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Abstract 

Rates of surface-air elemental mercury (Hgo) fluxes in the literature were synthesized for the 

Great Lakes Basin (GLB).  For the majority of surfaces, fluxes were net positive (evasion).   

Digital land-cover data were combined with representative evasion rates and used to estimate 

annual Hgo evasion for the GLB (7.7 Mg/yr).  This value is less than our estimate of total Hg 

deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg.  The 

greatest contributors to annual evasion for the basin are agricultural (~55%) and forest (~25%) 

land cover types, and the open water of the Great Lakes (~15%).  Areal evasion rates were 

similar across most land cover types (range: 7.0 to 21.0 µg/m2-yr), with higher rates associated 

with urban (12.6 µg/m2-yr) and agricultural (21.0 µg/m2-yr) lands.  Uncertainty in these 

estimates could be partially remedied through a unified methodological approach to estimating 

Hgo fluxes. 

Keywords: evasion, Great Lakes, land cover, mercury, volatilization 

Capsule: A synthesis of Hg evasion was conducted and this information was used to develop an 

estimate of Hg evasion for the Great Lakes Basin. 

Introduction 

The global mercury (Hg) pool includes inputs from both natural processes and anthropogenic 

activities.  Industrial emissions, mainly from coal combustion, waste incineration, and industrial 

processes are the primary sources of Hg to the atmosphere (Driscoll et al. 2007a).  Important 

natural Hg sources include volcanic activity, soil mineral weathering and forest fires (Rasmussen 



1994).  The global biogeochemical cycle of Hg is characterized by numerous oxidation/reduction 

reactions, where elemental Hg (Hgo) is oxidized through different mechanisms to mercuric ion 

(Hg2+), and Hg2+ is in turn reduced through various pathways to Hgo.  In aquatic and terrestrial 

ecosystems, the majority of Hg is Hg2+ (typically bound to particulate matter or other 

complexing ligands) with lesser amounts occurring as Hgo and methyl mercury (MeHg).  There is 

a critical interplay of processes for Hg2+, where Hg2+ can be either methylated to MeHg or 

reduced to Hgo.  Evasion of Hgo from lands and waters is a significant input to the atmosphere, 

and at the same time is an output of Hg from the terrestrial environment.   

Terrestrial and aquatic processes can result in the chemical reduction of oxidized Hg species to 

Hgo, resulting in volatilization of Hgo.  Loss of Hgo to the atmosphere can occur from water, 

vegetation, and soil surfaces (Amyot et al. 1994; Ericksen and Gustin 2004; Ericksen et al. 2006).  

For soils, Hg volatilization has been shown to vary spatially, as a function of surface 

characteristics such as Hg concentration, moisture content, and grain size distribution; and 

temporally as a function of changing meteorological conditions such as solar radiation, 

temperature, and soil moisture (Selvendiran et al. 2009; Choi and Holsen 2009a; Ericksen et al. 

2006; Eckley et al. 2011).  In lakes, photo-reduction of Hg2+ appears to be the primary process 

driving the production of dissolved gaseous mercury (DGM) and its subsequent loss to the 

atmosphere (e.g., O’Driscoll et al. 2003a; Amyot et al. 1994; Lindberg et al. 2000).  Several 

proposed mechanisms include direct photolysis of Hg2+ to Hgo (Amyot et al. 1994; Munthe and 

McElroy 1992) including photosensitizing of Fe3+ complexes (Ababneh et al. 2006; Zhang and 

Lindberg 2001), sulfite complexes (Munthe et al. 1991; Van Loon et al. 2000), DOC and humic 

substances (Nriagu 1994; Xiao et al. 1991; Xiao et al. 1995), and reduction of Hg2+ involving 



oxygen radicals such as O2
•-, HO•, and H2O2 (Dommergue et al. 2003; Schroeder et al. 1992).  

Photodecomposition of MeHg directly to Hgo has also been suggested (Tossell 1998; Bloom et 

al. 2001).  Because photo-reduction of Hg is an important driving mechanism, studies are 

characterized by marked diel changes in evasion rates. 

Published measurements of Hgo volatilization rates include both aquatic and land surfaces.  The 

rates of Hg volatilization reported in the literature range from < 5 ng/m2-hr from pristine lakes 

and forest soils to >10 000 ng/m2-hr from contaminated soils (Amyot et al. 2004; Gustin et al. 

2003).  Gaseous Hgo has an atmospheric residence time of around 1 year (Fitzgerald and Mason 

1997; Smith-Downey et al. 2010).  As a result, Hgo may be transported globally prior to being 

deposited back to the Earth’s surface following volatilization.  Deposition occurs following 

oxidation of Hgo to Hg2+, and subsequent complexation of Hg2+ with airborne particulates or 

dissolution in water.  In forest systems Hgo can enter the stomata of leaves which can  be 

deposited to the forest floor during litter fall (Driscoll et al. 2007b).  Hg2+ returns to the Earth’s 

surface as wet (i.e., rain), dry (i.e., particulate, gaseous), or litter fall deposition.  Recent 

estimates have suggested that Hgo evasion may account for a substantial fraction of Hg loss 

from ecosystems.  For example, Quémerais et al. (1999) estimated that the fluvial loss of total 

Hg from Lake Ontario to its only outlet, the St. Lawrence River, is approximately 5.9 µg/m2-yr.  

