Gs

The D-transform equivalent is

where

x(D)g(D) = Y (D)
s

xeD) = X(D
2

)
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and

or, = f2(x) for any polynomial f over a field of character-

istic 2,

where

x 2
(D)g(D) = y (0)s

2 2
g (D) = g (1) (D) + Dg (2) (D)

:2 2
Ys (D) = Y (1 ) (D) + Dy ( 2) (D).

This says that a rate 1/2 binary code with unrestricted input is

equivalent to a rate 1 binary code where the input sequences are

required to be squares. We might thus view the encoder as a squaring

circuit followed by g(D) as shown in Figure 2-3(a). An alternative

model results from the observation that the derivative Xl (D) = d~ x(D)

of any delay polynomial x(D} over GF(2) is a square, and any square

is the derivative of some delay polynomial. This allows us to view

the encoder as a differentiating circuit followed by g(D) as shown in

Figure 2-3(b).

squaring

circuit
9(D) Y (D) = x 2

(D)g(D)1-----..... s

(b) x (D) ...
differentiating x' (D) .. g(D) ......

,.. circuit

Figure 2-3. Serial encoder models

YS(D) = x' (D)g(D)



For the remainder of this section, we will use only the serial

polynomial description of the encoding function, i.e. either

(a) X
2 (D)g(D) = y(D) or

(b) x' (0) 9 (D) = Y (D) •

(We will drop the subscript on y from this point on.) Our hope,

of course, is that this new description will shed some light on

the problem of selecting those polynomials g(D) that generate

"good" codes. As a first step, we consider the possibility of

placing restrictions on g(D) to eliminate "bad" codes from considera

tion.

2.3 Restrictions to eliminate bad codes

One class of codes we surely wish to eliminate from consideration

are those subject to catastrophic error propagation. As shown by

Massey and sain(2), a rate 1/2 convolutional code with generator

polynomials gel) (D) and g(2) (D) will not be subject to catastrophic

error propagation if and only if G.C.D.(g(l) (D),g(2) (D» = Dk for

some k. We will always assume that either gel) (D) or g(2) (D) has

a nonzero constant term, in which case k = O. The condition we

wish to impose then is that gel) (D) and g(2) (D) be relatively prime.

The only question is: what form does this restriction take in the

serial polynomial description?

Proposition 2-1. G.C.D.(g(l) (D),g(2) (D» ~ 1 if and only if

G.C.D.(g(D),g'(D» ~ 1.
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(Proof) Note that

2 2
g(D) =g (1) (D)+Dg (2) (D)

g'(D) = g2(2)(D).

(1) (2)
Now suppose that G.C.O. (9 (D) ,9 (D» ~ 1.

Then there is a nonzero ~ such that gel) (~) = g(2) (~) = O.

But then g(~) = g' (a) = 0 and G.C.D. (g(D) ,g'(D» F 1. The converse

follows easily by the same sort of argument.

So we conclude that the code will not be subject to catastrophic

error propagation if and only if we impose

Restrjetion 1: G.e.D. (g(O),g'(O» = 1.

We would like also to eliminate from consideration codes which

have poor distance properties. In order to discuss this, we must

first define the measure of "goodness" we plan to use. The free

distance, d f ' of the convolutional code generated by g(D) isree

the minimum Hamming weight taken over all nonzero code words

y(D) =X2 (D)g(D), i.e.

The constraint length of a rate KIN convolutional code with memory

order m is defined to be nA = N(m+l). In our case, N = 2, so

nA = 2 (m+l) . Our goodness measure is then the ratio of free distance

to constraint length: dfree/2(m+l). (This is roughly the ratio

of free distance to the degree of g(D), since the degree of

g(D) = g2(1) (D)+Dg
2

(2) (D) is either 2m or 2m+l.)

From the standpoint of distance properties, the worst codes (other
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than the trivial null code) are those whose generators are squares.

For suppose g(D) = f 2 (D). Take~D) = (De+l)/f(D) where e is the

exponent of feD) (i.e. the smallest integer such that feD) divides

De+l). Then the code word corresponding to xeD) is

2 (De+l \. 2 2 2e
y(D) = x (D)g(D) = fTDf) • f (D) = D -1

which has weight 2. Hence dfree S2 for any code whose generator

is a square. This suggests that perhaps we should consider only

codes whose generators are as "far" from being square as possible,

i.e. generators that are squarefree in the sense that they have

no repeated roots, and hence no squared factors. This turns out to be

the case as we show.

ProDo tion 2-. If g(D) = f2(D h D, then g( ) and h(D generate

the same code.

(Proof) Let y(D) be any code word in C , the code generated by
g

9 (D) . Then

y(D) = X
2 (D)g(D)

= X
2 (D)f 2 (D)h(D)

= (X(D)f(D»2h (D)

which is a code word in Ch' the code generated by h(D). Conversely,

let y (D) be any code word. in Ch . Then
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y(D) = x
2

(D)h(D)

x 2 (D)f
2

(D)h(D)=
f2(D)

2
=(f~g~)·g(D)

which is a code word in C .g

Although qeD} and h(D) both generate codes with the same df Iree

the memory order associated with h(D) is less than that associated

with g (D) (unless £2 (D) = 1). Hence df /2 (m+l) is greater for Crea g

and we are justified in imposing

Restriction 2: g(D) is squarefree.

We next show that restrictions 1 and 2 are equivalent.

Proposition 2-3. G.C.D.(g(D),g'(D» ~ 1 if and only if g(O) is

squarefree.

(Proof) Suppose G.C.D. (g (D) ,g' (D» t- 1. Then g (1) (D) and g (2) (D)

have a common factor by proposition 2-1, i.e.

g (1) (D) = £ (D) 9 (1) (D)

g (2) (D) = £ (D) 9 (2) (D) •

Then

2 2
g (D) = 9 (1) (D) +D9 (2) (D)

2 2
= f2 (D)9 (1) (D)+Df 2 (D)9 (2) (D)
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Conversely, suppose g(D) is not squarefree. Then

g' (D) = £2 (O)h' (D) •

But

2 2
9 (D) = 9 (1) (D) +Og (2) (D)

2
g' (D) = 9 (2) (D)

thus

f
2 (0)h(0)

2 . 2
= 9 (2) (O)+Og (2) (D)

2
= 9 (2) (D)

and it follows that f(O) divides both gel) (D) and g(2) (D) so that

G.c.o.(g(l) (0),g(2) (D» ~ 1 by proposition 2-1.

We thus arrive, from quite different starting points, at the

same restricted class of codes, namely the "squarefree codes"

whose generators have no repeated roots. The problem of catastrophic

error propagation has been eliminated without the loss of any "good"

codes. (Also see Forney (I) .)

2.4 A lower bound on dfree

We conclude this section by deriving a lower bound on the free

distance of a squarefree rate 1/2 binary convolutional code. First

we establish notation and list some elementary properties.



Let a(x) = I a.xi be any polynomial over GF(2).
i 1

Then

12.

1. J a (x) J is the degree of a(x).

2 • J I a (x) I , is the Hamming weight of a (x) •

3 • a(x)b(x) is t,he usual polynomial product.

