Syracuse University
SURFACE

Almost Split Morphisms, Preprojective Algebras and Multiplication Maps of Maximal Rank

Steven P. Diaz

Syracuse University
Mark Kleiner
Syracuse University

Follow this and additional works at: https://surface.syr.edu/mat
Part of the Mathematics Commons

Recommended Citation

Diaz, Steven P. and Kleiner, Mark, "Almost Split Morphisms, Preprojective Algebras and Multiplication Maps of Maximal Rank" (2005). Mathematics - Faculty Scholarship. 75.
https://surface.syr.edu/mat/75

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

ALMOST SPLIT MORPHISMS, PREPROJECTIVE ALGEBRAS AND MULTIPLICATION MAPS OF MAXIMAL RANK

STEVEN P. DIAZ AND MARK KLEINER

Abstract

With a grading previously introduced by the second-named author, the multiplication maps in the preprojective algebra satisfy a maximal rank property that is similar to the maximal rank property proven by Hochster and Laksov for the multiplication maps in the commutative polynomial ring. The result follows from a more general theorem about the maximal rank property of a minimal almost split morphism, which also yields a quadratic inequality for the dimensions of indecomposable modules involved.

1. Introduction

Let k be a field and let R be the polynomial ring in n commuting variables over k. Let R_{i} be its $i^{\text {th }}$ graded piece consisting of homogeneous polynomials of degree i. A result of Hochster and Laksov (4) says that if $i \geq 2$ and $V \subset R_{i}$ is a general subspace then the natural multiplication map from $V \otimes R_{1}$ to R_{i+1} has maximal rank, that is is either injective or surjective, and it is not known what happens if one replaces R_{1} by R_{d} for $d>1$. One may wonder which other graded rings have a similar property.

In (5) a new grading on the preprojective algebra was introduced. In this paper we show that with this grading, the preprojective algebra of a finite quiver without oriented cycles satisfies a property analogous to the Hochster-Laksov property for polynomial rings, and much of our proof is quite similar to their proof. At one point the proof for preprojective algebras becomes easier than the proof for polynomial rings: some of the more complicated dimension counts needed for polynomial rings are not needed for preprojective algebras. This allows us to obtain a result for preprojective algebras that is stronger than the analogous result for polynomial rings.

The key to making things work is the fact that the multiplication-by-arrow maps into a fixed homogeneous component of the infinite dimensional (in general) preprojective algebra give rise to a minimal right almost split morphism of modules over the finite dimensional path algebra of the quiver [5], which implies the maximal rank property. In fact we show that a minimal right almost split morphism $g: B \rightarrow C$ of finite dimensional modules over a k-algebra satisfies a maximal rank property analogous to the Hochster-Laksov property for polynomial rings, and if C is not projective and B_{1}, \ldots, B_{l} are the nonisomorphic indecomposable summands of B then $\operatorname{dim}_{k} C<\left(\operatorname{dim}_{k} B_{1}\right)^{2}+\cdots+\left(\operatorname{dim}_{k} B_{l}\right)^{2}$. We do not know what happens if multiplication by arrows is replaced by multiplication by paths of fixed length greater than one.

There is a natural dual to the Hochster-Laksov maximal rank property, and the two properties always occur simultaneously. We give two explanations of this fact, one general homological and the other based on the vector space duality $\mathrm{D}=\operatorname{Hom}_{k}(, k)$. As a consequence, the multiplication-by-arrow maps out of a fixed homogeneous component of the preprojective algebra satisfy the dual Hochster-Laksov maximal rank property.

[^0]The organization of the paper is as follows. In Section 2 we prove a theorem that gives a general situation in which one can obtain a maximal rank property analogous to the Hochster-Laksov property for polynomial rings. This general situation does not include the polynomial ring as a special case. In Section 3 we review some facts about almost split morphisms and preprojective algebras and then show that almost split morhisms in general and the preprojective algebra in particular fit into the general set up of Section 2. In Section 4 we use the material in Sections 2 and 3 to obtain results for the preprojective algebra that look very analogous to the HochsterLaksov result for polynomial rings. Then we conclude with some examples to illustrate the results.

In this paper for simplicity we work over a fixed algebraically closed field k and dim always means dim_{k}. For unexplained terminology we refer the reader to [1].

2. The General Theorem

Let $V_{1}, V_{2}, \ldots, V_{l}, W_{1}, W_{2}, \ldots, W_{l}, U$ be finite dimensional vector spaces. Let T be a linear transformation from the direct sum of the tensor products $V_{1} \otimes W_{1}, V_{2} \otimes W_{2}, \ldots, V_{l} \otimes W_{l}$ to U.

$$
\begin{equation*}
T: \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow U \tag{2.1}
\end{equation*}
$$

Definition 2.1. We say that T satisfies the right omnipresent maximal rank property if and only if for every choice of subspaces $W_{i}^{\prime} \subset W_{i}$ for $i=1, \ldots, l$ the restriction of T to the direct sum of the tensor products $V_{1} \otimes W_{1}^{\prime}, V_{2} \otimes W_{2}^{\prime}, \ldots, V_{l} \otimes W_{l}^{\prime}$ has maximal rank, that is, is either injective or surjective.

Notice that if T satisfies the right omnipresent maximal rank property then so does its restriction to $\oplus_{i=1}^{l} V_{i} \otimes W_{i}^{\prime}$, and T must itself have maximal rank. Every injective T satisfies the right omnipresent maximal rank property. The interesting case is when T is surjective but not injective.

Denote by End $\left(V_{i}\right)$ the k-algebra of linear operators on V_{i}. The tensor product $V_{i} \otimes W_{i}$ is a left End $\left(V_{i}\right)$-module by means of $\varphi_{i} \cdot\left(v_{i} \otimes w_{i}\right)=\varphi_{i}\left(v_{i}\right) \otimes w_{i}, \varphi_{i} \in \operatorname{End}\left(V_{i}\right), v_{i} \in V_{i}, w_{i} \in W_{i}$. Applying this to each term of the direct sum one obtains a bilinear evaluation map

$$
e: \prod_{i=1}^{l} \operatorname{End}\left(V_{i}\right) \times \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)
$$

Denote $\prod_{i=1}^{l}$ End $\left(V_{i}\right)$ by B. The map e defines a structure of a left B-module on $\bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)$. Notice that B has dimension $\Sigma\left(\operatorname{dim} V_{i}\right)^{2}$. Let P_{i} be the projective space of one dimensional subspaces of $V_{i} \otimes W_{i}$ and let P be the projective space of one dimensional subspaces of $\bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)$. Notice that P has dimension $\Sigma\left(\operatorname{dim} V_{i} \operatorname{dim} W_{i}\right)-1$. We shall study the product $B \times P$ together with its two projection maps π_{1} onto B and π_{2} onto P.

Since the evaluation map e is bilinear, we may conclude that the inverse image under e of $\operatorname{Ker} T$ is a Zariski closed subset of the domain of e. Furthermore using bilinearity again we see that $e^{-1}(\operatorname{Ker} T)$ is the affine cone over a Zariski closed subset of $B \times P$. We denote this subset by Y. For each i from 1 to l let X_{i} be an irreducible quasiprojective subset of P_{i} and let $C\left(X_{i}\right)$ be its corresponding affine cone in $V_{i} \otimes W_{i}$. Let X be the irreducible quasiprojective subset of P corresponding to $C\left(X_{1}\right) \times C\left(X_{2}\right) \times \ldots \times C\left(X_{l}\right)$. Notice that $\operatorname{dim} X=\sum_{i=1}^{l} \operatorname{dim} C\left(X_{i}\right)-1$.