The volatilization rate of Hgo from Lake Ontario was estimated by Lai et al. (2007) to be 

approximately 5.8 µg/m2-yr.  Likewise, a Hg mass balance for Arbutus Lake in the Adirondack 

Mountains, New York, Selvendiran et al. (2009) estimated fluvial Hg loss to be 1.2 µg/m2-yr and 

Hgo volatilization to be 7.8 µg/m2-yr.   



Given the importance of Hgo evasion to the overall mass balance of watersheds, we review the 

literature on surface-air fluxes of Hgo in terrestrial and freshwater aquatic environments and 

provide a synthesis of these studies. The focus of our analysis is the Great Lakes Basin (GLB).  

Here we estimate the overall Hgo losses from the GLB and compare this flux with estimates of 

Hg emissions and inputs from wet, dry and litterfall Hg deposition through a synthesis of the 

best available information in the published literature. 

Literature Review of Mercury Evasion Estimates 

Our review of Hgo evasion studies is organized by land cover type: forest, agriculture, grassland, 

urban, wetlands, inland lakes, and the open waters of the Great Lakes.  Based on this review, 

rates of Hgo evasion were selected for each land cover, and used to calculate total Hg evasion 

for the GLB.  For the purpose of this analysis, Hg fluxes discussed and selected for scaling 

purposes are net gaseous exchange values (i.e., flux values presented account for both gaseous 

Hg deposition and emission). 

Surface Hgo fluxes are influenced by diel and seasonal variability under environmental 

conditions.   Variables that have been found to be important in influencing fluxes include solar 

radiation, temperature, precipitation and atmospheric turbulence and chemistry (summarized 

in Gustin et al. 2008; Stamenkovic et al. 2008).  There is considerable variation in estimates of 

Hgo evasion for various land cover types. This large overall variability occurs due to large 

temporal variability over the time of day and season, relatively large spatial variability, and 

substantial differences in the nature and intensity of measurements among studies.  For 

example, Poissant et al. (2004) observed a greater than 50% increase in Hgo volatilization from 



the same wetland site under dry conditions compared to when it was flooded.  Moreover, soil 

temperature became a more important controller of Hgo evasion than solar radiation during the 

dry period.  While some studies have suggested that prolonged soil moisture might inhibit Hgo 

evasion (Schroeder et al. 2005; Selvendiran et al. 2008), others have noted elevated Hgo 

evasion rates immediately following precipitation events (Eckley et al. 2011; Engle et al. 2001; 

Lindberg et al. 1999).  Marked spatial variability has also been documented in the literature.  

Eckley and Branfireun (2008) noted an approximate four-fold difference in Hgo evasion between 

some pavement sites in Toronto, and suggested this difference was a result of different 

pavement compositions.   

Some studies have measured Hgo flux during different seasons to establish an annual 

ecosystem flux which accounts for temporal variability, whereas other studies conduct 

measurements over a range of days (or hours) during a single season.  Several studies have 

identified that flux increases with temperature and solar radiation and as a result, fluxes are 

higher during the daytime than at night and generally higher in the summer than in winter (Choi 

and Holsen, 2009a; Gabriel et al. 2006; Eckley et al. 2011); however some studies have also 

identified that lower solar radiation under deciduous canopies and lower soil moisture content 

results in lower summertime fluxes (Hartman et al. 2009; Kuiken et al. 2008).   Because several 

studies have shown diel Hgo fluxes to generally follow a curve similar to solar elevation, 

measurements conducted only during daylight hours will greatly overestimate mean daily 

emissions (Engle et al. 2001; Gabriel et al. 2006; Gustin et al. 2003).  Therefore, for land cover 

types where multiple studies had been conducted, we prioritized selecting data that 



incorporated daily and seasonal variability in developing annual flux estimates, as well as 

studies from within/near the GLB. 

Surface Hgo fluxes can be measured/modeled using several approaches.  For soils, dynamic flux 

chambers (DFC) and micrometeorological methods (MM) are the most common techniques and 

for aquatic ecosystems, DFCs and purge/trap methods are routinely applied.  Additionally, both 

Hgo detectors and mathematical models used to estimate Hgo evasion vary.  Studies that 

compare different techniques used to measure flux suggest that the methodological approach 

and operating parameters influence the magnitude of the calculated flux (Gustin et al. 1999; 

Eckley et al. 2010; Rolfhus and Fitzgerald, 2001).  Therefore, because there is no standard 

protocol for conducting measurements of gaseous Hgo flux, some component of the variability 

in Hgo fluxes among landscapes reported is a function of differences in flux measurement 

techniques.   To minimize this artifact, flux datasets that used similar methodological 

approaches were selected as part of this review.  For soil surfaces, fluxes measured using DFCs 

were available for all surface types and were prioritized for scaling.  For aquatic surfaces, where 

DFC measurements were available they were selected; however for some surfaces purge/trap 

data was only available and was applied for scaling.  

