
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

1997 

Standardization of a Communication Middleware for High-Standardization of a Communication Middleware for High-

Performance Real-Time Systems Performance Real-Time Systems 

Arkady Kanevsky 
The MITRE Corp., arkady@mitre.org 

Anthony Skjellum 
Mississippi State University, NSF ERC, tony@erc.msstate.edu 

Jerrell Watts 
Syracuse University, Electrical Engineering and Computer Science, jwatts@scp.syr.edu 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Kanevsky, Arkady; Skjellum, Anthony; and Watts, Jerrell, "Standardization of a Communication Middleware 
for High-Performance Real-Time Systems" (1997). Electrical Engineering and Computer Science. 168. 
https://surface.syr.edu/eecs/168 

This Article is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215669696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/168?utm_source=surface.syr.edu%2Feecs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Standardization of a Communication Middleware forHigh-Performance Real-Time SystemsArkady Kanevsky�The MITRE Corp.202 Burlington Rd.Bedford, MA 01730-1420e-mail: arkady@mitre.org Anthony SkjellumyMississippi State UniversityNSF ERC, 2 Research Blvd.Starkville, MS 39759e-mail: tony@erc.msstate.edu Jerrell WattsEECS Dept./2-120 CST,Syracuse UniversitySyracuse, NY 13244-4100e-mail: jwatts@scp.syr.eduAbstractThe last several years saw an emergence ofstandardization activities for real-time systems in-cluding standardization of operating systems (se-ries of POSIX standards [1]), of communicationfor distributed (POSIX.21 [10]) and parallel systems(MPI/RT [5]) and real-time object management (real-time CORBA [9]).This article describes the ongoing standardizationwork and implementation of communication middle-ware for high performance real-time computing. Thereal-time message passing interface (MPI/RT) ad-vances the non-real-time high-performance commu-nication standard Message Passing Interface Stan-dard (MPI), emphasizing changes that enable andsupport real-time communication, and is targeted forembedded, fault-tolerant and other real-time systems.MPI/RT is the only communication middleware layerthat provides guaranteed quality of service and timeli-ness for data transfers, is also targeted for real-timeCORBA to replace RPC layer and for real-time andembedded JAVAs.1 IntroductionOver the past several years, many standards thataddress real-time issues have emerged. They addressnetworking: SAFENET [3], Futurebus+ [11], and ex-tensions to FDDI, ATM, Token Ring, Token Bus, andothers [2]; communication: real-time message passinginterface (MPI/RT) and realtime distributed system�This work was supported in part by the U.S. Air ForceElectronic Systems Center and performed under MITRE MOIEProject 03977450 of contract F19628-94-C-0001, managed byRome Laboratory/C3CB.yThis work was supported in part by the U.S. Air ForceRome Laboratory under DARPA Order D350 and E339, con-tracts F30602-95-1-0036 and F30602-96-1-0329.

communication (POSIX.21); operating systems: real-time POSIX (POSIX.1b, POSIX.1c [1], POSIX.1d,and POSIX.1j); and realtime object management (re-altime CORBA). This article presents MPI/RT, thereal-time message passing interface, for high perfor-mance applications.The approved MPI-1 standard provides point-to-point communication, collective operations, processgroups and communication domains, process topolo-gies, environment management and inquiry [7], formu-lated within language-independent speci�cations, to-gether with C and FORTRAN API bindings. MPI-2,which was standardized and published in June 1997,provides additional functionality overMPI-1 in the ar-eas of process creation and management, one-sidedcommunication, collective operations, external inter-faces and I/O. It also provides a C++ binding forMPI-1 and MPI-2 functionality.By way of contrast, the main goal of MPI/RT isto provide message-passing functionality with qual-ity of service (QoS) for development of real-timeapplications with performance portability. The pa-rameters of QoS include a variety of fault-tolerantand real-time application requirements. Since manyhigh-performance real-time applications would like totake advantage of MPI functionality but require tim-ing guarantees from the message-passing layer, theMPI/RT working group was created with the ob-jective of providing an appropriately designed ap-plication programming interface (API). MPI/RT fol-lows MPI's underlying assumptions of reliable and or-dered data transmission; programming assumptions,that are common to a majority of parallel environ-ments and platforms that are targeted by MPI/RT.MPI/RT adds greater predictability and schedulabil-ity to message-passing programming, while modifying



