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ABSTRACT

This paper treats the problem of construction of efficient

decision trees. Construction of optimal decision trees is an

NP-complete problem and, therefore, a heuristic approach for the

design of efficient decision trees is considered. The approach

is based on information theoretic concepts and the proposed

algorithm provides us with a simple procedure for the construc­

tion of near-optimal decision trees.

i
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1. Introduction

Decision tables provide a convenient way to specify complex

logical relationships in many computer application areas such as

management information processing systems. One of the important

problems in this area is to be able to process the decision tables

on a computer in an efficient fashion. One common technique is to

convert a decision table into a special kind of flowchart known

as a decision tree. One of the reasonable complexity measures for

such a decision tree is its average processing time. However, it

has recently been shown that the construction of optimal decision

trees is an NP-complete problem [1,2]. An optimal tree is one

which minimizes the average processing time required to identify

the unknown object. Thus, at present we conjecture that there does

not exist an efficient algorithm to find the optimal decision tree

(on the supposition that NP:f P). This result provides us the

motivation to find efficient heuristics for constructing near­

optimal decision trees.

Several algorithms have been proposed in the literature for

constructing decision trees [3-18J. Reinwald and Soland [3] have

proposed an optimal algorithm based on the Branch and Bound technique.

Another optimal algorithm has been suggested by Goel [15J where a

dynamic programming approach has been utilized. Other algorithms

for the construction of decision trees employ heuristics. Infor­

mation theory concepts have been used in the algorithms proposed

in l8, 9, 14, 16, 18J.
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In this paper, we present another heuristic approach for the

design of efficient decision trees. The approach is based on

information theoretic concepts. First, an upper bound on the aver­

age processing time required to identify the unknown object is

obtained. Then, a decision tree, which minimizes this upper bound,

is constructed. This approach has been introduced by Massey in

[16]. In Section 2, background material is discussed. In Section 3,

we obtain a new upper bound on the average processing time using

some Information Theory results. In Section 4, the previous results

are applied to construct efficient decision trees. In Section 5,

we discuss the complexity of the construction of efficient decision

trees. Finally, the algorithm is summarized and discussed in the

last section.
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2. Preliminaries

be a finite set of unknown objects to

be identified. A probabili ty measure is associated wi th U such

that PU(uk) represents the frequency of occurrence of the object

uk. Let [T1 ,T2 , ••• ,T
M

J be a finite set of tests to identify the

set of unkno\-l11 objects u. When a test is applied to an object,

one of D possible outcomes can occur, i. e., for a test Tn'

1 ~ m $ M and an object uk' 1 ~ k ~ K, we have Tm(u k) = d where

d E (0,... I n-l J • Let us assume that a cost C is associated withm

each test T • The problem is to construct an efficient identifica­m

tion procedure (hereafter known as the testing algorithm) which

always uniquely identifies the elements of U. It is desirable to

construct an optimal algorithm which minimizes the average cost

but is impractical at the present time due to its NP-completeness.

It may be noted that if the costs associated with all the tests

are equal, this problem reduces to the minimization of average

testing time.

A testing algorithm is essentially a D-ary decision tree,

and a test is specified at its root and all other internal nodes.

The terminal nodes specify the objects in U. The testing algorithm

is implemented by first applying the test specified at the root to

the set of unknown objects. If the outcome is (d-l), we take the

dth branch from the root node. This procedure is repeated at the

root of each successive subtree until one reach·es a terminal node

which names an unknown object. In this paper, we assume that a
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testing algor i thm for U always exists. A necessary and sufficient

condition for this is given by

i :;t j .

Testing algorithms, which contain tests that do not distinguish

at least two sets of objects, will not be considered here since

these tests may be dropped from the testing algorithm thereby making

it more efficient. AS pointed earlier, the efficiency measure to

be used in this paper is the average cost, C, of a testing algorithm

which is defined as

K M

where

c = ~ ~mkPu(uk)Cm

k=l m=l

if T
m

is used in the identification of U k

otherwise

(1)

As Massey [16] points out, any testing algorithm, derived

from a limited-entry decision table in which each test has D

possible outcomes, has the property that the sequence of test

results is a D-ary prefix-free encoding of the data U to be

identified. The reader is referred to Massey [16J or Gallager [19]

for details on prefix-free codes.

Example 1: Suppose that it is desired to identify six unknown

objects ul, ••• ,u6. The probabilities of occurrence of these

objects are given by
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u u
l I u

2
u

3
u

4 Us u
6

i

Pu (u)
I 0.10 ! 0.10 0.30 0.20 ! 0.20

I
0.10I j

1 .I j

We have five tests T1, ... ,TS ' each having a binary outcome. This

set of tests may be used to identify the unknown objects. The

following limited-entry decision table gives the result of each

test when applied to each of the objects.

Ul u2 u 3 u4 Us u6

T1 0 0 0 1 1 1

T2 1 0 0 1 1 1

T 3 0 1 0 0 0 1

T4
0 1 0 1 0 1

TS 0 1 1 0 1 1

In this example, we assume C1 = • • • = Cs = 1. We want to design a

testing algorithm to identify ul, •.. ,u6. For this problem, a

testing algorithm exists which is evident from the fact that the

columns of the above limited-entry decision table are distinct.