Theorem 2.1. Assume that T satisfies the right omnipresent maximal rank property and that $\sum_{i=1}^{l} \operatorname{dim} C\left(X_{i}\right) \leq \operatorname{dim} U$. Then $\pi_{1}\left(\pi_{2}^{-1}(X) \cap Y\right)$ is contained in a proper Zariski closed subset of B.

If T is injective then Y is empty and the result trivially follows. Thus we may assume that T is surjective. To proceed with the proof we shall divide Y into two pieces based on the following
easy statement, and then deal with each piece separately. Denote by D the contravariant functor $\operatorname{Hom}_{k}(, k)$.

Lemma 2.2. Let V and W be k-vector spaces and let $\alpha: V \otimes W \rightarrow \operatorname{Hom}_{k}(\mathrm{D} V, W)$ be the k-linear map given by $\alpha(v \otimes w)(f)=f(v) w, v \in V, w \in W, f \in \mathrm{D} V$ (α is an isomorphism if $\operatorname{dim} V<\infty$). For $x \in V \otimes W$ denote by $\operatorname{End}(V) x$ the cyclic $\operatorname{End}(V)$-submodule of $V \otimes W$ generated by x. Then $\operatorname{End}(V) x=V \otimes \operatorname{Im} \alpha(x)$.

Proof. We have $x=\sum_{i=1}^{s} v_{i} \otimes w_{i}$. If s is the smallest possible, the sets of vectors $\left\{v_{1}, \ldots, v_{s}\right\}$ and $\left\{w_{1}, \ldots, w_{s}\right\}$ are linearly independent [2] Theorem (1.2a), p. 142] so $\operatorname{Im} \alpha(x)$ is the span of $\left\{w_{1}, \ldots, w_{s}\right\}$ and the rest is clear.

Definition 2.2. Let $\alpha_{i}: V_{i} \otimes W_{i} \rightarrow \operatorname{Hom}_{k}\left(\mathrm{D} V_{i}, W_{i}\right)$ be the k-linear map described in Lemma 2.2, $i=1, \ldots, l$. If $x_{i} \in V_{i} \otimes W_{i}$ and $0 \neq c \in k$, then $\operatorname{Im} \alpha_{i}\left(x_{i}\right)=\operatorname{Im} \alpha_{i}\left(c x_{i}\right)$, so if $p \in P$ is represented by $\left[x_{1}, \ldots, x_{l}\right], x_{i} \in V_{i} \otimes W_{i}$, then for each i the subspace $\operatorname{Im} \alpha_{i}\left(x_{i}\right)$ of W_{i} is independent of the choice of representative for p. We set $Y_{1}=\left\{(b, p) \in Y: \sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)\left(\operatorname{rank} \alpha_{i}\left(x_{i}\right)\right)<\operatorname{dim} U\right\}$ and $Y_{2}=Y-Y_{1}$.

Lemma 2.3. $Y=Y_{1} \cup Y_{2}$ where Y_{1} is a closed subset of Y, and Y_{2} is an open subset of Y.
Proof. That $Y=Y_{1} \cup Y_{2}$ is obvious. For the other two statements consider the projection onto the second factor $\pi_{2}: B \times P \rightarrow P$ and note that $Y_{1}\left(Y_{2}\right)$ is the intersection of Y with the inverse image of the closed (open) subset of P consisting of points corresponding to tuples of tensors satisfying $\sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)\left(\operatorname{rank} \alpha_{i}\left(x_{i}\right)\right)<(\geq) \operatorname{dim} U$.

Lemma 2.4. Assume that T satisfies the right omnipresent maximal rank property. Suppose that $(b, p) \in Y_{1}$ and $b=\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{l}\right]$. Then for some i, φ_{i} is not an isomorphism.

Proof. If $x=\left[x_{1}, \ldots, x_{l}\right]$ represents p, then $T(b x)=T\left(\left[\varphi_{1} \cdot x_{1}, \ldots, \varphi_{l} \cdot x_{l}\right]\right)=0$ because $(b, p) \in Y_{1}$. By Lemma 2.2 $B x=\bigoplus_{i=1}^{l} \operatorname{End}\left(V_{i}\right) x_{i}=\bigoplus_{i=1}^{l} V_{i} \otimes \operatorname{Im} \alpha_{i}\left(x_{i}\right)$, so the restriction of T to $B x$ is injective because $(b, p) \in Y_{1}$ and T satisfies the right omnipresent maximal rank property. Since $T(b x)=0$ then $b x=\left[\varphi_{1} \cdot x_{1}, \ldots, \varphi_{l} \cdot x_{l}\right]=0$ whence $\varphi_{i} \cdot x_{i}=0$ for all i. Because p is a point in a projective space, at least one x_{i} is not equal to 0 . For this i, φ_{i} is not an isomorphism.

Lemma 2.5. Assume that T satisfies the right omnipresent maximal rank property and that $\sum_{i=1}^{l} \operatorname{dim} C\left(X_{i}\right) \leq \operatorname{dim} U$. Suppose $\pi_{2}^{-1}(X) \cap Y_{2}$ is nonempty. Then $\pi_{2}^{-1}(X) \cap Y_{2}$ has Krull dimension at most $\Sigma\left(\operatorname{dim} V_{i}\right)^{2}-1$, one less than the dimension of B.

Proof. As with Lemma 2.3 we consider the projection map onto the second factor $\pi_{2}: B \times P \rightarrow P$. Let $X_{2} \subset X$ be the set of points p such that $\sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)\left(\operatorname{rank} \alpha_{i}\left(x_{i}\right)\right) \geq \operatorname{dim} U$ for any $x=$ $\left[x_{1}, \ldots, x_{l}\right]$ representing p. Since X_{2} is open in X and by assumption nonempty, $\operatorname{dim} X_{2}=\operatorname{dim} X$. Pick any point p in X_{2} and, identifying B with $B \times\{p\}$, consider the composite $T^{\prime}: B \rightarrow U$ of T and the k-linear map $B \rightarrow \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)$ sending b to $b x$. Clearly $\operatorname{Ker} T^{\prime}=\pi_{2}^{-1}(p) \cap Y_{2}$ and $\operatorname{Im} T^{\prime}=T(B x)=T\left(\bigoplus_{i=1}^{l}\left(V_{i} \otimes \operatorname{Im} \alpha_{i}\left(x_{i}\right)\right)\right.$) (use Lemma 2.2). From the assumptions on the ranks of the $\alpha_{i}\left(x_{i}\right)$ and that T satisfies the right omnipresent maximal rank property, we conclude that T^{\prime} is surjective. We then conclude that $\operatorname{dim}\left(\pi_{2}^{-1}(p) \cap Y_{2}\right)=\operatorname{dim} B-\operatorname{dim} U$.

Having computed the dimensions of the fibers of $\pi_{2}^{-1}(X) \cap Y_{2}$ over X_{2} we then see that the dimension of $\pi_{2}^{-1}(X) \cap Y_{2}$ equals $\operatorname{dim} X+\operatorname{dim} B-\operatorname{dim} U=\sum_{i=1}^{l} \operatorname{dim} C\left(X_{i}\right)-1+\operatorname{dim} B-\operatorname{dim} U \leq$ $\operatorname{dim} B-1=\Sigma\left(\operatorname{dim} V_{i}\right)^{2}-1$.

