
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

6-1980

Computing Cyclic List Structures Computing Cyclic List Structures

F. Lockwood Morris
Syracuse University, lockwood@ecs.syr.edu

Jennifer Schwarz
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Morris, F. Lockwood and Schwarz, Jennifer, "Computing Cyclic List Structures" (1980). Electrical
Engineering and Computer Science - Technical Reports. 4.
https://surface.syr.edu/eecs_techreports/4

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/4?utm_source=surface.syr.edu%2Feecs_techreports%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

2-80

Computing Cyclic List Structures

June 1980

F. Lockwood Morris

J.S. Schwar.z

SCHOOL OF COMPUTER

AND INFORMATION SCIENCE

Computing Cyclic List Structures

F. Lockwood Morris*

Syracuse University

Abstract

It is argued that list structures
containing cycles are useful and unobjec
tionable Lisp entities. If this is so,
it is desirable to have a means of com
puting them less foreign to the equa
tional-definition style characteristic
of Lisp than are the list-structure-al
tering primitives rplaca and rplacd.
A notion is developed of a reasonable
system of mutually recursive equations,
guaranteed to have a unique solution in
list structures. The notion is given
in terms of the computations invoked
by the equations, without reference to
the forms of expressions appearing in
them. A variety of programming exam
ples are presented, including a curious
implementation of the Knuth-Morris-Pratt
string matching algorithm. Two methods
of implementing the recursive defini
tion facility are discussed.

1. Introduction

Lisp has two outstanding virtues

which make for ease of use and clarity.

The first is that it invites programming

by recursive definitions, which is to say

a specialized form of declarative, or

"logic" programming. One writes down a

selected body of true equations about a

function of interest, and these provide a

definition by which without further ado

it may be computed. To see that a func

tion is correctly programmed one need

only assent to the truths, and assure

oneself that computation will terminate

perhaps meeting some criterion of effic

iency - for all cases which will arise;

the latter task, impossible in general,

is ordinarily neither difficult nor

highly subject to error.

Jerald S. Schwarz

Bell Laboratories

The second virtue underpins the first:

arbitrarily complex structures may be con

sidered as entities, and may serve as the

values of identifiers, as the arguments

and results of functions. One thinks in

whole list structures, not in pointers and

cons cells. What justifies this high

level thinking is that entities ordinarily

do not shift under one's feet; indeed if

one abstains from assignment to car and

cdr fields - from rplaca and rplacd - they

never do so. The fortunate piece of

design which has given rise to this virtue

seems to have been the provision of cons

as official primitive, and the stigmatiza

tion of assignment to fields within list

structures as a practice to be engaged in

only with extreme caution.

We do not regard Lisp's orientation

towards trees (i.e., in favor of abstract

ing away from the occurrence of shared

substructures), which is provided by the

predicate equal and by the visible form of

S-expressions, as of great significance.

We are happy to think of list structures

as they really are (with sharing),· and to

exploit eq as it really is in all Lisps

known to us - the identity predicate, de

fined between any two objects. We have

commonly found it expedient to make use of

list structures in which so many car-cdr

paths led to the same substructures that

their S-expression representations would

have been of astronomical size.

* This authors' research was supported by
nSF Grant r·1CS75-22002.

Moreover, we have from time to time

had good reason to use list structures

which contained ear-cdr cycles, and which

would make infinite S-expressiolls. In

Lisp as it is, such structures - which we

regard as innocuous - cannot be created

wi thou t recourse to l'p laea and 1'1' laed .

This brings us to our topic: to advocate

the provision, in modern versions and off

shoots of Lisp, of a facility for the

creation of list structures which may con

tain cycles as the solutions to recursive

equations.

2. The proposed facility

The possibility of list structures

which contain themselves as subparts, and

which therefore .satisfy recursive structur

al equations, has been from time to time

alluded to in the literature, for example

by Landin [1] and Burge [2], and recently

Henderson (3]. So far as we are aware,

however, there have been no systematic

experiments in constructing such objects

and exploiting them in programming. It

seems most useful, therefore, rather. than

attempting to specify in detail a language

feature for which there is as yet no wide

ly felt need, instead to characterize in

formally a class of intuitively reasonable

computations of list structures by recur

sive definition, introduce a working nota

tion for such definitions, and then dis

play (Sections 5 and 6) a collection of

programming examples. In Section 7 we

shall give a tentative discussion of what

appear to be feasible implementation tech

niques.

