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1. Introduction

We consider in this paper two models of combinatoric logic

in which the domain is the same:P(N) the power set of N = the set

of non negative integers. The first model is the graph model

introduced by Scott in [6]; the second is a generalization that

we call the hypergraph model. It is related to the graph model

roughly as hyperarithmetical reducibility is related to Turing

reducibility. We develop some properties of the graph model,

most of them taken from [6], and some fundamental features of the

hypergraph model. Our aim is to find intrinsic connections

between the two models. The main result we have asserts that the

hypergraph model can be simulated to some extent in the graph

model.

Capital letter A,B, ••• ,X,Y,Z, will denote elements of peN),

and small letters x,y,z will denote elements of N. Subsets of

peN) will be denoted with greek letters a,B. We shall use

standard notation for the boolean operations on subsets of N

or of peN).

We shall encode finite sequences of integers via the pairing

function J(x,y) = ~((x+y)2 + 3x + y) (see [2], p. 43). We put

<x> = x and <Xl' ••• ,Xn+1 > = J(xl , <x2 ' ••• 'xn+1». Note that every

x represents some n-tuple for every n ~ 1.

As in Rogers [4] the notation Dxdenotes the finite set with

index x. Note that whenever y E D then y < x.x



We shall find it convenient to formulate some results in

terms of the Cantor topology on peN). If C and D are finite sets

such that CoD = ~ then the interval <CjD> is the set

{X : C c X cO}. A subset a of peN) is open in case that for

every X E a there is an interval <CiD> such that X £ <CiD> and

<CjD> c a. A subset a of peN) is dense in case that a n <C;O>

is non empty for every interval <CiO>. Finally a is nowhere

dense in case that for every interval <CjD> there is an interval

-
<CliO!> such that <CliO!> ~ <CiO> and <CliOl> ~ a.

We recall that if a is open and dense then a is nowhere dense.

If a is the union of a denumerable collection of nowhere dense sets

then a is of the first category. Otherwise it of the second

category.

We shall need the notion of continuous operator on peN) but

actually the continuity of the operator is defined in terms of

another topology. If F(Xl, ••• ,xn ) is an operator defined on

elements of peN) with value also in peN) we shall say it is

continuous if the following condition is satisfied:

X £ F(X1, ••• ,xn ) iff 3Y13Y2 .•• 3Yn (x E F(D , ••• ,0 »
Yl Yn

A model for combinatory logic consists of a non empty domain

o of individuals and a binary function f(x,y) on 0 such that there

are elements S and K in D and the following identities hold:

(5) f(f(f(S,x) ,y) ,z) = f(f(x,z) ,f(y,z»

(K) f(f(K,x) ,y) = x



To avoid trivial cases it is convenient to require that

the elements Sand K are different. In the models we consider

in this paper there are many elements with the properties of S

and K so we do not require the strong extensionality property

that such elements are unique. A weak extensionality property

is satisfied by the graph model (see [6]) but apparently no

similar result holds for the hypergraph model.

The fundamental theorem of COmbinatory logic can be formulated

as follows: Let 0 be a model of combinatory logic with application

function f(x,y) and let t be a term built using variables,

constants from D and the application function. Then if y is any

variable there is a term h which is built using the same variables

and constants in t, the constants Sand K and the application

function, but does not contain the variable y such that the

following identity holds:

f(h,y) = t

There are different ways to construct such term h. For a

general discussion see [1] Chapter GA. Note also that different

choices of the elements S and K will produce different terms.

The most important notion in a model of combinatory logic is

the representation of functions in the model. To make precise

this concept we introduce extension of the application function

as follows. We put

fl(x,y) = f(x,y) and fn+1(x'Yl'···'Yn+1 ) = f n {f(x'Yl)'Y2' ••• 'Yn+l).



Then a function g(Yl' ••• 'Yn ) on D is representable in the model

in case there is some element XED such that

f(x'Yl' •• ·'Yn ) = g(Yl' •.• 'Yn ). From the fundamental theorem

it follows that every function defined by a term t built using

variables, constants and the application function is representable.