Note that in many of the studies reviewed it was assumed that soil Hgo evasion during periods 

of snow cover is minimal.  While this may be true for the soil itself, studies have reported 

substantial rates of Hgo evasion from snowpack (e.g., Ferrari et al. 2005, Lalonde et al. 2002).  A 

considerable portion of the GLB is snow-covered during the winter season.  We found few 

studies estimated Hgo evasion from snowpack in the GLB (Schroeder et al. 2005), and many of 



the emission studies reviewed had no or limited measurements during winter.  Additional 

studies are necessary to quantify Hgo emission from the snow cover period in the GLB. 

Forests 

DFC fluxes from a deciduous forest in the Adirondack region of New York were selected for 

scaling forest lands that incorporated diel measurements conducted during each season (Choi 

and Holsen, 2009a Table 1).  The seasonal flux data were then scaled annually to account for 

seasonal changes in canopy coverage in the summer and snow coverage in the winter—

expressed as an annual hourly average this flux was 0.8 ng/m2-hr.  Other studies of Hg flux from 

North American forests using DFCs include Carpi and Lindberg (1998) and Zhang et al. (2001) 

both of which measured spring/summer daytime-only fluxes from the soil beneath a deciduous 

forest in Tennessee (flux range: 2 to 7 ng/m2-hr) and Michigan (average flux: 1.4 ±1.4 ng/m2-hr) 

and Schroder et al. (2005) which measured summertime fluxes from forest soil in Nova Scotia 

(flux average: 1.1 ng/m2-hr).  While the Choi and Holsen (2009a) flux value appears lower than 

measurements from other studies, this is because their value incorporates diel and seasonal 

variability, whereas the other measurements do not.  During warm, sunny conditions, Choi and 

Holsen (2009a) measured Hgo fluxes that were in excess of 10 ng/m2-hr, which is of similar 

magnitude as measured during peak emissions in the other studies.   

Agricultural Lands 

Agricultural lands include areas used for crop production.  Grasslands, including areas used for 

livestock pasture, are discussed in the Grasslands section.  Using the DFC method, Carpi and 

Lindberg (1998) measured Hgo fluxes from a simulated plowed agricultural field in Tennessee 



(vegetation was manually removed from the surface before measurements were conducted) 

and found fluxes ranging from -0.66  to 44.8 ng/m2-hr. This large range incorporates values at 

different sample locations (two different fields) and levels of daytime solar radiation. The fluxes 

from the Nelson field site in Carpi and Lindberg (1998) are considered more representative of 

the GLB because the Hg concentration of the soil (61±19 ng/g) was similar to values measured 

from crop and pastureland within the GLB (see Table 1).  Because these measurements were 

conducted during the spring/summer daytime conditions, they needed to be adjusted to 

account for diel and seasonal flux variability.  Flux measurements obtained during only specific 

periods of the day can be extrapolated to diel averaged fluxes assuming a Gaussian distribution 

(Nacht and Gustin, 2004; Engle et al. 2001).  Using the daytime sunny conditions average flux of 

12.5 ng/m2-hr to represent noontime emissions and the average from measurements obtained 

in the shade to represent nighttime fluxes (-0.66 ng/m2-hr) to fit a Gaussian distribution 

resulted in an estimated diel flux of 3.4 ng/m2-hr.  Furthermore, since this flux was measured 

during the spring/summer, it is not representative of fall and winter emissions.  If we assume a 

similar decrease in fluxes during the fall as was observed from the seasonal measurements 

from a GLB forest (Choi and Holsen, 2009a), then the diel autumn Hgo fluxes are estimated to 

be 2.7 ng/m2-hr.  During the winter, Schroeder et al. (2005) measured low fluxes (0.09 ± 0.03 

ng/m2-hr) from an agricultural area in Southern Ontario covered in snow.  Averaging these 

fluxes by their respective seasonal time periods would result in an estimated annual average 

flux from GLB cropland of 2.4 ng/m2-hr. Several studies have shown that Hgo fluxes increase 

following surface disturbance, however these elevated emissions are temporary and fluxes 

return to pre-disturbance levels within a week after soil disturbance (Gustin et al. 2003; Eckley 



et al. 2011).  While the results of Carpi and Lindberg (1998) indicate that Hgo fluxes from 

agricultural lands can be elevated during periods of active plowing/harvesting, it is not clear 

from their study how long the emissions remained elevated.  In the annual average flux applied 

for scaling, the fluxes from the disturbed surfaces from Carpi and Lindberg (1998) were applied 

over a 6 month period, which may be an overestimation of the emissions during this period 

depending on how often the fields are disturbed from farming activities and how long the 

emissions remained elevated following surface disturbances.  Other MM measurements of Hgo 

fluxes on agricultural lands found values ranging from an average autumn diel flux of 0.1 ± 0.2 

ng/m2-hr at an Ontario cropland field (Cobett and Van Heyst, 2007) to an average spring diel 

flux of 9.67 ng/m2-hr at a Minnesota cropland field (Cobos et al. 2002).  The large range in 

reported Hgo fluxes for croplands does not appear to be related to differences in soil Hg 

concentrations, which were highest in the Cobett and Van Heyst (2007) study where the fluxes 

were the lowest; instead variations in Hgo fluxes may reflect varying levels of surface 

disturbance associated with agricultural activity.   

