Syracuse University
SURFACE

Electrical Engineering and Computer Science -
Technical Reports

7-1975

Two models for combinatory logic

Luis E. Sanchis
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports
Part of the Computer Sciences Commons

Recommended Citation

Sanchis, Luis E., "Two models for combinatory logic" (1975). Electrical Engineering and Computer Science - Technical Reports. 9.
https://surface.syr.edu/eecs_techreports/9

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

TWO MODELS FOR COMBINATORY LOGIC

Luis E. Sanchis

July 1975

SYSTEMS AND INFORMATION SCIENCE

TWO MODELS

FOR

COMBINATORY LOGIC

LUIS E. SANCHIS

July, 1975

1. Introduction

We consider in this paper two models of combinatoric logic in which the domain is the same: $P(N)$ the power set of $N=$ the set of non negative integers. The first model is the graph model introduced by Scott in [6]; the second is a generalization that we call the hypergraph model. It is related to the graph model roughly as hyperarithmetical reducibility is related to Turing reducibility. We develop some properties of the graph model, most of them taken from [6], and some fundamental features of the hypergraph model. Our aim is to find intrinsic connections between the two models. The main result we have asserts that the hypergraph model can be simulated to some extent in the graph model.

Capital letter A, B, \ldots, X, Y, Z, will denote elements of $P(N)$, and small letters x, y, z will denote elements of N. Subsets of P(N) will be denoted with greek letters α, β. We shall use standard notation for the boolean operations on subsets of N or of $P(N)$.

We shall encode finite sequences of integers via the pairing function $J(x, y)=\frac{1}{2}\left((x+y)^{2}+3 x+y\right)($ see $[2]$, p. 43). We put $\langle x\rangle=x$ and $\left\langle x_{1}, \ldots, x_{n+1}\right\rangle=J\left(x_{1},\left\langle x_{2}, \ldots, x_{n+1}\right\rangle\right)$. Note that every x represents some n-tuple for every $n \geq 1$.

As in Rogers [4] the notation D_{x} denotes the finite set with index x . Note that whenever $\mathrm{y} \varepsilon \mathrm{D}_{\mathrm{x}}$ then $\mathrm{y}<\mathrm{x}$.

We shall find it convenient to formulate some results in terms of the Cantor topology on $P(N)$. If C and D are finite sets such that $C \cap D=\varnothing$ then the interval $\langle C ; D$ is the set $\{X: C \subseteq X \subseteq \bar{D}\}$. A subset α of $P(N)$ is open in case that for every $\mathrm{X} \varepsilon \alpha$ there is an interval <C;D> such that $\mathrm{X} \varepsilon<\mathrm{C} ; \mathrm{D}>$ and <C;D> $\subset \alpha$. A subset α of $P(N)$ is dense in case that $\alpha \cap$ <C;D> is non empty for every interval <C;D>. Finally α is nowhere dense in case that for every interval <C;D> there is an interval $\left\langle C_{1} ; D_{1}\right\rangle$ such that $\left\langle C_{1} ; D_{1}\right\rangle \subseteq\langle C ; D\rangle$ and $\left\langle C_{1} ; D_{1}\right\rangle \subseteq \bar{\alpha}$.

We recall that if α is open and dense then $\bar{\alpha}$ is nowhere dense. If α is the union of a denumerable collection of nowhere dense sets then α is of the first category. Otherwise it of the second category.

We shall need the notion of continuous operator on $P(N)$ but actually the continuity of the operator is defined in terms of another topology. If $F\left(X_{1}, \ldots, X_{n}\right)$ is an operator defined on elements of $P(N)$ with value also in $P(N)$ we shall say it is continuous if the following condition is satisfied:
$x \in F\left(X_{1}, \ldots, X_{n}\right)$ iff $\exists_{y_{1}} \exists_{y_{2}} \ldots y_{n}\left(x \in F\left(D_{y_{1}}, \ldots, D_{y_{n}}\right)\right)$
A model for combinatory logic consists of a non empty domain D of individuals and a binary function $f(x, y)$ on D such that there are elements S and K in D and the following identities hold:

$$
\begin{align*}
f(f(f(S, x), y), z) & =f(f(x, z), f(y, z)) \tag{S}\\
f(f(K, x), y) & =x
\end{align*}
$$

To avoid trivial cases it is convenient to require that the elements S and K are different. In the models we consider in this paper there are many elements with the properties of S and K so we do not require the strong extensionality property that such elements are unique. A weak extensionality property is satisfied by the graph model (see [6]) but apparently no similar result holds for the hypergraph model.

The fundamental theorem of combinatory logic can be formulated as follows: Let D be a model of combinatory logic with application function $f(x, y)$ and let t be a term built using variables, constants from D and the application function. Then if y is any variable there is a term h which is built using the same variables and constants in t, the constants S and K and the application function, but does not contain the variable y such that the following identity holds:

$$
f(h, y)=t
$$

There are different ways to construct such term h. For a general discussion see [1] Chapter 6A. Note also that different choices of the elements S and K will produce different terms.