and extending the useful concepts embodied in theoriginal standard.The rest of the paper is organized as follows. Sec-tion 2 presents the underlying philosophy of MPI/RT.Section 3 presents the common underlying layer for allreal-time models including bu�er and queue manage-ment abstraction, channel management abstraction,and event handler abstraction. Section 4 presentscommunication paradigms and real-time models, andsection 5 presents the current status of the MPI/RTstandard and future plans.2 MPI/RT PhilosophyCurrently, application developers must become ex-perts on a platform before they can take advantage ofits message-passing facilities in order to achieve the de-sired performance. The challenges are even greater fordevelopers of real-time applications that are requiredto satisfy timing constraints and proper interactionwith the environment independent of the computingplatform. The application design is often so dependenton the computing platform that it requires completeredesign when ported to a di�erent platform or tar-geted for the next-generation platform.This approach hinders the portability of an appli-cation to a di�erent platform or upgrades on the cur-rently used one. The current philosophy is that theplatform provides the user with an API and placesthe burden on the application developers to satisfytiming and quality of service requirements. This phi-losophy is contradictory to the \portability viewpoint"and MPI/RT has consequently taken the opposite ap-proach. Under MPI/RT, the user provides detailedinformation about timing constraints of applicationmodules and the interactions between them includingmessage-passing data and control message exchanges.The user's requests are analyzed by the platform, in-cluding middleware of which MPI/RT is a part, andeither satis�es them with user required QoS or statesthat it cannot satisfy the user requested QoS. The de-nial of a request usually results from a lack of platformresources.MPI/RT supports the view that middleware andplatform designers have greater insight into howe�ciently to provide QoS on the platform givenenough information about the application. With thisapproach application programmers can concentrateon improving application code and let middlewareproviders concentrate on providing the best QoS avail-able on the platform. Application programmers arenot required to reveal all the information to MPI/RTand can take it upon themselves to provide some or allQoS. It is quite clear that the exact boundary of the

responsibility for providing QoS for the user betweenthe platform (including system software and middle-ware) and the application is still unknown, but thesame trends that lead to the development of higherlevel languages, operating systems, and middleware,are pushing the development of MPI/RT.In order to provide the quality of service guaran-tees for communication, an MPI/RT implementationmay need to address a di�cult scheduling problem.While there is a lot of work going on in CPU and net-work real-time scheduling, these results in many casesare insu�cient to provide guarantees for communica-tion. The number of resources that are involved incommunication is rather large and is di�erent fromone platform to another. These resources can havetheir own schedulers that may use completely di�er-ent techniques, like prioritities for CPUs, round robinfor network switches, and interrupts and signals fornetwork interface chips.However, it is hard, if not impossible, for the ap-plication programmer to coordinate the use of theseresources in order to establish user-required quality ofservice even with the complete knowledge of the appli-cation. Furthermore, even if it was done successfullyon one platform, it cannot be ported to a di�erentplatform because of the di�erences between platformarchitectures. MPI/RT implementors have a betterchance of meeting the user's quality of service require-ments because of their knowledge of their platform,since for most cases they work closely with or are partof the same organization that designed and built theplatform.In order to improve the chance for satisfying userquality of service requests, MPI/RT recommends earlybinding. Many of the highly demanding, real-time par-allel applications are characterized by the periodic na-ture of the environment outside the computing plat-form, and for these applications establishing communi-cation channels with QoS (see section 3) promises thegreatest bene�ts. Using application information aboutthe communication patterns and QoS requirements,MPI/RT implementations can allocate resources usingan algorithm and run-time scheduling criteria that aremost suitable for the platform prior to the actual datatransfers. This allows an implementation to minimizethe critical execution path for message passing and theoverhead of MPI/RT implementation, so the messagepassing performance using MPI/RT will come close tothe platform native message passing performance and,hence, the so-called \price of portability" will be min-imized.



