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ABSTRACT

In this paper we present a new upper bound on the

minimum distance of binary cyclic arithmetic codes of

composite length. Two new classes of binary cyclic

arithmetic codes of composite length are introduced.

The error correction capability of these codes are

discussed and in some cases the actual minimum distance

is found. Decoding algorithms based on majority-logic

decision are proposed for these codes.
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I. Introduction

Arithmetic codes, first proposed by Diamond [1], are useful

for error control in digital computation as well as in data

transmission. They are particularly suitable for checking or

correcting errors in arithmetic processors. Finding the minimum

distance d of an arithmetic code is a major problem. Despite

similarities between cyclic arithmetic and cyclic block codes,

no general lower bound and, similar to the BCH bound for cyclic

codes, exists for arithmetic codes. Thus, in general, the

determination of d still relies on computer search. The search for

a systematic way of constructing arithmetic codes is another major

area of research. Three known classes of arithmetic codes are

the high-rate perfect single-error correcting codes [2]-[4], the

large-distance low-rate Mandelbaum-Barrows codes [5], [6] and the

intermediate-rate intermediate-distance codes [7]. One of the

interesting features of the codes introduced in [7] is that they

can be decoded using majority-logic decisions.

In this paper we present a new upper bound on d for binary

cyclic arithmetic codes of composite length. This bound is quite

tight and gives a rather good estimation of the actual minimum

(list(lI1C~(~. Wc' i11s() C()J1struct two nc~w c!()sses of binilry cyclic

arithmetic codes. Many of these codes have intermediate-rate and

intermediate-distance and they can be decoded by majority-logic

decisions.

In Section II, we present the new upper bound on d. In
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Section III, we construct the two new classes of binary cyclic

aritmnetic codes. The decoding algorithm for these codes are

given in Section IV. A discussion of the results is contained In

Section V. Numerical examples are given in Appendix A. The

conditions for the existence of codes in the classes constructed

in Section III are given in Appendix B.
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form AN, where A is a fixed integer, called the generator of the

code, and N = O,I, ... ,B-I.
n

B is chosen so that AB = 2 -1, where n

is the multiplicative order of 2 modulo A. For a general back-

ground on binary cyclic AN-code as well as for the definitions of

arithmetic distance and arithmetic weight, the readers are

referred to [8]-[10].

The following theorem, which is a generalization of [11,

Theorem I], gives an upper bound on d.

Theorem 1: Let AN be a binary arithmetic code of composite
n

1length n = n1£1' 1 < ~l < n. If B is divisible by either 2 + 1 or
n

lby 2 - I, then d < ~l.

n
lProof: Let B = B1 (2 +1). By [12, Lemma 6.3] ~l is even.

Thus,

n
+ 2 1 - 1

is a codeword of arithmetic weight 1
1

, W(AB
1

) = ~l. Similarly, we

TIl
can show that d .~ Q,l when B = B 2 (2 -1).

t>. I':. I).

Theorem 1.

xample 1 Let AB = 2 -1 with A = 5·31 4 Thus, B =1

and n = 20. We note that GCD(A,22_1 ) = 1, GCD(A,2 4-1) ~ 1 and
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GCD(A,2 5-1} ~ 1. Thus, by [11, Theorem 1] d ~ 10. We may write

B = 5(2 5+1}. Thus, by Theorem 1 d < 4. This code has d = 4 [13].
n

1
n

1When B is of the form 2 +1 or 2 -1, the exact minimum distance

can be determined. This result is given in the following:

n n
Theorem 2: When B = 2 1+1 (or 2 I_I), then d = n/n

1
= .Q,l·

n
Proof: For B = 2 1+1 ,

2n _l (Q'l-1)n1
{£'1-2)n1

n
l 1A =: = 2 2 + - + 2 -n

2 1+1

n (Q, -2)n (9-
1
-4)n

1
2n

1
= (2 1_1) (2 1 1 + 2 + ... + 2 + 1) •

+•.. + a 1 2+a
O

where a
i

= 0 or 1,N-l

It is easily seen that W(AN) = ~l for N = 1, N
TIl n lN = 2 -1. If 0 < N-l < 2 -2, then