(With some trepidation, we pass over

as not germane to the present development

such notions as Landin's "streams" and the

"lazy evaluation" of Henderson and Morris

[4], and Friedman and Wise [5]. These,

we take it, are methods of simulating com

putation with actually infinite lists and

trees - e.g~, the list of all the prime
numbers - by computing breadth first, and

2

only elaborating the infinite quantities'

defining expressions so far as is neces

sary. In the present context, we prefer

to deal with list structures which exist

in a 11I0 r-e everyday sense, ilnd to b'-, aL I.e

to think of a computation with list struc

tures independently of ilny programming

language, as the combination of (,(l1"S,

cdr's, eons's, atom's and eq's which the

structures undergo. This view tends to

deny to programming languages a central

place in computer science, and to regard

them as more or less convenient notations

for prescribing computations; it is a view

which has been highly fruitful in the de

sign and analysis of algorithms.)

To proceed with the characterization

of "reasonable computation": A computation

of a list structure from some others may

be such that the latter are subjected to

no primitive operations other than cons,

and thus can play no useful role other

than as parts of the result. Such a com

putation one may call purely constructive

(with respect to the structures regarded

as being "computed from"). A system of

equations

x n

in which the e's specify computations

purely constructive with respect to the

values of such of the x's as appear in

them is readily seen to have a unique sol

ution, provided only that it contains rio

completely circular subsystems of vari

ables equated to each other, on the pat

tern of x
1
=x

3
, x

3
=x

1
• For example, the

system

x cons[A,y]

y cons[x,x]

has the solution which may be pictured

3

x:

"Unique

~7y'~
solution" here must be understood

only under their own names but also as

parts of the values of x 1 ' ••• ,x i _1 ' and

if completely circular definitions are

avoided, then a unique solution exists.

Thus, for example,

3. Notation

is reasonable (and rather dull), but

x eons[y,A]

y edr[x]

fiers:

lectrec x 1 e 1
and

and x e in body
n n

eons [y·,A]

ear [x]y

x

The notation to be used here is in

essence the Lisp M-language. Applica

tion is shown with square brackets and

commas: f[x,y], except that car, cdr,

null, and eq are made into operators:

~, ~, ~, =, and that applications of cu~s

and list are shown with the correspond

ing S-expression punctuation: (x.f[y])

for eons [x,f[y]] and (x y z) for

list[x,y,z].

The principal extension to conven

tional Lisp is to suppose a form of mu

tually recursive declaration of identi-

is circular, since the second equation in

effect gives y as the definiens of y,

It is natural to require that equa

tions be written in an order which mani

fests their reasonableness. To destroy

the symmetry of the idea "set of simul

taneous equations" is regrettable, but

the examples will show that considerable

power is gained by use of the liberalized

condition.

The intention is to express a system of

equations as described above, and to

yield the value of "body" in an environ

ment in which x 1 , ••• ,x
n

have bean bound

to the solutions. A similar construction.

in the Heraclitian sense in which eons~,B]

may be said to yield

~
uniquely, each time we solve our equations

we should get a structurally identical

but distinct solution.

A clear grasp of the existence of

solutions should make programs which em

ploy such systems of equations as defini

tions of their left-hand-side variables

at least somewhat understandable. It may

be as well, however, to supply at this

point a deliberately vague account of how

one might expect solutions to be computed:

namely, the right-hand-side expressions

may be evaluated in any order and in per

fectly everyday fashion, some sort of

dummy values being made available for

those x's the production of whose actual

values still lies in the future; as each

actual value is produced, it should some

how be made to coalesce with or replace

all occurrences of its correponding dummy.

It is important to realize that the right

hand-side computations may be arbitrary,

provided they have the necessary purely

constructive character, and that there

fore the expressions need not be restrict

ed to any particlar syntactic form.