2. The Graph Model

The domain D of this model is the set P(N). Functions on

this set will be called operators so the application function of

this model is an operator of two variables. This operator -

that we shall call the graph application operator • is denoted

in the form (ZY) and it is defined as follows:

(ZY) = {x 3y «y,x> E Z A 0y C Y)}

{x

We shall follow the usual conventions by omitting parentheses

with the understanding that the association is to the left. Note

that with this notation the fact that the operator F(Yl, ••• ,yn )

is representable in the model means that for some set Z

Note also that

(ZY l ... Yn ) =

3Yl···3Yn«Yl'···'Yn'x> E Z A 0Yl ~Yl A ••• A 0Y
n
~ Yn )}

We must show first that this application operator is actually

a model of combinatory logic. This follows immediately from the

following theorem.

Theorem 1. Let F(Y1, ••• ,Yn ) be a continuous operator on

peN). Then there is a set A such that

Take A = {<Yl' ••• 'Yn'X> : x E F(O , ••• ,0 )} and the theorem
Yl Yn

follows from the preceding remark.



Now since the operators F1(X,Y,Z) = (XZ(YZ» and F2 (X,Y) = X

are clearly continuous it follows from the theorem the existence

of elements Sand K satisfying the axioms of combinatory logic.

On the other hand the graph application operator itself is

continuous, and it is clear that continuous operators are closed

under composition.

Corollary. An operator on P (N) is representab'le in the

graph model if and only if it is continuous.

This result does not give any information about the set A

that represents a particular continuous operator. We shall call

such a set a graph of the operator. In case an operator has a

graph that is a recursively enumerable set we shall say it is a

RE operator or more precisely that it is a RE operator in the

graph model.

Now the graph application operator (ZY) is RE in the graph

model. For a graph for this operator is the following RE set:

<Y2'x>
{<Yl'Y2'x> : Yl = 2 }

In general if t is a term built out of variables Yl, •.• ,Y
n

,

RE operators and RE sets then the operator F(Y1, ••• ,Y
n

) = t

is RE in the graph model. For in this case the condition defining

the graph in Theorem 1 is actually an RE predicate so the graph is

an RE set.

It follows from this that we may assume there are elements

S and K satisfying the axioms of combinatory logic that are RE

sets. And in general all the combinators in the sense of



combinatory logic are presented by RE sets.

Another important RE operator is related with the weak

extensional properties of this model. In case Zl and Z2 are sets

such that for every set Y, (ZlY) = (Z2Y) we shall write

Zl ~ Z2. Now define a RE set L as follows:

L = {<y,z,x> : 3v (y = 2<V'X> AD cD)}
v z

It follows that for arbitrary Zl and Z2' (LZ1 ) ~ Zl and

furthermore Zl ~ Z2 if and only if L(Zl) = L(Z2).

Another important operator in this model is the minimal fixed

point operator. Given any Z the operator (ZY) as a function of Y

is monotone so it has a minimal fixed point. Actually such minimal

fixed point as a function of Z is also continuous so it is

represented in the model. Analysis of the usual proof shows that

it is a RE operator in the graph model.

Scott has proved a stronger result, namely that the graph

of the minimal fixed point operator can be defined explicitly

using elements S and K and the graph application function. We

reproduce his argument here.

As usual I denotes a RE set such that (IX) = X for all X.

Let F(Z) be the following RE operator.