Our analysis (see below) suggests that agricultural lands account for more than 50% of total Hg 

evasion from the GLB.  It is not clear from these studies when and for how long Hgo evasion 

rates are elevated from agricultural lands. Elevated Hgo evasion rates also may reflect high rates 

of carbon mineralization and Hg2+ cycling associated with land disturbance or materials added 

to agricultural lands.  Based on our literature review and the elevated rates associated with this 

review, there is a clear need for more rigorous evasion studies on agricultural lands, quantifying 

rates and climatic and landscape level drivers that control evasion rates. 



Grasslands 

For grasslands/pastures, Schroeder et al. (2005) used both the DFC and MM techniques to 

measure average diel summertime Hgo fluxes in Ontario (3.0 and 1.1 ng/m2-hr respectively) and 

Quebec (MM only: 2.9 ng/m2/h) and Zhang et al. (2001) used a DFC to measure mid-day 

summer fluxes from the Upper Peninsula in Michigan (7.6 ± 1.7 ng/m2-hr).  While the values 

from Zhang et al. (2001) appear much larger than those from Schroeder et al. (2005) values, 

this difference is likely due to the fact that the later considered diel conditions.  Assuming the 

Gaussian flux distribution the diel flux from the Zhang et al. (2001) was estimated to be 2.6 

ng/m2-hr, which is similar to values of Schroeder et al. (2005), suggesting that these 

measurements are representative of grassland emissions.  Ericksen et al. (2006) measured diel 

fluxes with a DFC from grasslands in Wisconsin and found that some fluxes were similar in 

magnitude to those of Schroeder et al. (2005) and Zhang et al. (2001) (maximum flux: 3.5 

ng/m2-hr), but overall they report a much lower mean flux of 0.3 ± 0.07 ng/m2-hr (the season 

these measurements were conducted is not reported).  Their lower flux may be a function of 

their grassland site being under forest cover and not exposed to direct sunlight, which is not 

typical conditions for grasslands.  As such, an average of the Schroeder et al. (2005) and Zhang 

et al. (2001) values were used for scaling in our GLB analysis (i.e., 2.8 ng/m2-hr).  Because this 

value represents summer conditions, it was adjusted to be seasonally represented as was 

described for the agricultural lands resulting in an annual estimated average flux of 2.0 ng/m2-

hr. This value is slightly lower, but of similar magnitude as the fluxes reported for agricultural 

cropland.  We would anticipate similar rates of Hgo evasion for agricultural lands and grasslands 

of the GLB, as both land covers are exposed to full solar radiation (i.e. limited canopy cover, 



which can decrease emissions).  The slightly lower fluxes from the grasslands may reflect the 

lower level of disturbance these surfaces encounter relative to croplands.  

Urban Lands 

Urban areas largely consist of impervious surfaces, such as pavement, and pervious soils.  

Eckley and Branfireun (2008) used DFCs to measure fluxes from both types of surfaces from 

several locations from a major urban center within the GLB (Toronto, Ontario).  The median 

fluxes they reported were based on summertime daytime measurements (1.0 and 6.2 ng/m2-hr 

for pavement and soil, respectively).  Using the Gaussian distribution to estimate diel Hgo 

fluxes, we estimate values of 0.3 and 2.0 ng/m2-hr for pavement and soil respectively. These 

values are very similar to a more intensive diel and seasonal sampling campaign conducted 

from urban soils and pavement from outside of the GLB (Tuscaloosa, Alabama—Gabriel et al. 

2006).  Gabriel et al. (2006) found a median annual flux of -0.01 ng/m2-hr for pavement, and 

2.64 ng/m2-hr for urban soils.  The similarity in flux magnitudes may be due to similar soil Hg 

concentrations between the two sites (Table 1).  The measurements of Eckley and Branfireun 

(2008) included good spatial coverage.  In contrast, Gabriel et al. (2006) characterized temporal 

variability (which was based on a single location).  However, because the magnitude of 

measurements from these two studies is similar, we averaged them to obtain values for urban 

lands of the GLB that are both spatially and temporally representative (pavement: 0.15 and soil: 

2.3 ng/m2-hr).   We assumed that urban lands of the GLB are 40% impervious surfaces and 60% 

pervious land (Akbari et al. 2003).  The relatively few urban evasion studies in the GLB, as well 

as the spatial heterogeneity noted in Eckley and Branfireun (2008) (i.e., median values at six 



sample sites in one city ranging from below detection limit to 5.2 ng/m2-hr), suggests that 

additional research is needed to better characterize Hg emissions from urban environments.  

Wetlands 

Of the three surface-air Hg-flux studies for wetlands reviewed, two used DFCs (Poissant et al. 

2004; Selvendiran et al. 2008) while the other applied MM gradients (Lindberg and Meyers 

2001).   Poissant et al. (2004) compared Hgo evasion from a wetland in Quebec during a flooded 

period with values during a dry period.  Diurnal measurements were made during both periods; 

the median values were calculated from both daytime and nighttime measurements.  They 

found a median Hgo flux of 0.83 ng/m2-hr during the dry period (August to September, 1999), 

and a median Hgo flux of 0.5 ng/m2-hr during the flooded period (May 2000).  Selvendiran et al. 

(2008) found a similar pattern from a riparian zone in the Adirondack region of New York.  