n -1 n -2
= a 2 1 + an -2 2 1

n1-l 1

TIl
= 2 and

for i = O,l, ... ,n1-l. Furthermore not all a. are 0 or 1. Thus,
1

(Q,1-1)n1 (9-
1
-2)n

1
n n -1 n -2

A (N-l) = (2 2 + - + 2 1_1) (a 1 2 1 + an -2
2 1 +n -1 1

and

n1-l n -2 (.Q,1-1)n
1AN = (an _1 2 + a 2 1 +... + a 1 2+a O)2

1 n l -2

n -1
1

+ (an _1 2
1
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n
1+. · · 1- ()l 2 -t i1 0) 2

n -1
1+ (a 1 2

11
1

-

n -2
'") .1

+ i1 2 ".
Il

l
-

n
1

-·l Il1-L
+ ((I-an -1) 2 + (I-an -2) 2 - -+ ••• + (I-a

l
) 2 + (I-dO)}·

1 1
n

By [7, Lemma 2], W(AN) > 2. Thus, d = 2
1

when B = 2 1+1.
1 n

Erosh and Erosh [14] showed that d = 2
1

when B = 2 1_1.

Q.E.D.

Example 2: Let AB = 2
8

_1 with A = 3·17. Thus B = 5 and n = 8.

By Theorem 2, d = 4.

Tables I and II in Appendix A give numerical examples of the

application of Theorem 1 and 2, respectively.
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III. On the Minimum Distance of Two Classes of Cyclic Arithmetic

Codes of Composite Length

In this section we will consider two classes of cyclic AN-codes.

The first class, C
l

' has a generator of the form

A = n n
(2 1+1) (2 2+1 )

and the second class, C2 ' of the form

A = n n
(2 1+1) (2 2_ 1 )

n l ~ n 2 , n = £lnl = £2n2 where 1 < £1 < nand 1 < £2 < n. Appendix B

gives the conditions for the existence of codes in these classes.

We first consider the class Cl . By [12, Lemma 6.3], £1 and £2

are even integers.

Theorem 3: If n
2

> n
l

then d of the codes in Cl is bounded by

Proof: By Theorem 1, d ~ £2. To obtain the lower bound we
n

lproceed as follows: if N = 0 mod(2 +1), then AN is a nonzero code-
n n 2word in the AN-code generated by (2 -1)/(2 +1) and by Theorem 2,

n
1

n
2

W{AN)~ 9'2; if N / 0 llIod{2 +1), then /\N(2 +1) mod{2
n
-l) js <l nonzeru

n n lcodeword in the AN-code generated by (2 -1)/{2 +1) and by Theorem
n

2, W[AN(2 2+1 )] ~ £1. By the triangle inequality we have

n
W[AN(2 2+1 )]

n
< W(AN.2 2) + W(AN)
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n
Wll\N(2 2+1 )] < 2W(AN)

Q.E.D.

Example 3: Let AB = 2
6

°_1 with B = (2
15

+1) (2
1

°+1). Thus,

A = (2
6
°_1)/(215+1) (2

1
°+1) and n = 60. By Theorem 3, 3 ~ d < 4.

Next, we consider the class C2 . By [12, Lemma 6.3], ~1 is even.

Theorem 4: For codes in the class C2 the following hold:

(a) If n
2 > n

1
, then min (~2' ~1/2) < d 2. ~2·-

(b) If n
2

< n
1

, then d = ~1·

Proof: If n
2

> n
1

, then the proof is analogous to the proof

of Theorem 3. If n
2

< n
1

, then the proof is analogous to the proof

of [7, Theorem 1].
Q.E.D.

Example 4: Let AB = 2 6 °_1 with B = (2
1

°+1) (2
15

_1). Thus,

A = (2 6°_1)/(2 1 °+1) (2 15_1) and n = 60. By Part (a) of Theorem 4,

3 < d < 4.