F(Z) = (S(KZ) (SII) (S(KZ) (SII»)

By straightforward computation it follows that if F(Z) = Y

then Y = (ZY) so F(Z) computes a fixed point of Z. We shall show

that F(Z) is actually a minimal fixed point of Z. Let (ZY) = Y



This gives a recursively enumerable

for some Y and to get a contradiction assume it is not the case

that F(Z) c Y. Hence there is x £ F(Z) but x ~ Y, so there

is Y such <y,x> £ (S(KZ) (SI1» and D c (S(KZ) (511». Choose
y -

one such x such that the corresponding y is minimal. Then

X £ (S(KZ) (SII}Dy ) so x £ Z(DyDy }. Since we are assuming

x f Y = (ZY) it follows that it is not the case that (D D ) c yy y

so there is a pair <v,w> £ D , D c D and w ~ Y. Since v < y
y v - y

and D c (S(KZ) (SII» this contradicts the minimality of y.
y -

We can give a general rule for the existence of RE operators

that will be useful later. For that purpose let us define a

G-form as an expression in set variables Yl' •.• 'Yn and number variables

x1, ••. ,xk built out of atomic formulas: i) f(x1, ••. ,xk ) £ t

where f is a recursive function and t is a term containing set

variables, RE operators and RE sets; and ii) recursively enumerable

predicates in the number variables. The admissible operations in

the form are disjunction, conjunction, bounded universal

quantification and existential quantification.

Theorem 2. Let R(Y1, ••• ,Yn , xl' ••• ,xk ) be a G-form. Then

there is a RE set A such that (AYl ••• Yn ) = {<xl' ••• ,xk >

R(Y1,···,Yn , X1'···'Xk}}·

A proof by induction on the construction of the form can be

given but a more direct argument is possible. Replace in the form

every occurrence of Y. by D
J Yj

predicate Rl(Yl' .•• 'Yn ' x1' .•• ,xk ) and then the set A can be

defined as follows:

Rl(Yl'···'Yn ' xl'···,xk)}·



3. The Hypergraph Model

The form of the definition of graph application operator

suggests a generalization using function quantification. It is

not clear that such extension will produce a model of cOmbinatory

logic but we shall show this is actually the case. In general

the operators represented in the new model are not continuous

and this of course may be considered an important disadvantage.

At any rate we shall show the operators are not completely dis-

continuous since they can be simulated in the graph model on a

large subdomain of peN).

We shall need here some extra notation. If f(x) is a total

numerical function we put f(x) = <x,f(O),f(l), ••• ,f(x-!» so

f(O) = o. If x = <y,z> then lex) = y and ll(x) = l(z) if y> 1, = z

otherwise. If x = <n,x1, ••• ,xn > and y ~ <m'Yl' ••• 'Ym> then

x * y = <n+m,x1, .•• ,xn , Yl' ••• 'Ym>. We shall write x · y in place

of x * <l,y> •

The hypergraph application operator will be denoted in the

form [ZY]. The definition of the operator is as follows:

[ZY] ; {x : Vf3v3y «f(v) ,y,x> E Z A 0 c Y)} •
Y -

We shall omit brackets with the convention that the association

is to the left. In some cases we may use both the parenthesis

notation and the bracket notation. The convention is that inside

parentheses we must replace parentheses and inside brackets we

must replace brackets. For instance the expression (XY[ZYX])



is actually «XY) [[ZY]X]).

We shall prove first this is actually a model of combinatory

logic. We choose to prove a more general theorem from which

the existence of combinators follows.

Lemma 1. There is a RE set A such that for arbitrary

[(AZ1 Z2 )Y] = [ZlY] n [Z2 Y ]

Let d(z) be a recursive function such that whenever g(x)

and f(x) are functions such that g(x) = f(x+l) then d(f(v+l» = g(v).

Introduce the following predicates:

RO(U'y) = leu) > 0 A ll(u) > I A Y = 0

RI(Z,u,y,x) - leu) > 0 A lieu) = 0 A <y,d(u) ,x> E Z

R2 (Z,u,y,x) - leu) > 0 A lieu) = 1 A <y,d(u),x> £ Z

Take now A as the RE set such that

(AZ l Z2) = {<u,y,x> ~ RO(U'y} v Rl(Zl'U'y,x} v R2 (Z2'u,y,x}} •

This A exists by Theorem 2 and it is easy to check that it satisfies

the conditions of the Lemma.