3 Common FunctionalityDue to the lack of space we just outline the sup-porting functionality without any details (for detailssee [5]). The supporting functionality contains a syn-chronized clock de�nition with detail speci�cations forresolution, drift, skew, accuracy and access time pa-rameters; an instrumentation for MPI/RT and userfunctionality, and a fault handling.3.1 ChannelsIn MPI/RT, persistent channels o�er the function-ality of a virtual channel [4, 8] within the frameworkof the MPI standard. Motivations for having virtualchannels in MPI/RT include: ability to exploit persis-tent communications that are common for high per-formance real-time applications, deadlock and livelockavoidance, virtual channels guarantees for propertiescritical for timing correctness, and more e�cient re-source usage by the implementations.MPI/RT, as a speci�cation and programming nota-tion, encourages early binding in order for the imple-mentations to establish user-required quality of ser-vice, while providing both early and late bindings fordata transfer operations. The initialization of thechannels collectively provides MPI/RT with the bigpicture of application-desired, point-to-point channelsand their respective QoSs. The early knowledge ofall the point-to-point channels allows MPI/RT imple-mentation to exploit potential exibility in satisfyingindividual channels QoS rather than establishing eachchannel individually and making arbitrary decisionsin the process, that may be detrimental to MPI/RT'sability to satisfy all channels QoSs. This approachis not required to be done prior to any data transferoperations, but is strongly encouraged to maximizeMPI/RT's potential performance. The channel estab-lishment operations as well as channel modi�cationsand deletions, can be used at any time, but these op-erations are expensive and it is harder for the imple-mentation to satisfy later requests and to optimize re-source usage, especially if these requests are relativelyfrequent.Following the MPI principle that all communica-tions are done over a communicator (clique or bi-partite group formulation), group-oriented MPI/RTchannel initialization operations are done over a com-municator. The same application process can partic-ipate in more than one communicator group and bydefault all processes are members of one communica-tor MPI COMM WORLD. Hence, a process can participatein channel initialization for more than one commu-nicator. The MPI/RT standard is silent on how theabove established channels are mapped on the net-

work channels. This is left to the implementation andis highly dependent on platform architecture, networktopologies, routing information, etc. The solutionsthat shared memory platforms would like to use, maynot be applicable to the distributed memory platformsand vice versa.While suppressing the entire syntax of the collec-tive point-to-point channel initialization operationsfor brevity, we would like to stress several parame-ters that carry semantic information. First, the oper-ations allow speci�cation of information for all point-to-point channels over a single communicator the pro-cess would like to use. This includes several point-to-point channels between the same pair of processes.Using this speci�cation, an application can establishany virtual topology between processes. The opera-tion returns a request handle for each channel. Insteadof providing separate operations for creation, modi�-cation and destruction of the channels, MPI/RT hasa single operation that combines all channel manage-ment functionality into one atomic operation. Thisallows application not to destroy existing channels ifnew/modi�ed channels cannot be established with therequested QoS, and hence, preserve existing channelsand resources they are using.MPI/RT also provides functionality to establish col-lective channels with quality of service. These play thesame role for collective operations (like scatter, gather,broadcast, all-to-all scatter-gather) as point-to-pointchannels for individual send/receive operations. Thespeci�cation of the quality of service, bu�ers and otherdata may di�er from one collective operation to an-other.Each channel is speci�ed by quality of service pa-rameters, message bu�ers, bu�er iterators and han-dlers that can be used for QoS and other errors. Inorder to simplify the application speci�cation of thechannels information, MPI/RT adopted the object-oriented design methodology of cloning and composi-tion. An application uses the hierarchy of the objectswhere an object include both an object descriptor anda handle to the \physical" object. Uncommitted ob-jects only have an object description without a handleto the actual object; these uncommitted objects col-lect the channel information for all channels. Oncethe information is collected for all the channels overthe same communicator into a channel set, a singleconstruction operation creates all the channels andchannel objects that include: channel bu�er iterators,bu�ers, handler handles, channel handles, and a chan-nel set handle. Object operations are also de�ned bythe MPI/RT standard that allow user create objects,