The most important notion in a model of combinatory logic is the representation of functions in the model. To make precise this concept we introduce extension of the application function as follows. We put
$f_{1}(x, y)=f(x, y)$ and $f_{n+1}\left(x, y_{1}, \ldots, y_{n+1}\right)=f_{n}\left(f\left(x, y_{1}\right), y_{2}, \ldots, y_{n+1}\right)$.

Then a function $g\left(y_{1}, \ldots, y_{n}\right)$ on D is representable in the model in case there is some element $\mathrm{x} \varepsilon \mathrm{D}$ such that $f\left(x, y_{1}, \ldots, y_{n}\right)=g\left(y_{1}, \ldots, y_{n}\right)$. From the fundamental theorem it follows that every function defined by a term t built using variables, constants and the application function is representable.

2. The Graph Model

The domain D of this model is the set $P(N)$. Functions on this set will be called operators so the application function of this model is an operator of two variables. This operator that we shall call the graph application operator - is denoted in the form (2Y) and it is defined as follows:

$$
(z y)=\left\{x: \exists y\left(\langle y, x\rangle \varepsilon Z \wedge D_{y} \subseteq Y\right)\right\}
$$

We shall follow the usual conventions by omitting parentheses with the understanding that the association is to the left. Note that with this notation the fact that the operator $F\left(Y_{1}, \ldots, Y_{n}\right)$ is representable in the model means that for some set Z

$$
F\left(Y_{1}, \ldots, Y_{n}\right)=\left(Z Y_{1} \ldots Y_{n}\right)
$$

Note also that

$$
\begin{gathered}
\left(z y_{1} \ldots y_{n}\right)= \\
\left\{x: \exists y_{1} \ldots \exists y_{n}\left(\left\langle y_{1}, \ldots, y_{n}, x\right\rangle \varepsilon z \wedge D_{y_{1}} \subseteq Y_{1} \wedge \ldots \wedge D_{y_{n}} \subseteq Y_{n}\right)\right\} \quad .
\end{gathered}
$$

We must show first that this application operator is actually a model of combinatory logic. This follows immediately from the following theorem.

Theorem 1. Let $F\left(Y_{1}, \ldots, Y_{n}\right)$ be a continuous operator on
$P(N)$. Then there is a set A such that

$$
F\left(Y_{1}, \ldots Y_{n}\right)=\left(A Y_{1} \ldots Y_{n}\right)
$$

Take $A=\left\{\left\langle y_{1}, \ldots, y_{n}, x\right\rangle: x \varepsilon F\left(D_{y_{1}}, \ldots, D_{y_{n}}\right)\right\}$ and the theorem follows from the preceding remark.

Now since the operators $F_{1}(X, Y, Z)=(X Z(Y Z))$ and $F_{2}(X, Y)=X$ are clearly continuous it follows from the theorem the existence of elements S and K satisfying the axioms of combinatory logic. On the other hand the graph application operator itself is continuous, and it is clear that continuous operators are closed under composition.

Corollary. An operator on $\mathrm{P}(\mathrm{N})$ is representable in the graph model if and only if it is continuous.

This result does not give any information about the set A that represents a particular continuous operator. We shall call such a set a graph of the operator. In case an operator has a graph that is a recursively enumerable set we shall say it is a RE operator or more precisely that it is a $R E$ operator in the graph model.

Now the graph application operator (ZY) is RE in the graph model. For a graph for this operator is the following RE set:

$$
\left\{\left\langle y_{1}, y_{2}, x\right\rangle: y_{1}=2^{\left\langle y_{2}, x\right\rangle}\right\}
$$

In general if t is a term built out of variables Y_{1}, \ldots, Y_{n}, RE operators and $R E$ sets then the operator $F\left(Y_{1}, \ldots, Y_{n}\right)=t$ is $R E$ in the graph model. For in this case the condition defining the graph in Theorem 1 is actually an $R E$ predicate so the graph is an RE set.

It follows from this that we may assume there are elements S and K satisfying the axioms of combinatory logic that are $R E$ sets. And in general all the combinators in the sense of
combinatory logic are presented by RE sets.
Another important RE operator is related with the weak extensional properties of this model. In case Z_{1} and Z_{2} are sets such that for every set $Y,\left(Z_{1} Y\right)=\left(Z_{2} Y\right)$ we shall write $Z_{1} \approx z_{2}$. Now define a $R E$ set L as follows:

$$
L=\left\{\langle y, z, x\rangle: \exists v\left(y=2^{\langle v, x\rangle} \wedge D_{v} \subseteq D_{z}\right)\right\}
$$

It follows that for arbitrary Z_{1} and $Z_{2},\left(L Z_{1}\right) \approx Z_{1}$ and furthermore $Z_{1} \approx Z_{2}$ if and only if $L\left(Z_{1}\right)=L\left(Z_{2}\right)$.