4 • a(x) o b(x) = 2a . b .x
i is the component-by-component product.

~ ~

Property 1.

Property 2.

Property 3.

Property 4.

Property 5.

Property 6.

Ila(x)xn,l = l)a(x)ll.

I'a(x) 0 b(x) J I ~ min (1Ia(x) II,J Ib(x) II ).

II ~ a j (x) II = ~ II a j (x) II -2 .1. I Ia i (x) oa j (x) II
J J 1rJ

(Proof by inclusion-exclusion)

J Ia (x) J I-I J a (x) ob (x) II = I J a (x) 0 (1 (x) +b (x) ) J I .
J J a (x) II-II a (x) ob (x) J J > II a (x) oC (x) J 1- J J a (x) ob (x) oC (x.) J , •

If n > Ib(x)/, then Ila(x) (xn+l)+b(x) I I > Ilb(x)ll.

(Proof) By property 3,

I Ia (x) (xn+l) +b (x) II = II a (x) II + II xna (x) II + II b (x) II

-211 a (x) oxna (x) 11-211 a (x) ob (x) II

-21Ix
n
a(x}ob(x) 11+41Ia(x)oxna(x)ob(x) II_

But if n > Ib(x) I, then xna(x}ob(x} = O. Noting that

I Ixna(x) I I = I !a(x) I I by property 1, we then have
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II a (x) (xn+l) +b (x) II-II b (x) II = 2 ( II a (x) II-II a (x) oxna (x) II-II a (x) ob (x) II) ·

But xna(x) and b{x) are disjoint, from which it follows that

Ila(x)oxna(x} 11+lla(x)ob(x) II ~ Ila(x) II·

Property 7. If n > Ib (x) I, then II (xn+l) i (a (x) (xn+l) +b (x) ) II > II b (x) II
i=l, 2 , ••• , •

(Proof) Case I: i odd. Then i = 2k+l and

But I (xn+l)2k+lb (x) I < (2k+2)n since Ib(x)1 < n. Hence, by property 6,

Case II: i even. Then i = 2k and

II (xn+l) 2k (a (x) (xn+l) +b (x) ) II = II (xn+l) 2k+la (x) + (x2kn+l) b (x) II .

We can express a(x) as

tn
a (x) = Ixina. (x)

· 0 1~=

Then we can write the above as

where lai(x) I < n.

Ln
II (xn+l) 2k+l Ixina

i
(x) + (x2kn+l) b (x) 1.1

i=O

which is shown pictorially in Figure 2-4 for k=2 and ~=ll. The argu-

ment goes as follows: The weight contribution from the initial two
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"blocks" is at least II b (x) II-II a l (x) II by property 6. Then we look

at the two consecutive blocks with a1 (x) in the lower left corner.

The weight contribution from this pair of blocks is at least

I lal(x) I I-I la2k+3 (x) I I· Next, we look at the pair of blocks with

a 2k+3 (x) in the lower left corner, and so forth. We continue until

the upper right corner of a pair of consecutive blocks is the zero

polynomial. Then we add up the weight contributions as shown in

Figure 2-4, and everything cancels except I Ib(x) J I .

n 2n 3n 4n Sn 6n 7n an 9n IOn llnx x x x x x x x x x ..

aD a, ct~ a.;> a 'I- a.,r a..& i3....7 a.., a., q/(:> a/I

c10 iL, a..~ a....J ~ as- Q...6 ~ a..., a., ilL/til a../ I

a.." 4, LA a 3
a,. ar a, '7 at L'f 'I' '8../1

<t., a, ~ ~J a...'f ll.,)"' i1..t 11..7 AJ ~, fl../~ B-JI

~ a, l1..J-. 4.3 7L'f iLr a.~ 4.7 lLJ ~, a.,0 ai,

I
i!L;, iL, a..;Z '3 a..'f Cl-,r «"6 ~7 iL) a.q a..,,., ~JI

b b

1

Figure 2-4. Visual aid for the proof of property 7.
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We are now in a position to prove the theorem. Let d denote
9

the minimum distance of the cyclic code generated by g(D) and d h

the minimum distance of the dual code generated by h(D) = (Oe+1)/g(D)

where e is the exponent of 9(D).

Theorem_2-1. Let d f ' d and d h be the convolutional and cyclicree 9

code distances associated with a generator g(O).

Then

d f > min(d ,2dh).
ree - 9

(Proof) Let y(D) be any code word in the convolutional code generated

by 9(D). Then

y(D) = X
2 (D)g(D)

for some information polynomial xeD). We can always write X
2 (D) as

where i ~ 0 is chosen so that f(O) is not divisible by oe+1 . Then

Case I: £(D) not divisible by h(D).

In this case we can write

f2(D) = p(D)h(D)+r(D) where r(D)~O and Ir(D) 1<lh(D) I



But 'r(D)h(D) (De+l)' < 2e, since )r(D) I < 'g(D) I.
Then, by property 7,

"y(D) 11.2:11 r(D)h(D) (Oe+1 ) II.

But r(D)h(D) is a nonzero word in the cyclic code generated by h(D)

and hence has weight at least dh • Then r{D)h{D) (De+l) must have

weight at least 2dh , since Ir{D)h{D) I<e.

In case I, I ly{D) I I~dg and in Case II, I ly(D) I I ~ 2dh •

Since y(D) was arbitrary, we conclude that d
f

amin(d ,2dh ).ree· g

Example: Suppose we take g(D) to be the generator of the (31,11)

BCH code. This code has minimum distance d = 11, and its dualq

code, the (31,20) code, has minimum distance dh = 6. Then qeD)

generates a rate 1/2 convolutional code with free distance

d f ~ mined ,2dh ) = min(11,12) = 11.ree 9

Since the degree of g(O) is 20, the convolutional code generated by

q(O) has memory order 10, and the measure of goodness is

d free /2(m+l) ~ 11/22 = .5

17 •
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SECTION 3

ON THE COMPLEXITY OF COMPUTING Dfree

In this section, we consider the problem of computing the

free distance of a systematic rate liN convolutional code. In

the general case, there is at present no attractive alternative to

generating all code words corresponding to information sequences

of length, 1,2, ••• ,L+l, where L is sufficiently large to ensure

that at least one code word of weight d f has been generated.ree

Whatever measure we choose, it is clear that the complexity of

the computation is highly dependent on the parameter L. In what

follows, we summarize the previously known results on L and its

associate L*, and present some new results and conjectures based

on partial results.

3.1 Rate liN systematic convolutional codes

An encoder for a rate KIN convolutional code is any information-

lossless K-input, N-output linear sequential machine. For our pur

poses, it is sufficient to consider the subclass of rate liN

systematic convolutional codes. The encoder then takes the form

shown in Figure 3-1. We will consider only polynomial encoders,

i.e. encoders with no internal feedback loops. This entails no

real loss of generality and simplifies the analysis.

x (t)

linear

sequentia---......
circuit

yell (t) = x(t)

y (2) (t).
.

y (N) (t)

Figure 3-1. Encoder for a rate liN systematic convolutional code



...