The proof of the theorem is now easy.

Proof of theorem. By Lemma 2.4 the image of $\pi_{2}^{-1}(X) \cap Y_{1}$ in B will be contained in the proper closed subset of B consisting of points where at least one φ_{i} is not an isomorphism. By Lemma 2.5 $\pi_{2}^{-1}(X) \cap Y_{2}$ has dimension less than that of B and so its closure also does. Since π_{1} is a projective morphism, the image in B of the closure of $\pi_{2}^{-1}(X) \cap Y_{2}$ will be closed and have dimension less than that of B. Since by Lemma 2.3 $Y=Y_{1} \cup Y_{2}$ we are done.

Corollary 2.6. Assume that T satisfies the right omnipresent maximal rank property. Make a choice of subspaces $Z_{i} \subset V_{i} \otimes W_{i}, i=1, \ldots, l$. Then there exists a dense Zariski open subset $A \subset B$ such that if $\left[\varphi_{1}, \ldots, \varphi_{l}\right] \in A$ then the restriction of T to the direct sum of the $\varphi_{i}\left(Z_{i}\right)$ has maximal rank.

Proof. We first do the case where $\sum_{i=1}^{l} \operatorname{dim}\left(Z_{i}\right) \leq \operatorname{dim}(U)$. In Theorem 2.1 set $Z_{i}=C\left(X_{i}\right)$. Choose A to be the complement of any proper Zariski closed subset of B containing $\pi_{1}\left(\pi_{2}^{-1}(X) \cap Y\right)$. For $\left[\varphi_{1}, \ldots, \varphi_{l}\right] \in A, \bigoplus_{i=1}^{l} \varphi_{i}\left(Z_{i}\right)$ intersects the kernel of T only in 0 . Thus the restriction of T to $\bigoplus_{i=1}^{l} \varphi_{i}\left(Z_{i}\right)$ is injective. When $\sum_{i=1}^{l} \operatorname{dim}\left(Z_{i}\right)=\operatorname{dim}(U)$ it is also surjective.

For the case where $\sum_{i=1}^{l} \operatorname{dim}\left(Z_{i}\right)>\operatorname{dim}(U)$ choose subspaces $Z_{i}^{\prime} \subset Z_{i}$ such that $\sum_{i=1}^{l} \operatorname{dim}\left(Z_{i}^{\prime}\right)=$ $\operatorname{dim}(U)$. By the previous case we find A such that if $\left[\varphi_{1}, \ldots, \varphi_{l}\right] \in A$ then the restriction of T to $\bigoplus_{i=1}^{l} \varphi_{i}\left(Z_{i}^{\prime}\right)$ is surjective, so the restriction of T to $\bigoplus_{i=1}^{l} \varphi_{i}\left(Z_{i}\right)$ is also surjective.

Corollary 2.7. Assume that T is surjective and satisfies the right omnipresent maximal rank property. Fix integers $a_{i}, 0 \leq a_{i} \leq\left(\operatorname{dim} V_{i}\right)\left(\operatorname{dim} W_{i}\right), i=1, \ldots, l$, such that $\sum a_{i}=\operatorname{dim} U$. For each i choose a_{i} linearly independent elements $m(i, j), 1 \leq j \leq a_{i}$, of $V_{i} \otimes W_{i}$. Then there exists a dense Zariski open subset $A \subset B$ such that if $\left[\varphi_{1}, \ldots, \varphi_{l}\right] \in A$ then the elements $T\left(\varphi_{i}(m(i, j))\right)$ form a basis for U.

Proof. In Corollary [2.6 set Z_{i} equal to the span of the $m(i, j)$'s.
Definition 2.3. We say that T satisfies the left general maximal rank property if and only if for a general choice of subspaces $V_{i}^{\prime} \subset V_{i}$ for $i=1, \ldots, l$ the restriction of T to $\oplus_{i=1}^{l}\left(V_{i}^{\prime} \otimes W_{i}\right)$ has maximal rank, that is, is either injective or surjective.

By a general choice of subspaces we mean the following. Once the dimensions of the V_{i}^{\prime} 's to be chosen are fixed, the set of all possible choices of V_{i}^{\prime} 's can be identified with a product of Grassmanians. We mean that there exists a Zariski open dense subset of that product such that if the choice of V_{i}^{\prime} 's comes from that set, then the restriction of T has maximal rank.

Similar to Definitions 2.1 and 2.3 one can define what it means for the map T of (2.1) to satisfy the left omnipresent or right general maximal rank property. With these definitions, we leave it to the reader to interchange appropriately the words "left" and "right" in the above assertions and obtain true statements. Of course, this comment also applies to the remainder of the section.

Corollary 2.8. If T satisfies the right omnipresent maximal rank property then T satisfies the left general maximal rank property.

Proof. Make a choice of subspaces $V_{i}^{\prime} \subset V_{i}$ for $i=1, \ldots l$. In Corollary [2.6 set $Z_{i}=V_{i}^{\prime} \otimes W_{i}$. Notice that $\varphi_{i}\left(V_{i}^{\prime} \otimes W_{i}\right)=\varphi_{i}\left(V_{i}^{\prime}\right) \otimes W_{i}$. A general tuple of endomorphisms $\left[\varphi_{1}, \ldots, \varphi_{l}\right]$ applied to a specific tuple of subspaces $\left[V_{1}^{\prime}, \ldots, V_{l}^{\prime}\right]$ gives a general tuple of subspaces.

In Section 4 we will give examples to show that the right omnipresent maximal rank property does not imply the left omnipresent maximal rank property and the right general maximal rank property does not imply the left general maximal rank property.

We now indicate how to dualize the above results of this section. Let $V_{1}, V_{2}, \ldots, V_{l}, W_{1}, W_{2}, \ldots, W_{l}$, Q be finite dimensional vector spaces and let

$$
\begin{equation*}
S: Q \rightarrow \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \tag{2.2}
\end{equation*}
$$

be a linear transformation.
Definition 2.4. We say that S satisfies the right omnipresent maximal rank property if and only if for every choice of subspaces $W_{i}^{\prime} \subset W_{i}$ for $i=1, \ldots, l$ the composition of S with the linear transformation

$$
\oplus_{i=1}^{l}\left(1_{V_{i}} \otimes \tau_{i}\right): \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow \oplus_{i=1}^{l}\left(V_{i} \otimes\left(W_{i} / W_{i}^{\prime}\right)\right)
$$

has maximal rank, that is, is either injective or surjective, where $\tau_{i}: W_{i} \rightarrow W_{i} / W_{i}^{\prime}$ is the natural projection. And we say that S satisfies the left general maximal rank property if and only if for a general choice of subspaces $V_{i}^{\prime} \subset V_{i}$ for $i=1, \ldots, l$ the composition of S with the linear transformation

$$
\oplus_{i=1}^{l}\left(\sigma_{i} \otimes 1_{W_{i}}\right): \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow \oplus_{i=1}^{l}\left(\left(V_{i} / V_{i}^{\prime}\right) \otimes W_{i}\right)
$$

has maximal rank, where $\sigma_{i}: V_{i} \rightarrow V_{i} / V_{i}^{\prime}$ is the natural projection.
The following lemma shows that the question of whether a map of the type (2.1) satisfies the omnipresent or general maximal rank property is equivalent to the same question for a map of the type (2.2).

Lemma 2.9. Let

be an exact diagram in an abelian category. Then gi is monic (epi) if and only if $q f$ is monic (epi).