The following is the flowchart of a testing algorithm for this

problem.
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~---(U~)

The decision tree associated with this testing algorithm is shown

below.

u 0 10

6 0.10

- I-
0.6 0

-
~

0.80 0 I 0.5 0

I I
0 ~ u4 0.20 ...

1.00

I - u2 0.10
V 0.20 0

I
~u
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The test result sequence Z for each object of U is given by the

following table.

u PU(u)
,.,
~

ul 0.10 0 0 0

u
2

0.10 1 0

u3 0.30 0 0 1 0

u4 0.20 0 1

Us 0.20 0 0 1 1

u6 0.10 1 1

It may be noted that Z represents the prefix-free code associated

wi th U which is obtained by this testing algor i throe Since a uni t

cost was assigned to each test, the average cost of this testing

algorithm is simply the average codeword length, W, of the prefix-

free code 7
£..J • The average cost, C I for this problem is

6 5
C = L L 0'mkPU (uk)

k=1 m=l

= 2(0.10+ 0.20+ 0.10) + 3(0.10) +4(0.30+ 0.20)

= 3.10 cost units/object identification.

We shall denote cost units/object identification by c.u./o.i. in

the remainder of this paper.

As indicated earlier I a prefix-free code Z is associated

with each testing algorithm. The code Z will be referred to as

the test code. The average codeword length, W, of : is defined as
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w = ~ 0' mkPU (u k) =
k=l m=l

(2 )

where W
k

is the length of the codeword associated with the object

uk and Ot
mk

is as defined previously in (1).

Next, we obtain a lower bound on C in order to be able to

evaluate the efficiency of a testing algorithm.

defined as

Let C. be
ml.n

Then,

c .
rn~n

= min C
mm

c :a: c . W
m~n

where W is the average codeword length of the test code Z. Since

the test code 7 is a n-ary prefix-free code, W~ W
Huff

where WHuff

is the average codeword length of the D-ary Huffman code for u.

The detail~ of Huffman encoding procedure may be found in [16, 19J.

Thus,

C :t C · WH ff.
m~n u

Example 2: A Huffman code, ZHuff I for the ensemble of Example 1

is shown below.
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u Pu(u) ZHuff

ul 0.10 0 0 0 0

u2 0.10 0 0 0 1

u3 0.30 0 1

u4 0.20 1 0

Us 0.20 1 1

u6
0.10 0 0 1

The above ZHuff is derived from the following binary tree.

0 -
0.20 -

0.30 0 I .--
0

0.60 I --
I --

U 1 0.10

U2 0.10

U6 0.10

U 3 0.30

l 0 40 0..---------------.........• U4 0.20

I -' 11, -------____e- • U5 0.20

o
1.00

l.

WHuff is obtained as

W
Huff

= 2(0.30+ 0.20+ 0.20) + 3(0.10) + 4(0.10+ 0.10)

= 2.50 binary digit/object. (b.d.jo.)

-This also provides us a lower bound on C in Example 1, i. e. ,

-C a 2.50 c.u./o.i.
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If all the tests are equally costly, we achieve equality,

i. e., C = CoW. In this situation, if a Huffman code can beml.n

implemented with the given set of tests, then an optimum testing

algorithm can be easily obtained [16]. However, as Massey [16]

points out, in most cases, a Huffman code cannot be implemented

with the available set of tests.

Example 3: Suppose we have the following limited-entry decision

table.

Pu ( u) 0.30 0.22 0.20 0.18 0.05 0.05

~ ul u2 u3
u4 Us u

6

T1
1 0 1 0 1 0

T2
1 1 1 0 0 0

T 3
0 0 0 1 0 1

T4
0 0 1 1 0 1

TS 1 0 0 1 0 0

A Huffman code associated with the given set of probabilities is

obtained from the following binary tree.

--.

0.420
0 I --

1.00

1
---.

0
I 0.58

.-

0 -
I 0.28 -

0.10 0 -
I

I --

U2 0.22

U3 0.20

U 1 0.30

U4 O. J 8

Us 0.05

Us 0.05
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In this case, we may conclude from the above binary tree that for

the implementation of any Huffman code we would require a test

which would distinguish u 2 ' u3 from the remaining objects to be

used as the first test. In this case, such a test does not exist.

Next, we define some basic concepts from information theory

which will be used in this paper. Let us consider two discrete

random variables X and y taking on values {xl' ... ,xI] and

(Yl, ••. ,YJJ respectively. Let PX(x i ) and PY(Yj) denote the

probabilities of the events [X = xi J and tY = Yj] respectively. Let

PXy(Xi'Yj) represent the probability of the joint event {X=X i , Y~Yj]

and Px IY (x. I Y .) represent the probability of the event [x = x. IY = Y . 1·
J. J 1 J-'

The uncertainty (entropy) of X I H (X) , is defined as

I

H(X) = PX(xi)log PX(X i )

i=l

( 3 )

When the random variable X has only two possibleoutcornes xl

and x 2 and the logarithm is computed in base 2, then H(X) is

H(X) = - P log2 P - (1-p)log2 (l-p)

In this case, H(X) is known as binary entropy

function and is denoted by h (p). Thus,

h (p) = - P log2P - (l-p) log2 (l-p) • (4 )

We may also define the uncertainty for the joint ensemble (X,Y)

as



H(X,y)

I

= - I
i=l

12

( 5 )

This may be generalized to the case of K random variables in a

straightforward fashion. The conditional uncertainty of X given

the event (Y = Y . J, H (X IY = Y . ), is de fined as
J J

I

H(XIY=y.) =­
J

\"
I P I (x. IY . ) log Px IY (x. Iy .) .
i- X Y ~ J ~ J

i=l

(6 )

The average conditional uncertainty of X given Y, H(xIY),

is defined as

H(X!Y)

I
\"

= - L
i=l

J
\"

L Pxy (x i ' Y j ) log PX IY (x i IY j) •

j=l

( 7 )

The following relations ! ~ve been shown in [16, 19].