The encoder maps an information sequence x(t) onto an N-tuple

(2) (N)of code sequences (x(t),y (t), ...y (t». The encoding function

is thus a linear transformation with memory over GF(q), the field

of q elements. This mapping can be described conveniently either as

a matrix of finite dimension over GF(q) [D], the ring of delay poly-

nomials over GF(q), or as a matrix of infinite dimension over GF(q)

with time as an explicit parameter. In the delay polynomial domain,

the encoding function for a rate liN systematic convolutional code

can be written as

[x (D) ] [l,g (2) (D) , ••• ,g (N) (D)] = [x (D) ,y (2) (D) , ••• ,y (N) (D) ]

where g(i} (D) = go(i)+gl (i)o+ ••• +gm(i)om is the generator polynomial

that relateS x(O), the O-transform of the input sequence, to y(i) (D),

the O-transform of the i th code sequence. The parameter m, the

maximum degree among the generator polynomials (we can consider all

the generator polynomials to be of degree m by allowing high order

coefficients to be zero) is called the memory order of the code.

An equivalent description in the time domain is given by
x G

!xO'xl ,·· ·l 1 1 9 9
t--...----..o-.....

1

•

I I
(2) (21 D tN) tN)

_xO'Xl '·· ·yo 'Yl ,..... ·yo 'Yl ,. .. ]

where g (i) = ( (i) (i) (i)
go'9 1 ' • • • , gm ) • It is convenient to write this



simply as

xG = y_

The matrix G is commonly referred to as the generator matrix of the

code. The time domain description of the encoding function will be

used in the remainder of this section.

Let dH(x,y) denote the Hamming distance between x and y, and

WH(x) = dH(x,O) the Hamming weight of x. Then the free distance

of a convolutional code with generator matrix G is defined to be

or, since the code is linear,

Without loss of generality, we may take x·O~o, which allows a third

equivalent definition:

In words, this last definition states that d
f

is the minimumrea

weight taken over all nonzero elements in the row space of G that

have nonzero first components.

3.2 Rowand column distance

In principle, the free distance of the code generated by G

21.
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can be found by generating a list of all nonzero elements of the

row space of G. The problem is that the generator matrix

~ m+l -.1 ~+l ~
1 g g

1

G = 1

1

Cr

has an infinite number of rows and columns so that the row space

is an infinite collection of infinite-dimensional vectors, Fortunately,

it turns out that dfree can always be found by examining certain finite

submatriceS of G.

g9

j+l

1 I
I- .... ....__....__.........-~~....r.___-... ---_'1_- .,-

~j+l
1

G. = 1
J

1

With this in mind, we define the following:

~ t~ ~ j
,---j+m+l~! r<-j+m+l -,

~-- j+l -+--.~ j+1
I-_.->1 fee-- j +1 --~

9

1

1

1

1

L..- ....._ ...............__..._ ... -'L.

Gj is the submatrix of G consisting of the first j+l rows of G with

all-zero columns deleted, and G.* is the submatrix of G consisting
J

of the first j+l columns of each block of G with all-zero rows deleted.
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Note that the row space of G~ is essentially (ignoring trailing zeros)
J

a subcode of the code generated by G. This is not true of the row

space of G.·.
J

Costello(1,2) has defined the order j row distance of the con-

volutional code generated by G to be

where x j denotes the truncated input vector (xO,xl' ••• ,x j ).

Similarly, the order j column distance of the code generated by G

is defined by

Costello has shown that d.,r.,df and the Hamming weight of a row
J J ree

of G are related by

(2) (N)
< WH(l,g , ••• ,g ) j=O,1,2, •••

What we want here is d. = d
f

or r. = d
f

for sufficiently large
J ree J ree

j. It turns out that this is the case for classes of codes whose

encoders have polynomial (feedback-free) inverses, i.e. "stable"

codes which are not subject to catastrophic error propagation.

Systematic codes are such a class. Massey (3) has shown that, for

stable codes, infinite weight information sequences produce infinite

weight code words. Hence we have

(a) There exists a finite L such that
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r~ = d
f

for all j > L.
J rea

(b) There exists a finite L* such that

de = d f for all j ~ L*.
J ree

These relationships are summarized in Figure 3-2.

.
Z
H
~

d free

lL*
j

INFORMATION SEQUENCE LENGTH

Figure 3-2. Minimum distance relationships

We can find d free by computing either dL* or r L • The com

plexity of this computation is critically dependent on having good

bounds on L or L*. (It seems unlikely that a simple general method

of calculating L or L* exactly will be found.) The remainder of

this section is devoted to the consideration of such bounds.

3.3 Results on L*

Costello has given the following upper bound on L*:

For rate liN systematic convolutional codes,

L* < (N-l) (m+l)m.

This bound increases as the square of the memory order m for a

fixed rate liN. Costello conjectured that the bound could be improved
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to L* < 2m. In a previous note(4) , the authors proved the following

strong counterexample:

For any fixed N, there exists no fixed s such that

L* ~ 8m for all m.

In other words, for any fixed rate liN, L* increases faster than

linearly with m. In the above mentioned note, the authors suggested

that perhaps L* increases no faster than m log rn. However, more

recent investigations put this in doubt. We now sketch one of these.

In What follows, we discuss a class of rate 1/2 codes for which

we believe m log m is a lower bound on L*, although we haven't been

able to complete the proof. The construction is of the same form

as in (4).

We consider codes in which each of the two subgenerators g'(x)

a 3 9 3N
is a polynomial for which the coefficients of x , x , x , ••. , x

are lis and all other coefficients are zeros. The memory order m

for a code in this class is m = 2 x 3N - 1 and the Hamming weight of

the generator is 2(n+l) + 1. We conjecture that d O

f
for the coderea

is also 2(n+l) + 1. Assuming this conjecture is true we can derive

a lower bound on L* which is of the order m log m. We begin by

noting that the standard selection procedure, i.e., selecting rows

of the generator matrix such that for each row selected the first

subgenerator aligns with the second subgenerator polynomial of the

m+lpreviously selected row, enables us to get out to column --2- +

(2m;2) • (m;l) = ~ (n+l) (m+l) before the column distance reaches

d f • Hence we can get to column 21n(m+l) and still achieve columnree

distance strictly less than d
f

. From the formula for memory orderree

we get

m+l
n = Log 3--2-
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and this implies we can get to column (m;ljlOg (m;l) and still have

column distance less that d free • Hence L* > (m;l) Log3 (m;l).

3.4 Results on L

By a slight modification of the argument used to derive the

upper bound on L*, Costello derived the following upper bound on L:

For rate liN systematic convolutional codes,

L < (N-l) (m+l)m-m.

Again, this is a quadratic function of m and it was thought that

perhaps a linear bound could be found. (The fact that L* increases

faster than linearly with m does not imply that the same is true

of L, since it is always true that L < L*.) A conjecture attributed

to Neumann(S) (communicated to the authors by Massey) suggested that

L ~ m+l. If we do not require that the rate liN be fixed, then we

can state the following weak counterexample:

There exists no fixed s such that L < sm for all m.