Proof. By the 3×3 lemma the following commutative diagram is exact.

Hence $g i$ is monic if and only if Ker $g i=0$, if and only if p is iso, if and only if $q f$ is monic. The rest of the proof is similar.

Corollary 2.10. (a) If a linear transformation $T: \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow U$ is surjective, it satisfies the left omnipresent (general) maximal rank property if and only if so does the inclusion $\operatorname{Ker} T \rightarrow$ $\bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)$.
(b) If a linear transformation $S: Q \rightarrow \bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)$ is injective, then it satisfies the left omnipresent (general) maximal rank property if and only if so does the projection $\bigoplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow$ Coker S.

Proof. The statement follows immediately from Lemma 2.9
We note that if the map T of Corollary 2.10(a) is injective, it satisfies both the right omnipresent and left general maximal rank property, and if T is neither surjective nor injective then it satisfies neither of the properties. A similar remark applies to the map S of Corollary 2.10(b).

A different way to relate the maps of the types (2.1) and (2.2) is through the vector space duality D.

Proposition 2.11. A linear transformation $T: \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow U$ satisfies the left omnipresent (general) maximal rank property if and only if so does its dual $\mathrm{D} T: \mathrm{D} U \rightarrow \oplus_{i=1}^{l}\left(\mathrm{D} V_{i} \otimes \mathrm{D} W_{i}\right)$.

Proof. For $i=1, \ldots, l$ let X_{i} be a subspace of V_{i} and $f_{i}: X_{i} \rightarrow V_{i}$ the inclusion map, then $\mathrm{D} f_{i}: \mathrm{D} V_{i} \rightarrow \mathrm{D} X_{i}$ is an epimorphism with $\operatorname{Ker} \mathrm{D} f_{i}=X_{i}^{\perp}=\left\{\phi \in \mathrm{D} V_{i}: \phi\left(X_{i}\right)=0\right\}$ so that $\mathrm{D} X_{i} \cong$ $\mathrm{D} V_{i} / X_{i}^{\perp}$. Therefore $T \circ\left(\oplus_{i=1}^{l}\left(f_{i} \otimes 1_{W_{i}}\right)\right)$ is monic (epi) if and only if $\left(\oplus_{i=1}^{l}\left(\mathrm{D} f_{i} \otimes 1_{\mathrm{D} W_{i}}\right)\right) \circ \mathrm{D} T$ is epi (monic), if and only if $\left(\oplus_{i=1}^{l}\left(\psi_{i} \otimes 1_{\mathrm{D} W_{i}}\right)\right) \circ \mathrm{D} T$ is epi (monic), where $\psi_{i}: \mathrm{D} V_{i} \rightarrow \mathrm{D} V_{i} / X_{i}^{\perp}$ is the natural projection. Note that X_{i} runs through the set of all subspaces of V_{i} if and only if X_{i}^{\perp} runs through the set of all subspaces of $\mathrm{D} V_{i}$. Hence T satisfies the left omnipresent maximal rank property if and only if so does $\mathrm{D} T$. For a fixed sequence of nonnegative integers $d_{i} \leq n_{i}=\operatorname{dim} V_{i}$, the l-tuple $\left(X_{1}, \ldots, X_{i}, \ldots, X_{l}\right)$ runs through a dense open set of the product of Grassmanians $\prod_{i=1}^{l} G\left(d_{i}, V_{i}\right)$ if and only if $\left(X_{1}^{\perp}, \ldots, X_{i}^{\perp}, \ldots, X_{l}^{\perp}\right)$ runs through the corresponding dense open set of the product of Grassmanians $\prod_{i=1}^{l} G\left(n_{i}-d_{i}, \mathrm{D} V_{i}\right)$ under the isomorphism that is the product of the natural isomorphisms $\mathrm{D}: G\left(d_{i}, V_{i}\right) \rightarrow G\left(n_{i}-d_{i}, \mathrm{D} V_{i}\right)$, see [3] p. 200]. Therefore T satisfies the left general maximal rank property if and only if so does $\mathrm{D} T$.

We end this section with a lemma showing that the right omnipresent maximal rank property puts a restriction on the relative sizes of the vector spaces involved.
Lemma 2.12. (a) If $T: \oplus_{i=1}^{l} V_{i} \otimes W_{i} \rightarrow U$ satisfies the right omnipresent maximal rank property and T is surjective but not injective, then $\operatorname{dim} U<\sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)^{2}$.
(b) If $S: Q \rightarrow \oplus_{i=1}^{l} V_{i} \otimes W_{i}$ satisfies the right omnipresent maximal rank property and S is injective but not surjective, then $\operatorname{dim} Q<\sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)^{2}$.

Proof. (a) Suppose to the contrary that $\operatorname{dim} U \geq \sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)^{2}$. Let $\left\{v_{i 1}, \ldots, v_{i k_{i}}\right\}$ be a basis for V_{i}. Express some nonzero element of $\operatorname{Ker} T$ in the form

$$
\left(\sum_{j=1}^{k_{1}} v_{1 j} \otimes w_{1 j}, \ldots, \sum_{j=1}^{k_{i}} v_{i j} \otimes w_{i j} \ldots, \sum_{j=1}^{k_{l}} v_{l j} \otimes w_{l j}\right)
$$

and let W_{i}^{\prime} equal the span of $\left\{w_{i 1}, \ldots, w_{i k_{i}}\right\}$. Then $\operatorname{dim} \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}^{\prime}\right) \leq \operatorname{dim} U$ but the restriction of T to $\oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}^{\prime}\right)$ is neither surjective nor injective because its kernel is not zero.
(b) Follows from (a) and Proposition 2.11

3. Almost Split Morphisms and Preprojective Algebras

We apply the results of Section 2 to representations of algebras which provide a large supply of linear transformations of the form $\oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow U$ or $Q \rightarrow \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right)$. Let Λ be an associative k-algebra, let $\bmod \Lambda$ be the category of finite dimensional left Λ-modules, and let $g: B \rightarrow C$ and $f: A \rightarrow B$ be morphisms in $\bmod \Lambda$. Replacing B with an isomorphic module if necessary, we may assume that $B=V_{1}^{n_{1}} \oplus \cdots \oplus V_{l}^{n_{l}}$ where V_{1}, \ldots, V_{l} are nonisomorphic indecomposable Λ-modules, l, n_{1}, \ldots, n_{l} are nonegative integers, and V^{m} stands for the direct sum of m copies of V. For $i=1, \ldots, l$ denote by W_{i} the k-space with a basis $e_{i 1}, \ldots, e_{i n_{i}}$, and for each $j=1, \ldots, n_{i}$ denote by $h_{i j}: V_{i} \rightarrow V_{i} \otimes k e_{i j}$ the isomorphism of Λ-modules sending each $v \in V_{i}$ to $v \otimes e_{i j}$. Let

$$
\begin{equation*}
h: B \rightarrow \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \tag{3.1}
\end{equation*}
$$

be the isomorphism in $\bmod \Lambda$ induced by the $h_{i j}$'s. Denote by $g_{i j}: V_{i} \rightarrow C$ and $f_{i j}: A \rightarrow V_{i}$ the morphisms in $\bmod \Lambda$ induced by g and f, respectively, and consider the morphisms $T_{i}: V_{i} \otimes W_{i} \rightarrow C$ and $S_{i}: A \rightarrow V_{i} \otimes W_{i}$ defined by $T_{i}\left(v \otimes e_{i j}\right)=g_{i j}(v), v \in V_{i}$, and $S_{i}(a)=\left(f_{i j}(a) \otimes e_{i j}\right), a \in A$, respectively. Let

$$
\begin{equation*}
T: \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow C \quad \text { and } \quad S: A \rightarrow \oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \tag{3.2}
\end{equation*}
$$

be the morphisms in $\bmod \Lambda$ induced by the T_{i} 's and S_{i} 's, respectively. It is straight forward to check that

$$
\begin{equation*}
g=T h \quad \text { and } \quad S=h f \tag{3.3}
\end{equation*}
$$

Proposition 3.1. Let $g: B \rightarrow C$ and $f: A \rightarrow B$ be morphisms in $\bmod \Lambda$ with $B=\oplus_{i=1}^{l} V_{i}^{n_{i}}$ where V_{1}, \ldots, V_{l} are nonisomorphic indecomposable Λ-modules. Let h be the isomorphism in (3.1), let T and S be the morphisms in (3.2) constructed from g and f, respectively.