\shallow" duplicate committed and uncommitted ob-jects, and to query and set individual parameters ofuncommitted objects to simplify the job of channelspeci�cation de�nition. The same object methodol-ogy is used byMPI/RT for QoS objects, events objects,and handler objects for both user and error handling.The channel QoS specify timing and triggering re-quirements of either one of the real-time models thatfor which user request system guarantees, or a \softer"quality of service that does not provide an absoluteguarantee for each data transfer. The detail QoS pa-rameters of each model are presented in the Paradigmand Models section 4. Since no guarantee can be abso-lute (hardware and software faults) the channel initial-ization operation allows users to specify error handlersthat will be invoked by MPI/RT when the data trans-fer quality of service is not achieved. This is a partof the generic functionality MPI/RT provides for anapplication fault-handling.3.2 Bu�er and Queue ManagementThe bu�er set and queue management speci�ca-tion allows an implementation to minimize messagecopying and more e�cient use of memory by applica-tion and implementation. The main di�culty in bu�ermanagement speci�cation comes from the requirementthat the same speci�cation should support both im-plicit (time-driven and event-driven) triggering of mes-sage transfers and explicit message transfers which arethe most common communication paradigms today.The bu�er pool is just a collection of the memorypieces (bu�ers), where each bu�er has the same length,the same datatypes and application view layout. Thebu�ers can be allocated by the users prior to an es-tablishment of the bu�er pool or by the system at therequest of the user at the channel creation time. Thelatter allows implementation to allocate bu�ers frommemory that system uses for message transfers ratherthan just from user space.For each end of a channel user speci�es two itera-tors. One is in-iterator that speci�es the ordered col-lection of bu�ers ready to receive a message from thechannel or the user. Another is out-iterator that spec-i�es the ordered collection of �lled bu�ers ready to bedelivered to the user or the channel. For the send-ing side of the channel the bu�er circulates from in-iterator (initially), out-iterator (upon receiving mes-sage from the channel), to user (upon explicit appli-cation request, or implicitly upon time instance orprespeci�ed event), and back to the in-iterator again(upon explicit application request, or implicitly upontime instance or prespeci�ed event).The bu�er iterator is de�ned over a subset (or the

full set) of a bu�er pool. The bu�ers are managedby the implementation on behalf of the application.The bu�er iterator speci�es the maximum length ofthe queue and which bu�ers from the speci�ed bu�erpool should be put in the queue initially. Users canalso assign a label to each chosen bu�er. The labelsallows users to group bu�ers in the iterator togetherso that any bu�er with the same label can be usedfrom the group.The main parameter of the bu�er iterator is policy.The iterator policy de�nes where the next bu�er goesin or taking from the iterator. Currently, the standardspeci�es four policies:� MPIRT BUFITER FIFO speci�es a �rst-in, �rst-out policy. That is, bu�ers are taken from theiterator in the order they were put into it.� MPIRT BUFITER LIFO speci�es a last-in, �rst-out policy. That is, bu�ers are taken from theiterator in the opposite order as they were putinto it.� MPIRT BUFITER SORTED speci�es thatbu�ers are ordered from lowest label to highestlabel. Since users de�ne the labels, they canachieve any order the choose. For example,a priority scheme can be de�ned by assigninglabels in reverse order.� MPIRT BUFITER UNORDERED speci�es thatbu�ers are not ordered.The sharing iterators between multiple channels(point-to-point and collective) allows user to set uppipeline processing, data fusion between multiplechannels, load balancing, and, in general, various waysusers would like to share bu�ers between multiplechannels. To support explicit operations for messagetransfers, two operations are de�ned that allow usersto insert a bu�er into a bu�er iterator, and to removea bu�er from the bu�er iterator.3.3 HandlersThe system event handlers are a generic mechanismthat allows users and implementors to handle events,errors and other conditions that arize during an ap-plication execution. The handlers are created by theusers or the implementors and are waiting for localevents. These events can be arrival of the messageover a channel, completion of the data transfer, un-ful�lled QoS guarantee, channel errors (hardware orsoftware), bu�er iterator overow, bu�er iterator un-derow and other MPI/RT or platform-de�ned events.The handler mechanism provides the functionalityfor a request handler and a local event that will beused by a MPI/RT implementation as a trigger to