The proof proceeds as follows. Consider the code with generator

.. .
pp

1
1

G = 1

matrix N-l blocks
...---------------"'-...._------------...r

•

where p(D) is a primitive polynomial of degree m. The weight of any

code word in the row space of G is the sum of the weight contributions

from the first (identity) block, plus N-l equal contributions from

the remaining N-l blocks. Hence
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d = min WH(XG)free
xO~O

= min {WH{X)+{N-l)WH{xP)}
xO~O

where P denotes any of the last N-l blocks of G. First, suppose that

xeD) is dual to p(D), i.e. x(D)p(D) = D6 -l where e is the exponent

of p(D). Then since p(D) is primitive, x(D) is a maximal length

~ m-lsequence of degree at least 2 -m-l and weight WH(x) = 2 •

In this case,

This, of course, implies that

d < 2m- 1+2{N-l).free

Next, let x' (D) be any information polynomial of degree less than

2m-m-l. Then the weight contribution from each of the last N-l

blocks of G must be at least 3 (p(D) generates a cyclic Hamming code

which has minimum distance 3). Then

~ 1+3 (N-l) .

Now choose N = 2M• Then
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mwhich implies that re > d
f

for j < 2 -m-l. Hence L grows faster
J ree

than linearly (in fact exponentially) with ro, which completes the

proof.

Note that this result does not hold for N fixed. It merely

states that L grows more rapidly than linearly with m if we place

no restriction on the rate. The fact that L grows exponentially with

m is due to the fact that the rate is allowed to decrease exponentially.

We now consider the more interesting case when N is fixed.

What we would like to have here is an infinite class of codes for

each rate (or just for rate 1/2, since this could then be extended

to any fixed rate liN by duplicating the G(2) block of the rate 1/2

codes N-l times), so that a strong counterexample similar to the one

for L* could be proved. We have not been able to find such a class,

but individual counterexamples for all rates have now been found.

Costello presented counterexamples for N ~ 3, but was unable to find

one for N = 2. We now present a counterexample for this case as

well:

Consider the code generated by

G =
1

1
1

1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 III 1 11
11 1 011 011 0 0 0 011 0 all 0 0 1 1 III 1 1 1111

11 1 0 I 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 11..

with (g(2) (D) = (D+l) ~ (D) where ~(D) is the generator of the (73,45)

cyclic projective geometry code associated with PG(2,23 ). This con-

volutional code has memory order 29, yet

r.
J

={> 13 all j < 45

~ 13 all j > 45
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which implies that L > 45 > 30 = m+l.

This may be verified as follows. Let x(D) be the polynomial

dual to ~(D), i.e. x{D) = (D73_1)/~(D). In this case, it is

known that x(D) is a difference set polynomial of degree 45 and

weight 9. Then the weight of the code word xG is

WH(xG) = W
H

{X)+W
H

{XG{2»

= 9+W
H

(x (D) g (2) (D»

= 9+W
H

( (D 73 _1) (D+l»

= 13

which of course implies d f < 13. Next, let X'(D) be any
rea -

information polynomial of degree less than 45. Then the weight con-

tribution from the G(2) block must be at least 10 (the (73,45) code

has minimum distance 10). To prove that W (x'G) = W (x')+W (x'G(2» > 13,H H , H

it is sufficient to show that if W (x') < 3, then WH{X'G(2» > 13.
H -

This is the case as the reader may verify for himself by exhaustive

inspection.

As stated earlier, we would like to have a strong counterexample

like the one found for the conjecture on L*. Since we have not been

able to push this through (although we believe that a strong CQunter-

example exists), we must settle for the conjecture:

For all fixed N, there exists no fixed s

such that L ~ sm for all m.

This would be proved if we could show that all the rate 1/2 con

kvolutional codes associated with PG(2,2 ), k ~ 3, behave like the

example above. In this case we would have an infinite class of rate
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1/2 "projective geometry convolutional codes" for which L would in-

crease faster than linearly with m. In fact, L would increase roughly
log 4

as m 3 which would be faster than the m log m suggested for L* in

our previous note. (Of course, if L increases faster than m log m,

then so does L*.) The problem of proving that the class of projective

geometry codes behaves in this manner revolves around the fact that

for k > 3, xeD) = (xn-l)/~(D) may be a multiple of the difference

set polynomial associated with PG(2,2k ) rather than the difference

set polynomial itself.

3.5 A conjecture on row distance

Our study has suggested the following conjecture on the row

distance of a rate 1/2 systematic code:

Let e be the exponent of g(2) (0) (i.e.

the smallest integer such that g(2) (0)

divides De-I) . Then r = d .e free

We have not made much headway on this; in fact, all we have to

show at this time is an example of an attempted "easy" proof that

doesn't work. Our attempt was based on the following idea: Suppose

xeD) is any information polynomial. Define r(D) and r' (D) by

x (D) = q (D) (De-I) +r (D)

x (0) = q' (0) (De-I) jg (2) (0) +r' (0) •

What we hoped to show was that for any x either WH(xG) ~ WH(rG)

or WH(XG) ~ WH(r'G), which would imply that no x(D) of degree
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greater than e could be the lowest degree information sequence to

produce a code word of weight d
f

• (We would have to do somethingree

about the cases reD) = 0 and r' (D) = 0, but since the approach doesn't

work anyway, we didn't pursue this.)

The following is an example of an information sequence xeD)

of degree greater than e and generator polynomial gC2} CD} for which

both r{D) and r' (D) generate higher weight code words than does x(D):

For this generator we have e = 30 and q(D) = D

It is easily verified that for these polynomials

WH(XG) = WHCX}+WHCXG C2 }) = 6+22 = 28

WH(rG) = WHCr)+wHCrG C2 }) = 6+26 = 32

Wa(r'G) = WHCr'}+wHcr'GC2}) = 16+18 = 34.
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SECTION 4

GILBERT BOUND FOR DEFINITE DECODING

In this section we develop a Gilbert bound for convolutional

codes decoded by what is known as the definite decoding(l) method.

In order to make this report self-contained, the development here

follows very closely the original development by James L. Massey(2)

and retains the basic form of his result while improving on the

constant mUltiplier. In the process we develop a theorem of interest

in its own right which upper bounds the number of distinct sequences

obtainable from an L-stage nonsingular linear FSR such that the

sequences have fractional weight 0 or less, 0 < 0 < 1/3.

4.1 Convolutional codes

We define a rate R = ~ convolutional code of memory order m

over GF(2), the binary number field, by the semi-infinite generator

matrix G (see fig. 1). The submatrices I d and 0 are the KxK identity

and all-zero matrices, respectively, and the submatrices GO,G1, •.. ,Grn

are (N-K) x K binary matrices. We use !u to denote a K-dimensiona1

column vector where the components of i are the K binary information-u

bits to be encoded at time instant u. The N encoded digits at time

instant u are the components of the column vector whose first K

components form !u (we consider only codes in canonic, systematic

form) and whose last N-K components, called the parity bits, form

the vector P given by-u

P = G ~ + G i
-u o!u l-u-l

+••. + G i
m-u-m

(1)
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The minimum distance of convolutional codes is dependent upon the

decoding method. In feedback decoding the estimate of i is made on-u
the basis of received bits from time unit u through u+m on the

assumption that all preceding information vectors have been correctly

decoded. With this assumption, decoding of ~O is typical of the

decoding at any time u and so the feedback decoding minimum distance,

dFD , is defined as the fewest number of positions in which two

encoded sequences with differing values of ~ are found to disagree

over time span 0 through m. By the linearity of the code, this is

(2)

where WH ( ) denotes the Hamming weight, i.e. the number of nonzero

components among the vectors, of the enclosed vectors. There are

(m+1)N positions within the time span 0 through m and this number

is called the feedback-decoding constraint length, denoted nFD .