Another important operator in this model is the minimal fixed point operator. Given any Z the operator (ZY) as a function of Y is monotone so it has a minimal fixed point. Actually such minimal fixed point as a function of Z is also continuous so it is represented in the model. Analysis of the usual proof shows that it is a RE operator in the graph model.

Scott has proved a stronger result, namely that the graph of the minimal fixed point operator can be defined explicitly using elements S and K and the graph application function. We reproduce his argument here.

As usual I denotes a RE set such that (IX) $=\mathrm{X}$ for all X . Let $F(Z)$ be the following $R E$ operator.

$$
F(Z)=(S(K Z)(S I I)(S(K Z)(S I I)))
$$

By straightforward computation it follows that if $F(Z)=Y$ then $Y=(Z Y)$ so $F(Z)$ computes a fixed point of Z. We shall show that $F(Z)$ is actually a minimal fixed point of Z. Let ($Z Y$) $=Y$
for some Y and to get a contradiction assume it is not the case that $F(Z) \subseteq Y$. Hence there is $x \varepsilon F(Z)$ but $X \notin Y$, so there is y such $\langle y, x\rangle \varepsilon(S(K Z)(S I I))$ and $D_{y} \subseteq(S(K Z)(S I I))$. Choose one such x such that the corresponding y is minimal. Then $x \in\left(S(K Z)(S I I) D_{y}\right)$ so $x \varepsilon Z\left(D_{y} D_{y}\right)$. Since we are assuming $\mathbf{x} \ddagger \mathrm{Y}=(\mathrm{ZY})$ it follows that it is not the case that $\left(\mathrm{D}_{\mathrm{Y}} \mathrm{D}_{\mathrm{Y}}\right) \subseteq \mathrm{Y}$ so there is a pair $\langle v, w\rangle \varepsilon D_{y}, D_{v} \subseteq D_{y}$ and $w \notin Y$. Since $v<y$ and $D_{Y} \subseteq(S(K Z)(S I I))$ this contradicts the minimality of y. We can give a general rule for the existence of $R E$ operators that will be useful later. For that purpose let us define a G-form as an expression in set variables Y_{1}, \ldots, Y_{n} and number variables x_{1}, \ldots, x_{k} built out of atomic formulas: i) $f\left(x_{1}, \ldots, x_{k}\right) \varepsilon t$ where f is a recursive function and t is a term containing set variables, RE operators and RE sets; and ii) recursively enumerable predicates in the number variables. The admissible operations in the form are disjunction, conjunction, bounded universal quantification and existential quantification.

Theorem 2. Let $R\left(Y_{1}, \ldots, Y_{n}, x_{1}, \ldots, x_{k}\right)$ be a G-form. Then there is a RE set A such that $\left(A Y_{1} \ldots Y_{n}\right)=\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle\right.$: $\left.R\left(Y_{1}, \ldots, Y_{n}, x_{1}, \ldots, x_{k}\right)\right\}$.

A proof by induction on the construction of the form can be given but a more direct argument is possible. Replace in the form every occurrence of Y_{j} by $D_{Y_{j}}$. This gives a recursively enumerable predicate $R_{1}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{k}\right)$ and then the set A can be defined as follows:

$$
A=\left\{\left\langle y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right\rangle: R_{1}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{k}\right)\right\} .
$$

3. The Hypergraph Model

The form of the definition of graph application operator suggests a generalization using function quantification. It is not clear that such extension will produce a model of combinatory logic but we shall show this is actually the case. In general the operators represented in the new model are not continuous and this of course may be considered an important disadvantage. At any rate we shall show the operators are not completely discontinuous since they can be simulated in the graph model on a large subdomain of $P(N)$.

We shall need here some extra notation. If $f(x)$ is a total numerical function we put $\bar{f}(x)=\langle x, f(0), f(1), \ldots, f(x-1)\rangle$ so $\bar{f}(0)=0$. If $x=\langle y, z\rangle$ then $l(x)=y$ and $l l(x)=l(z)$ if $y\rangle l,=z$ otherwise. If $x=\left\langle n, x_{1}, \ldots, x_{n}\right\rangle$ and $y=\left\langle m, y_{1}, \ldots, y_{m}\right\rangle$ then $x * y=\left\langle n+m, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\rangle$. We shall write $x \cdot y$ in place of $\mathrm{x} *<1, \mathrm{y}\rangle$.

The hypergraph application operator will be denoted in the form [2Y]. The definition of the operator is as follows:

$$
[Z Y]=\left\{x: \forall f \exists v^{\exists} y\left(\langle\bar{f}(v), y, x\rangle \varepsilon Z \wedge D_{y} \subseteq Y\right)\right\} .
$$

We shall omit brackets with the convention that the association is to the left. In some cases we may use both the parenthesis notation and the bracket notation. The convention is that inside parentheses we must replace parentheses and inside brackets we must replace brackets. For instance the expression (XY[ZYX])
is actually ((XY)[[ZY]X]).
We shall prove first this is actually a model of combinatory logic. We choose to prove a more general theorem from which the existence of combinators follows.