schedule the request. Request handlers are an idealmechanism for implementing the event-driven modelthat can be used by both an MPI/RT implementa-tion and an application. This functionality can beused with either MPI or MPI/RT operations' requests.To help users better manage resources, two events forthe data transfer completions over a channel (point-to-point or collective) are introduced. One event spec-i�es the local completion of the data transfer, that iswhen the message bu�er can be reused, an event whichis currently available on most platforms. The otherspeci�es the global completion of the data transfer,meaning the channel resources can be reused.The event handler can be persistently posted (e.g.,for a channel) or a one-time only posting, with thehandler function to be called within the system-wideevent triggering QoS (either time duration or priorityprovides by the operating system in the componentwhere handler reside) after the given request reachesthe event condition. This system event handler pro-vides a mechanism for scheduling (with QoS) an appli-cation handler upon the completion of a data transferoperation (implicit polled delivery). When the han-dler is called, it is passed the object handle and thecondition that causes the handler invocaction, and theinput parameters for the handler. If the condition han-dler cannot be called within the speci�ed QoS then thehandler failure handler is called.4 Paradigms and ModelsMPI/RT provides support for three applicationmessage passing paradigms. The �rst is the most com-monly used two-sided communication. It is character-ized by the application issuing data transfer operationsfor two sides of the data exchange. This paradigmis commonly called send-receive. The second one-sided communication paradigm allows only one sideof the application data exchange to issue data trans-fer operations. The most commonly used one-sidedoperations are put and get. The last data transferparadigm is zero-sided communication. It is charac-terized by the absence of any data transfer operationby either side of the data exchange. It is the respon-sibility of a communication service to move the datafrom/to prespeci�ed application memories, at prespec-i�ed times, or in response to certain events. Withthe pre-established early binding channels it is pos-sible to exploit \no-sided" communication where themiddleware (MPI/RT) does the data transfer opera-tions on behalf of the application at the predeterminedtimes [6] that are part of the channel QoS.The three real-time models presented in this articlespan the most commonly used real-time programming

models: time-driven, event-driven and priority-driven.The primary goal of all real-time MPI/RT program-ming models is to allow a real-time application suf-�cient control of the environment in which it is run-ning so that it can explicitly or implicitly schedule itsmessage-passing activities and resource usage. SinceMPI, the underpinning of MPI/RT, is designed as amessage-passing library, it cannot schedule by itself,but must depend upon the operating system and com-munication and network protocols to enforce speci�edschedules. While the time-driven and event-drivenmodels specify explicit schedules, the priority-drivenmodel speci�es implicit ordering for message passingactivities.The speci�cation of the real-time models eitherstates an application QoS requirements for data trans-fer, or triggering mechanisms for data transfer, orboth. The time-driven model parameters specifyboth triggering mechanism for data transfer (startand stop) and application QoS requirements (dead-line). The priority-drivenmodel parameters only spec-ify only QoS requirement (priority), while event-drivenmodel parameters only specify triggering events fordata transfer (start and stop). Because of the lack offull data transfer speci�cations for the last two real-time models the mixture of the models are used. Thetwo most common mixed speci�cations and event andtime-driven one, and event and priority-driven one. Inboth mixtures, the full set of QoS and triggering mech-anisms are now de�ned for a channel for persistent otone at a time data transfers.4.1 Time-Driven ParadigmAn application using time-driven MPI/RT QoS willbe able to specify time intervals to bound the resourceusage of communication operations using globally syn-chronized clock values.The existing MPI message transfer operations lacktwo parameters that we consider critical for real-timeapplications. These are a starting time of the oper-ation and a timeout for completion of the operation.The starting time of an operation and the timeoutshould be considered special cases of an event. Whilecertain applications (especially embedded ones) pre-fer an even �ner granularity of control, we sought tostrike a balance between the feasibility of an imple-mentation and what time-driven application designerswant to use. For example, there is a hard lower boundfor the starting time, but no hard upper bound on thestarting time, in the current speci�cation.One distinctive characteristic of the time-driven ap-proach to real-time message-passing is its lack of needfor queues and system bu�ers. On many systems,