J

H(XIY) = L H(XIY=Yj)Py(Y j )

j=l

H(XY) = H(X) + H(YIX)

which can be generalized to

(8 )

( 9 )

In the next section, we derive a new upper bound for Wand c.
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3. Upper Bound on the Code Length

In this section, we derive a new upper bound on the ave·rage

codeword length for prefix-free codes. This upper bound will be

used in the next section for the construction of efficient decision

trees. Let us consider the following binary prefix-free code for

U •

Code Z

u Pu (u) Xl X2 X3 X4 Xs

u
1

0.05 0 0 1 0

u
2

0.20 1 0

u
3

0.08 0 0 1 1 1

u
4

0.07 0 0 1 1 0

Us 0.15 1 1 1

u
6

0.15 0 1 1

u7 0.05 1 1 0 1

Us 0.10 1 1 0 0

ug 0.05 0 1 0

u10 0.05 0 0 0 1

u11 0.05 0 0 0 0

We note that X 3' X 4 and X s are not true random var iables in that

not all of these quantities have a value each time the random

experiment is performed. TO convert x3 ' X4 and Xs into true

random variables, we add O's in the places where they are not
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defined. This procedure was suggested by Massey [16] • This new

code is denoted by Z· and is shoYln below.

Code Z·

U Pu (u) X' XI X' X' X'I 2 3 4 5

ul 0.05 0 0 1 0 0

u2 0.20 1 0 0 0 0

u3 0.08 0 0 1 1 1

u4 0.07 0 0 1 1 a

Us 0.15 1 1 1 0 0

u6 0.15 a 1 1 0 0

u7 0.05 1 1 0 1 0

Us 0.10 1 1 0 0 a

Ug 0.05 0 1 0 0 0

uIO 0.05 0 0 0 1 0

ul1 0.05 0 0 0 0 0

In general, let zl' ••. ' zK be a D-ary prefix-free code for U.

We can always convert Z = Xl • • · Xw into Z I = Xi •• • XN where

N = max Wk and Z I is obtained by adding N-W zeros to the code­
k

word Z. This makes Xi' .•• ,XN true random variables. Since Z

is a prefix-free code, Z' is also a prefix-free code and, there-

fore,

H (U) = H (X-i • • • XN) • (11)
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Next, we find the new upper bound for prefix-free codes.

Let L I , ... ,L
R

be positive integers such that N = L
1

+ ••• + L
R

•

We define S i =L1 + • • · + Li ' 1 ~ i ~ R and 50 = o. A generalization

of (10) can now be expressed as

H (Xl' ••• x..'_) = H (X I ••• X' ) + H (X I • • • X' IX I ••• X I )

-~ I 51 5 1+1 52 1 51

+ H (X I • • • X' IX I ••• X I ) + • • •
5 2+1 53 1 52

Let us define

w
X·· • Xs.+1 s. 1

~ ~+

(12)

to be the average codewc-rd length of the or igina1 code Z wi th

respect to the variables Xl··· X ,0 ~ i < R. By convention I

S.+ S. 1
~ ~+

we let

H (Xfl· • • x· 1XII ••• X I ) = H (X t ••• X I )

s.+ S. 1 s. 1 s1
~ J.+ ~

for i = o. We may wr i te equation (12) as

H(U)
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Let

H*. (L
1

, ... , L-) =
m~n ~

min
i

H(X' 1·· -XI IX·. -·X I
)

S.+ S. 1 1 s.
1. ~+ ~

wx·· ·X5.+1 s. 1
~ 1.+

(14)

From (13) and (14), we may write

jR-l }
H (U ) =t H*. (L1 ,···, L-) '\ Wx X •

m~n ~ ~ .••
· 0 5.+1 s. 1
1.= 1. 1.+

(15)

Since,

R-l
\" -L Wx .... x = w ,
'0 5.+1 s. 1
~= 1. ~+

we may express (15) as

(16)8(U)
w ~ H*. (L

1
, ... , L- )

ml.n ~

which is the desired upper bound.

Example 4: In this example, we illustrate the computation of the

upper bound for w. Let the binary prefix-free code Z and the

modified code Z I for U be as sho\fll1 below.
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u IPu (u) Xl X2 X3 X
4

Xs
I

j ,
ul

I
0.05 0 0 1 0,
0.20 I 1 0u2 I
0.08 I 0 0 1 1 1u3 I

I

0.07
1 a 0 1 1 0u4 I

I
Us 0.15 1 1 1

~6 0.15 0 1 1
!