Lemma 1. There is a RE set A such that for arbitrary
Z_{1}, Z_{2} and Y

$$
\left[\left(\mathrm{AZ}_{1} \mathrm{Z}_{2}\right) \mathrm{Y}\right]=\left[\mathrm{Z}_{1} \mathrm{Y}\right] \cap\left[\mathrm{Z}_{2} \mathrm{Y}\right]
$$

Let $d(z)$ be a recursive function such that whenever $g(x)$ and $f(x)$ are functions such that $g(x)=f(x+1)$ then $d(\bar{f}(v+1))=\bar{g}(v)$. Introduce the following predicates:

$$
\begin{aligned}
& R_{0}(u, y) \equiv l(u)>0 \wedge l l(u)>1 \wedge y=0 \\
& \left.R_{1}(z, u, y, x) \equiv 1(u)>0 \wedge 1 l(u)=0 \wedge<y, d(u), x\right\rangle \varepsilon Z \\
& \left.R_{2}(z, u, y, x) \equiv l(u)>0 \wedge l l(u)=1 \wedge<y, d(u), x\right\rangle \varepsilon Z
\end{aligned}
$$

Take now A as the $R E$ set such that

$$
\left(A z_{1} z_{2}\right)=\left\{\langle u, y, x\rangle ; R_{0}(u, y) \vee R_{1}\left(z_{1}, u, y, x\right) \vee R_{2}\left(z_{2}, u, y, x\right)\right\} .
$$

This A exists by Theorem 2 and it is easy to check that it satisfies the conditions of the Lemma.

We define an H-form as an expression in set variables $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}$ and number variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{n} \geq 1, \mathrm{k} \geq 1$, built out of the following atomic formulas:
i) $x_{i} \varepsilon x_{j}$; ii) $P\left(x_{1}, \ldots, x_{k}\right)$ where P is a recursively enumerable predicate. We allow in H-forms the following operations; conjunction and function quantification. The latter is understood as follows: if $R\left(Y_{1}, \ldots, Y_{n}, v, x_{1}, \ldots, x_{k}\right)$ is H-form then $\forall f \exists R\left(Y_{1}, \ldots, Y_{n}, \bar{f}(v), x_{1}, \ldots, x_{k}\right)$ is also H-form.

Theorem 3. Let $R\left(X_{1}, \ldots, X_{n}, Y, x_{1}, \ldots, x_{k}\right)$ be H-form, $n \geq 0, k \geq 1$. There exists a RE set A such that
$\left[\left(A X_{1} \ldots X_{n}\right) Y\right]=\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle: R\left(X_{1}, \ldots, X_{n}, Y, x_{1}, \ldots, x_{k}\right)\right\}$
The cases in which the form is atomic follow easily using Theorem 2. And conjunction can be handled using Theorem 2 with Lemma l. So we need only consider the case in which function quantification is used.

Consider the form $\forall f \exists \operatorname{vR}\left(X_{1}, \ldots, X_{n}, Y, \bar{f}(v), X_{1}, \ldots, x_{k}\right)$ and assume A is a $R E$ set such that

$$
\left[\left(A_{1} \ldots x_{n}\right) y\right]=\left\{\left\langle v, x_{1}, \ldots, x_{k}\right\rangle: R\left(x_{1}, \ldots, x_{n}, y, v, x_{1}, \ldots, x_{k}\right)\right\} .
$$

Then the form is actually equivalent to the following
$\forall f \exists v \forall g \exists w \exists y\left(\left\langle\bar{g}(w), y, \bar{f}(v), x_{1}, \ldots, x_{k}>\varepsilon\left(A X_{1} \ldots X_{n}\right) \wedge D_{y} \subset Y\right)\right.$. Now by standard permutation and contraction of quantifiers the expression is equivalent to

$$
\forall f \exists v \exists y\left(<d_{1}(\bar{f}(v)), y, d_{2}(\bar{f}(v)), x_{1}, \ldots, x_{k}>\varepsilon\left(A X_{1} \ldots x_{n}\right) \wedge D_{y} \subseteq Y\right)
$$ where $d_{1}(u)$ and $d_{2}(u)$ are recursive functions. Hence to satisfy the theorem we take a $R E$ set A_{1} such that: $\left(A_{1} x \ldots x_{n}\right)=\left\{\langle u, y, x\rangle:\left\langle d_{1}(u), y, d_{2}(u), x_{1}, \ldots, x_{k}\right\rangle \varepsilon\left(A x_{1} \ldots x_{n}\right)\right\}$