If g is a minimal right almost split morphism in $\bmod \Lambda$ then:
(a) T satisfies the right omnipresent maximal rank property.
(b) For a general choice of k-subspaces $U_{i} \subset V_{i}$, the restriction of g to $\oplus_{i=1}^{l} U_{i}^{n_{i}}$ has maximal rank.
(c) If g is surjective then $\operatorname{dim} C<\sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)^{2}$.

If f is a minimal left almost split morphism in $\bmod \Lambda$ then:
(d) S satisfies the right omnipresent maximal rank property.
(e) For a general choice of k-subspaces $U_{i} \subset V_{i}$, denote by $\sigma_{i}: V_{i} \rightarrow V_{i} / U_{i}$ the natural projection. Then the linear transformation $\left(\oplus_{i=1}^{l} \sigma_{i}^{n_{i}}\right) \circ f$ has maximal rank.
(f) If f is injective then $\operatorname{dim} A<\sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)^{2}$.

If $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is an almost split sequence in $\bmod \Lambda$ then:
(g) $\operatorname{dim} B<2 \sum_{i=1}^{l}\left(\operatorname{dim} V_{i}\right)^{2}-1$.

Proof. (a) Since g is minimal right almost split, so is T by (3.3). If W_{i}^{\prime} is a subspace of W_{i}, the Λ-module $V_{i} \otimes W_{i}^{\prime}$ is a direct summand of $V_{i} \otimes W_{i}$. Hence the restriction of T to $\oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}^{\prime}\right)$ is an irreducible morphism and thus is either a monomorphism or an epimorphism [1 Ch. V, Theorem 5.3(a) and Lemma 5.1(a)], so (a) holds. According to Corollary [2.8, T satisfies the left general maximal rank property. In view of the structure of the isomorphisms $h_{i j}$ constructed above, we conclude that (b) holds. Part (c) is a direct consequence of (a), formula (3.3), and Lemma 2.12 a).
(d) The proof is similar to that of (a) using the analogous properties of minimal left almost split morphisms.
(e) If f is surjective, the statement is clear. If f is not surjective, it is injective, and so is S in view of formulas (3.3). By (d) and Corollary 2.10) (b), the projection $\oplus_{i=1}^{l}\left(V_{i} \otimes W_{i}\right) \rightarrow$ Coker S satisfies the right omnipresent maximal rank property. By Corollary 2.8 it satisfies the left general maximal rank property, and so does S by Corollary 2.10(b). Then f satisfies the desired property in view of formulas (3.3).

Another way to prove (d) and (e) is to note that both $\mathrm{D} f$ and $\mathrm{D} S$ are minimal right almost split morphisms in $\bmod \Lambda^{\mathrm{op}}$, and then use (a), Corollary 2.8 and Proposition 2.11 together with formulas (3.3).
(f) The proof is similar to that of (c), using Lemma 2.12 b).
(g) The formula follows from (c) and (f).

Remark 3.1. (a) Lemma 2.12holds when k is an arbitrary field. Hence so do parts (a), (c), (d), (f), and (g) of Proposition 3.1 moreover, they hold if $\bmod \Lambda$ is replaced by any full subcategory of an abelian category closed under extensions and direct summands where the objects and morphism sets are finite dimensional k-vector spaces and composition of morphisms is k-bilinear.
(b) Parts (a), (b), and (c) of Proposition 3.1 hold if $g: B \rightarrow C$ is an irreducible morphism with C indecomposable, and parts (d), (e), and (f) hold if $f: A \rightarrow B$ is an irreducible morphism with A indecomposable. This follows from the observation after Definition 2.1] that the right omnipresent maximal rank property of a linear transformation is inherited by its appropriate restrictions, and from the dual statement.
(c) Parts (c), (f), and (g) of Proposition 3.1 imply that for a fixed number of nonisomorphic indecomposable summands of the middle term of an almost split sequence, the summands cannot be much smaller than the end terms of the sequence, i.e., the multiplicities of the summands cannot be too large, and that there is a balance between the sizes of the end terms. Part (c) is false if the morphism g is not surjective, and part (f) is false if the morphism f is not injective.

We will apply this in particular to the preprojective algebra where the grading introduced in [5] allows us to interpret the multiplication-by-arrow maps into (from) a fixed homogeneous component as a minimal right (left) almost split morphism of modules over the path algebra of the quiver. We recall some facts from the latter paper.

For the remainder of this paper we fix a finite quiver $\Gamma=\left(\Gamma_{0}, \Gamma_{1}\right)$ without oriented cycles with the set of vertices Γ_{0} and the set of arrows Γ_{1}. Let $\bar{\Gamma}=\left(\bar{\Gamma}_{0}, \bar{\Gamma}_{1}\right)$ be a new quiver with $\bar{\Gamma}_{0}=\Gamma_{0}$ and $\bar{\Gamma}_{1}=\Gamma_{1} \cup \Gamma_{1}^{*}$, where $\Gamma_{1} \cap \Gamma_{1}^{*}=\emptyset$ and the elements of Γ_{1}^{*} are in the following one-to-one correspondence with the elements of Γ_{1} : for each $\gamma: t \rightarrow v$ in Γ_{1}, there is a unique element $\gamma^{*}: v \rightarrow t$ in Γ_{1}^{*}. To turn the path algebra $k \bar{\Gamma}$ of $\bar{\Gamma}$ over a field k into a graded k-algebra, we assign
degree 0 to each trivial path $e_{t}, t \in \Gamma_{0}$, and each arrow $\gamma \in \Gamma_{1}$; degree 1 to each arrow $\gamma^{*} \in \Gamma_{1}^{*}$; and compute the degree of a nontrivial path $q=\delta_{1} \ldots \delta_{r}$ as $\operatorname{deg} q=\sum_{i=1}^{r} \operatorname{deg} \delta_{i}$. Clearly, $k \Gamma$ is the k-subalgebra of $k \bar{\Gamma}$ comprising the elements of degree 0 .