0.05 1 1 1 a 1u7

I 0.10 1 1 0 0Us i

I I
Ug 0.05 a 1 0

~

j

uIO 0.05 1 0 0 a 1

0.05 I 0 0 0 0u 11 (

j

U Pu (u) X· XI X' X' X·
1 2 3 4 5

u
1

0.05 0 0 1 0 0

u
2

0.20 1 0 0 0 0

u 3 0.08
I

0 0 1 1 1
I

u4
0.07 0 0 1 1 0

Us 0.15 1 1 1 0 0
I

j 0.15 0 1 1 0 0u
6 I

u7 I 0.05 1 1 0 1 0
I

Us i 0.10 1 1 0 0 0

u g 0.05 0 1 0 0 0

u 10 0.05 0 0 0 1 0

I

0.05 0 0 0 0 au ll~

In this case,

W = 3.40 b.d.jo.

and

H(U) = 3.2582 bits.

Let L1 = 2, L2 = 2 and L3 =1. Thus,
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H(U) H(X' XI XI Xl XI) = H(X' XI) + H(X' XI IX' XI) + H(X' IX' XI XI XI)
= 12345 12 3412 51234

(

H (X I XI)) (H (X I X f IX I X I ) )

= 1 2.'W + 34 12.'W +
w X 1X 2 W X 3X 4

Xl X2 X3X4

(

H (X I IX' X I X I X I ))

5 1234 -W
+ - • X •

Wx 5
5

The following quantities can be computed as

H(XiX2) = 1.971 bits

H(X' XI lX' XI) = 1 1377 bits
3 4 1 2 •

H(X I IX' X' XI XI) = 0 1495 bits
5 1 2 3 4 •

= 2 b.d.jo.

= 1.25 b.d.jo.

= 0.15 b.d.jo.

Therefore,

H*. (2,2,1) = 0.9102 bits/binary digit.
m~n

From (16) I

W $ * D( / '; 1 ) = 3. 5 7 b • d. /0 .
• I I

m~n

As mentioned before, we shall consider the general case in

this paper where each test is associated with a cost. Therefore,

we need to associate a ccst with each digit of the code Z and

also we need to derive an upper bound for C similar to the one

for w. Let us consider the following prefix-free code Z for U.
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Code Z

u Pu(u) Xl X2
X3 X4

u
l 0.4 0 1

u
2 0.3 1 0 1

u 3
0.2 1 1 0 1

u 4 0.1 1 1 0 0

The corresponding costs for each binary digit can be described by

the following table.

costs for Code Z

u Pu (u) C(Xl ' C(X
2

) C(X3 ' C(X
4

)

ul 0.4 ell C12 C13 C14

u 2 0.3 C
21 C22 C23 C24

u
3

0.2 C31 C32 C
33 C34

u 4
0.1 C41 C42 C43 C44

where Cl3=C14=C24=O. In general, C .. denotes the cost associated
.l)

with the jth digit of the codeword for the object u· • c .. is zero
.l 1.)

when jth digit of the codeword for the object u· does not exist
.1

as is the case with C13 ' C14 and C
24

in the above example.

In order to obtain the upper bound for C, we may proceed

in a manner similar to the one used to obtain (16). We define
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x
s. 1
~+

to be the average cost of the original code Z with respect to the

va r i ab 1 e s Xs .+ 1
~

Xc;: ,0-::;i<R,i.p.
- i+l

and

cX •• ·X
s.+l s. 1
~ ~+

=
K
\"

L
k=l

(17)

H . ( L
l

, ••. , L
R

)
nun I

H(X1 .• ·X' IX'·· ·X' )}s.+l s. 1 1 s.. ~ ~+ ~
=m~n~~ .

i CX .•• X
s.+l s. 1
~ l+

(18)

Thus,

C ~ H (U)
H . (L l ,···, L

R
)

m~n

where

K N

C = L LCkjPU(uk)

k=1 j=l

(19)

(20)

Example 5: In this example, we illustrate the computation of the

upper bound for C. The binary prefix-free code Z and the modified

code Z' for U are show!'l below.
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Code Z Code Z'

u Pu (u) Xl X2 X 3 X
4 u Pu (u) X' X' X' XI

I 2 3 4

u1 0.4 0 1 u
1 0.4 0 1 0 0

u2 0.3 1 0 1 u 2 0.3 1 0 1 0

u3 0.2 1 1 0 1 u 3 0.2 1 1 0 1

u4 0.1 1 1 0 0 u4 0.1 1 1 0 0

The costs for each binary digit are given in the following table.

Costs for Code Z

u Pu (u) C(X1 ) C(X
2

) C(X
3

) C(X4 )

ul 0.4 0.5 0.8 0 0

u2 0.3 4.0 2.~ 0.1 0

u3 0.2 0.25 3.5 0.2 0.2
i

u4 I 0.1 2.1 4.0 0.4 0.1

In this case,

C = 3.99 c.u./o.i.

and

H(U) = 1.8464 bits.