Next we extend the notion of H -form by allowing other constructions. In each case we show that the new construction is equivalent to a form in the original sense. So Theorem 3 can be applied to the enlarged forms.
a) We can use number quantifiers in H-forms. In fact it is well known that such quantifiers can be expressed using the universal function quantifier.
b) We can use Π_{1}^{1}-predicates in H-forms since such predicates can be defined by applying function quantifiers to recursively enumerable predicates.
c) We can use expression of the form $f\left(x_{1}, \ldots, x_{k}\right) \varepsilon t$ where f is any hyperarithmetical function and t is a term in which variables are used, the constants are Π_{1}^{1}-sets and the operations are the graph application operator or the hypergraph application operator. Any such expression can be expanded using the definitions to a form containing quantifiers and conjunction.
d) Disjunction. Let $R\left(X_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right)$ be

$$
R_{1}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right) \vee R_{2}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right)
$$

where R_{1} and R_{2} are forms. First note there is a $R E$ set B such that $\left[\left(\mathrm{BZ}_{1} \mathrm{Z}_{2}\right) \mathrm{Y}\right]=\left[\mathrm{Z}_{1} \mathrm{Y}\right] \mathrm{u}\left[\mathrm{Z}_{2} \mathrm{Y}\right]$. To show there is such B we use Theorem 2 to get RE set B_{1} such that

$$
\left(B_{1} z_{1} z_{2}\right)=\left\{\langle u, y, x, z\rangle:\left(\langle u, y, x\rangle \varepsilon z_{1} \wedge z=0\right) \vee\left(\langle u, y, x\rangle \varepsilon z_{2} \vee z=1\right)\right\}
$$

Now note that $\left[Z_{1} Y\right] u\left[Z_{2} Y\right]=\left\{X: \exists z\left(\langle X, Z\rangle \varepsilon\left[\left(B_{1} Z_{1} Z_{2}\right) Y\right]\right)\right.$ so B exists by Theorem 3 applied to expressions covered in a) and c). Also by Theorem 3 applied to H-forms R_{1} and R_{2} with a dummy variable Y there are $R E$ sets A_{1} and A_{2} such that:

$$
\begin{aligned}
{\left[\left(A_{1} x_{1} \ldots x_{n}\right) \varnothing\right] } & =\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle: R_{1}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right)\right\} \\
{\left[\left(A_{2} x_{1} \ldots x_{n}\right) \varnothing\right] } & =\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle: R_{2}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right)\right\}
\end{aligned}
$$

Hence the form R is equivalent to

$$
\left\langle x_{1}, \ldots, x_{k}\right\rangle \varepsilon\left[\left(B\left(A_{1} X_{1} \ldots x_{n}\right)\left(A_{2} x_{1} \ldots x_{n}\right)\right) \varnothing\right]
$$

and it is H-form by c) .

Theorem 4. For each $n \geq 1$ there is a $R E$ set B_{n} such that $\left(\mathrm{ZX}_{1} \ldots \mathrm{X}_{\mathrm{n}}\right)=\left[\left(\mathrm{B}_{\mathrm{n}} \mathrm{Z}\right) \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}}\right]$.

For $n=1$ take B_{1} such that $\left(B_{1} Z\right)=\{\langle 0, y, x\rangle ;\langle y, x\rangle \varepsilon z\}$. For $n+1$ we use Theorem 3 to get a RE set A such that

$$
\left[\begin{array}{llll}
\left(\operatorname{Azx}_{1}\right. & \ldots & \left.x_{n}\right) x_{n+1}
\end{array}\right]=\left[\begin{array}{lll}
z x_{1} & \cdots & x_{n+1}
\end{array}\right]
$$

hence take B_{n+1} such that $\left(B_{n+1} Z\right)=B_{n}(A Z)$.
Theorem 5. Let $R\left(X_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right)$ be H-form. There is a RE set A such that $\left[A x_{1} \ldots x_{n}\right]=\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle: R\left(X_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{k}\right)\right\}$.

If $\mathrm{n}=1$ the result is given by Theorem 3. Otherwise apply Theorem 3 and then Theorem 4 to eliminate the expression with graph application.

From Theorem 5 it follows that the hypergraph application operator defines a model of combinatory logic, and that every combinator is actually represented by some RE set.

We complete this section showing that the minimal fixed point for the hypergraph model is representable in the model. Such minimal fixed point always exists since the operators representable in the model are monotone. But since they are not continuous we cannot depend in any construction of the fixed point from below. Actually we must use the construction in which the fixed point is obtained as the intersection of all sets containing its own image under the operator.

Theorem 6. There is a RE set A such that for arbitrary $Z,[Z[A Z]]=[A Z]$ and whenever $[Z Y]=Y$ then $[A Z] \subseteq Y$.