During flooded conditions, net volatilization was -1.3, -3.9, and -3.6 ng/m2-hr for spring, 

summer and fall, indicating deposition; during drier conditions, net volatilization was observed 

(3.8 ng/m2-hr).  They also evaluated a beaver meadow, estimating an annual Hgo evasion flux of 

0.52 ng/m2-hr.  This estimate included both seasonal and diurnal measurements from a 

wetland in close proximity to the GLB, and as a result may be more representative of the annual 

evasion rate for wetlands in the GLB.  Note, however, the differences observed between 

flooded and dry conditions at different wetlands.  Seasonal changes, as well as periods of 

drought or elevated precipitation, could have considerable effects on Hgo evasion rates from 

wetlands. 

Lakes (Inland) 



In addition to the MM gradient and DFC methods typically used for Hgo evasion work on soils, 

estimates of evasion from aquatic environments include the use of a purge and trap system 

(O’Driscoll et al. 2003a).  While DFC and MM methods measure net Hgo exchange, the purge 

and trap methods measure dissolved gaseous Hg (DGM), and use models to determine air-

water Hgo exchange.  Selvendiran et al. (2009) applied the purge and trap system to estimate 

Hgo evasion from Arbutus Lake in the Adirondacks, New York.  They developed an annual 

estimate of Hgo evasion from the lake surface, 0.89 ng/m2-hr.  During the study, mean daytime 

evasion was 1.6 ng/m2-hr and mean nighttime evasion was estimated at 0.7 ng/m2-hr.  The 

value proposed as an annual estimate accounts for diurnal as well as seasonal variation.  Vandal 

et al. (1991) developed an annual estimate of Hgo evasion (0.17 ng/m2-hr) for seepage lakes in 

Wisconsin.  All other studies provided estimates specific to the study period, or did not define a 

study period: O’Driscoll et al. (2003b) noted a daytime range of 2.1 to 3.8 ng/m2-hr during the 

summer for two lakes in Nova Scotia;  Xiao et al. (1991) developed a mean daily estimate of 7.9 

ng/m2-hr during the warmer season for four lakes in Sweden; Wollenberg and Peters (2009) 

noted a range of 0.14 to 20.95 ng/m2-hr from a dimictic lake in eastern Pennsylvania during fall 

turnover.  Of these, the Selvendiran et al. (2009) estimate, which accounts for both diurnal and 

seasonal variations, was used to represent Hgo evasion from inland lakes in the GLB.  Of the 

literature reviewed, Hgo evasion estimates for inland lakes exhibit the greatest variability in 

methodological approach.  It is therefore difficult to reconcile values across a region and 

objectively compare Hg evasion values among different lakes. 

Great Lakes 



Estimates of gaseous Hgo evasion from the surfaces of the Great Lakes have largely been 

developed using data collected from grab samples that were promptly analyzed for DGM.  Four 

recent studies were reviewed, and the only one not employing grab samples simply estimated 

gaseous Hg evasion by difference to close a Hgo budget (i.e., Rolfhus et al. 2003).  That study 

estimated an annual Hgo volatilization rate of 1.0 ng/m2-hr from Lake Superior.  The remaining 

studies reviewed focused on Lake Superior, Lake Ontario and Lake Michigan.   

Jeremiason et al. (2009) estimated evasional Hgo fluxes for Lake Superior and Lake Michigan, 

with annual values of 0.22 and 0.75 ng/m2-hr, respectively.  Vette et al. (2002) also studied Lake 

Michigan, and found a similar estimate of 0.89 ng/m2-hr.  Due to the more recent observations 

that are based on DGM measurements, the estimates of Jeremiason et al. (2009) were used to 

represent Hgo evasional flux from both Lake Superior and Lake Michigan in our analysis.  As part 

of an atmospheric deposition study for Lake Ontario, Lai et al. (2007) estimated an annual Hgo 

evasion rate of 0.66 ng/m2-hr.  This was the only report in the literature for Lake Ontario, and 

was therefore used to represent that lake’s annual Hgo emission rate.  No studies were found 

for either Lake Huron or Lake Erie.  However, since Lake Huron and Lake Michigan are 

geologically considered the same body of water (Great Lakes Environmental Research 

Laboratory 2006), the Lake Michigan Hgo evasion rate was used to represent Lake Huron as 

well.  Due to the proximity of Lake Ontario and Lake Erie, the Hgo evasion rate for Lake Ontario 

was used for Lake Erie.  More studies on Hg evasion from the Great Lakes would be beneficial, 

particularly with respect to Lakes Erie and Huron, and also to estimate localized influences of 

large river discharges and urban centers. 



Relative importance of Hg evasion for the Great Lakes Basin 

To attempt to place estimates of rates of Hgo evasion in the context of the Hg dynamics across 

the GLB, we utilized a geographic information system (GIS) approach.  We used values of Hgo 

evasion rates for land cover type based on our review of the literature (discussed above).  We 

applied these rates to the distribution of land cover for the GLB from US Geological Survey 

(USGS) Global Land Cover Characterization (http://edc2.usgs.gov/glcc/glcc.php) (Table 2).  Due 

to the limited number of evasion studies that have been conducted for certain land cover types, 

we lumped land cover classes to describe forests, agricultural lands, grasslands, urban lands, 

inland waters including lakes, reservoirs, rivers and wetlands; and the individual Great Lakes. 