Let L1 =2 I L 2 = 2. Thus,



H(U) = H (X I X txt X I )

1 2 3 4

= H (X· X t ) + H (X t X I 1X' X t )

1 2 3 4 1 2

(

H (X t X I ») (H (X I X I IX I X I »)
= 12 C + 3412 C

- xx - xx
ex x 1 2 ex x 3 4

1 2 3 4

22

The numerical values of the necessary quantities are

H(XiX2) = 1.5710 bits

H(X' Xl IX' XI) = 0.2754 bits
3 4 1 2

c = 3.83 c.u./o.i.
X

1
X

2

C = 0.16 Ceu·/e.i.
X 3X

4

Therefore,

H . (2,2) = 0.4102 bits/c.u.
m1n

From (19)J the bound is

c ~ H(~) 2} = 4.5012 c.u./o.i.H. ,
ml.n

Next, we investigate some properties of the new upper bound

for which the following definitions are needed. Let Li, ... ,Lb be

positive integers such that N = Li + •.• + Lb. This set induces a

partition on the set [Xi' .•• 'XNJ such that the partitioned set

· f{' X'1 r X ' , 1 [XI X' 1\
J..S \. Xl'···' L"" I t L 1+ 1 ' • · · I XL I .. ' ••• , l L' + 1 ' · · ., L I .) J • II:

1 1 2 Q-1 Q

a similar manner, a partition induced by the positive integers

Ll' ••• '~ may be defined. We assume that the latter partition

is a refinement of the former partition, i.e.,

L t . +1 + • • • + L t .
J-1 J

j=O, .•• ,o-l
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then 0 =R and the two parti-i IIf v. = 1 I for all
,1-

j
t_ 1 = 0, t. = L vi' v. (21) are positive integers and

J i=O ~
0-1

L v. =R.
· 0 ~
~=

where

tions are the same.

Theorem 1: Given a D-ary prefix-free code for U I we have

where the partitioning is as defined above.

Proof: From (18), let

H(X 1 1-· ·X' lX' _. ·X' )
5.+ S. lIs .

.1 .1+ .1

c
X·· -x

5.+1 5. 1
.1 1+

for some i and

H · (LIt I ••• , L') =
m~n 0

H(X' •• -X' IX' --·X' )
s~+l s~ 1 I s~

J J+ J

c
Xc:: 1+1- - -X s I

-j j+l

for some j ,

where and 5 j = Li + •• . + Lj . Next, we assume that

H · (L1 , - • - , L) > H · (LI' I - • - , Lo' )
m~n ~ m.1n .

which implies that

Hmin (LI ,. _. ,~) > 0 •

Since

L +
t. 1+ 1
J-

j=O, ••• ,o-l



H(XII 1···X'. \X1····X 1
,)s .+ S. 1 s ,

J J+ J
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we may write

= H(XII ···XII IXI···XII) +
S ,+ 1 S ·+L t lIs ·

J J j-l+ J

+H(X' ···X· IX'···X' )+ ... +s 1.+Lt . +1+ 1 S '.+Lt . +1+ Lt, +2 1 1 S 1.+Lt , +1
J )-1 J J-1 )-1 J )-1

+ H(X I
•• ·X I IX I ···X' )

5 ., +L t 1+. · · +L t -1+ I s I. +L t 1+· · •+L t 1 s ',+ L t 1+ ••• +L t - 1
J'1+ " J "1+ , J'1+ ')- J J- J J- J

(21 )

We observe that all the terms on the right hand side in (21) are

nonzero. Otherwi se , H · (L1 , ••. , LR ) = 0 •
m~n

From (21), we may obtain

H 0til- • •XII IXII • • • XII) =s,+ S. 1 s.
) J+ J

(
H(X~~+l' · 'X~ '.+L \Xi· • .X~ ,.))

, J t. 1+ 1 J- J- -= C- X···Xex • . •x S t. +1 s I. +L t . + 1
s '.+1 S I.+L J J )-1

J J t. 1+ 1
J-

· ex + •••· · ·xs ',+Lt 1+ 1 s ~+L 1+ L 2
J · 1+ J t. 1+ t. 1+J- J- J-
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H(X t • • • X I IX ' X I \

(

Sf. +Lt . + 1+ ... + Lt .-1+ 1 S I, +Lt . + I + ••• + Lt , 1 •.• S I. +Lt . +1+ ••• +Lt ,-1 J)
+ J ]-1 _] J ]-1 ] J ]-1 ].

C
X···x

S ~ +L t 1+ · • · +L t -1+ 1 S '. + L t 1+ · · · +L tJ '1+ · J. 1+ ·J- J J- J

(22)

Let Hmp be the minimum value of the terms in parentheses on

the right hand side of (22). Then we have,

H(X'I 1···X I , \X11 ••• X·.) ~Hrnp·(Cx I ••• X +s .+ S. 1 S . I') J+ J s.+ S.
J J

+ C + •.•
X···x

s ',+ Lt , +1+ 1 S J"+Lt 1+ L 2
J )-1 j-l+ t j _ 1+

and,

H(X I • • • X • IX' • • •X ' ) :it Hmp • C5',+1 51, 1 1 SI. XS'.+l···Xsl.
J J+ J J J+ 1

From above, we conclude that

which is a contradiction since
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H > H · (L1,···, LR ) ,mp - m~n

and, thus, we have the desired result.
Q.E.D.

corollary 1: Given a D-ary prefix-free code for U I we have

H · (L1 , ..• , h_) ~ H · (L1' , ••. , L I) •
rn~n ~ m1n 0

Example 6: We consider the binary prefix-free code considered in

Example 4. Let us assume that the cost associated with each binary

digit for code Z is unity. In this case,

C = 3.40 c.u.lo.i.

and

H(U) = 3.2582 bits.