Let \mathbb{N} be the set of nonnegative integers. For all $t \in \Gamma_{0}, d \in \mathbb{N}$, let W_{d}^{t} be the span of all those paths in $\bar{\Gamma}$ of degree d that start at t. Note that $W_{d}^{t} \in \bmod k \Gamma$ so

$$
\begin{equation*}
k \bar{\Gamma}=\underset{d \in \mathbb{N}}{\oplus} \underset{t \in \Gamma_{0}}{\oplus} W_{d}^{t} \tag{3.4}
\end{equation*}
$$

is a decomposition of $k \bar{\Gamma}$ as a direct sum of its left $k \Gamma$-submodules
Let now a and b be any two functions $\Gamma_{1} \rightarrow k$ satisfying $a(\gamma) \neq 0$ and $b(\gamma) \neq 0$ for all $\gamma \in \Gamma_{1}$. If $s(\gamma)$ is the starting point and $e(\gamma)$ is the end point of $\gamma \in \Gamma_{1}$, for each $t \in \Gamma_{0}$ set

$$
m_{t}=\sum_{\substack{\gamma \in \Gamma_{1} \\ s(\gamma)=t}} a(\gamma) \gamma^{*} \gamma-\sum_{\substack{\gamma \in \Gamma_{1} \\ e(\gamma)=t}} b(\gamma) \gamma \gamma^{*}
$$

and denote by J the two-sided ideal of $k \bar{\Gamma}$ generated by the element

$$
\sum_{t \in \Gamma_{0}} m_{t}=\sum_{\gamma \in \Gamma_{1}}\left[\gamma^{*}, \gamma\right]_{a, b}
$$

where $\left[\gamma^{*}, \gamma\right]_{a, b}=a(\gamma) \gamma^{*} \gamma-b(\gamma) \gamma \gamma^{*} *$ is the (a, b)-commutator of γ^{*} and γ. The factor algebra $\mathcal{P}_{k}(\Gamma)_{a, b}=k \bar{\Gamma} / J$ is the (a, b)-preprojective algebra of Γ.

Since the elements m_{t} are homogeneous of degree $1, J$ is a homogeneous ideal containing no nonzero elements of degree 0 . Hence $\mathcal{P}_{k}(\Gamma)_{a, b}$ is a graded k-algebra, and the restriction to $k \Gamma$ of the natural projection $\pi: k \bar{\Gamma} \rightarrow \mathcal{P}_{k}(\Gamma)_{a, b}$ is an isomorphism of $k \Gamma$ with the subalgebra of $\mathcal{P}_{k}(\Gamma)_{a, b}$ comprising the elements of degree 0 ; we view the isomorphism as identification. From (3.4) we get

$$
\mathcal{P}_{k}(\Gamma)_{a, b}=\underset{d \in \mathbb{N}}{\oplus} \underset{t \in \Gamma_{0}}{\oplus} V_{d}^{t}
$$

where $V_{d}^{t}=\pi\left(W_{d}^{t}\right) \in \bmod k \Gamma$. If $\gamma \in \Gamma_{1}$ we write $\beta=\pi(\gamma)$ and $\beta^{*}=\pi\left(\gamma^{*}\right)$. If q is a path in $\bar{\Gamma}$ starting at t and ending at v, we call $\pi(q)$ a path in $\mathcal{P}_{k}(\Gamma)_{a, b}$ starting at t and ending at v. Then V_{d}^{t} is the span of all paths of degree d in $\mathcal{P}_{k}(\Gamma)_{a, b}$ starting at t. Since we identify $k \Gamma$ with $\pi(k \Gamma)$, we in particular identify e_{t} with $\pi\left(e_{t}\right), t \in \Gamma_{0} ; \gamma$ with $\beta=\pi(\gamma), \gamma \in \Gamma_{1} ; W_{0}^{t}$ with V_{0}^{t}; and we set $W_{-1}^{t}=V_{-1}^{t}=0$.

We need the following statement. When appropriate, the map $(c): X \rightarrow Y$ denotes the right multiplication by c.

Theorem 3.2. Suppose $V_{d}^{t} \neq 0$ where $t \in \Gamma_{0}, d \in \mathbb{N}$.
(a) V_{d}^{t} is indecomposable in $\bmod k \Gamma$, and $V_{d}^{t} \cong V_{c}^{s}$ in $\bmod k \Gamma, s \in \Gamma_{0}, c \in \mathbb{N}$, if and only if $t=s$ and $d=c$.
(b) The map $g_{d}^{t}:\left(\underset{s(\gamma)=t}{\oplus} V_{d}^{e(\gamma)}\right) \oplus\left(\underset{e(\gamma)=t}{\oplus} V_{d-1}^{s(\gamma)}\right) \longrightarrow V_{d}^{t}$ induced by the right multiplications $(a(\gamma) \beta): V_{d}^{e(\gamma)} \rightarrow V_{d}^{t}, s(\gamma)=t$, and $\left(-b(\gamma) \beta^{*}\right): V_{d-1}^{s(\gamma)} \rightarrow V_{d}^{t}, e(\gamma)=t$, where $\gamma \in \Gamma_{1}$, is a minimal right almost split morphism in $\bmod k \Gamma$.
(c) The map $f_{d}^{t}: V_{d}^{t} \longrightarrow\left(\underset{s(\gamma)=t}{\oplus} V_{d+1}^{e(\gamma)}\right) \oplus\left(\underset{e(\gamma)=t}{\oplus} V_{d}^{s(\gamma)}\right)$ induced by the right multiplications $\left(\beta^{*}\right): V_{d}^{t} \rightarrow V_{d+1}^{e(\gamma)}, s(\gamma)=t$, and $(\beta): V_{d}^{t} \rightarrow V_{d}^{s(\gamma)}, e(\gamma)=t$, where $\gamma \in \Gamma_{1}$, is a minimal left almost split morphism in $\bmod k \Gamma$.
(d) If $V_{d+1}^{t} \neq 0$ then $0 \rightarrow V_{d}^{t} \xrightarrow{f_{d}^{t}}\left(\underset{s(\gamma)=t}{\oplus} V_{d+1}^{e(\gamma)}\right) \oplus\left(\underset{e(\gamma)=t}{\oplus} V_{d}^{s(\gamma)}\right) \xrightarrow{g_{d+1}^{t}} V_{d+1}^{t} \rightarrow 0$ is an almost split sequence in $\bmod k \Gamma$.

Proof. These are parts of [5] Theorem 1.1 and Corollary 1.3] combined with well-known properties of preprojective modules, see [1 VIII.1].

Applying parts (b) and (d) of Proposition 3.1 to Theorem3.2 we obtain the following statement.
Corollary 3.3. (a) In the setting of Theorem 3.2(b), for a general choice of k-subspaces $U_{d}^{e(\gamma)} \subset$ $V_{d}^{e(\gamma)}$ and $U_{d-1}^{s(\gamma)} \subset V_{d-1}^{s(\gamma)}$, the restriction of g_{d}^{t} to $\left(\underset{s(\gamma)=t}{\oplus} U_{d}^{e(\gamma)}\right) \oplus\left(\underset{e(\gamma)=t}{\oplus} U_{d-1}^{s(\gamma)}\right)$ has maximal rank.
(b) In the setting of Theorem [3.2(c), for a general choice of k-subspaces $U_{d+1}^{e(\gamma)} \subset V_{d+1}^{e(\gamma)}$ and $U_{d}^{s(\gamma)} \subset V_{d}^{s(\gamma)}$, denote by $\sigma_{d+1}^{e(\gamma)}: V_{d+1}^{e(\gamma)} \rightarrow V_{d+1}^{e(\gamma)} / U_{d+1}^{e(\gamma)}$ and $\sigma_{d}^{s(\gamma)}: V_{d}^{s(\gamma)} \rightarrow V_{d}^{s(\gamma)} / U_{d}^{s(\gamma)}$ the natural projections. Then the linear transformation $\left(\left(\underset{s(\gamma)=t}{\oplus} \sigma_{d+1}^{e(\gamma)}\right) \oplus\left(\underset{e(\gamma)=t}{\oplus} \sigma_{d}^{s(\gamma)}\right)\right) \circ f_{d}^{t}$ has maximal rank.