The observation just made, that the

right hand sides can be worked out in

any order, one being completely evaluated

if we like before the next is begun, shows

that the reasonableness condition on a

set of equations may be liberalized as

follows: if the equations can be so order

ed (before being numbered 1 through n)

that each expression e i specifies a com

putation purely constructive with respect

to the values of x" x'+1' ... ,x , having
'L 1. . n

regard to occurrences of these values not

introduced by plain let, makes a more read

able equivalent to application of a lambda

abstraction to arguments.

An inessential but convenient exten

sion is to permit expressions with a tuple

of values and functions with a tuple of

results, and correspondingly to permit

declarative equations to have multiple

left hand sides. E.g. (division with re

mainder) :

quotrem[x,y] = if x<y then O,y

else let q,r = quotrem[x-y,y]

in q+1, r

Such transitory tuples could of course be

assembled and decomposed by cons, car, and

cdr, but to do so would be to obscure the

more momentous cons's.

4. Atlases

A further digression needs to be tak

en before considering examples of program

ming with letrec. Any function that makes

a tour of an arbitrary list structure

which may contain cycles needs to keep

some record of where it has been, so that

the structure may not after all seem in

finite to it. In operational terms, one

thinks of marking the cells of the struc

ture, or entering them as keys with some

associated information in some dictionary,

which in keeping with the topographical

metaphor may better be called an "atlas."

We shall here hypothesize a purely

functional atlas facility, consisting of

the constructors empty and extend, the

predicate defined, and the selector value,

interrelated by the identities:

defined[x, empty[]] = false

defined[x, extend[x' , y,aJ]

if x = x' then true else defined[x,a]

value[x, extend[x',y,aJ]

if x = x' then y else value [x,a]

See the appendix for some remarks on the

realization of atlases.

4

5. Small examples

A first programming example is provi

ded by the problem of making an isomorphic

copy of an arbitrary list structure, to be

built out of the same atoms but with all

new dotted pairs. Here the necessary at~s

tabulates a function mapping pairs in the

old structure to image pairs in the new

one, and letrec allows us to conjure up

a value of this function out of thin air,

before we know the subobjects of which it

will ultimately be the cons. Thus:

copy[x] = let x',h ' = cop[x,empty[J] in x'

cop[x,h] = if atom[x] then x,h

else if defined[x,h] then value[x,h],h

else letrec y',h' =
cop [~ x, extend [x,x' , hJ]

and zl,h" = cop[~ x,h']

and x' = (y' .z·')

in x I, h II

It is perhaps of interest to redefine the

same function in a more imperative style,

to suggest how an atlas facility with a

destructive extension operation could be

accommodated. We ask the reader's indul

gence for the eclectic notation:

copy[x] = prog h

letrec cop [x]

if atom[x] then x

else if defined[x,h] then value[x,h]

else letrec x' = [h:=extend[x,x',h];

(cop[~ x] . cop[~ x])]

in x'

in [h:=empty[]; cop[x]]

An isomorphism predicate is readily

programmed on the model of copy. The nat

ural notion of equaZ, however, according

to which two structures are unequal only

if some path of car's and cdr's leads to

an atom in one and to something not that

atom in the other, seems to require the

techniques of fast unification - see [6]

for an exposition - for its efficient

realization.

5

- this is the historical "mapcar" - and

map [f, l]

if nl then nil else (f[~l] .map[f,~l])

dig[l,m] =

if n l then m

else letrec m'

«aal . neighbors) . m)

and result = dig[~l,m']

and neighbors =
map [AX. findnode[x,result] ,dal]

in result

prism[g] = ~ value[g, pr-i::;[g, empty[]]]

pris[g,h] =

if defined[g,h] then h

else letrec h' = extend[g, (gl.g?') ,h]

and h" prilJlist [g,h']

and £11 (g2.map[Ax.~ value[x,h] ,g])

prism[prism[prism[nil]]]

findnode[lab,res] =
if aa res = lab then a res

else findnode[lab, d res]