Let Li=3, L;2=2, L1 =2, L2 =1, L3 =1 and L4 =1. Thus Li=L1 +L2

and L2= L3 + L4 . For this case,

H · (2,1,1,1) = 0.8889 bits < H . (3,2) = 0.9158 bits.
m~n m1n

The upper bounds derived in this section are employed in

the next section for the construction of efficient decision trees.
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4. construction of Efficient Decision Trees

As pointed out earlier, in this section we develop an

algorithm for the construction of efficient decision trees. The

basic approach to be followed in the construction of efficient

decision trees is to minimize the upper bound at each step during

the construction. The same approach was used by Massey [16].

We may express equation (13) in terms of the partial average

costs as

Let us def ine a new quanti ty F (j) as

(23)

F(j) = (24)

for j = 2 I I R. F (1) is given by

F (1) =

H(X' _. -X' )
1 L1

c
Xl- --xL 1
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Recall that

and

H · (L1,···, LR )
m~n

= min F (j)
j

c S H (U)
H · ( L l , ... , L-) •mJ.n ~

Minimization of this upper bound on C at each step of the algor i thrn

requires the maximization of F(j)'s. Therefore, we have

Definition 1: We define an optimum testing algorithm of order

(Ll' ..• '~) for U, denoted by OTA(L1, ••. ,LR), to be an algorithm

which maximizes F (j), F (j) :f 0, at each step during its construction.

We initiate the algorithm construction by selecting a set

of tests which maximizes F (1). Based on the choice of the above

tests, we select the second set of tests from the remaining tests

which maximizes F (2). This process is repeated until all the

objects are identified. We observe that this procedure does not

necessarily provide us with an optimum algorithm since the selection

of tests which maximize F(j) depends upon the previous selections.

In the above construction. we maximize the partial average uncer-

tainty per partial average cost. We illustrate the algorithm

construction by means of the following examples.

Example 7: We shall consider the following limited-entry decision

table and U as specified in Example 1.
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~ u1 u2 u3 u4 Us u6

Pu (u) 0.1 0.1 0.3 0.2 0.2 0.1

T 1
0 0 0 1 1 1

T 2 1 0 0 1 1 1

T
3

0 1 0 0 0 1

T4
0 1 0 1 0 1

TS
0 1 1 0 1 1

In this example, we assume C1 = ••• = Cs = 1. This implies that

C =w. It is desired to construct OTA(l, ••. , 1), i.e.,

L1 = L2 = • •• = L
R

= 1. We now select the first test which maximizes

F (1) • We note that for any selection of the first test, ex has
1

the same value. Thus I maximizing H (Xi) maximizes F (1). The

values of H{Xi) are listed in the following table.

Tests H(Xi)

T1 h(O.50)

T 2 h(O.40)

T3
h(O.20)

T4
h(O.40)

TS h(O.30)

We select T1 as the first test since it corresponds to the largest

value of F(l). Thus, the decision tree for OTA(l, .•. ,l) begins as
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NOW we select the second test which maximizes F (2). Since tests

which do not distinguish at least two sets of objects are not

used, ex is the same no matter what tests are selected at the
2

next step. ThUs, maximizing F(2) corresponds to a maximization

of H (X:i 'Xi). Furthermore,

H (X I IX I) = H (X I I X' =0) P (X I = 0) + H (X' IX' = 1) P (X I =1)
2 1 2 I 1 Xi 1 2 1 Xi 1 ·

Since, PX1 (Xi = 0) and PX1 (Xi = 1) are determined by the selection
1 1

of the first test, we only need to maximize H (X2IXi = 0) and

H (X2IXi = 1) . The values of these conditional entropies are

specified below.

Tests H(X' IX' = 0) H (X I IX' = 1)
2 1 2 1

T2 h(O.20) h(O)

T 3 h(O.20) h(O.20)

T4 h(O.20) h(O.40)

TS h(O.20) h(O.40)
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TO maximize H (X2IXi = 0) I we may select any of the tests from

T2 , •.• ITS and to maximize H(X2'Xi = 1) , we may select either T4

or T 5. We arbi trar ily select T 5 in both cases. We I therefore,

have

In an analogous fashion, maximizing H (X3IXi X2= 01) and

H (X3IXi x2=11) I we obtain the following decision tree for

OTA(l, ••• ,l).

o

u

O....-----(Ul)

(U" U2, U3 )

s
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The corresponding binary tree is

U5 0.20

u6 0.10

u 010~ I
0 - .

0.50 -I 0.40 0 -
0

I1.00 -
I : u4 0.20

V 0.50 0
-I 0.30 0 -

I ::

The associated binary prefix-free code is

u Pu(u) z

ul 0.10 0 0

u2 0.10 0 1 1

u3 0.30 0 1 a

u4
0.20 1 0

Us 0.20 1 1 0

u6
0.10 1 1 1

Therefore,

c = 2.70 c.u./o.i.

which is an improvement over the value of C computed in Example 1.