Remark 3.2. As follows from Remark 3.1(b), if one leaves out any number of summands in the direct sum of part (b) of Theorem 3.2 and replaces the map g_{d}^{t} by its restriction to the sum of the remaining summands, Corollary 3.3(a) will still hold. Likewise, if one leaves out any number of summands in the direct sum of part (c) of Theorem 3.2 and replaces the map f_{d}^{t} by its composition with the projection onto the sum of the remaining summands, Corollary 3.3(b) will still hold.

The results of this section have dealt with left modules over a k-algebra Λ and with the right multiplication-by-arrow maps in the preprojective algebra. One may ask if analogous results are true for right Λ-modules and for the left mulitplication-by-arrow maps. We leave it to the reader to state the analog of Proposition [3.1] and note that [5] Theorem 1.1 and Corollary 1.3] address left multiplication by arrows in $\mathcal{P}_{k}(\Gamma)_{a, b}$ by replacing W_{d}^{t} and V_{d}^{t} with $W_{t, d}$, the span of all those paths in $\bar{\Gamma}$ of degree d that end at t, and $V_{t, d}=\pi\left(W_{t, d}\right)$, respectively. Since $V_{t, d}$ is a finite dimensional right $k \Gamma$-module for all t and d, with the appropriate replacements the analogs of Theorem 3.2 and Corollary 3.3 hold. These remarks also apply to the considerations of Section 4.

4. Corollaries and Examples

In this section we strengthen Corollary 3.3 in a form that is analogous to the result of Hochster and Laksov [4]. To help the reader see the analogy we shall first state their result.

Set $R=k\left[x_{1}, x_{2}, \ldots, x_{r}\right]$, the commutative polynomial ring graded by degree, and denote by R_{d} its homogeneous piece of degree d. Let $N(r, d)$ be the dimension of R_{d} as a vector space over k. The following is then the result of Hochster and Laksov [4.

Theorem 4.1. Given an integer $d \geq 2$, we determine an integer n by the inequalities

$$
(n-1) r<N(r, d+1) \leq n r
$$

and let $s=N(r, d+1)-(n-1) r$. Then if $F_{1}, F_{2}, \ldots, F_{n}$ are n general forms in R_{d} we have that the $(n-1) r$ forms $x_{j} F_{i}$ for $j=1, \ldots, r$ and $i=1,2, \ldots, n-1$ together with the s forms $x_{j} F_{n}$ for $j=1,2, \ldots s$ (in total $N(r, d+1)$ forms) are a k-vector space basis for R_{d+1}.

By "general forms" they mean that there exists a dense Zariski open subset of the affine space $\left(R_{d}\right)^{n}$ such that if the n-tuple $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is chosen from that open set, then the conclusion follows.

We wish to apply Corollary [2.7 to the maps g_{d}^{t} of Theorem 3.2 which is possible according to Proposition 3.1(a). To make the result clearly analogous to the result of Hochster and Laksov we must set up our notation properly.

Fix a vertex $t \in \Gamma_{0}$ and a nonnegative integer d. Let $s_{1}, s_{2}, \ldots, s_{m}$ be the distinct vertices that have in Γ_{1} arrows from them to t, and let $u_{1}, u_{2}, \ldots u_{n}$ be the distinct vertices with arrows in Γ_{1} going from t to them. To match things up with the set up in Section 2 , for $i=1,2, \ldots, m$
let $V_{i}=V_{d-1}^{s_{i}}$, let W_{i} be the k-linear span of the arrows $\beta_{i, j}^{*}$ in Γ_{1}^{*} going from t to s_{i}, and set $w_{i, j}=-b\left(\beta_{i, j}\right) \beta_{i, j}^{*}$. For $i=m+1, m+2, \ldots, m+n=l$ let $V_{i}=V_{d+1}^{u_{i-m}}$, let W_{i} be the k-linear span of the arrows $\beta_{i, j}$ in Γ_{1} going from t to u_{i-m}, and set $w_{i, j}=a\left(\beta_{i, j}\right) \beta_{i, j}$. For all i, we choose $\left\{w_{i, j}\right\}$ as a basis for W_{i} and put the $w_{i, j}$'s in a column vector x_{i}. Set $U=V_{d}^{t}$. Let M_{i} be the vector space of $\operatorname{dim} V_{i} \times \operatorname{dim} W_{i}$ matrices with elements in k. Let B^{\prime} be the affine space $\prod_{i=1}^{l} V_{i}^{\operatorname{dim} V_{i}}$. An element b^{\prime} of B^{\prime} is an l-tuple $\left[b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{l}^{\prime}\right]$ where each b_{i}^{\prime} is a $\operatorname{dim} V_{i}$-tuple of elements of V_{i}, written as a row vector. For $b^{\prime} \in B^{\prime}$ and $m(i) \in M_{i}$, using ordinary matrix multiplication and the multiplication and addition in the preprojective algebra, we see that $b_{i}^{\prime} m(i) x_{i}$ is an element of $U=V_{d}^{t}$.
Corollary 4.2. Let $d>0$ and $V_{d}^{t} \neq 0$. Fix integers a_{i} satisfying $0 \leq a_{i} \leq\left(\operatorname{dim} V_{i}\right)\left(\operatorname{dim} W_{i}\right)$, $i=1, \ldots, l$, and $\sum a_{i}=\operatorname{dim} U$. For each i choose a_{i} linearly independent elements of M_{i} and call them $m(i, j), 1 \leq j \leq a_{i}$. There exists a Zariski open dense subset E of B^{\prime} such that if $b^{\prime}=\left[b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{l}^{\prime}\right] \in E$, then the elements $b_{i}^{\prime} m(i, j) x_{i}, 1 \leq i \leq l, 1 \leq j \leq a_{i}$, form a basis for $U=V_{d}^{t}$.
Proof. We already have a chosen basis for each W_{i}. Suppose we also choose a basis for each V_{i}. The pairwise tensor products of these basis elements give a basis for $V_{i} \otimes W_{i}$, so we may identify $V_{i} \otimes W_{i}$ with M_{i}. We may also identify End $\left(V_{i}\right)$ with $V_{i}^{\operatorname{dim} V_{i}}$ by matching $\varphi_{i} \in \operatorname{End}\left(V_{i}\right)$ with the image under φ_{i} of the chosen basis. Under these identifications the elements $T\left(\varphi_{i}(m(i, j))\right)$ appearing in Corollary 2.7 become identified with the elements $b_{i}^{\prime} m(i, j) x_{i}$ appearing in Corollary 4.2. Thus Corollary 4.2 is a particular case of Corollary 2.7

With the proper choice of the $m(i, j)$ we can get a corollary that sounds even more like the result of Hochster and Laksov.

