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Abstract
\

A counterexample to a conjecture on the number

of constraint lengths required to achieve the free dis-

tance of a rate lin systema~ic convolutional code is

presented.
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A rate lin systematic convolutional code is the row space of a

generator matrix of the form shown in Figure I, where

(
(2) (n) (2) (n) (2) (n)

9:. = 1,go' · · · I go I 0 , 9 1 ' • • • , 9 1 ' • • • , 0 , gm ' • • • , gm ).

A code word t is thus definej by

t = iG

where i:(iuiil , •.• ) is the input sequence. Let i j = (io,il, •.. ,i j ).

G. denotes the matrix consisting of the first (j+l)n columns of G.
J

Costellol defines the order ~ column distance, d j , to be

d. = min WH(i.G.)J 4 -J JiOTO

where WH(x) is the Hamming weight of x. He then defines the free

distance to be

d free = lim d.
j-+oo J

j = 0,1, ...

Since d. is a monitonically increasing function of j and d f is
J ree

upper bounded by WH(~)' we have

d j ~ dfr~e 4 WH(~)

For a systematic cod~, there exists an L such that d. = d f for all
J ree

j ~ L. Costello showed that L ~ (n-l) (m+l}m. If an algorithm for

computing the free distance of a given code w~re dependent on this

bound, it would probably be impractical for all but small codes.

Costello conjectured that the bo~nd CQuld be improved to L = 2m.
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This, however, is not the case. In fact there exists no fixed integer

s such that L ~ sm for all ro, as we shall now show.

For simplicity, we will consider only rate 1/2 binary codes. It

will be apparent that our result extends to rate lin codes. The

generator matrix of a rate 1/2 systematic code can be written in the

form shown in Figure 2. The w~ight of a code word t is then given by

In this case, the matrix G(2) is of· m-lfor ~ = 0,1' ... '--2- .

Consider now a code of odd memory order m in which the subgenerator

9: (2) = (gci 2 ) ,gi 2) , ••. ,g~2» is con2trained as ::011m';s: gi2 ) = g ~~~+l
]. -2-

the form shown in Figure 3. The column distance of the code generated

is bounded by
(

dkm+kr2 = WH(~')+k k = 1,2, ...
, 2

This can be ~een by considering the code word constructed from the

rows of G that correspond to the shaded blocks of G(2). Let k* denote

the smallest integer for which

WH ,(2.' )+k* = d f ·ree

Then

> k*m+k*-r2 ~_, k*
~ = 2 2" m for k*>l.

Now suppose it is possible to find a class of codes for which

WH(9:') is an increasing function of m and for which d free= 2WH(9:')+1.
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Then

k* = d -W (g') = W (g')+lfree H - H -

and

which shows that there exists no fixed integer s such that L = sm

for all m. We pow present such a class.

The generator polynomial for the kth code in the class is defined

by 2
6ct>k_l

~k(x) = ~k_l(x)+x

~k = de~(~k(x»+l

(2) 2¢k
~k (x) = 9k(x) (l+x )

where ~i(X) = 1. (Note that this construction inserts O's between

the two copies of ~'. This is not inconsistent with above; see

Figure 4.)

Theorem

Proof

d - 2W (0,')+1freE;lk - H.i!.k for k = 1,2, ..•

For k = 1, ~k(x) = 1, ~l = 1 and ~i2) (x) = 1+x2 • The reader

may easily verify that the free distance of the rate 1/2 binary

systematio code with g(2) = 101 is

Now assume that ~f = 2WH([~)+1. We must show that
reek ~
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d
freek+1

amounts to showing that d = d +2. Suppose ~k+l is a
freek+1 freek

minimum weight code word in the (k+l)st code. The corresponding code

word in the k th code is ~k = iGk • We claim that WH(tk+1 ) ~ WH (tk )+2.

This is most easily seen by reference to Figure 4. If ~k+l is to have

minimum weight in the code, then it cannot be the sum of two disjoint

code words. This requires that at least one out of every ¢k rows of

Gk be included in the sum, i~k. Th~re are two cases to consider.

(1) Suppose that t
k
+

1
is formed from some combination of the first

5¢~ rows of Gk +l " In this case, the 1 added in going from gk to

gk+l cannot be cancelled because of the spacing allowed. Hence

t k +1 = ~Gk+l will have at least two more lIs than ~k= ~Gk.

(2) Suppose on the other hand that ~k+l is formed from some combin

ation of rows that includes a row beyond the first 5¢~ rows of

Gk+1 • In the -case, the assumption that ~k+l has minimum weight

2/ -requires that at least 5~k ~k = 5¢k rows be included. But then

Therefore d = d +2 in either case and the proof is
freek+1 freek+1

complete.

We have shown here that L incre~ses more rapidly than ro, and it

seems unlikely that L increases as rapidly as 2m • This would appear

to leave rn log m as the next most likely candidate.
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