We define an H-form as an expression in set variables

YI' ••• 'Yn and number variables x1' ••• ,xk ' n ~ 1, k ~ 1, built out

of the following atomic formulas: i) Xi £ Xj~ ii} P(xl, ••• ,xk )

where P is a recursively enumerable predicate. We allow in H-forms

the following operations; conjunction and function quantification.

The latter is understood as follows: if R(Y1, ••• ,yn , v, x1' ••. ,xk )

is H-form then Yf~R(Yl' .•• 'Yn' f(v), xl' ••• ,xk ) is also H-form.



Theorem 3. Let R(Xl, •.. ,xn,Y, X1' .•• ,Xk ) be H-form,

n > 0, k > 1. There exists a RE set A such that

[(AX! ••• Xn)Y] = {<x1'.·.,xk > : R(X1,···,xn,Y, x1' ••• ,xk )}

The cases in which the form is atomic follow easily using

Theorem 2. And conjunction can be h~ldled using Theorem 2 with

Lemma 1. So we need only consider the case in which function

quantification is used.

Consider the form Vf3vR(Xl, •.• ,xn,Y, f(v), xl' .•. ,xk ) and

assume A is a RE set such that

[(AXl ••• Xn)Y] = {<v,x1,···,xk > : R(X1,···,xn,Y,V,x1,···,xk )} •

Then the form is actually equivalent to the following

Vf3vVg3w3y«g(w),y,f(v),xl , ••• ,xk > £ (AXI .•. Xn ) A 0y C Y) •

Now by standard permutation and contraction of quantifiers the

expression is equivalent to

Vf3v3y«dl (f(v»,y, d2 (f(v», xl'·.·,xk > £ (AXI ••• Xn ) A 0y ~ Y)

whe~e d1(u) and d 2 (u) are recursive functions. Hence to satisfy

the theorem we take a RE set Al such that:

(AlX ••• Xn ) = {<u,y,x> : <dl (u),y,d2 (u) ,xl' ••• ,xk > £ (AXI ••• Xn )}

Next we extend the notion of H-form by allowing other

constructions. In each case we show that the new construction

is equivalent to a form in the original sense. So Theorem 3 can be

applied to the enlarged forms.

a) We can use number quantifiers in H-forms. In fact it

is well known that such quantifiers can be expressed using the

universal function quantifier.



b) We can use rri-predicates in H-forms since such predicates

can be defined by applying function quantifiers to recursively

enumerable predicates.

c) We can use expression of the form f(xl, ••• ,xk ) E t where

f is any hyperarithmetical function and t is a term in which

variables are used, the constants are rri-sets and the operations

are the graph application operator or the hypergraph application

operator. Any such expression can be expanded using the definitions

to a form containing quantifiers and conjunction.

d) Disjunction. Let R(X1, ••• ,xn , x1' ••• ,xk ) be

RI(XI,···,xn , xl'···,xk ) v R2 (XI ,· •• ,Xn , XI' ••. ,Xk )

where Rl and R2 are forms. First note there is a RE set B such

that [(BZ l Z2 )Y] = [ZlY] LJ [Z2Y]. To show there is such B we use

Theorem 2 to get RE set Bl such that

(BI ZI Z2 ) = {<u,y,x,z> «u,y,x> £ Zl A Z = 0) v «u,y,x> £ Z2 v Z = I)}.

Now note that [ZIY] lJ [Z2Y] = {x 3z«x,z> £ [(B I ZI Z2)Y]) so B

exists by Theorem 3 applied to expressions covered in a) and c).

Also by Theorem 3 applied to H-forms R1 and R2 with a dummy

variable y there are RE sets Al and A2 such that:

[(AlXl Xn)~] = {<x1'···,xk > Rl(Xl'···'Xn,xl,···,xk)}

[(A2X1 Xn)~] = {<x1'···,xk > R2(Xl'···'Xn'Xl'···'Xk)}

Hence the form R is equivalent to

<X1,···,Xk > £ [(B(A1X1

and it is H-form by c) •



Theorem 4. For each n > 1 there is a RE set B such thatn

(ZX1 Xn ) = [(BnZ)X1 ... X ].n

For n = 1 take B1 such that (B1Z) = {<O,y,x> ; <y,x> £ Z}.