this allows the removal of a hand-shake operationand results in improved performance. Since a par-allel time-driven program must globally schedule allmessage transmissions, the message receiver alwaysknows when to expect an incoming message. Thus,for reasons of e�ciency and simplicity, a time-drivenMPI/RT implementation should not do any handshak-ing (as many of the existing non-real-time implemen-tations do). It is rather up to the application to spec-ify times (for start and timeout) to ensure that thesender/receiver pairs are working in synchrony.Another distinctive feature is a potentially more ef-�cient way of using noti�cations, which can be moreminimal (shorter critical instruction path) than withother approaches. A time-driven MPI/RT applicationdoes not need to be noti�ed when a message is trans-mitted successfully and on time; instead it is noti�edonly when an error occurs (e.g., a timeout expires).An activity interval, speci�ed by a starting timeand a timeout, is an input parameter for a scheduledmessage send. The purpose of this parameter is toensure that the system resources required to satisfythis operation will not be used outside of a speci�edinterval. These resources can be narrowly interpretedto refer to the interprocess communications network.A broader interpretation would include memory ac-cesses, node busses, network interface cards, and soon. Again, while we prefer a �ner granularity of con-trol, we have tried to strike a balance between thefeasibility of an implementation and what time-drivenschedule designers want to use.The starting time and timeout are somewhat sym-metric. The starting time ensures that the resourcesneeded for a data transfer operation will be availableat the speci�ed start time. The timeout parameter, incontrast, would ideally specify the time when all re-sources required by the message transfer operation areno longer in use. That is, after the time speci�ed in thetimeout, irrespective of whether the operation com-pleted successfully or not, all system resources (physi-cal network, network interface cards, node buses, mes-sage bu�ers, etc.) have been released and can be usedfor subsequent message-passing operations.Unfortunately, in practice these guarantees cannotalways be met. The MPI/RT timeout therefore speci-�es that the message transfer should be stopped andthe calling application should be noti�ed if the op-eration has not completed by the time speci�ed bythe timeout. Since the message may be progressingthrough a multi-stage network, a time-driven MPI/RTimplementation may need to send a message from thereceiver node to the sender to indicate that the time-

out has occurred. The resulting error messages maynot be received by the timeout deadline, and they mayuse resources after the timeout. Thus the applicationmay need to reserve resources to handle such events.It should not be the responsibility of the MPI/RT im-plementation to provide this bound, since any guar-antees that can be given from the perspective of auser-level message-passing library would be too naiveto be useful. The application itself is in a much betterposition to know timing and performance details rele-vant to establishing such a bound, including details ofthe platform and knowledge of the run-time patternsof communication. Even for the application, it may beextremely di�cult to establish such bounds, especiallyif the real-time performance characteristics of the op-erating system or the underlying runtime system arepoorly known or highly variable. The situation is evenmore di�cult for collective data transfer operationsthat use time-driven model.The starting times and timeouts of the activity in-terval in time-driven MPI/RT data transfer operationcalls are speci�ed either as an absolute time instanceof the synchronized clock, or a relative to the currentsynchronized clock value. In the latter case the actualscheduling time is derived by adding the relative valueto the most recent reading of the global synchronizedclock.4.2 Event-Driven with Priority ParadigmThe event-driven model supports the speci�cationof events that either trigger or stop an application orMPI/RT data transfer operations. The event-drivenmodel provides a mechanism for scheduling any appli-cation activity with QoS, including an MPI/RT datatransfer and an application function triggered by a sys-tem, an application, or an MPI/RT event. This modelallows users to synchronize and manage MPI/RT, sys-tem, and user resources using events.The event-driven model does not have an explicitquality of service the same way as deadline providesfor time-driven model. Consequently, it is most com-monly used in conjunction with the priority-drivenmodel (that speci�es an integer priority of the chan-nel for the data transfer operations), or with the time-driven model (that speci�es the deadline as an eventrelative to the start of the data transfer) models.In MPI/RT, priorities are speci�ed per channel aspart of the the channel QoS. Because varying plat-forms may provide di�erent levels of support for mes-sage priority at the OS level and below, MPI/RT spec-i�es little about how message priorities are imple-mented. In addition to passing message priority in-formation to the appropriate OS and hardware layers,