Rates of Hgo evasion for the GLB are compared with: values of Hg emissions for the US and 

Canada for 2005 (www.epa.gov/ttn/chief/net/2005inventory.html#inventorydata); wet Hg 

deposition for 2002-2008 obtained from the Mercury Deposition Network 

(http://nadp.sws.uiuc.edu/mdn/; Risch et al. this volume a); estimates of Hg dry deposition 

calculated from the Community Multi-scale Air Quality (CMAQ) model 

(http://www.epa.gov/asmdnerl/EcoExposure/depositionMapping.html) for 2001; and forest 

litterfall Hg deposition in the GLB.   

Litterfall Hg deposition was estimated by litter studies conducted by forest type (Risch et al. this 

issue b; Demers et al. 2007) and GIS forest cover.  For the U.S., forest cover type data were 

available by tree species association classes from the USGS 

(http://rnp782.er.usgs.gov/atlas2/mld/foresti.html, e.g., maple-birch-beech, spruce-fir, oak-

hickory).  We multiplied litter fall Hg deposition rates for forest species classes by the land area 

http://edc2.usgs.gov/glcc/glcc.php
file:///C:/Documents%20and%20Settings/Joe/My%20Documents/PhD%20Materials/Evasion%20Literature%20Review/Final%20Doc/www.epa.gov/ttn/chief/net/2005inventory.html%23inventorydata
http://nadp.sws.uiuc.edu/mdn/
http://www.epa.gov/asmdnerl/EcoExposure/depositionMapping.html
http://rnp782.er.usgs.gov/atlas2/mld/foresti.html


of these classes for the U.S. area of the GLB.  Unfortunately a comparable GIS of tree species 

association classes are not available for Canada.  As a result, we used the forest cover classes in 

the USGS Global Land Cover Characterization for Canada (discussed above for land cover 

classes), which include hardwood, conifer and mixed forest cover classes. We used the mean 

litterfall Hg deposition reported in Risch et al. (this issue b) for conifer and mixed forest classes.  

We assumed in the GLB in Canada the hardwood forest class is largely comprised of maple-

birch-beech forest class and used the data for that forest association class in Risch et al. (this 

issue b).  We summed the values of litterfall Hg deposition for forest species association classes 

in the U.S. and the three forest cover classes in Canada.  Note that forest lands represent 36% 

of the Great Lakes watershed area (Table 2). We prorated the total litterfall Hg deposition 

estimated for forest lands to the entire GLB.  We estimate total Hg deposition as the sum of wet 

Hg deposition, dry Hg deposition and litterfall Hg deposition (Driscoll et al. 2007b). 

Our analysis suggests an overall Hgo evasion for the GLB of about 7.7 Mg/yr, corresponding to 

an areal rate of 10.2 µg/m2-yr (Tables 2 and 3).  Total Hgo evasion is distributed among the 

various land cover types (Table 2; Figure 1).  As the areal evasion rates reported in the literature 

for urban lands, agricultural lands and grasslands are greater than the other land cover types 

and the region as a whole, these land cover types had a disproportionate contribution to the 

total emissions.  Evasion from agricultural lands, grasslands and urban lands is estimated to 

have contributed 55%, 0.4% and 1.5% to the total, respectively.  Forest land contributed a 

relative large fraction of total Hgo evasion (25.1%) due to its large area of the GLB.  Inland 

waters and the Great Lakes also contributed to the total Hgo evasion of the GLB (2.4 and 15.4%, 

respectively).  It appears that areal evasion rates from inland waters (7.8 µg/m2-yr) are 



somewhat greater than the Great Lakes (4.9 µg/m2-yr).  The lower value for the Great Lakes is 

in part due to lower areal rates for Lake Superior (1.9 µg/m2-yr).  

Total direct anthropogenic Hg emissions for 2005 for the GLB were 10 200 kg/yr, which 

corresponds to an areal flux of 13.4 μg/m2-yr across the entire GLB (Table 3).  Of these 

emissions about 60% are as Hgo and 40% occurred as oxidized Hg.  The Hg emissions in the GLB 

represent 8.8% of the total anthropogenic Hg emissions for the U.S. and Canada (115 300 

kg/yr).  The Great Lakes are 32% of the area of the GLB.  As a result of this relatively large 

fraction of open water area, the total and areal fluxes of anthropogenic Hg emissions give the 

appearance of being relatively low.  Note however, there are numerous Hg emission sources in 

close proximity to the GLB.  As we consider 50, 100 and 200 km buffers adjacent to the GLB, 

there is an exponential increase in total Hg emissions to a value of 30 200 kg /yr for the GLB 

plus a 200 km buffer or 26.2% of the Canadian and U.S. total Hg emissions (Table 3). Increasing 

the buffer area from 50 to 100 and to 200 km around the GLB direct, increases the areal fluxes 

of total anthropogenic Hg emissions over these areas from 14.2 to 15.2 to 17.1 μg/m2-yr, 

respectively (Table 3), demonstrating the importance of emission sources adjacent to the Great 

Lakes watershed.  Note that these proximate emission sources are highly relevant to Hg 

dynamics for the GLB because they are within the spatial scale for deposition of oxidized 

species of Hg emissions (reactive gaseous Hg and particulate Hg; Driscoll et al. 2007a).  Within 

the GLB plus the 200 km buffer region, emissions of oxidized Hg are 12 900 kg/yr, or 43% of 

total Hg emissions. This pattern suggests that regional and local scale Hg emissions are 

undoubtedly important to the ecosystem effects of Hg deposition for the GLB (Drevnick et al. 

this issue). For the GLB, direct anthropogenic Hg emissions are somewhat greater but 



comparable in magnitude to our estimate of Hg re-emissions indicating that re-emission (i.e., 

evasion) is an important pathway of Hg to the atmosphere.   