Corollary 4.3. Let $d>0$ and $V_{d}^{t} \neq 0$. For each i satisfying $1 \leq i \leq m$, let $\beta_{i, j}^{*}, 1 \leq j \leq \operatorname{dim} W_{i}$, be the new arrows going from to s_{i}. For each i satisfying $m+1 \leq i \leq l$, let $\beta_{i, j}, 1 \leq j \leq \operatorname{dim} W_{i}$, be the old arrows going from to u_{i-m}. Choose positive integers $n_{i}, 1 \leq i \leq l$, satisfying $1 \leq n_{i} \leq$ $\operatorname{dim} V_{i}$ and

$$
\sum_{i=1}^{l}\left(n_{i}-1\right) \operatorname{dim} W_{i}<\operatorname{dim} V_{d}^{t} \leq \sum_{i=1}^{l} n_{i} \operatorname{dim} W_{i}
$$

and set $c=\operatorname{dim} V_{d}^{t}-\sum_{i=1}^{l}\left(n_{i}-1\right) \operatorname{dim} W_{i}$. Write c as a sum of nonnegative integers $c=c_{1}+c_{2}+$ $\ldots+c_{l}, 0 \leq c_{i} \leq \operatorname{dim} W_{i}$. For a general choice of $\sum_{i=1}^{l} n_{i}$ elements $F_{i, k}, 1 \leq i \leq l, 1 \leq k \leq n_{i}$, where $F_{i, k} \in V_{d-1}^{s_{i}}$ for $1 \leq i \leq m$ and $F_{i, k} \in V_{d}^{u_{i-m}}$ for $m+1 \leq i \leq l$, the following $\operatorname{dim} V_{d}^{t}$ elements form a basis for V_{d}^{t} :
$F_{i, k} \beta_{i, j}^{*}$ for $1 \leq i \leq m, 1 \leq k \leq n_{i}-1,1 \leq j \leq \operatorname{dim} W_{i} ;$
$F_{i, n_{i}} \beta_{i, j}^{*}$ for $1 \leq i \leq m, 1 \leq j \leq c_{i}$;
$F_{i, k} \beta_{i, j}$ for $m+1 \leq i \leq l, 1 \leq k \leq n_{i}-1,1 \leq j \leq \operatorname{dim} W_{i}$;
$F_{i, n_{i}} \beta_{i, j}$ for $m+1 \leq i \leq l, 1 \leq j \leq c_{i}$.
Here in an inequality giving the range of possible j or k, if the number on the right is less than 1 , we simply mean there are no such j or k.

Proof. Choose the $m(i, j)$'s as follows. Note that $a_{i}=\left(n_{i}-1\right) \operatorname{dim} W_{i}+c_{i}$. For a fixed i, the a_{i} elements $m(i, j)$ will be the $\left(n_{i}-1\right) \operatorname{dim} W_{i}$ distinct matrices having a 1 in one place among the $\left(n_{i}-1\right) \operatorname{dim} W_{i}$ positions available in the first $\left(n_{i}-1\right)$ rows of the $\operatorname{dim} V_{i} \times \operatorname{dim} W_{i}$ matrices involved and zeros elsewhere. The remaining c_{i} elements $m(i, j)$ have a 1 in one of the first c_{i} places in the n_{i}-th rows, and zeros elsewhere.

Corollary 4.4. (a) If $d>0$ and $V_{d}^{t} \neq 0$ then $\operatorname{dim} V_{d}^{t}<\sum_{j=1}^{n}\left(\operatorname{dim} V_{d}^{u_{j}}\right)^{2}+\sum_{i=1}^{m}\left(\operatorname{dim} V_{d-1}^{s_{i}}\right)^{2}$.

If $d \geq 0$ and $V_{d+1}^{t} \neq 0$ then:
(b) $0<\operatorname{dim} V_{d}^{t}<\sum_{j=1}^{n}\left(\operatorname{dim} V_{d+1}^{u_{j}}\right)^{2}+\sum_{i=1}^{m}\left(\operatorname{dim} V_{d}^{s_{i}}\right)^{2}$.
(c) $0<\left(\sum_{s(\gamma)=t} \operatorname{dim} V_{d+1}^{e(\gamma)}\right)+\left(\sum_{e(\gamma)=t} \operatorname{dim} V_{d}^{s(\gamma)}\right)<2\left(\sum_{j=1}^{n}\left(\operatorname{dim} V_{d+1}^{u_{j}}\right)^{2}+\sum_{i=1}^{m}\left(\operatorname{dim} V_{d}^{s_{i}}\right)^{2}\right)-1$
where $\gamma \in \Gamma_{1}$.
Proof. This is a direct consequence of Theorem 3.2 and parts (c), (f), and (g) of Proposition 3.1

Example 4.1. This example shows that the $F_{i, j}$ of Corollary 4.3 must be chosen generically. In other words the right omnipresent maximal rank property does not imply the left omnipresent maximal rank property. Let the quiver Γ have two vertices labeled 1 and 2 and one arrow β going from 1 to $2 . \bar{\Gamma}$ then has in addition one new arrow β^{*} going from 2 to 1 . For any choice of nonzero functions a and b the relations become $\beta \beta^{*}=\beta^{*} \beta=0$. In Theorem 3.2 set $d=1$ and $t=2$. The map becomes $V_{0}^{1} \rightarrow V_{1}^{2}$ where V_{0}^{1} has basis $\left\{e_{1}, \beta\right\}$, and V_{1}^{2} has basis $\left\{\beta^{*}\right\}$. The map is multiplication by β^{*} so e_{1} goes to β^{*} and β goes to 0 . Consider one dimensional subspaces of V_{0}^{1}. The one spanned by β maps to 0 and so does not surject onto V_{1}^{2}, all others do surject onto V_{1}^{2}.
Example 4.2. Here we show that if in Theorem 2.1] the hypothesis that T satisfies the right omnipresent maximal rank property is weakened to the right general maximal rank property, then the conclusion might not follow. In other words the right general maximal rank property does not imply the left general maximal rank property. Let V be a vector space of dimension 3 with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let W be a vector space of dimension 2 with basis $\left\{w_{1}, w_{2}\right\}$. Let U be the quotient of $V \otimes W$ by the subspace spanned by $\left\{v_{1} \otimes w_{1}, v_{2} \otimes w_{1}\right\}$. Finally let $T: V \otimes W \rightarrow U$ be the quotient map. The only one-dimensional subspace W^{\prime} of W such that $V \otimes W^{\prime}$ has nonzero intersection with the kernel of T is the span of w_{1}. Thus T satisfies the right general maximal rank property. Any subspace V^{\prime} of V of dimension 2 must have nonzero intersection with the span of $\left\{v_{1}, v_{2}\right\}$. Thus $V^{\prime} \otimes W$ must have nonzero intersection with the span of $\left\{v_{1} \otimes w_{1}, v_{2} \otimes w_{1}\right\}$. This means that the restriction of T to $V^{\prime} \otimes W$ cannot have maximal rank.

References

[1] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, New York, 1994.
[2] J. A. Green, Locally Finite Representations, J. Alg. 41 (1976), 137-171.
[3] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley \& Sons], New York, 1978.
[4] M. Hochster, D. Laksov, The Linear Syzygies of Generic Forms, Comm. Alg. 15 (1987), no. 1-2, 227-239.
[5] M. Kleiner, The Graded Preprojective Algebra of a Quiver, Bull. London Math. Soc. 36 (2004), 13-22.
Department of Mathematics, Syracuse University, Syracuse, New York 13244-1150, United States of America

E-mail address: spdiaz@syr.edu
E-mail address: mkleiner@syr.edu

[^0]: 2000 Mathematics Subject Classification. Primary 13D02, 16G30, 16G70.
 Key words and phrases. Almost split morphism, preprojective algebra, linear map of maximal rank.
 The second-named author is partially supported by a grant from NSA.