Define the operator $F(Z)$ by the following condition:

$$
x \in F(Z) \text { iff } \forall Y([Z Y] \subseteq Y \rightarrow X \varepsilon Y)
$$

We need only to show that $F(Z)$ is represented in the hypergraph model by a RE set A. Using the definitions and exporting quantifiers we get
$\mathrm{x} \varepsilon \mathrm{F}(\mathrm{Z})$ iff $\forall \mathrm{Y} \exists \mathrm{z} \forall \mathrm{f} \exists \mathrm{v} \mathrm{\exists} \mathrm{y}\left(\left(\langle\overline{\mathrm{f}}(\mathrm{v}), \mathrm{y}, \mathrm{z}\rangle \varepsilon \mathrm{Z} \wedge \mathrm{D}_{\mathrm{y}} \subseteq \mathrm{Y} \wedge \mathrm{z} \ddagger \mathrm{Y}\right) \vee \mathrm{x} \varepsilon \mathrm{Y}\right)$ In the expression in the right it is possible to replace the quantifier Vy by a universal function quantifier. After this by standard permutation and contraction of quantifier we get H-form $R(Z, x)$ such that

$$
x \varepsilon F(Z) \text { iff } R(Z, x)
$$

hence $R E$ set A exists by Theorem 5.

4. Relation Between the Models

Every operator representable in the graph model can be represented in the hypergraph model. But the converse is not true. For instance if A is the set of all triples $\left.\langle<1, v\rangle, 2^{V}, x\right\rangle$ then $[A N]=N$ but $[A X]=\varnothing$ for any X different from N. So we may ask to what extent it is possible to simulate operators of the hypergraph model by operators of the graph model.

We make precise this idea by introducing the following definition. $\delta(Z, X)=\{Y:[Z Y]=(X Y)\}$. Now given a set Z we can find a set Z_{1} such that $\delta\left(Z_{1} Z_{1}\right)$ contains all finite sets. We may take for instance $Z_{1}=\left\{\langle y, x\rangle: x \varepsilon\left[Z D_{y}\right]\right.$ and then there is a $R E$ set A such that $[A Z]=Z_{1}$. The set Z_{1} is to some extent unique. For if Z_{2} is another set such that $\delta\left(Z, Z_{2}\right)$ contains all finite sets then $Z_{1} \approx z_{2}$ in the graph model, hence $\delta\left(z, z_{1}\right)=\delta\left(z, z_{2}\right)$.

We note also that in case $\delta\left(Z_{1} Z_{1}\right)$ contains all finite sets then the operator [ZY] with variable Y is continuous if and only if $\delta\left(Z, Z_{1}\right)=P(N)$.

In the preceding construction the set z_{1} simulates the set Z as far as the latter defines a continuous operator. We shall show now how to construct for every Z another set Z_{1} such that $\delta\left(z, Z_{1}\right)$ is of second category. The construction is essentially a forcing argument of the type introduced in [7].

We define by transfinite induction a set $T_{p}(Z)$ where p denotes ordinals. The defining rules are as follows:

T1) If $\exists \mathrm{w}\left(\langle\mathrm{u}, \mathrm{w}, \mathrm{x}\rangle \varepsilon \mathrm{Z} \wedge \mathrm{D}_{\mathrm{w}} \in \mathrm{D}_{\mathrm{Y}}\right)$ then $\langle\mathrm{u}, \mathrm{y}, \mathrm{x}\rangle \varepsilon \mathrm{T}_{\mathrm{p}}(\mathrm{Z})$ for all ordinals p.

T2) If for every number j, and for every z such that $D_{z} \cap D_{y}=\varnothing$ there is $q<p$ such that $E w\left(\langle u \cdot j, w, x\rangle \varepsilon T_{q}(Z)\right.$ $\wedge D_{w} \cap D_{z}=\varnothing$) then $\langle u, Y, x\rangle \varepsilon T_{p}(Z)$.

It follows immediately from these rules that whenever
$\langle u, y, x\rangle \varepsilon T_{p}(Z)$ and $D_{y} \subseteq D_{z}$ then $\langle u, z, x\rangle \varepsilon T_{p}(Z)$.
We shall say that an interval $\left\langle D_{y} ; D_{v}>\right.$ forces the pair $<u, x>$ in case one of the two following conditions is satisfied.

F1) There is some ordinal p such that $\langle u, y, x\rangle \varepsilon T_{p}(Z)$ and for every ordinal $q<p$ and for every z such that $D_{z} \cap D_{v}=\varnothing<u, z, x>\notin T_{q}(Z)$.

F2) There is a number j such that for every ordinal p and for every z such that $D_{z} \cap D_{v}=\varnothing,<u \cdot j, z, x>\notin T_{p}(z)$ and $\langle u, z, x\rangle \notin T_{p}(Z)$.

Theorem 7. For every pair u, x and every interval $<D_{y} ; D_{v}>$ there is a subinterval that forces $\langle u, x\rangle$.