Example 5: Let AB = 2
72

_1 with B = (2
12

+1) (2
9
_1). Thus,

A = (2
72

_1)/(2
12

+1) (2 9_1) and n = 72. By Part (b) of Theorem 4, d = 6.

Tables III and IV in Appendix A give numerical examples of the

application of Theorems 3 and 4.
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IV. Decoding Class C
1

and Class C2 Codes

In this section we will present decoding algorithms for the

codes of Classes C
l

and C
2

. Their decoding algorithms depend on

the decoding of the codes of length n = n1£1 generated by
n

AO = (2
n
-l)/(2 1+1), which by Theorem 2 has minimum distance ~l'

n
lSuppose R = AON+E, 0 ~ N < 2 , is a corrupted codeword, and

the arithmetic weight of the error pattern is WeE) = t < L<~1-1)/2J,

where L~J denotes the largest integer less than or equal to x.

As the first step of decoding we note that N is equal to zero if and

only if W(R) = W(E) < L(£1-l)/2J. Thus, N = 0 can be uniquely

identified. When 0 < N < 2
nl

, the decoding will be based on the result

of the following theorem:

n
Theorem 5: The binary form of a codeword AON, 0 < N < 2 1,

n -1
1

+ (an _1 2
1

(£1-2)n1+..• + {1-a
1

)2 + (l-a
O
)2

(£1-3)n1+•.. + a
1

2 + a
O

)2
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where a. is a or 1 for i = O,1, ... ,n1-l and
1 n -1 n -2 .

1 2 1 2 1 2N-, ,- a I --I a 2 +... + ill + (l0·
lli-" n 1- -

'rlle proof of rrhl~()renl 5 is si.nlilar to the l)r()of of rfheorenl 2.

Since the carry propagation caused by an error stops whenever

a digit 0 is reached and the borrow propagation caused by an error

stops whenever a digit 1 is reached, then, by Theorem 5, a single

error can never corrupt more than n1-l consecutive digits in the

binary form of AON when N f 2
i

, i = O,l, ... ,nli and a single error can

never corrupt more than n1+l consecutive digits in the binary form of

N h 2i. a 1A o w en N = , 1 == , , ••• , ill ·

n-l
l'

j=O
b.2 J , b.

] J
is o or 1 for j = 0,1, ... ,n-I.

Thus,

If a single error does not corrupt more than n
l

digits, the binary

coefficient b
k

, 0 ~ k < n
l

, can be correctly estimated by taking the

majority vote on the coefficients b
k

, l-bk +
nl

, b
k

+
2nl

, l-bk +
3nl

,

... ,bk+(~1-2)nl and l-bk+(~l-l)nl whenever W(E) ~ (~1-2)/2 [7].

if N f 2 i , i = O,l, ... ,nl and W(E) ~ (~1-2)/2 we would, using the

above majority decision, correctly estimate AON. If

i = 0,1, ... ,n
1

, a single error can corrupt n1+l consecutive

digits, this can contribute to at most two wronq votes in the majority

tll:~(~ is iC)Il. ll<)wl~vl~r, l)y rl()L ilHJ Ltl<,~ f<) I I ()wi Ilq I d(~ L:,;:

(a) a carry propagation caused by an error which

corrupts n
1

+1 digits will introduce a subsequence

of the form F 1 = (10 ... 0) with at least n1+l

consecutive D's; and
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(b) a borrow propagation caused by an error which

corrUF>ts Tl1+l c]itJits, will Lntro(1uce ~1 subscc]ucnce

(J r tllC~ farm {l' ==
2

(01 ... 1) with at l(~Llst 11
1

+1

consecutive 1'5,

we can remove the effect of n1+l corrupted consecutive digits by

applying the following operation on the binary representation of R:

Operation 1: If there is a subsequence of the form FIt then

change it to Pi
F

l
from a to 1.

= (10 ... 010 ... 0) by changing the (n1+l)th bit of

If there is a subsequence of the form F
2

, then

change it to F2 = (01 ... 101 ... 1) by changing the (n1+l)th bit of

F
2

from 1 to O.