Most coding bounds are concerned with the ratio of minimum distance

to the constraint length, in this case dFD/nFD , and Massey(3)

derives the following Gilbert bound for feedback decoding of con-

volutional codes:

where H(x) = -x 1092 x -(I-x) 1092 (l-x) is the binary entropy

function.

The decoding method which is called definite-decoding makes

no assumptions about the correctness of previous decoding decisions

and so the decoding of !u depends not only on the information and
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parity digits from time u through u+m but also on the information

digits at times u-m through u-l since these information bits affect

the parity bits P through P +. We can again make i O typical of-u ~ m -

the general case but we must require that !u be permitted to assume

values other than a for u < o. We then get for nDD , the definite

decoding constraint length, the following:

nDD = (2m+l)K+(m+l) (N-K). (3)

Again, by the linearity of the code, we can obtain the definite-

decoding minimum distance by taking the code word of minimum Hamming

weight. We get

i , ... , i
--m+l m

Po' P1,···,P ).- - --m
(4)

Comparing equations (2) and (4) we see that dnn ~ d FD since we can

readily get dOD at least as low as dFD simply by setting i = = i = o.
-m -1

Hence, upper bounds on dFO are upper bounds on don but lower bounds on

dFD are not lower bounds on d DD .

4.2 Gilbert bounds

In developing codes one of the goals is to obtain codes with

high minimum distance since this has a direct bearing on the ability

to correct errors. Plotkin bounds on linear block codes and con-

volutional codes place upper limits on the minimum distance that can

be expected for a given block size or constraint length. Gilbert

lower bounds demonstrate the theoretical existence of a minimum

distance d such that there must exist at least one code with minimum

distance surpassing d for a given constraint length. We restrict our
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attention in this report to Gilbert bounds for definite decoding and

refer the interested reader to Massey's work for a derivation of the

Gilbert bound associated with feedbaok decoding of convolutional codes.

From equation (1) we obtain the matrix equation

Po i' i' · · · i • G'
-0 --1 --m -0

Pl i' i' · · · i' G'
-1 -0 - -m+l -1

(5)

p i' i' · · · i' G'm -m -m-l -0 -m

where the primes are used to denote the transpose of the given matrices.

We shall hereafter consider only the case N = K+l, i.e. where P-u

is a single binary bit and R = ~+1. Thus the matrices Gj become

simply K-dimensional row veotors which we denote by G.• The matrix
-J

of information vectors in (5) will be referred to as the ~-matrix,

the vector (! ' i , ... , i ) will be called the i-vector, and
-m --m+l -m

the vector on the left side of (5) will be called the P-vector. The

combined i-vector and P-vector, i.e. the vector

(!.
-m

, i , . . . ,
--m+l

will be called the code-vector.

In deriving a Gilbert lower bound on d DD we would like ideally

to determine how many code vectors exist with i r £ such that the
-0

i-matrix has rank rand WH(code-vector) < d. If we denote this number

as M then these M code vectors oan appear in at most a fractionr r

2-r of all the codes. Hence if



m+l
I

r=l
M 2-r 1< ,r
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then there must exist at least one code such that d > d. Un
DD

fortunately we cannot determine M exactly but can only bound it.
r

We are also hampered by the fact that the bound on M can only ber

shown to hold for r < 1/3 (m+l) . Therefore the approach to solving

the problem will be to consider that fraction of the code vectors

with ~O~Q and WH(code vector) < d for which the i-matrix has rank

r > ~(m+l), 0 < ~ ~ 1/3, and show that this fraction approaches

zero as non grows arbitrarily large. Then we show that the summation

between the limits r = 1 and r = 8(m+l) is less than 1 for sufficiently

large non so that there must exist at least one code for which dOD ~ d.

4.3 Periodic matrices

Before going into the derivation of the Gilbert bound it is

necessary to develop some relationships between periodic matrices

and linear feedback shift registers (FSR's). We define a periodic

matrix as the matrix

a' a' ·.... a'
-0 --1 -n
a 1 a' ·.... a' n > r (6)
-1 -0 --n+l

1 < r < m

a' a' ·.... a'
!ll -m-l --n+m

(where each a. is a K-dimensional binary column vector) such that the
-J



39.

matrix has rank r, its first r rows are linearly independent,

where we denote the (j+l)-st row as AI, and the linear combination
J

of the first r rows which produces the (r+l)-st row includes the

first row with a multiplier of 1.

We note that the periodic matrix has at least r+l columns.

Also note that since A is a linear combination of previous rows
r

including row AO with multiplier of 1, it then follows that row

AO is a linear combination of the following r rows. This immediately

implies that the last column is some linear combination of the

preceding columns and so the first r columns have rank r even with

the last column deleted. Hence by the nature of the matrix the

submatrix consisting of rows AI' A2 , ••• , Ar must also have rank r

and so Ar +1 must satisfy the same linear combination of Ar and in

general we have

r
AI = \' C AI

J 9';1 9 )-g
j = r, r+1 , ... , m. (7)

Equation (7) leads directly to

r

~J' = I
g=l

C al
g -J-g

(C = 1)
r

j = r-n, r-n+l, ... , m. (8)

If we denote the h-th digit in a. as a jK+h- 1 , h = 1, 2, ..., K, then
-J

(8) in turns leads to

r
a. = 2 c a. K (C = 1) j = (r-n) K, {r-n)K+l, mK+K-l.

J 9 )-g r . ..,
g=1

(9)

The outer-fringe of a periodic matrix will be defined to be



(a
-n

a , ••• ,
--n+l

a ) =
m

(a ,
-nK

a ,
-nK+l

... , a )
mK+K-l

40.

and we note that this is an (m+n+l)K-component column vector. The

recursion (9) states that the outer-fringe is an (rn+n+l) digit

output segment of a linear feedback shift register (FSR) with tap

connections every K-th stage as determined by e l , c 2 ' ••• , Cr.

Since C = 1, the last stage of this rK-stage linear FSR is always
r

tapped, i.e., the FSR is nonsingular and in this case all output

sequences are periodic. Note that the outer-fringe may not

contain a complete period of an output sequence since the latter

may be as great as K(2r -l). Also note that the outer-fringe cannot

be an output segment of an FSR with fewer than rK stages since

then the periodic matrix would be found to have rank less than r.

These facts are summarized as:

Theorem 1: The outer-fringe of a rank r periodic matrix is an

(m+n+l)K>2rK digit output segment of an unique rK-stage nonsingular

linear FSR and of no shorter linear FSR tapped only every Kth stage.