It is clear that by the use of a

function similar to digraph one can con

struct any list structure whatever, by

translating from an acyclic representation

of it computed by conventional means; how

ever, this is unlikely to be the most nat

ural way of proceeding. As a somewhat

whimsical next example, let us take the

construction of a graph whose nodes cor

respond to the vertices of a cube and

whose arcs correspond, in reciprocal pairs,

to the cube's edges. For simplicity we

may do without labels, so that each node

will be nothing but a list of its adjacent

nodes; and as the representing structure

will be strongly connected, we may accept

anyone of its nodes as standing for the

whole cube (and similarly with other

graphs which arise along the way) .

To motivate the following solution,

observe that any graph may be regarded,

loosely speaking, as a polygon, and con

sider the operation of stretching a poly

gon out into a prism - i.e., making two

copies with corresponding nodes joined up.

Given a general function for this opera

tion, we can then compute the cube as

Pr'ism is not hard to write - though it is

perhaps confusing to keep in mind that a

graph, a node, and a list of nodes are all

the same thing; a suitable atlas maps each

node in the argument graph to the corres

ponding edge (represented by the pair of

its two ends) in the result:

dig[reverse[g], nil]digr'aph [g]

As a second programming exercise let

us take the problem of translating an

acyclic representation of an arbitrary

labeled directed graph to a representation

in which arcs are represented directly as

connections within the structure. As

acyclic representation, it is natural to

take a graph on m nodes, labeled with the

atoms h 1 , ... ,Lm, to be the list of its

nodes, and to take for its i'th node the

list (L. L. 1··. L. d('»' where L. 1' ••• '1- 1-, 1-, 1- 1-,

Li,d(i) are the labels of the nodes direc-

tly accessible from the node labeled L
i

.

The goal is to build a corresponding struc

ture in which the nodes themselves have

replaced uses of their labels; that is, to

represent the graph by a list (n
1
••• n

m
),

where 11. is the list (L. n. 1 ••• n. d('».
'I- 1- '1-, 1-, 1-

The following function definitions are

plausible:

Here 1'';Sill t is always to be in effect the

final representation of the whole graph;

neiuhl·ol's is to be the list of nodes ad

jacent to a single node, obtained by look

ing up their labels in result, and m and m'
are successive subgraphs, being built up

(with labels in reverse order to their

occurrence in the argument l) as the re

cursion of dig digs deeper. To carry out

the construction of nodes we need the un

remarkable auxiliary functions

6

transit: [O .•. m] x character -+ [O ... m]

Then we may write our program as a simple

interpreter for the automaton:

counter[k,s] =

if k=m then 1 + counter[2ndbest[m] ,s]

else if !!s then 0

else counter[transit[k,~s],~s]

The number of occurrences of p in a text t

will be given by counter[O,t] Here

rather than count a pattern occurrence and

inspect the character following it both

at once, we have allowed the automaton to

change state without reading a character

from m to 2ndbest[m] , which is defined to

be the length of the longest prefix of p

which is also a proper suffix of p; thus

2ndbest[m] is the state from which to be

gin considering the next possible occur

rence of p to the right of the one just

counted. We must, therefore, interpret a

combination of state k and remaining text

s as "k is the length of the longest as

yet uncounted prefix of p which ended just

before the start of s".

The automaton's transition function,

depending on the structure of p, is still

to be defined. The helpful idea is to

define 2ndbest[k] for all states k, as the

length j of the longest prefix Pl Pj of P

which is also a proper suffix of Pl Pk.
Intuitively, given that <k,s> corresponds

to some position where the pattern may

occur in the text, <2ndbest[k] , s> corres

ponds to the next possible occurrence to

the right.