a high-quality MPI/RT implementation will order op-erations internally according to priority information.For example, given the choice between performing twodi�erent communication operations (such as receivingone message or another), the higher priority commu-nication should be performed �rst. If the high prioritycommunication blocks or stalls, lower priority commu-nication may be initiated. Notice that in the generalcase, this implies that communication may need to bepreempted. MPI/RT makes no attempt to correlateprocess (or thread) and message priorities.The only explicit QoS for the event-driven model isthe bound required on starting time of the user activ-ity that is guarded by an event, which is more a re-quirement for the operating system where theMPI/RTimplementation is running. Additional speci�cation isunder consideration that allows users to provide thebound on the number of events over some time inter-val. This is similar to most speci�cations for aperiodictasks [4].In a nutshell, an application using event-drivenMPI/RT will be able to specify intervals guarded bythe speci�ed events in order to bound the resourceusage of communication and computation activities.Coordination is required between MPI, the operatingsystem, and communication and network protocols toenforce the schedules.Currently many applications \wait" on systemevents or user control messages to schedule a handler,that in turn schedules several application activities:functions, processes, threads, and data transfers. Themodel for the event-driven model presented in this sec-tion establishes the direct coupling between events andapplication activities without user handlers. Just asMPI provides the interface for data ow, the high levelevent-driven section provides the interface for controlow. The events can be both persistent and one-shotonly. Three types of events are speci�able: systemevents, communication events, and user events. Eachevent is identi�ed by name. A name is associated witha persistent event. The type of event indicates thetype of the resource that generated the event. Systemevents are generated by the platform environment, forexample the operating system. Communication eventsare coupled with persistent channels and are generatedby MPI/RT. User events are dedicated to the synchro-nization of the resource usage among di�erent pro-cesses (nodes) on the platform, and are generated bythe application.Events are not necessarily local to the process oreven a node. Each process registers the persistentevent names with MPI/RT that it wants MPI/RT to

\monitor" and the persistent event names that theprocess will generate.All the communication events are associated withthe MPI/RT channel usage. Currently, the speci�-cation document contains only two events associatedwith the channel: local and global communicationcompletion. In order to match these events with theguarded activities properly, MPI/RT associates a per-sistent global name with a channel. The channelname can be either provided to an implementationby the application or the implementation will assigna name to a channel. Hence, there are two persis-tent event names associated with the channel. Fora channel named � they are: � local complete and� global complete. The user can provide the channelnames and MPI/RT will assign them to the channels,or the user can request MPI/RT to provide the chan-nel names and return them as an out parameter. Thenames on both endpoints of the channel must match.User events have meaning only to the application.MPI/RT is just a mechanism to match user events andresponses as well as the mechanism for event deliveryand response triggers. An application assigns a persis-tent name to a user event and noti�es MPI/RT aboutwhich process generates this event. This is the onlyevent type that is generated by the user. The eventsof two other event types are generated by MPI/RTand the system. MPI/RT delivers all the events to theprocesses that are registered for them and then trig-gers application functions or data transfers accordingto the events that guard the activity.For any function or communication operation, anapplication can specify events that trigger its start andits termination if it is not �nished. Events \guard" aliveliness interval within which the activity can useresources. The guards use two lists. The �rst one isthe list of events whose conjuncture trigger the activ-ity. The second one is the list of events, such thatany event on the list stops the activity if it is not yet�nished by itself. For completeness an empty list isde�ned. The well-known priority-driven model can bespeci�ed using empty guards and a priority for thechannel.The event-driven guards are analogous to the time-driven model where no resources will be used by anMPI/RT data transfer operation prior to its startingtime of the operation time interval and, to the bestof the MPI/RT implementation's ability, no resourceswill be used after timeout of the operation time inter-val. The time interval of time-drivenMPI/RT containstwo events that are speci�ed by time stamps. Fromthis perspective, the time-driven model is just a sub-