We find that rates of Hgo evasion are less than total atmospheric Hg deposition, within the 

uncertainty of this analysis.  From the MDN, we estimate 6100 kg wet Hg deposition for the 

GLB, or an areal rate of 8.1 μg/m2-yr.  This input is somewhat less than our estimate for Hgo 

evasive losses. Estimated dry Hg deposition from EPA CMAQ simulations for 2001 is 7450 kg/yr 

or 9.8 μg/m2-yr, somewhat greater than the estimate of wet Hg deposition for the GLB.  Our 

estimate of litter fall Hg deposition for forest lands of the Great Lakes watershed is 2370 kg/yr, 

for an areal rate of 8.3 μg/m2-yr.  As forest cover is 36%, this flux is prorated as 3.1 μg/m2-yr 

over the entire GLB.  The sum of our estimates of these three deposition fluxes is 15 950 kg/yr 

or 21.0 μg/m2-yr, more than double our estimate of evasion Hg losses.  Quémerais et al. (1999) 

observed fluvial Hg losses for Lake Ontario of 112 kg/yr, suggesting a total fluvial Hg loss of 

approximately 0.15 μg/m2-yr from the entire GLB.  This analysis suggests that the GLB is 

currently a net sink for atmospheric inputs of Hg. 

Conclusions 

In summary, we have synthesized rates of Hgo evasion from a comprehensive literature review 

to develop an estimate of annual Hgo evasion from the GLB.  Our literature review identifies the 

need for standardized analytical and reporting methods for Hg evasion measurements.  In 

addition, specific land cover areas would benefit from increased research efforts, particularly 

agricultural lands, where few studies have been conducted, and Lakes Erie and Huron, which 

appear to be unstudied relative to Hgo evasion.  Some difficulty arises in synthesizing Hgo 



evasion rates from the literature due to seasonal and diel changes in evasion rates, coupled 

with methodological variations between studies.  There is a need for additional measurements 

of Hgo evasion in the winter and from snowpack.  Within the GLB, areal evasion rates for urban, 

agricultural, and grasslands are greater than other landcover types, and the estimate for 

evasion in the region as a whole.  Agricultural, forest, and the Great Lakes together contribute 

approximately 95% of the region’s total Hg evasion, due in large part to the high areal coverage 

of the Great Lakes and forest, and both coverage and evasion rates of agricultural land.  In 

conjunction with mass balance elements of the GLB, our analysis indicates that the GLB is a net 

sink for atmospheric inputs of Hg.   
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Tables 

Table 1.  Summary of terrestrial Hg fluxes measured in or near the Great Lakes Basin.  Note: some studies only measured Hg fluxes 

during the daytime—to estimate diel fluxes from daytime measurements, a Gaussian distribution was assumed following the 

methods of Engle et al. (2001) and Nacht and Gustin (2004).  All estimated diel fluxes are presented in italics in the Table and the 

measured hourly fluxes given in parenthesis (ng/m2-hr).  For land covers where multiple DFC measurements exist, a potential range 

of values is given in parenthesis that reflects diel and seasonally adjusted flux estimates.  

Land cover Site Description Season Method Daily flux     (Hourly flux) 

(ng/m
2
-d)    (ng/m

2
-hr) 

 

Flux used for 

scaling 

(ng/m
2
-d) 

Conc. 

(ng/g) 

Reference 

Forest 

    

 

 

Deciduous 

forest--

Adirondacks, NY, 

USA 

Spring DFC 15
 
                          (0.64

a
)

  
    

 

 

 

 

19 

(Potential range: 

81.9±24.7 Choi and Holsen, 

2009a, b 
Summer 32                           (1.34

a
) 

Fall 19                           (0.77
a
) 

Winter 22                           (0.09
a
)

 
  

Annual Ave 19
 
                          (0.80

b
) 

Deciduous 

forest--Oak 

Ridge, TN, USA 

Spring/ 

Summer 

DFC 10 to 33*
 
       (2.0 to 7.0

c
)

 
469 ± 75 Carpi and Lindberg,  

1998 



Forest-- Nova 

Scotia, Canada 

Summer DFC 8.5 

(1.1
c
) 

6.2 to 33) 150 - 330 Schroeder et al. 2005 

Deciduous 

forest—Upper 

Peninsula 

Michigan, USA  

Summer DFC 22 

(1.4 ± 1.4
c
) 

69 - 98 Zhang et al. 2001 

Deciduous 

forest—Standing 

Stone State 

Forest, TN, USA  

 

Spring DFC 0                         (0.0±0.3
c
)  Kuiken et al. 2008 

Summer 3.1                      (0.4±0.3
c
)  

Fall 7.0                      (0.9±0.6
c
)  