Now, considering the intended effect

of tr<.lrLs'it - to always land us in the high

est numbered state consistent with what

we know - we can write the following truth

about it:

transit[k,c]

if Pk+l ~ then k+l

'fa prefix of p is extended!

else if k=O then 0

{empty prefix could not be extend

ed; have to try it again at the

next character}

else transit [2ndbest [k] ,c]

(gl.map [\x.~ value [x,h] ,g])and g2

in hIt

ithm, we may suppose

the automaton are the natural numbers 0

through m, and that its law of operation

is given by a function

prislist[g,h]

if !!g then h

else prislist[~g, pris[~g,h]]

6. The Knuth-Morris-Pratt string matching

algorithm [7]

This is a hard example, intended to

display the techniques under discussion as

useful in the programming of a somewhat

serious algorithm. The problem is to

count the occurrences of a given list of

() - the "pat-characters p = P1 ... Pm

tern" - as a contiguous substring of a

typically much longer list of characters,

the "text". The obvious algorithm can

albeit for rather pathological strings

require time proportional to m x n, n

being the length of the text. However,

the job can be done in time proportional

to m + n; the insight necessary to see

that this must be so is to observe that if

the text is cut at any point, the total

count is determined by the number of com

plete occurrences of p to the left of the

cut, the remainder of the text to the

right, and the longest prefix of p which

ends at the cut: all other possible occur

rences of p across the cut are determined

Therefore, there must be anby that one.

automaton of m + 1 states - one for each

prefix of p - which rolls along the text

inspecting each character once and always

assuming the state correspond{ng to the

longest prefix of p just passed over.

For an abstract version of the algor

that the states of

7

count [q ,sl =

if ~ q :: ACCEPT then 1+count [ad q, s I

else if n s then 0

else count[trans[q, ~ sl ,~_sl

and corresponding to transit:

trans[q,c] = if a q :: SKIP then ad q

else if ad q = c then add q

else tI'ans [addd q, e]

Note: (~nun I; and tI'llYIS are fixed functions,

good for all patterns, whereas countqr and

transit had knowledge about p built in.

There is still the problem of con

structing the automaton from the pattern.

Let us first consider how to compute

2ndbest, beyond the conventional value

2ndbest [0] = -1. Observe that 2ndbest[1]

is zero (the only possible value) and that

for k>1, 2ndbest[k] is at most one more

than 2ndbest[k-1] - this when

Pk = P2ndbest[k-1]+1 - and otherwise is at
most one more than 2ndbest[2ndbest[k-l]],

and so on. Thus, for k>O, 2ndbest[k] dep

ends only on 2ndbest[k-1] and Pk' say

2ndbest[k] = Ext[2ndhest[k-11,Pkl, where

we can describe Ext as follows:

making

to O}

found tois

-1 then 0

{a roundabout way of

2ndbest[11 co~e out

if Pj+1 = c' then j+1
{case where 2ndbest[k]

else

Ext [j,c 'I

if j

transit[k,cl = if k=-1then 0

else if Pk+1=c then k+1

else transit[2ndbest[k] ,c]

{a non-empty prefix could not be

extended; outcome of transit

should be the same as if we had

confronted the second-best prefix

with this character instead}

This equation can serve to computer tran

sit recursively; it provides a second lev

el of the abstract interpreter, which now

requires only a tabulation of 2ndbest to

become executable.

Now to introduce some list processing:

in a Lisp context it is natural, rather

than storing values of 2ndbest in an array,

to directly model the automaton's state

diagram in list structure. The following

modelting scheme will make for easy inter

pretation: call the "concrete" states

q-1' qo"'" qm to avoid confusion, and

define

The special treatment of state 0 here is

annoying, and stems from the empty prefix's

having no second best. It is convenient to

define 2ndbest [01 = -1 , a new state signify

ing "none of the pattern has been seen,

and moreover ~s 'I P1". The equation about

transit may now be rewritten to involve

state -1, but to treat states 0, ... , m-1

uniformly:

q-1= (SKIP qO)

qi = (TEST Pi+1 qi+1 q2ndbest[il)

i=0, ... ,m-1

qm = (ACCEPT q2ndbest[ml)

Each state may be regarded as an instruc

tion, listing the kind of action required

of the interpreter and the necessary para

meters.