Thus, if N in the modified binary representation of R, each

error will contribute to at most one wrong vote in the majority decision.

If N 1 2 i , for i = O,l, ... ,n
l

, Operation 1 will not change the

majority decision since In this case it needs at least two errors

to introduce a subsequence of the form F
1

or F 2 .

In summary, the decoding of the AON code can be described as

follows:

(a) If W(R) ~ U£1-1)/2j, decode N = 0, otherwise go to (b)

(b) If form F
I

or F 2 appears in the binary rCf)resent(ltion of

R apply Operation 1; otherwise go to (c)

(c) the binary coefficients of N are determined by ,majority-

logic decisions.

The decoding scheme described above for the AON codes can be

used in the decoding of codes of Class C
1

and C
2

. Let res (x) denote
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11
L!wLcsiduc of x 1T\odulo 2 -1. Let R AN I E bp the reec j Vc( I

word while AN 1S the codeword sent.

Decoding algorithm for Class Cl Codes (n 2 ~ 2n1 )

in the AON-code, to get
n

2decode res{E'/(2 +1)}, which is a corrupted word
n n 2in the AbN-code, where AO = (2 -1)/(2 +1), to get E.

N = a if and only if W(R) < L<9. 1 -1)/2J; otherwise
n 2decode res{R(2 +l)}, which is a corrupted word

n
E' = res{R(2 2+1 )} - res(AON);

(a)

(c)

(by

Decoding algorithms for Class C
2

Codes

1. If 9. 1 > £2'

(a) N = 0 if and only if W(R) < Ud-1)/2J, where

( b)

d = min(9. 2 ,9.1 /2); otherwise go to (b)
n 2decode res{R(2 -I)}, which is a corrupted word

n
2in the AON-code, to get E' = res{R(2 -l)}

(c)
n

2decode res{E'/(2 -l)}, which is a corrupted
n

word in the AON-code, where A
O

= (2
n
-l)/(2 2_ 1 ),

to get E.

(b)

2. If £2 > 2£1- 1

(a) N 0 if and only if W(R) < L(Q,1-1)/~J; otherwise

go to (b)
n

1decode res{R(2 +l)}, which is a corrupted word in
n n 2the AON-code where AO = (2 -1)/(2 -1), to get

n
E' = res{R(2 1+1)} - res(A*N) [7];o
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n
(c) d('co<!(' 1'<':,11·:'/(2 J+ 1) I, which is 01 cornq>lyd

word in the !\ON-codc, to <Jel: I':.

Example G illustrates the decoding algorithm for an arithmetic
n

code generated by A
O

= (2 n-l)/(2 1+1), while Example 7 illustrates

the decoding algorithm for an arithmetic code in Class C
2

.

Example 6: Suppose A
O

= (224_ 1 )/(2 4+1), then

4B = 2 +1, n = 24 and n 1 = 4. By Theorem 2, d = 6 and this code is

capable of correcting any double errors. We have

= (000011110000111100001111)

If a double error E = 2 8 - 2
5

is added to the codeword 3AO' then

the corrupted word is R = 3AO + E with binary representation

R = (001011010010111000001101)

In this case there is a subsequence of the form F
1

in R with

n 1 +l = 5 consecutive O's. By applying Operation 1, the modified

binary representation of R is R' = (001011010010111000101101).

We divide R' into 6 block and complement all the digits in

positions 4i+j where i 1,3,5 and j = 0,1,2,3. Then R' becomes

1101, 1101, 1101, 1110, 1101, 1101 .

We check th;) t
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d iq i l s wi Lh posit ion 111;1 jori ty vdLu('

24 1<:+3
° < k < 5 1,1,1,1,1,1 1,

2 4k +2
° < k < 5 1,1,1,1,1,1 1,

2 4k+ l ,
° < k < 5 0,0,0,1,0,0 °

24k+ O
° < k < 5 1,1,1,0,1,1 1 .,

Hence

AON = (0010,1101,0010,1101,0010,1101). By subtracting AON from R,

we obtain

E = (0000,0000,0000,001(-1),00(-1)0,0000) = 2
8

- 25.