The next theorem shows that for matrices of the form (5) with

rank r < 1/3 (m+l) , if the first s~r rows are linearly independent,

then the last (r-s) rows are linearly independent of preceding rows

and the rows in between are not only dependent but satisfy a recur-

sian of the form (7).

Theorem 2: If the i-matrix in (5) has rank r<1/3(m+l), then the

reduced i-matrix
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ii i I ... i'
-r -r-l r-m
i' i' i'
-r+l r -r-m+l

i '
m-r

i'
In-r-l

i'
-r

is a periodic matrix of rank L, L ~r, whenever i O ~ o.

Proof: Let II denote the (j+l)-st row in the i~matrix of (5) and let
J

s be the least index such that I is a linear combination of precedings

rows. Let I
S

- L be the first row appearing with multiplier 1 in the

unique combination of the first S rows which forms I , thens

L
I = \' C Is L 9 s-gg=l

and we note that L < s < r.

(10)

If s = r, the L rows immediately preceding I have rank L and so,s

as in previous arguments on periodic matrices, row I plus the L-l
s

preceding rows have rank L_ Hence 1
S
+1 and consequently all rows

satisfy the recursion (10) and the reduced i-matrix is periodic of

rank L.

If s<r then there must be some row It' t>s, which is linearly

independent of preceding rows and which does not satisfy the recur-

sian, i. e. ,

but

L
I. = \ C II

J g~l g J-g
(CL = 1) j = s,s+l, ..• ,t-l (11)



C Ig t-g (C
L

= 1). (12 )
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We now show that the !-matrix (5) has rank (m+l)-(t-s). To this

end note that (11) and (12) are equivalent to

and

L
i. = \' C i.
-J g~l g-J-g

L

it ~ I
g=l

j = s-m,s-m+l, •.• ,t-1

C ig-t-g

(13)

(14)

Now suppose some row I u ' for any u ~ t, can be written as a linear

combination of preceding rows, i.e.,

or, equivalently

(15)

u

!J' = 2 ah!.J'-h
h=l

This implies

j = u-m,u-m+l, .•• ,u (16)

(17)

The terms in the summation on the right of (17) involve only i, for
-J

j in the range such that (13) holds. Hence, using (13) in (17) we

get



u
= L

h=l

L
ahL Cgi t _h _g =

g=l

L u
\ C \' a i
L gL h-t-g-h.

g=l L=l

(18)

43.

Note that (16) involves summation for j = u-m to j = u and in the

righthand side of (18) the quantity t-g corresponds to the j in

(16). Hence, since t-g>u-m for all 9 < L we substitute (16) into

(18) to get

C ig-t-g
(19)

This contradicts (14) and so we conclude I is linearly independentu

of preceding rows for u > t and the only rows which can" be written

as linear combinations of preceding rows are the t-s rows satisfying

(11). Since the matrix has m+l rows, it has rank r = (m+l) - (t-s).

This gives t = (~+l)-r+~>~-r and so the rows of the reduced i-matrix

satisfy the recursion (11) and hence the reduced i-matrix is

periodic and has rank L < r.

From (5) we get the following matrix equation:

Pr
i' i' i' G'- -r-l -0r r-m

Pr+l
it i 1 i' G 1

-r+l -r -r-m+l -1
(20)

Pm- r
1

i'
-m-r

1

i'
-m-r-l

1

i'
-r

Note that the reduced i-matrix differs slightly from the reduced
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i-matrix of theorem 2 in that the last row here is numbered m1-r.

The reasoning is as follows. Theorem 2 was shown to hold for all

r~(m+l)/3. If we now place a tighter restriction on r and require

that r~(m+l)/4, then the reduced i-matrix has at least 2r-l rows.

This coupled with the fact that L<r indicates that if the Quter-

fringe of this matrix is not an integral mUltiple of L, then we

can eliminate as many as L-l rows from the matrix to get a further

reduced matrix of rank L with ml rows such that the outer-fringe

is an integral mUltiple of L. This we now do and henceforth the

reduced i-matrix is that matrix containing ml -2r+l rows.

We call the left side of (20) the reduced p-vector and note

that it is an (ml -2r+l)-component vector uniquely determined by

the reduced i-matrix. The outer-fringe of the reduced ~-matrix is

an (m+ml -2r+l)K component Vector that we call the reduced i-vector.

The combination of the reduced p-vector and reduced i-vector will

be called the reduced code vector.

Lemma 1: If the reduced ~-matrix is periodic of rank L, then the

J~educed p-vector is an output segment of an L-stage nonsingular linear

FSR uniquely determined by the reduced i-matrix. In particular,

L
P ' = \ C p.

J g~l '9 J-g
j = r+L,r+L+l, ••• ,m1-r (21)

where C , 9 = 1,2, ••• ,L are the FSR connections uniquely determined
9

by the reduced i-matrix.

Proof: From (9) we see that the digits in each column of the reduced

i-matrix satsify the recursion (21). But (20) shows that the reduced

p-vector is always a linear conlbination of these columns and hence
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also satisfies the recursion (21).

4.4 A bound on output sequences of FSR's

In this section the results will be expressed in terms of the

fractional weight of a vector v which we define to be the quantity

!wH(V) where n is the dimension of v. Also, we use [xl to denote the
n -

integer part of x. We derive an upper bound on the number of vectors

or sequences of length n with fractional weight 0 or less, O<c~1/3,

such that no two segments coincide in any span of L consecutive digits.

We begin by establishing a lower bound on the average row

weight of a matrix in which the rows consist of all L-tuples having

Hamming weights between 0 and k and some of the L-tuples with Hamming

weight k+l. Before developing the bound we briefly discuss the

problem and establish terminology.

Consider the matrix Ak CFig. 4(42)

which consists of all L-tuples with

Hamming weights between 0 and k. It

will be shown that for k~rL/3] the

bottom half of the matrix consists
----------------

only of rows of Hamming weight k

(this assumes the rows are ordered

in ascending order by binary value) •

The fraction f k is defined to be the

number of rows of weight k that occur

in the first half of Ak divided by

the total number of rows of weight

k. It is readily seen that

... ---------------

Fig. 4-2

(~)



k-l
{L}_ L {~}
K · 0 .1

~= Thus each half of the matrix consists of
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k-l
L (~) + f k · (Lk ) rows and throughout this report we will denote

· 0 11=

(k-l)+fk L
this number as L (.).

, 0 l.J..=

If it can be shown that the average row weight of Ak is greater

than (k-l)+fk and the average row weight of Ak+l is greater than

k+f k+1 then we maintain that the average row weight of intermediate

matrices which have some but not all rows of weight k+l is always

greater than k+f where again f represents the fraction of those

rows of weight k which appear in the top half of the matrix. Note

by the way that f = 1 corresponds to the matrix in which the top

half has all L-tup,les between weight 0 and k and the bottom half
K

has exactly L (~) rows of weight k+l.
i=O 1.