In case there is Y_{1} such that $D_{Y_{1}} \cap D_{V}=\varnothing$ and for some $p,<u, Y_{1}, x>\varepsilon T_{p}(Z)$ we take Y_{1} such that p is minimal and then D_{Y} " $\left.\mathrm{D}_{\mathrm{Y}_{1}} ; \mathrm{D}_{\mathrm{v}}\right\rangle$ forces $\langle\mathrm{u}, \mathrm{x}\rangle$.

Otherwise there is no p such that $\langle u, y, x\rangle \varepsilon T_{p}(Z)$. Then by rule $T 2$) there is j and v_{1} such that $D_{y} \cap D_{v_{1}}=\varnothing$ and for all ordinals p and all z such that $D_{z} \cap D_{v_{1}}=\varnothing\langle u \cdot j, z, x\rangle \notin T_{p}(Z)$. Then $\left\langle D_{Y} ; D_{v}\right.$ " $\left.D_{v_{1}}\right\rangle$ forces $\langle u, x\rangle$.

We shall say that a set X forces a pair $\langle u, x\rangle$ in case X belongs to some interval that forces $\langle u, x\rangle$. The collection of all x that
forces a pair $\langle u, x\rangle$ is open, and by Theorem 7 it is dense.
We shall say that a set X is generic in case it forces all pair $\langle u, x>$. It follows that the collection of all non generic set is of first category.

Theorem 8. Let X be a generic set. If $\langle u, y, x\rangle \varepsilon T_{p}(Z)$ where $D_{y} \subseteq X$ then either there is w such that $D_{w} \subseteq D_{y}$ and $\langle u, w, x\rangle \varepsilon Z$ or for every number j there is $q<p$ and z such that $D_{z} \subseteq x$ and <u - j, z, x> \& $T_{q}(Z)$.

Assume there is no w such that $D_{w} \subseteq D_{y}$ and $\langle u, w, x\rangle \varepsilon Z$. Then $p>0$ and for any given j there is an interval $\left\langle D_{z}: D_{v}>\right.$ that contains X and forces $\langle u \cdot j, x>$. By $T 2$ there is w such that $D_{w} \cap D_{v}=\varnothing$ and $<u$. $j, w, x>\varepsilon T_{q}(Z)$ for $q^{\prime}<p$. Hence $F 2$ does not apply and $<u \cdot j, z, x>\varepsilon T_{q}(z)$ for $q \leq q^{\prime}<p$.

Theorem 9. Let x be a generic set such that there is no p and y such that $\langle u, y, x\rangle \varepsilon T_{p}(z)$ and $D_{y} \subset x$. Then there is j such that there is no p and y such that $\langle u \cdot j, y, x\rangle \varepsilon T_{p}(Z)$ and $D_{y} \subseteq x$.

Take any interval that contains X and forces $\langle u, x\rangle$. Since F1 is impossible F2 holds and this implies the theorem.

Theorem 10. Let X be a generic set. The following conditions are equivalent:

$$
\begin{aligned}
& \text { i) } \exists \mathrm{p} \exists \mathrm{y}\left(\langle 0, \mathrm{y}, \mathrm{x}\rangle \varepsilon \mathrm{T}_{\mathrm{p}}(\mathrm{Z}) \wedge \mathrm{D}_{\mathrm{y}} \subseteq \mathrm{x}\right) \\
& \text { ii) } \forall \mathrm{f} \exists \vee \exists \mathrm{y}\left(\langle\overline{\mathrm{f}}(\mathrm{v}), \mathrm{y}, \mathrm{x}\rangle \varepsilon \mathrm{Z} \wedge \mathrm{D}_{\mathrm{y}} \subseteq \mathrm{x}\right)
\end{aligned}
$$

Assume i) holds. Then by Theorem 8 given any function $f(v) a$ value v must exist such that $\langle\bar{f}(v), w, x\rangle \varepsilon T_{0}(Z)$ and $D_{W} \subseteq X$, so
ii) follows. Assume now i) is false. Then by Theorem 9 there is a function $f(v)$ such that $\forall v \forall_{w}\left(D_{w} \subseteq X \rightarrow\langle\bar{f}(v), w, x\rangle \notin T_{0}(Z)\right)$ so ii) is false.

Now define $z_{1}=\left\{\langle u, x\rangle: \exists_{p}\left(\langle 0, y, x\rangle \in T_{p}(z)\right)\right\}$.
Corollary. $\delta\left(\mathrm{Z}, \mathrm{Z}_{1}\right)$ contains all generic set so its complement is of first category.

A more detailed analysis of the construction of $T(Z)$ shows that this is actually the minimal fixed point of an operator which is $R E$ in the hypergraph model. Hence there is a RE set A such that $[A Z]=Z_{1}$. In case Z is $R E$ set then Z_{1} is Π_{1}^{1}-set.