For n+1 we use Theorem 3 to get a RE set A such that

hence take Bn+1 such that (Bn+1 Z) = Bn(AZ).

Theorem 5. Let R(Xl, ••. ,xn,x1, ••• ,xk ) be H-form. There is a RE

set A such that [AXl ••• Xn ] = {<xl' •• ·,xk > : R(X1, ••• ,xn,x1, ••• ,xk )}.

If n = 1 the result is given by Theorem 3. Otherwise apply

Theorem 3 and then Theorem 4 to eliminate the expression with graph

application.

From Theorem 5 it follows that the hypergraph application

operator defines a model of combinatory logic, and that every

combinator is actually represented by some RE set.

We complete this section showing that the minimal fixed point

for the hypergraph model is representable in the model. Such

minimal fixed point always exists since the operators representable

in the model are monotone. But since they are not continuous we

cannot depend in any construction of the fixed point from below.

Actually we must use the construction in which the fixed point is

obtained as the intersection of all sets containing its own image

under the operator.

Theorem 6. There is a RE set A such that for arbitrary

Z, [Z[AZ]] = [AZ] and whenever [ZY] = Y then [AZ] c Y.



Define the operator F(Z) by the following condition:

x £ F(Z) iff YY([Zy] ~ y ~ X E Y)

We need only to show that F(Z) is represented in the hypergraph

model by a RE set A. Using the definitions and exporting quantifiers

we get

x £ F(Z) iff YY3z~f3v3y«<f(v),y,2> £ Z A 0 c Y A Z ¢ Y) v X £ Y)
Y

In the expression in the right it is possible to replace the quantifier

vy by a universal function quantifier. After this by standard

permutation and contraction of quantifier we get H-form R(Z,x) such

that
X £ F(Z) iff R(Z,x)

hence RE set A exists by Theorem 5.



4. Relation Between the Models

Every operator representable in the graph model can be

represented in the hypergraph model. But the converse is not true.

For instance if A is the set of all triples «l,v>, 2 v , x> then

[AN] = N but [AX] = ~ for any X different from N. So we may ask

to what extent it is possible to simulate operators of the

hypergraph model by operators of the graph model.

We make precise this idea by introducing the following de

finition. o(Z,X) = {y : [Zy] = (XY)}. Now given a set Z we can

find a set Zl such that o(Z,Zl) contains all finite sets. We

may take for instance Zl = {<y,x> : x E [ZDyl and then there is

a RE set A such that [AZ] = Zl- The set Zl is to some extent

unique_ For if Z2 is another set such that a(Z,Z2) contains all

finite sets then Zl ~ Z2 in the graph model, hence a(Z,Zl) = o(Z,Z2).

We note also that in case o(Z,ZI) contains all finite sets

then the operator [ZYl with variable Y is continuous if and only

if o(Z,Zl) = peN).

In the preceding construction the set Zl simulates the set

Z as far as the latter defines a continuous operator. We shall

show now how to construct for every Z another set Zl such that

o(Z,Zl) is of second category. The construction is essentially

a forcing argument of the type introduced in [7].

We define by transfinite induction a set T (Z) where pp

denotes ordinals. The defining rules are as follows:



TI) If 3w«u,w,x> E Z A D cD) then <u,y,x> £ T (Z) forw y p

all ordinals p.

T2) If for every number j, and for every z such that

Dz n Dy = ~ there is q < P such that EW{<u • j,w,x> £ Tq{Z)

A Dw n Dz = ~) then <u,y,x> £ Tp{Z).

It follows immediately from these rules that whenever

<u,y,x> £ T (Z) and D c D then <u,z,x> E T (Z).
P Y z P

We shall say that an interval <0 ;D > forces the pair <u,x>y v

in case one of the two following conditions is satisfied.

Fl) There is some ordinal p such that <u,y,x> E T (Z) and forp

every ordinal q < p and for every z such that Dz n Dv = ~ <u,z,x> ¢ Tq(Z).