Example 7: Suppose A = (2 6°_1)/(2 6+1) (21°_1), then

B = (2 6+1) (2
1

° -1), n = 60, n 1 = 6 and n 2 = 10 . By Part (a ) 0 f

Theorem 4, 5 < d < 6 and this code is capable of correcting any

double errors. We have

A =
(2 6+1) (2 1 °_1)

243+242+241+24°+239+238+234+231+23°+229+227+226+224+222

+219+217+216+212+29+28+27+26+1

= (000000000000000011111100010011101101010010110001001111000001)

It a double error E = _2 53 +2 11 is added to the codeword 32A, then

the corrupted word is R = 32A+E. To decode, we first calculate the

residue of R(2 1 0-1) mod (26°_1) which is

100000,000000,011111,100000,011111,

100000,100111,011111,111111,011000 . (1)

It is found there are one subsequence with more than n
l

6 consecutive

O's and one subsequence with more than n
l

consecutive l's. Applying
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Operation 1 to (1) yields

lOOOOO,lOOOOO,Olll11,lOOOOO,011111,

100000,100111,011111,011111,011000 . (2)

We complement all the digits in positions 6i+j where i = 1,3,5,7,9

and j = 0,1,2,3,4,5. Then (2) becomes

011111,100000,100000,100000,100000,

100000,011000,011111,100000,011000 .

We check that

digits with positions majority value

2 6k+ S
0 < k < 9 0,1,1,1,1,1,0,0,1,0 1,

2 6k+ 4 , ° < k < 9 1,0,0,0,0,0,1,1,0,1 0

2 6k+3 , 0 < k < 9 1,0,0,0,0,0,1,1,0,1 a

2 6k+ 2 a < k < 9 1,0,0,0,0,0,0,1,0,0 0,

2 6k+ 1 , 0 < k < 9 1,0,0,0,0,0,0,1,0,0 0

26k+O, 0 < k < 9 1,0,0,0,0,0,0,1,0,0 0 .

Hence the majority decision of 10
yields a codewordres(R(2 -1))

reS(AON) = (011111,100000,011111,100000,011111 , 100000,011111,100000,

011111,100000). The error is now E' = res(R(2
10

-1}} - res(AON},

which has the form

000000,100000,000000,000000,000000,

000000,001000,000000, (-1)00000,00(-1)000 ·

The actual error E is congruent to E'/(21 0-1) mod (26°-1)

E(210_1} _ E' = 253+221_211_23

E - 243+233+223+213+211+23

mod (2
60-1 )

mod (2 60_1}/(2 10_1)



which 11ds thc~ t)in~)ry form

0000000000,0000001000,0000001000,0000001000,

0000001010,0000001000. (3)

Again the majority scheme on (3) yields a block 0000001000.

Repeating this block six times, we have

0000001000,0000001000,0000001000,0000001000,

0000001000,0000001000. (4)

The binary integer (4) is a codeword generated by

(2 60_1)/(2 10_1). Subtracting (4) from (3), we get the actual error

E.

OOOOOO(-l)OOO,OOOOOOOOOO,QOOOOOOOOO,OOOOOOOOOO

0000000010,0000000000 .

. 53 11
Hence, the error pattern E 15 -2 +2 .
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v. Discussion

In this paper we have presented a new upper bound on the

minimum distance of cyclic arithmetic codes of composite length.

This upper bound is quite tight and gives a good estimation of

the minimum distance. Two new classes of codes of composite length

n = £ln1 = £2n2 have been introduced. The error correction

capability of these codes are discussed and in some cases the actual

minimum distance is found. Since n l and n
2

need not be relatively

prime, some of these new codes have better information rate than the

comparable codes found in

have also been provided.