set of the event-driven one. There is, however, onecritical di�erence that lies in the ability of the appli-cation to schedule its non-MPI/RT activities. For thetime-driven model, there are existing facilities to startnon-MPI/RT activities using OS timers, spin-locks andothers. These facilities and the synchronized clocksallow the application to coordinate all of its activi-ties, MPI/RT and non-MPI/RT, both local and global.There are no analogous mechanisms for the event-driven model, and event delivery/monitoring acrossthe entire platform requires application action andsu�cient communication support. This is the placewhere MPI/RT can really help.MPI/RT is responsible for delivering events andfor triggering (start or stop) an activity if it is eli-gible. Each application process registers event namesit wants MPI/RT to monitor and event names it willgenerate. Since an application can only generate userevents, only user event names that application willgenerate need to be registered with MPI/RT. MPI/RTis already aware of where and how system and com-munication events are generated. The issue of howthe events are delivered to the guarded activity is leftto the implementation. The MPI/RT standard pro-vides the functionality for an application to notify anMPI/RT implementation about application generatedevents.5 ConclusionsThe MPI/RT standard constitutes the �rst e�ortto provide a portable speci�cation for real-time mes-sage passing user requirements. It allows the domainof portable message passing high performance parallelcomputation (MPI domain) to be enlarged to includeembedded and time-critical applications. While stillnot in its �nal stage, MPI/RT clearly reveals the func-tionality missing from MPI and di�erent applicationdesign approaches that real-time applications are us-ing, and addresses these omissions.The latest draft of the standard can be found inhttp://www.mpirt.org [5]. One can join the MPI/RTstandard working group by sending a message sub-scribe mpi-realtime to majordomo@mpirt.org.AcknowledgementsThe authors would like to thank all the members ofthe MPI/RT working group without whom this workwould not been achieved.References[1] ISO/IEC 9945-1. Information technology -Portable Operating System Interface (POSIX) -Part 1: System Application Program Interface

(API) [C Language], 1996. ANSI/IEEE Std1003.1, second edition, 1996-07-12.[2] C. M. Aras, J. P. Kurose, D. S. Reeves, andH. Schulzrinne. Real-time communication inpacket-switched networks. Proceedings of theIEEE, January 1994. Special issue on Real-TimeSystems.[3] U.S. Department of Defense. Survivable Adapt-able Fiber Optic Embedded Network, MIL-STD-2204A edition, January 1994.[4] D. Ferrari. A new admission control method forreal-time communication in an Internetwork. InD. Son, editor, Advances in Real-Time Systems.Prentice Hall, 1995. Chapter 5.[5] Message Passing Interface Forum. Real-time message passing interface standard draft.http://www.mpirt.org, October 1997.[6] Richard A. Games, Arkady Kanevsky, Peter C.Krupp, and Leonard G. Monk. Real-time commu-nication scheduling for massively parallel proces-sors (position paper). In Real-Time Technologyand Applications Symposium, pages 76{85. IEEE,1995.[7] William Gropp, Ewing Lusk, and Anthony Skjel-lum. Using MPI: Portable Parallel Programmingwith the Message Passing Interface. MIT Press,1994.[8] A. Mehra, A. Indiresan, and K. G. Shin. Re-source management for real-time communication:Making theory meet practice. In Proceedings ofthe 2nd IEEE Real-Time Technology and Appli-cations, pages 130{138, 1996.[9] Object Management Group (OMG). Re-altime distributed systems communi-cation application program interface.ftp://ftp.omg.org/pub/docs/orbos/96-09-02.pdf,1996.[10] IEEE Information Technology-Portable Operat-ing System Interface (POSIX). Realtime dis-tributed systems communication application pro-gram interface. ftp://ftp.sei.cmu.edu/pub/posix,1996.[11] L. Sha, R. Rajkumar, and J. Lehoczky. Real-timecomputing using Futurebus+. IEEE Micro, June1991.


	Standardization of a Communication Middleware for High-Performance Real-Time Systems
	Recommended Citation

	tmp.1287766504.pdf.LjGMC