Winter 4.7                     (0.6 ±0.5
c
)  

Annual Ave 6.2 

(0.4 ±  0.5) 

 

Agriculture Disturbed soil—

Tennessee, USA 

Spring/ 

Summer 

DFC 82 to 230 

(12 ± 5.4 to 45 ± 5.2
c
) 

58 

(Potential range: 82 

to 230) 

61± 19 to 

111±14 

Carpi and Lindberg, 

1998 

Cropland-

Maryhill, Ontario, 

Canada 

Fall MM 2.4                   (0.1 ± 0.2
d
) 400

e
 Cobbett and Van 

Heyst, 2007 

Cropland-

Minnesota, USA 

Spring MM 230                       (9.67
d
) 24.8 ± 4.2 Cobos et al. 2002 

Snow covered 

rural soil—Elora, 

Ontario, Canada 

Winter DFC 1.0                  (0.09±0.03
c
) NA Schroeder et al. 2005 



Grassland Pasture, Ontario 

and Quebec, 

Canada 

Summer DFC 43*                           (3.0
d
) 40 

(Potential range: 36 

to 43) 

6 Schroeder et al. 2005 

MM 26                             (1.1
d
) 47 

MM 70                             (2.9
d
) 100 

Pasture—Upper 

Peninsula 

Michigan, USA 

Summer DFC 36*                   (7.6 ±1.7
c
) 16 Zhang et al. 2001 

Wisconsin Not 

specified 

DFC 7.2                   (0.3± 0.07
d
) <10 to 28 Ericksen et al. 2006 

 

Urban 

 

 

Pavement—

Toronto, Ontario, 

Canada 

Summer DFC 4.3*                       (1.0
f
) Pavement: 3.6 

(Potential range: -

0.24 to 4.3) 

 

 

Soil: 55.2 

(Potential Range: 

29 to 62) 

16 Eckley and Branfireun, 

2008 

Soil—Toronto, 

Ontario, Canada 

Summer DFC 29*                          (6.2
f
) 61 

Pavement—

Tuscaloosa, 

Alabama, USA 

Spring DFC 139                          (5.8
a
) Not 

measured 

Gabriel et al. 2006 

Summer 264                          (11
a
) 

Fall  26                            (1.1
a
) 

Winter 34                            (1.4
a
) 

Annual Ave 62                            (2.6) 

Soil—Tuscaloosa, 

Alabama, USA 

Spring DFC -0.48                     (-0.02
a
) 25 to 47 

Summer 0.48                         (0.02
a
) 

Fall  -3.6                         (-0.15
a
) 



Winter 2.2                          (0.09
a
) 

Annual Ave -.24                         (-0.01) 

aMedian value from diel measurements  

bAnnual estimate adjusted (+20%) to account for limited UVB permeability of polycarbonate chamber 

cHourly average measurements during daytime/sunlight conditions.  

dDiel average 

eConcentration after biosolids application 

fMedian value from daytime measurements conducted at several locations 

*Adjusting this value to account for seasonal variability based on the findings of Choi and Holsen (2009a)  



Table 2.  Area of land cover types, areal Hg evasion rate for land cover type, and total and 

percentage of Hg evasion by land cover type for the Great Lakes Basin. 

Land cover Area Hg evasion rate 

 

Total Hg 

evasion 

(kg/yr) 

Percentage 

of total Hg 

evasion (km2) (% of total) (μg/m2-yr) (ng/m2-hr) 

Urban 9420 1 12.6 1.4 120 1.5 

Agricultural 202 600 27 21 2.4 4260 55.0 

Grassland 198 0.03 17.5 2.0 35 0.4 

Forest 277 700 37 7.0 0.8 1900 25.1 

Inland 

waters 

24 200 3 7.8 0.9 190 2.4 

Great Lakes 244 160 32 4.9 0.6 1190 15.4 

Total 760 000 100 10.2 1.2 7700 100 

 

  



Table 3.  Comparison of rates of Hg evasion estimated for the Great Lakes Basin with direct 

total Hg emissions (including Hgo and oxidized (ox) Hg), wet, dry and litter Hg deposition. Note 

that total Hg deposition is the sum of wet, dry and litter deposition.  Because many emission 

sources are proximate to the Great Lakes Basin also included are direct total Hg emissions for 

the GLB plus for the lands within 50, 100 and 200 km buffer areas.  Note that areal fluxes are 

prorated across the entire GLB (plus any buffer area), including the Great Lakes. 

Flux Total Hg flux (kg/yr) Areal Hg flux (μg/m2-yr) 

Evasion 7700 10.2 

Direct anthropogenic 

emissions 

10 185 (ox 4100, Hgo 6100) 13.4 

Direct emissions with 50 km 

buffer 

14 608 (ox 5200, Hgo 9500) 14.2 

Direct emissions with 100 km 

buffer 

19 200 (ox 7500, Hgo 11 700) 15.2 

Direct emissions with 200 km 

buffer 

30 200 (ox 12 900,  

Hgo 17 300) 

17.1 

Wet deposition 6100 8.1 

Dry deposition 7400 9.8 

Litter deposition 2400 3.1 

Total deposition 15 900 21.0 

 



Figure 

Figure 1.  Map of the Great Lakes Basin showing rates of elemental mercury evasion. 
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