[7]. Decoding algorithms for these codes

They are based on majority-logic decision,

and are similar to the decoding algorithm proposed in [7].
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In this appendix we will present numerical examples of the

application of Theorems 1,2,3, and 4. The symbols for the tables

are the following:

n code length

A generator of the code

B number of codewords

d actual minimum distance

d upper bound on d given by Theorem 1
u 1

d upper bound on d given by [11, Theorem 1]
u

2
R is the code rate (R = (log2B)/n)

Table I gives numerical examples of the application of Theorem 1.

The d of these codes were obtained by a computer search [13].

Table II gives numerical examples of the application of

Theorem 2.

Table III and IV give numerical examples of the application

of Theorems 3 and 4. In Table III we give upper and lower bounds on

d while in Table IV the actual minimum distance is given.
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TAnLr~~ I
-----------

n A B d d <1
til u

2

12 5-7 3-3-13 3 4 6

16 3-257 5-17 4 4 16

18 3-7-19 3-3-73 4 6 18

20 5-31 3-5-11-41 3 4 10

20 5-31-41 3-5-11 4 4 10

20 5-11-31 3-5-41 4 5 10

20 3-5-31-41 5-11 6 10 20

24 3-3-17 5-7-13-241 3 4 8

24 7-17 3-3-5-13-241 3 4 6

24 3-3-241 5-7-13-17 4 4 8

24 7-17-241 3-3-5-13 4 4 6

24 5-7-241 3-3-13-17 5 6 12

24 3-3-5-241 7-13-17 5 6 8

24 3-3-13-241 5-7-17 6 6 8

24 5-7-17-241 3-3-13 6 8 12

28 5-127 3-29-43-113 3 4 14

28 29-113-127 3-5-43 4 4 7

30 7-31-331 9-11-151 6 6 15

30 7-31-151-331 9-11 6 6 15

32 17-65537 3-5-257 4 4 8

32 5-65537 3-17-257 4 4 16

32 3-65537 5-17-257 4 4 32

32 5-257-65537 3-17 8 8 16

32 3-257-65537 5-17 8 8 32

36 13-73 3-3-3-5-7-19-37-109 4 4 6

36 3-19-37-109 3-3-5-7-13-73 3 3 12

36 5-73 3-3-3-7-13-19-37-109 3 4 6

36 3-13-19-73 3-3-5-7-37-109 4 6 12



TABLE II

n A B d

8 3-17 5 4

12 5-7-13 3-3 4

16 3-17-257 5 8

16 3-5-257 17 4

18 3-7-19-73 3-3 6

20 5-5-31-41 3-11 4

24 5-7-13-17-241 3-3 8

24 3-3-5-7-13-241 17 6

24 3-3-7-17-241 5-13 4

28 3-29-43-113-127 5 14

28 5-29-113-127 3-43 4

30 7-11-31-151-331 3-3 10

30 3-7-31-151-331 3-11 6

32 3-5-257-65537 17 8

32 3-5-17-65537 257 4

36 3-5-7-13-19-37-73-109 3-3 12

36 3-3-3-7-19-37-73-109 5-13 6

36 5-7-13-37-73-109 3-3-3-19 4

20
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n B d< d> R-

60 (2 15_1) (2 1 °+1) 4 3 0.4166

60 (2 15+1) (2 1 °+1) 4 3 0.4167

60 (2 1 °+1) (2 6-1) 6 5 0.2663

60 (21°_1) (2 6+1) 6 5 0.2670

72 (2 18 _1) (212+1) 4 3 0.4166

72 (2
18

+1) (2
12

+1) 4 3 0.4166

72 (2
12

+1) (2 9+1) 6 4 0.2917

84 (2 21 _1) (2 14+1) 4 3 0.4166

84 (2
21

+1) (2
14

+1) 4 3 0.4166

120 (230_1) (220+1) 4 3 0.4166

120 (2 30+1) (220+1) 4 3 0.4166

120 (220_1) (2 12+1) 6 5 0.266

120 (220+1) (2 15+1) 6 4 0.2916

120 (2 15_1) (2 12+1) 8 5 0.2250

120 (2
15

+1) (2 12+1) 8 5 0.2250

120 (2 12+1) (21°_1) 10 6 0.1833

120 (212+1) (2 1 °+1) 10 6 0.1833
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n B d= R