F2) There is a number j such that for every ordinal p and for

every z such that D n D =~, <u • j,z,x> ~ T (Z) and <u,z,x> ~ T (Z).z v p p

Theorem 7. For every pair u,x and every interval <0 ;D >
Y v

there is a subinterval that forces <u,x>.

In case there is Yl such that D n Dv = ~ and for some
YI

p, <u, YI'x> £ Tp{Z) we take YI such that p is minimal and then

<0;0 LJ Dv >
Y v I

We shall say that a set X forces a pair <u,x> in case X belongs

<0 U D ;0 > forces <u,x>.
Y YI v

Otherwise there is no p such that <u,y,x> £ Tp(Z). Then by

rule T2) there is j and VI such that Dy n DVI = ~ and for all ordinals

p and all z such that Dz n Dv = ~ <u • j,z,x> ¢ T (Z). Then
1 p

forces <u,x>.

to some interval that forces <u,x>. The collection of all X that



forces a pair <u,x> is open, and by Theorem 7 it is dense.

We shall say that a set X is generic in case it forces all

pair <u,x>. It follows that the collection of all non generic

set is of first category.

Theorem 8. Let X be a generic set. If <u,y,x> £ T (Z) wherep

Dy C X then either there is w such that Dw C Dy and <u,w,x> E Z

or for every number j there is q < p and z such that D c X and
z -

<u • j,z,x> E T (Z).q

Assume there is no w such that D c D and <u,w,x> E Z. Thenw - y

p > 0 and for any given j there is an interval <D :D > thatz v

contains X and forces <u • j,x>. By T2 there is w such that

o n D = ~ and <u . j,w,x> E T , (Z) for q' < p • Hence F2 doesw v q

not apply and <u . j,z,x> £ T (Z) for q ~ q' < p.q

Theorem 9. Let X be a generic set such that there is no

p and y such that <u,y,x> E T (Z) and D c X. Then there is jp y -

such that there is no p and y such that <u • j,y,x> E T (Z) andp

D c X.y -

Take any interval that contains X and forces <u,x>. Since

Fl is impossible F2 holds and this implies the theorem.

Theorem 10. Let X be a generic set. The following conditions

are equivalent:

i)

ii)

3p3y «O,y,x> E T (Z) A D c X)
p Y

~'f3v3y«f(v) ,y,x>' e: Z "D c X) •
Y

Assume i) holds. Then by Theorem 8 given any function f(v) a

value v must exist such that <f(v),w,x> E TO(Z) and Dw c X, so



ii) follows. Assume now i) is false. Then by Theorem 9 there is

a function f(v) such that VvVw(D c X ~ <f(v) ,w,x> ¢ TO(Z» so ii)w-
is false.

Now define Zl = {<u,x> : 3p«O,y,x> £ Tp(Z»}.

Corollary. o(Z,Zl) contains all generic set so its complement

is of first category.

A more detailed analysis of the construction of T(Z) shows

that this is actually the minimal fixed point of an operator which

is RE in the hypergraph model. Hence there is a RE set A such that

1
[AZ] = Zl. In case Z is RE set then Zl is TIl-set.



5. Reduction

Both models are useful to define general forms of reduction

that under special restrictions become well known reducibilities

of recursive function theory. If a is any subset of P(N) we define

the relation X <a Y to hold between sets X and Y exactly in the-g

case there is some set Z £ a, such that (ZY) = X. The case in

which a is the set of RE sets it is well known in the literature as

enumeration reducibility and is denoted X < Y in [4] • Similarly-e

we define X <a. Y to hold in case ther is Z e: <l such that [ZY] = X.-hg

The case in which a is the set of RE sets has been called

hyperenumeration reducibility in [5] and denoted X <h Y.
- e

Under proper restrictions on a these relations become partial

orders and induce partitions whose elements are called degrees.