5. Reduction

Both models are useful to define general forms of reduction that under special restrictions become well known reducibilities of recursive function theory. If α is any subset of $P(N)$ we define the relation $X \int_{-g}^{\alpha} Y$ to hold between sets X and Y exactly in the case there is some set $Z \varepsilon \alpha$, such that $(Z Y)=X$. The case in which α is the set of $R E$ sets it is well known in the literature as enumeration reducibility and is denoted $X \leq Y$ in [4]. Similarly we define $X \leq_{h g}^{\alpha} Y$ to hold in case ther is $Z \varepsilon \alpha$ such that $[Z Y]=X$. The case in which α is the set of $R E$ sets has been called hyperenumeration reducibility in [5] and denoted X she Y.

Under proper restrictions on α these relations become partial orders and induce partitions whose elements are called degrees. We are interested in some evaluation of the number of degrees containing total functions. We shall show that a classical result of enumeration reducibility can be generalized to the hypergraph model. This is also a generalization of the main result of. [5]

We shall say that a set X is single-valued in case that whenever $\langle x, y\rangle \varepsilon X$ and $\langle x, z\rangle \varepsilon X$ then $y=z$. In case X is single-valued and for every x there is some y such that $\langle x, y\rangle \varepsilon X$ we shall say it is total.

Theorem 1l. Let Z be a given set. The collection of all sets Y such that (ZY) is not single-valued or there is a cofinite extension Y_{1} of Y such that $\left(Z Y_{1}\right)$ is single-valued is open and dense.

Note that every cofinite set belongs to the collection, so it is clearly dense. To show it is open first consider the case in which (ZY) is not single-valued. Then there is a finite subset Y_{1} of Y such that $\left(Z Y_{1}\right)$ is not single-valued, hence the interval $\left\langle Y_{1} ; \varnothing>\right.$ is contained in the collection. In case there is a cofinite extension Y_{1} of Y such that $\left(Z Y_{1}\right)$ is single-valued the interval $\left\langle\varnothing_{i} \bar{Y}_{1}>\right.$ is contained in the collection.

Theorem 12. Let α be a denumerable subset of $P(N)$ closed under enumeration reducibility. The collection of all Y such that

Note that in case $(Z Y)=X$ where $Z \varepsilon \alpha$ and Y is cofinite then $\mathrm{X} \leq \mathrm{Z}$ so $\mathrm{X} \varepsilon \alpha$. For each $\mathrm{Z} \varepsilon \alpha \operatorname{call} \beta_{\mathrm{Z}}$ the collection of Theorem 11 . So in case there is X such that for some $Z \varepsilon \alpha,(Z Y)=X, X$ is total but $X \notin \alpha$, then $Y \varepsilon \bar{\beta}_{Z}$ and since each $\bar{\beta}_{Z}$ is nowhere dense, the theorem follows.

Theorem 13. Let α be a denumerable subset of $P(N)$, closed under hyperenumeration reducibility. The collection of all Y such that there is some X, X is total, $X \leq_{h g}^{\alpha} Y$ and $X \notin \alpha$ is of first category.

For each Z let Z_{g} be a set such that $\overline{\delta\left(\overline{Z, Z_{g}}\right)}$ is of first category and $Z_{g} \leq$ he Z (see remark at the end of section 4). Call α_{g} the collection of all Y such that there is some $Z \varepsilon \alpha$ and $Y \leq Z_{g}$. Hence $\alpha_{g} \subseteq \alpha$. Call β the collection of all Y such that there is some X, X is total, $X \leq_{h g}^{\alpha} Y$ and $X \notin \alpha$. And call
$\beta_{g}{ }_{\alpha}^{\text {the }}$ collection of all Y such that there is X, X is total $X \leq{ }_{g}^{g} Y$ and $X \notin \alpha_{g}$. By Theorem $12 \beta_{g}$ is of first category hence $\beta \cap \beta_{g}$ is also of first category.

Now $\beta=\left(\beta-\beta_{g}\right){ }^{\prime}\left(\beta \cap \beta_{g}\right)$ and for any $Y \varepsilon\left(\beta-\beta_{g}\right)$ there is
$Z \varepsilon \alpha$ such that $Y \varepsilon \overline{\delta\left(Z, Z_{g}\right)}$ hence $\left(\beta-\beta_{g}\right)$ is also of first category.
It follows that β is of first category.

REFERENCES

1. Curry, Haskell B. and Feys, Robert, Combinatory Logic, Amsterdam, 1958.
2. Davis, Martin, Computability and Unsolvability, New York, 1958.
3. Myhill, John, Category Methods in Recursion Theory.
4. Rogers, Hartly, Jr., Theory of Recursive Functions and Effective Computability, New York, 1967.
5. Sanchis, Luis, Hyperenumeration Reducibility, Technical Report, Systems and Information Science, Syracuse University, May 1974.
6. Scott, Dana, Lambda Calculus and Recursion Theory, Notes, Uppsala, April 1973.
7. Thomason, S.K., The Forcing Method and the Upper Semilattice of Hyperdegrees, Transactions of the American Mathematical Society, Vol. 129 (1967).