60 (215_1) (2 6+1) 4 0.3503

60 (215+1) (2 6+1) 4 0.3503

72 (2
12

+1) (2 9-1) 6 0.2916

84 (221_1 ) (2 6+1) 4 0.3217

84 (221_1 ) (2 6+1) 4 0.3217

84 (214_1) (2 6+1) 6 0.2383

84 (214+1) (2 6 _1) 6 0.2378

120 (2
3

°+1) (2
12

+1) 4 0.3500

120 (2 3 °+1) (215_1) 4 0.3750

120 (2
3

°+1) (2
15

+1) 4 0.3750

120 (220+1) (212_1) 6 0.2666

120 (220+1) (215_1) 6 0.2916

120 (2
15

+1) (2
4

+1) 8 0.1590

120 (2 15_1) (2 6+1) 8 0.1751

120 (2 12+1) (2 5 _1) 10 0.1412

120 (2
12

+1) (2
5

+1) 10 0.1420

120 (2 1 °+1) (2 6 _1) 12 0.1331
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Appendix B

In this section we will present conditions for the existence

of codes in Classes Cl and c2 .

Let k > 1 be an odd positive integer. e(k) is defined as the

least positive integer such that 2e (k)+1 is divisible by k, if

one does exist. e(k) is the exponent of k.

At this point we are required to prove the following technical

lemmas:

relatively prime. So we can conclude that e(k) is even. Let

1
- - I x xe(k) = 2x, so x e(k). Assume e(k) = mx, m > 1. Since k (2 +1) (2 -1)

and kl2
x
+l there exists k l ~ 1 such that kllk and k l !2X-l. Thus,

klI2e(k)-1 which is a contradiction.

Q.E.D.

Lemma B2: kl2Y+l if and only if e(k) Iy and y/e(k) is odd.

Proof: Since (2 Y+l) - (2e (k)+1) = 2e (k) (2 y - e (k)_1), k!2Y+l

if and only if k!2y - e (k)_1, i.e., if and only if e(k) Iy-e(k). By

Lemma Bl, e(k) = 2e(k}. So, kl2Y+l if and only if e(k} Iy and

y/e(k) is odd.

Q.E.D.
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Let n = ~lnl = ~2n2' 1 < ~l < n, 1 < ~2 < n, m1 = nl/g and

m2 = n 2/g where 9 = GCD(n
1

,n2 )·

We are now in the position to prove the next two theorems which

are the main results of this section.

Theorem B1: If ~1'~2 and ml m2 are even integers, then
n n

(2 1+1) (2 2+1 ) 12n-1.

n1 n n 2Proof: By [12, Lemma 6.3], 2 +112 -1 and 2 +112 n
-1. Now

n n
we will show that GCD(2 1+1 ,2 2+1 ) = 1. Assume a > 1 is a common

n n
factor of 2 1+1 and 2 2+1 • By Lemma B2, n

I
= v

1
e(a), n 2 = v 2e(a)

with vI and v 2 odd integers. Thus, e(a) Ig. So m1 divides vI and

ffi
2

divides v
2

. So, m
l

and m
2

are odd which is a contradiction.

Q.E.D.

Theorem B2: If ~1 is even and m
2

is odd, then
n n

(2 1+1) (2 2_1 ) 12n-1.

n
Proof: By [12, Lemma 6.3], 2 1+112

n
-1. It is simple to show

that 2
n2

_II2n _1. Now we will show that GCD(2
n1

+1,2
n2

_1) = 1. Assume
n n

a > 1 is a common factor of 2 1+1 and 2 2_1 . Then, by Lemma B2,

n1 = vIe (a) with vI odd. By [12, Lemma 6.1] , n2
= v

2
e(a). By

Lemma Bl, e(a) = 2e(a) . Since ID
2

is odd, 9 must be divisible by

2e(a) . Thus, vI is even which is a contradiction.

Q.E.D.
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