The "concrete" interpreter for this

model of the automaton is easy to write on

the model of the abstract one. Corres

ponding to counter we have:

one more than some other 2ndbest

value}

else Ext[2ndbest[jl, c'l
{case where we must appeal to some

next best}

Ext has turned out to be the same function

as transit; so to sum up, a complete des

cription of ;;Ildbest is given by

~ndbest[kl = if k=O then -1

else tpansit[2ndbest[k-ll, Pkl

Now we are ready to embody our know

ledge about 2ndbest in a function, compile,

which will construct the automaton-as-

8

We need a compil which satisfies

This is achieved by the following defini

tion:

Observe that the general shape of the auto

maton is

about how much work trans cun do dur:inq

compilution, u complete invocilLioll of

count[cofllpile[p], II shou.ld indeed run in

time linear in the sum of the Len~ths of

text and pattern. Whut makes the prugrum

bizarre is that the uutomaton is put into

operation in furtherance of its own con

struction. We regret the involved nature

of this example, but it may serve to make

the point that the construction of cyclic

structures cannot in general be confined

to intervals when "ordinary computing" is

not going on; rather the two are likely to

be thoroughly intertwined.

This approach to implementing the

Knuth-Morris-Pratt algorithm was invented

by one of the authors (Schwarz) who con

structed the automaton by a different meth

od, which exploited lazy evaluation. The

other author was delighted to discover

that his less exotic approach to computing

with cyclic structures would handle the

example, although perhaps less perspi

cuously than can be done with lazy eval

uation.

7. Implementations

We shall now attempt to suggest means

by which the plan sketched in Section 2

for computing solutions to recursive list

structure equations can be carried out,

with as little disturbance as possible to

ordinary notions of Lisp implementation.

In outline, the plan is clear: evaluate

the right hand sides in the order given,

and as each value is obtained, ascribe it

to its left-hand-side variable. The only

difficulty arises when evaluation of some

one of the variables must precede ascrip

tion of its computed value to it.

The notion of "replacing all occur

rences" of a variable's dummy value by its

computed vulue, in the sense of overwrit

ing all the arbitrarily scattered instan

ces of a pointer, appears computationally

infeasible. The next most straightforward

approach appears to be to implement

count [compile [p], t]counter [0, t)

compil [(Pk+1·· .P1) ,qk+1] =

qO,q2ndbest[k+1]

compile[p] =

letrec i,j = compil[reverse[p] ,final]

and final = (ACCEPT j)

in i

list-structure from the pattern, and so

will satisfy

Each part enclosed by a contour has exact

ly two connections with the first state

outside the contour. This makes it plain

that our recursion should be over succes

ively shorter prefixes of the pattern;

i.e., that we should reverse p to begin

with. Each recursive level of the compil

er should construct states q-1'···' qk

from P1 ••• Pk+1; it should come out with

both qo (the final answer) and

q2ndbest[k+1] (for building in to qk+1);

and as an additional argument it will need

qk+1 itself, to form the "success contin

uation" of qk. Thus for the top level of

the compiler we may write

comril[rp, succ] =

if n rp then BUCC, (SKIP GUcc)

else letrec i,j = eompil[~rr, this]

and this = (TEST ~ J'P suce j)

in i, trans[j, ~rp]

Note that atlases were not needed here,

and that subject to a little reasoning

"coalescing" of dummy with computed values,

by the device of so-called "invisible poin

ters" vlhich have been proposed for a var

iety of uses. An invisible pointer is a

specialized kind of cell which contains

the address of another cell and which, it

is arranged, is transparent to all poin

ter-following operations. That is, an

operation such as cap, whenever it is ap

parently about to deliver an invisible

pointer cell as result, must look through

it and deliver instead the cell it points

to (unless this is in turn transparent ..• ~

To serve as a dummy value, we need an in

visible pointer cell initialized to a

quiescent (and opaque) state in which

it appears to be an ordinary object, al

though it is amenable to none of the five

primitive operations other than cons. To

make a dummy value disappear when its time

is up it is necessary only to make it

point to the corresponding computed value.