The lower bound, however, is 2.50 c.u./o.i. which can be obtained

from Example 2.
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As observed in the above example, while constructing

OTA(l, ..• ,l) and when all the costs are equal, maximization of

F(j) is equivalent to the maximization of H(Xj:XioooXj_l) since

eX. is the same for all possible choices of tests at that step of
J

the algorithm. The conditional entropy H(X'. IX I
I
•• ·X I

• 1) can be
J J-

expressed as the following summation

H (X I, t XII • • •X '. 1) =
J J-

D D
\" ...) H (X', IX I 0 • • X '. =d·· 0 d , )L L J 1 J-1 1 )-1

dl=O dj_I=O

Px I X' (XII • • • X I, 1 =d l · • • d. 1)... J- J-1 j-l

where H{Xj lXi- - oXj_1 = d l
o • -dj_1);l 0 0 But, Px ' o • -X' (Xi- •• Xj_l=d1 _· .d j _ 1 )

1 j-l

depends only upon the previous selection of tests and, therefore, it

suffices to maximize the terms H (X ~ IXII • • • X'. 1 = d 1 · • · d. 1) which
J J- J-

are nonzero. This is the same procedure as discussed by Massey

in [16]. Thus, the performance achieved by OTA(I, .•• ,l) with

equal costs is the same as obtained by Massey's first-order-optimal

algorithm [16J.

Example 8: In this example, we pursue Example 7 and construct

OTA (2, 1, ... ,1) • Since L1 = 2, we must se1ect tests which maximize

F(l) which is given by

F (1) =
H (X I X t )

1 2
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From the limited-entry decision table, we note that there is no

single test which uniquely identifies an object. Therefore,

c is the same for all possible choices of tests at this stepXI X2
of the algorithm. Thus, a maximization of F(l) is equivalent to

the maximization of H(XiX2). This entropy can be expressed as

We note that after the selection of the first test, H (X t X ') is1 2

maximized by maximizing H (X2IXi = 0) and H (X2IXi =1). NOW we

evaluate these conditional entropies for all possible choices of

the first test.

A. First test T1 :

Tests H(X' IX' - 0) H(X'IXI-I)2 1- 2 1-

T 2 h(O.20) h(O)

T3 h(O.20) h(O.20)

T 4 h(O.20) h(O.40)

TS h(O.20) h(O.40)

The maximum value of H (Xi X2) when the first test is T1 is

H (X' X I) = 1.8465 bi ts .1 2



35

B. First test T2 :

Tests H (X I IX· - 0) H (X I I X I = 1)2 1- 2 1

T1
h(O) h(O.1667)

T 3
h(O.25) h(O.1667)

T 4
h(O.25) h(O.50)

T5 h(O) h(O.SO)

The maximum value of H (Xi X:2) when the first test is T2 is

H(X I XI) = 1.8955 bits.1 2

c. First test T
3

:

Tests H(X2IXi =0) H (X I 1X I = 1)
21.

T1 h(O.50) h(O.SO)

T2 h(O.375) h(O.50)

T4
h(O.2S) h(O)

TS h(O.375) h(D)

The maximum value of H (Xi X2) when the first test is T3 is

H(X· XI) = 1.7219 bits.1 2
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D. First test T4 :

Tests H(X' IX' - 0) H (X I IX' = 1)2 1- 2 1

T1
h(O.333) h(O.25)

T 2
h(O.50) h(O.25)

T3
h(O) h(O.50)

TS h(O.1667) h(O.50)

The maximum value of H (Xi X2) when the first test is T4 is

H-(X' XI) = 1.9710 bits.1 2

E. First test TS :

Tests H(X2IXi = 0) H(X· IX' -1)2 1-

Tl h(O.333) h(O.4286)

T2
h(O) h(O.4286)

T 3
h(O) h(O.2857)

T4 h(O.333) h(O.2857)

The maximum value of H (Xi X2) when the first test is T S is

H(Xi X2) = 1.8464 bits ·

Thus, the maximum value of H(Xi X2) is 1.9710 bits which corresponds

to first test T 4 and subsequent tests T 2 and T
S

(or T2 and T
3

)

as shown below.
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o

r----(U3 )

TO complete the algorithm, we need two more tests--one which dis­

tinguishes ul and Us and the other which distinguishes u2 and

u
6

• The completed algorithm is shown below.

o
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The associated binary prefix-free code is

u Pu(u) Z

u
1

0.10 0 1 0

u
2

0.10 1 1 0

u
3

0.30 0 0

u 0.20 1 0
4

Us 0.20 0 1 1

u
6

0.10 1 1 1

The average cost for OTA(2,1, ... ,1) is

c = 2.50 c.u./o.i.

Therefore, for this example, OTA(2,l, •.• ,1) performs better than

OTA(l,l, ..• ,l) and, in fact, achieves the lower bound for c.

Thus, OTA(2,1, .•• ,1) is an optimum algorithm for this example.

First, we conjectured that OTA(L" ..• ,LQ) is at least as ef-

ficient as OTA(L" ... ,LR) where L" ... ,LR induce a partition on

the set' {X~" .. 'X~} which is a refinement of the partition induced

by Li, ..• ,LQ. But the following example contradicts the conj­

ecture.

Example 9: Let us consider the following limited-entry decision

table
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~ &<1 &<2 &<3 u
4

PU(u) 0.34 0.16 0.06 0.06

T
1

1

T
2

0 0 0

T
3

0 0 0 0

T
4

0 1 0 0

T
S

0 0 0 0

T
6

0 0 1 0

T 7 0 0

0.20

o

1

o

o

o

o

U 6 u 7 Us

0.10 0.04 0.04

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0

We assume C1 = = C7 = 1. For this example, during the constr-

uction of OTA(1, ,1), we may choose T
2

or T
7

as the first test.