If we add z rows of weight k+l
k

L
i=O

N1-----= r-.
2

Now consider what happens when we begin with the matrix Ak

and start adding rows of weight k+l. The matrix Ak has average row

K
I (~) .. i

i=O 1
weight Wr =

then the average row weight becomes Wr

N
1

+ z· (k+l)
=

N2 + Z
If we treat

this as a function of the number of rows and differentiate, we get

WI
r

(z)
(N

2
+Z) • (k+l) - (N

l
+Z· (k+l) )

=
N2 (k+l)-N1=

(N
2

+Z) 2

From this

we see that the average row weight increases more rapidly when we

add the first few rows of weight k+l and increases less rapidly
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as we approach the matrix Ak+1 • A graph depicting the behavior of

the average row weight versus the number of rows might appear as

illustrated in Figure 4-3.

We turn our attention now to proving

Proof: We prove by induction on k

the lower bound on average row weight of

,;

"",/

/
/

/,
./

/'
/'

,/
./

/

1
avg.
row
wt.

[L/3] •(~) for k <
1.

k-l
L

i=O

the matrix Ak - We begin with the following:

Lemma 2:

for arbitrary L and for all k such # rows

that k satisfieS k < [L/3l. Figure 4-3

For K = 1 we get

(~) > (~).

Now assume the lemma true for k, we attempt to show the lemma true

for k+l (we require k+l < [L/3])

L L-k (L) > L-L/3 (L) > 2(L)(k+l) = k+l
.

k - L/3 k k

(L)
k-l

(~)but > I by induction hypothesisk - i=O J.

L (L)
k-l

(~) =
k

Lso, (k+l) > + L I ( . ) .- k 3. l.i=O i=O

Lemma 3:
k k
I (~) ·i + I (~) · (k+1 )

i=O 1. i=O ~ > k for k < [L/3] .

Proof: Again we prove by induction and for k = 1 we get
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= > I

Now we assume the lemma true for k-l

and consider the matrix illustrated in

Figure 4-4. Since k < [L/3] it is

easily seen that the broken lines

are in the correct positions relative

to the solid line dividing the two

halves of the matrix. We begin by

summing the ones in the three parts

of the matrix. By the induction

hypothesis sub-matrix (A) has average

(A)

- - --- - (8)- --- ---
.-+0-

(C)

).-:0

Figure 4-4

row weight greater than k-l so has
k-l

more than 2(k-l) I (~) ones.
· 0 J.
~=

Since k < [L/3] all rows of part (B) have k ones and so part (B)

k-l
has k«~) - I (~» ones.

i=O 1.
Part

k
(c) has (k+l) I (~) ones and now

~ 0 ~
~=

adding the number of ones in all three parts of the matrix we see
k

that it has more than 2k I (~) ones and so has average row weight
~ 0 ~J..=

greater than k.

Lemma 4: The average row weight of an MxL matrix in which all rows
k L L

are distinct and M)2(il
o

(i) + f· (k+l» is greater than k+f where

o < f < 1 and k ~ [L/3].

Proof: It is immediately obvious that any MxL matrix in which all

rows are distinct must have average row weight at least as great as
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the minimal weight matrix described in preceding paragraphs. As also

was mentioned previously we need only consider the matrices

Hence we wish to show that

k+fk+l <

k

L
i=O

k
2 { I (t) + f k+l · ( k~l )}

i=O

k+l
(~)L . i
~

i=O
1

k+l
(~)L

i=O l.

k
L I (~)(k+l) -

where f k+1
1 i=O 1= 2 L

(k+l)

To show this inequality holds we begin by substituting its value

Lfor f k+1 and multiplying both sides by 2 (k+l) to get

k+l
I (~)

i=O ~

k+l
2 ( L) I (~). i

L ~ (L.) < k+l ;=0 ~
(2k+l) (k+l) - i;O ~ •

this is equivalent to

K k+l
i + {L (t)}{.I ct)}

i=O ~=o

and if we bring the (k+l)st terms out from the summations and eliminate

like terms we get



K
2k ( L) \' (~) <

k+l i~O i

L 2
(k+l)
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L K L
now add -2(k+l) L (.) to both sides

i=O 1.

L K L K L
2 (k-l) (k+l) l (~) < 2 (k+l).l (LJ._') • i + {(k+l)

i=O 1 i=O

L
divide through by 2(k+l)

(k-l)
K K
l (~) < l (~)'

· 0 J. • 0 1.1.= 1=
i +

K
1 {( L ) \' (~)} 2

L k+l - ,La 3.
2 (k+l) 1=

Since the second term on the right is non-negative we can apply the

preceding lemma to the remaining terms of the inequality and verify

that it is true.

k+f L < 2LH (k+f)
Corollary: L (.) L for k < [L/31 and L > 2.

· 0 ~1.=

Proof: The bound is known true for conventional summations(4) so

we need only show it is true for intermediate values between k and k+l.

To this end we consider the slopes of the two curves. Between the

Lpoints k and k+l the summation has the constant slope (k+l) and

LH(k+f) k+f
2 L has slope L·2LH (r;-). (lOge2)'(1092(L-~~;f) ».

L LThe value (k+l) can be rewritten as (k). L-k
k+l and we observe that in

the area of interest, i.e. k < [L/3] and L > 2, the function
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has the greater slope and thus it is not possible for the numerical

k+f
value of the summation to overtake the value of 2LH(~) between

the points k and k+l.

Theorem 3: For any n = k.L > 0, k a positive integer, and any

10, O<o~3 ' the number M of binary n-digit segments in any set

such that each segment has fractional weight 0 or less and no two

segments coincide in any span of L consecutive digits is bounded by

2LH (O)+1.

Proof: Consider all k of the MxL submatrices which can be constructed

from the set of n~digit segments. At least one of these submatrices

must have fractional weight 0 or less and so the average row weight

of this submatrix is bounded by oL. Applying lemma 4 and its

associated corallary we see that

M < 2 {[~Ll (~) + (eL _ [oLl) ( L )}< 2LH (o)+1 (22)
l • [oLl +1 -

i=O

An immediate application of theorem 3 yields:

Lemma 5: For any n = kL>~k a positive integer, and any 0,

O<o~1/3, of the 2
L distinct output sequences of length n obtainable

from an L-stage nonsingular linear FSR, fewer than 2LH (o)+1 have

fractional weight 0 or less.

Proof: Note that any L consecutive digits in an output segment

determine a state of the FSR so that any two segments which agree in

such a span must agree everywhere thereafter. But since the output

sequences of the FSR are periodic the segments must also agree in

their previous digits and hence must be the same segment. The

lemma now follows from Theorem 3.
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Lemma 6: Given fixed values of ro, mI' n, k, and r in the ~-matrix of

equation (20), the number of distinct outer-fringes of rank r periodic

matrices such that the outer fringe has fractional weight 0 or less,

O ~ 1/3 · 1 th 22KrH (o)+1<u~ , ~s ess an •

Proof: It is easily shown that if the shortest linear FSR which

can generate an n-digit, n ~ 2L, segment has length L, than any

2L successive digits in the segment uniquely determine the FSR.