In practice, it seems that values of

variables which are needed before they

have been computed turn out most often to

be newly-minted pairs. It is unnatural,

but tolerable, to restrict what is an al

lowed system of equations by demanding

that this should always be the case. If

this is done, invisible pointers may be

dispensed with; instead cons cells with

some conventional contents can serve as

dummy values. Under this regime, when a

right-hand-side value has been computed,

and if its corresponding dummy or, one

may say, "predicted" value has ever been

accessed, the mechanism administering sol

ution of equations must verify that the

value as computed is a pair, and copy its

cap and cdp fields into the value as pre

dicted. If the rules have been followed,

the eons cell of the value as computed is

now garbage and disappears; no one will

ever know that it was unable to coalesce

with the predicted, and now only, value

of the variable.

9

Of the preceding examples, the only

one which falls afoul of the restriction

just laid down is digraph: when a node of

the graph has outdegree zero, the vari~le

neighlJul'::; will take the value nil. lJi(jl''.lT,h

can be fixed up, tediousl~ by making a

special case of such nodes; this appears

to be the typical situation.

The second suggestion given for imple

mentation can serve as a guide to hand

translating programs with recursive list

structure definitions into present-day

Lisp; in this light the present work may

be of some immediate value to practition

ers as a proposal for the extremely dis

ciplined use of pplaca and pplacd.

Appendix: More about atlases

At least three respectably efficient

schemes of representing atlases suggest

themselves: actual marking, which in its

most flexible form probably amounts to

equipping cons cells as well as atoms with

property lists; hash tables, provided each

cell comes with a permanent identifying

number - this could cheaply be its address,

so long as relocating garbage collection

is not practiced; and some form of ordered

trees keyed by cell addresses - these,

though slower than hashing, would tolerate

order-preserving garbage compaction.

It appears that the side-effect-free

specification given above for atlases

would not be met by property lists or hash

tables. On the other hand 2-3 trees, for

example, could be made to satsify it, as

could of course the association lists of

classical Lisp. As may be seen, however,

by study of the examples, "pure" atlases,

for which extension is nondestructive, are

probably hardly ever essestial; hence an

imperatively oriented atlas facility based

on marking or hashing may prove to be

worth providing instead of, or as well as,

a functional one (see Schwarz [8]). At

lases are widely applicable and, we sug

'.lost, arc more natul',ll t.o Lisp th~lIl arrays.

References

1. Landin, P.J., "The mechanical evalua
tion of expressions", The Computer
Journal 6, 4 (January 1964),
pp. 308-319.

2. Burge, W.H., Recursive &ogramming
1'eohn-iques, Addison-Wesley, Reading
~1ass. (1975).

3. Henderson, P., Functional h'ogramming:
Application and Implementation,
Prentice Hall International (1980).

4. Henderson, P. and Morris, J.H., "A
lazy evaluator", Third AeM sympos
ium on lrincil'als of }pogr'amming
Languages, Atlanta (1976), pp. 95
103.

5. Friedman, D.P. and Wise, D.S., "Cons
should not evaluate its arguments",
Third International Colloquium on
Automata, Languages, and Frogramming,
Michaelson, S. and Milner, R., eds.,
Edinburgh University Press, (1976).

6. Horris, F.L., "On list structures and
their use in the programming of
unification", Syracuse University,
c.r.s. report 4-78.

7. Knuth, D.E., Morris, J.H., and
Pratt, V.R., "Fast pattern matching
in strings," SIAM Journal of Com
puting 6 2 (June 1977), pp. 323-350.

8. Schwarz, J.S., "Verifying the safe use
of destructive operations in appli
cative programs", Ir'n". Sr'd Inter
natiunal Symposium un lrogramming,
B. Robinet ed., Dunod, Paris (1978).

10

	Computing Cyclic List Structures
	Recommended Citation

	SU-CIS-80-02_001c
	SU-CIS-80-02_002c
	SU-CIS-80-02_003c
	SU-CIS-80-02_004c
	SU-CIS-80-02_005c
	SU-CIS-80-02_006c
	SU-CIS-80-02_007c
	SU-CIS-80-02_008c
	SU-CIS-80-02_009c
	SU-CIS-80-02_010c
	SU-CIS-80-02_011c