If T2 is chosen as the first test, we obtain C to be 2.66 which

is an optimum solution. However, if T
7

is selected as the first

test, C is obtained to be 2.76 which is equal to the C achieved

by OTA ( 2 , 1 , . . . , 1 ) .

In the next section, we discuss the complexity of the con-

struction of OTA(L
1

, ... ,L
R
).
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5. Complexity of the construction of the Algorithm

We now study the complexity of the construction of

OTA(Ll' .•• '~). Our complexity criterion will be the maximum

number of entropy computations during the construction of the

algorithm. Next, we introduce the notion of the level at any

decision node of a decision tree which will be found useful in

this section. The level at any decision node of a decision tree

is defined as the number of decision nodes encountered in the

path from the decision node to the root node (including both the

decision node and the root node) as illustrated below.

level 2
I
l
••

I
I
I
I

In order to evaluate the complexity in the worst case, we assume

a complete tree at all levels. The worst-case complexity can be

evaluated by a simple counting argument. In this counting argument,

we assume that once a test is used at a decision node, it may not
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be repeated at subsequent decision nodes of the same subtree. The

complexity of the construction of OTA(Ll, ••• ,L
R

), Comp(Ll, •.• ,LR),

is given by

(25)

where the right hand side of the inequality is the worst-case

complexity.

In the special case, when all the costs are equal,

Comp(Ll' .•• '~) is lower than that for the general case. In

order to understand this, let us consider the following. We need

to find the maximum number of entropy computations to evaluate

over the set of all possible tests. We have,

(26)

We note that once we have specified the tests up to level (L1-l),

then ex x is the same for any selection of tests at level L11- -. L
1

due to equal costs. Therefore, we only need to compute the maximum
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of H(Xi",XL ) once tests up to level (LI-I) have been specified.
1

A careful examination of (26) reveals that the maximization of

H(Xi· •• XL ) given H(Xi· •• XL -1) is equivalent to maximizing
1 1

H(XL !Xi···XL -1 =d1···dL -1)· The same argument can be used to
111

find the maximum of each F(j). Thus, (25) reduces to

where

R L.-l
s .-1 J

~ L (M-Sj+I)D J n
j=l l=l

s. 1+£-1J-D(M-s. -.£+1))-1
(27 )

L.-l
J

11
£=1

s. 1+1-1
D J-

(M-S. -£+1)
J-1 = 1 for L. = 1 •

J

Example 10: Let us compute the complexity for the construction of

OTA(2,1, ••• ,1) in Example 8. We have, M=5, L1 =2, L2 =l, R=2

and D = 2 .

s -1 So s -1
Comp(2,1) ~ (M-sI+I)D I (M-SO)D + (M-s

2
+I)D 2

= 52 •

However, in Example 8 the actual complexity is 40 but only 11

different entropy computations were necessary.
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In this paper, we have presented a systematic approach to
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the construction of efficient decision trees based on information

theoretic concepts. The basic philosophy in our approach is the

same one as proposed by Massey f16J in which the upper bound on C

is minimized at each step of the construction of decision trees.

Such a procedure is important since the construction of optimum

decision trees is, in general, an NP-complete problem [1, 2J.

ite have shown that the upper boun~ on C for OTA(L" ... ,L6)

is smaller than or equal to the upper bound on C for OTA(L" ••• ,LR)

where L1 , ... , LR induce a partition on the set' oq , · . · ,Xl~} \\Thich

is a refinement of the partition induced by L" ... ,L6. We should

note that Massey's first-ordEr-optimal algorithm ~16Jis a special

case of OTA(L 1 , ... ,LR) where L1 = ... = LR = 1 and the costs are

equal.

We observe that the systematic procedure presented in this

paper provides us with a trade-off between the complexity of the

construction of the decision tree and the upper bound on C. In

other words, a smaller upper bound on C may be achieved by choosing

larger values of L. 's and thereby increasing the complexity of
~

the construction of OTA(L1 , ... ,LR). It should be pointed out that

the computations requir~d for the construction of OTA(L1 , ... ,LR)

are performed only once while the savings are reflected each time

OTA(L1 , .•. ,LR) is used.
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We now suggest a general procedure for the construction of

efficient decision trees.

(1) construct a Huffman code for U and calculate the lower

bound CminWHuff.

(2) construct OTA(l, ... ,l) and calculate the associated

average cost C(l, ••• ,l). If C(l, ••• ,l) is close to

C · WH ff' we accept OTA(l, ••• ,l) as an efficient
m~n u

algorithm. Otherwise continue.

(3) Construct OTA(2,l, ••• ,1) and calculate the associated

average cost C(2,l, ... ,1). If C{2,l, ••• ,1) is close

to C. W
H

ff' we acceptOTA(2,l, •.• ,1) as an efficient
m~n u

algorithm. If C(2,l, ••• ,1) is close to C(l, •.. ,l),

we may conclude that we are near the optimum value of

C and accept the algorithm with smaller cost as the

solution. Otherwise continue in a similar manner

until an acceptable solution is achieved.

In the special case when all costs are equal, we first attempt

to construct the Huffman code with the given set of tests. If this

construction is possible, we have the optimum solution. Otherwise,

proceed with the construction of OTA(1, ..• ,1).
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