Hence, from theorem 1, we conclude that any 2Kr successive digits

in the outer-fringe uniquely determine the entire outer-fringe. Thus

there can be no more valid outer-fringes of fractional weight 0

or less than there are (m+m 1 -2r+l)K > 2rK digit segments of fractional

weight a or less such that no two coincide in any 2rK consecutive

positions. By theorem 3, this number is less than 22rKH(o)+1.

4.5 Gilbert bound for definite decoding

We now have the necessary tools to develop the Gilbert bound

for definite decoding. Recall that in an earlier section, it was

mentioned that the rank problem would be handled by breaking the

set of code vectors of fractional weight 8 or less and ~OF~ into

two sets; set 51 contains the code-vectors such that the i-matrix

has rank r satisfying r ~ ~ (m+l) and set 82 contains those for

which the i-matrix has rank r, r < ~ (m+l). In looking at set 8
2

we will want to work with the reduced i-vectors and so the paragraph

following equation (20) tells us that ~ must be less than 1/4.

We permit A to remain arbitrary for the present and note that

for r < ~·(m+l), if the reduced p-vector has fractional weight 0',
p

it must then have absolute weight (m1-2r+l)0' > {2m-3r+2)o' and
p - p

so the entire code vector must have fractional weight 8' satisfying



0' > 2m-3r+2 0 ' > 2-3~ 0'.
non P 2K+l P

(23)
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Similarly, if the reduced ~-vector has fractional weight a., then
~

(m+m
l
-2r+l) K

0' > nDD
o. >

J.

(2m-3r+2)K

nno
0.

J.

so,

>
{2(m+l)-3~(m+l)}K

(m+l) (2K+l)-K

(2-3Li) K
0. =

1

(2k+l) - K
fiH=T

o.
J.

3 2kcS' > (l-~) •~. cS
2 2K+l i

( 24)

Our object now is to show that for some fixed 0 we can always

demonstrate the existence of a code with minimum distance dDD~6nDD

as nnD grows arbitrarily large. Toward this end we consider first

the set 51. The set 51 cannot contain more than all code vectors

of fractional weight 0 or less and each vector in Sl appears in a

fraction at most 2-(m+l)~ of all codes.

Hence fraction F1 of codes which contain any vector in S, satisfies

L
j=O

In considering the S2 we begin by choosing

2k+l - H{o)}

•



and

1
1-1.5~ 0 < 1/2
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(25)

0p =~ 0 < 1/22-3u (26)

where we note that the inequalities impose the restriction 0 < l;i~i~ •

From equations (23) and (24) we observe that any vector in 52 must

have both fractional weight o. or less in its reduced i-vector and
1

fractional weight 0 or less in its reduced p-vector. Hence, thep

number of distinct reduced code-vectors in S2 such that the reduced

i-matrix has some given rank L is less than

2 2KLH(o.)+1 2LH(O )+1 22KLH(o.) + LH(o )+2
1 • P = 1 P

which follows from the fact that lemma 6 gives the first factor as

bounding the number of reduced i-vectors to be considered whereas

lemmas 1 and 5 give the second factor as bounding the number of

p-vectors to be considered with any given ~-vector. We note also

that the reduced ~-vector is a non-zero output segment from a KL-stage

nonsingular linear FSR and hence must have at least one non-zero

digit every KL digits. The fact that the reduced i-vector has

(m+ml -2r+l)K components along with the inequality L < r < m/4 gives

us

(m+m l -2r+!)K > 2LK.

Hence, the reduced i-vector must have at least two non-zero components

and so we must have fractional weight 0i > ~ • iL. From this we conclude
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2
that S2 contains no reduced i-vector such that L < 3Ko. ·

~

The fraction of codes containing any reduced code-vector such that

the reduced i-vector has rank L is at most 2-L • Then the fraction

F 2 of codes containing any code-vector in S2 satisfies

~(m+l) 22kLH (O.}+LH(a )+2-L
F 2 < I 2 ~ p

L=[3k8.+1] •
1.

We are interested in asymptotic results as nOD = (m+l) (2K+l)-K

grows arbitrarily large and so we replace ~(m+l) in the above summation

with~. We also use equations (25), (26) and the convexity of the

entropy function to obtain

(27)

where for convenience of notation we use Zl and Z2 to represent

2 • 2(1-1.5ll)
"3 2k+l and 3 • 2k+l

2 1-1.5~
respectively.

Summing up the geometric series yields

provided that

•
(28)

Combining the expressions for F l and F 2 we get the result
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that the fraction of codes containing any element of 51 or 8 2 is

at most

AIf 0 is required to be sUfficiently small so that H(o) < 2k+l '

then the first term on the right vanishes as n
DD

gets large. If

2we choose ~ = 9 and if we choose a to satisfy

1
H(o) < 5" 1

2K+l ( 29)

then it can be verified that (25), (26) and (28) are all satisfied.

We now need to show that the second term on the right is less than 1.

From the summation, equation (27), it can be seen that the term will

I 1take on its maximum value when H(o) = 5 · 2K+l. By means of some

1 1algebraic manipulation, substituting 5 2K+l for H(o), and

2evaluating Zl and Z2 for ~ = 9 we get

· ! + 1] + 2o (30)

We now make use of the fact that, for K > 1,

1
H(o) < '5 1

2K+l < 1Is = 0.06666 •••

and for a's satisfying the inequality we have*

8.46 < H(6)

*Using L'Hospitals' rule and the fact that the limit of the Sum is equal
to the sum of the limits, it is readily seen that H(o) grows without
bound as 0 + o. 0
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so we get

or,

1
> H (~) > 5 (2K+l)

~ > 42 (2K+l) •

From equation (30) it is evident that the bound on F 2 takes on its

minimum 1 1
maximum value for the value of '5 so we choose - = 42(2K+l).

0
We then get F

2
< 4 x (.683}38 (1-.683) < 1. Hence, whenever ( 29)

is satisfied, not all codes contain code vectors with ~O~~ and

fractional weight 0 or less. We conclude that there exists at

least one code with definite-decoding minimum distance d DD satisfying

d
H ( DD) > !.. 1

nOD - 5 2K+l

for nOn sufficiently large. We have thus obtained the following:

Theorem 4: K
For N = K+l (and hence R = K+l ), and for all nDn

sufficiently large there exists at least one convolutional code such

that

d
H ( DD) > !.. 1

non - 5 2K+l
1= 5"

l-R
l+R

Since this report adheres quite closely to Massey's original develop-

ment, the remarks following Theorem 4 of his work which culminate in

his Theorem 5 also apply here and hence the Theorem holds for any N >. K.
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The question of whether or not the constant factor can ever be

totally eliminated must be considered in light of the upper bound

on the set Sl. For the upper bound it was required that the

Aquantity (2K+l - H(o)) remain positive so the bound would

Any hope for getting some
2K+l

bound on F1 remains in its present form.

eventually vanish for large nDD • Thus it is immediately seen that

1, for 0 < ~ ~ 3' as long as the upperH(o) must be less than

other form would seemingly hinge on developing some functional re-

lationship between low weight outer-fringe vectors and the rank of

the .matrix.
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