We are interested in some evaluation of the number of degrees

containing total functions. We shall show that a classical result

of enumeration reducibility can be generalized to the hypergraph

model. This is also a generalization of the main result of. [5]

We shall say that a set X is single-valued in case that whenever

<X,Y> E X and <x,z> £ X then y = z. In case X is single-valued

and for every x there is some y such that <x,Y> E X we shall say

it is total.

Theorem 11. Let Z be a given set. The collection of all

sets Y such that (ZY) is not single-valued or there is a cofinite

extension Y1 of Y such that (ZY1 ) is single-valued is open and dense.



Note that every cofinite set belongs to the collection, so it

is clearly dense. To show it is open first consider the case

in which (ZY) is not single-valued. Then there is a finite subset Y1

of Y such that (ZY I ) is not single-valued, hence the interval

<YI;~> is contained in the collection. In case there is a cofinite

extension Yl of Y such that (ZYl ) is single-valued the interval

<~'Yl> is contained in the collection.

Theorem 12. Let a be a denumerable subset of peN) closed

under enumeration reducibility. The collection of all Y such that

there is some X, X is total, X <a Y and X ~ a is of first category.
-g

Note that in case (ZY) = X where Z £ a and Y is cofinite then

X ~ z so X £ a. For each Z £ a call Sz the collection of Theorem 11.

So in case there is X such that for some Z £ a, (ZY) = X, X i~

total but X f a, then Y E Bz and since each Bz is nowhere dense,

the theorem follows.

Theorem 13. Let a be a denumerable subset of peN), closed

under hyperenumeration reducibility. The collection of all Y such

that there is some X, X is total, X ~~g Y and X f a is of first

category.

For each Z let Zg be a set such that S(Z,Zg) is of first

category and Z < h Z (see remark at the end of section 4).
9 - e

Call a the collection of all Y such that there is some Z £ a
9

and Y ~ Zg' Hence ag c a. Call B the collection of all Y such

that there is some X,X is total, X ~~g Y and X f a. And call



a the collection of all Y such that there is X,X is total
9 a

X < 9 Y and X fa. By Theorem 12 a is of first category hence
~ 9 9

a n a is also of first category.
9
Now a = <8 - a ) u <8 n a ) and for any Y E <8 - 8g > there is

9 9

Z £ a such that Y £ o(Z,Z ) hence <8 - B ) is also of first category.
9 9

It follows that B is of first category.



REFERENCES

1. Curry, Haskell B. and Feys, Robert, Combinatory Logic,
Amsterdam, 1958.

2. Davis, Martin, Computability and Unsolvability, New York,
1958.

3. Myhill, John, Category Methods in Recursion Theory.

4. Rogers, Hartly, Jr., Theory of Recursive Functions and
Effective Computability, New York, 1967.

5. Sanchis, Luis, Hyperenumeration Reducibility, Technical Report,
Systems and Information Science, Syracuse University, May 1974.

6. Scott, Dana, Lambda Calculus and Recursion Theory, Notes,
Uppsala, April 1973.

7. Thomason, S.K., The Forcing Method and the Upper Semi1attice
of Hyperdegrees, Transactions of the American Mathematical
Society, Vol. 129 (1967).


	Two models for combinatory logic
	Recommended Citation

	SU-CIS-75-02_001c
	SU-CIS-75-02_002c
	SU-CIS-75-02_003c
	SU-CIS-75-02_004c
	SU-CIS-75-02_005c
	SU-CIS-75-02_006c
	SU-CIS-75-02_007c
	SU-CIS-75-02_008c
	SU-CIS-75-02_009c
	SU-CIS-75-02_010c
	SU-CIS-75-02_011c
	SU-CIS-75-02_012c
	SU-CIS-75-02_013c
	SU-CIS-75-02_014c
	SU-CIS-75-02_015c
	SU-CIS-75-02_016c
	SU-CIS-75-02_017c
	SU-CIS-75-02_018c
	SU-CIS-75-02_019c
	SU-CIS-75-02_020c
	SU-CIS-75-02_021c
	SU-CIS-75-02_022c
	SU-CIS-75-02_023c
	SU-CIS-75-02_024c

