View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Syracuse University Research Facility and Collaborative Environment

Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1997

Standardization of a Communication Middleware for High-
Performance Real-Time Systems

Arkady Kanevsky
The MITRE Corp., arkady@mitre.org

Anthony Skjellum
Mississippi State University, NSF ERC, tony@erc.msstate.edu

Jerrell Watts
Syracuse University, Electrical Engineering and Computer Science, jwatts@scp.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs

b Part of the Computer Sciences Commons

Recommended Citation

Kanevsky, Arkady; Skjellum, Anthony; and Watts, Jerrell, "Standardization of a Communication Middleware
for High-Performance Real-Time Systems" (1997). Electrical Engineering and Computer Science. 168.
https://surface.syr.edu/eecs/168

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://core.ac.uk/display/215669696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/168?utm_source=surface.syr.edu%2Feecs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Standardization of a Communication Middleware for

High-Performance Real-Time Systems

Arkady Kanevsky*

The MITRE Corp.
202 Burlington Rd.
Bedford, MA 01730-1420
e-mail: arkady@mitre.org

Abstract

The last several years saw an emergence of
standardization activities for real-time systems in-
cluding standardization of operating systems (se-
ries of POSIX standards [1]), of communication
for distributed (POSIX.21 [10]) and parallel systems
(MPI/RT [5]) and real-time object management (real-
time CORBA [9]).

This article describes the ongoing standardization
work and implementation of communication middle-
ware for high performance real-time computing. The
real-time message passing interface (MPI/RT) ad-
vances the non-real-time high-performance commu-
nication standard Message Passing Interface Stan-
dard (MPI), emphasizing changes that enable and
support real-time communication, and is targeted for
embedded, fault-tolerant and other real-time systems.
MPI/RT is the only communication middleware layer
that provides guaranteed quality of service and timeli-
ness for data transfers, is also targeted for real-time
CORBA to replace RPC layer and for real-time and
embedded JAVAs.

1 Introduction

Over the past several years, many standards that
address real-time issues have emerged. They address
networking: SAFENET (3], Futurebus+ [11], and ex-
tensions to FDDI, ATM, Token Ring, Token Bus, and
others [2]; communication: real-time message passing
interface (MPI/RT) and realtime distributed system

*This work was supported in part by the U.S. Air Force
Electronic Systems Center and performed under MITRE MOIE
Project 03977450 of contract F19628-94-C-0001, managed by
Rome Laboratory/C3CB.

fThis work was supported in part by the U.S. Air Force
Rome Laboratory under DARPA Order D350 and E339, con-
tracts F30602-95-1-0036 and F30602-96-1-0329.

Anthony Skjellum!
Mississippi State University
NSF ERC, 2 Research Blvd.

Starkville, M'S 39759
e-mail: tony@erc.msstate.edu

Jerrell Watts

EECS Dept./2-120 CST,
Syracuse University
Syracuse, NY 13244-4100
e-mail: jwatts@scp.syr.edu

communication (POSIX.21); operating systems: real-
time POSIX (POSIX.1b, POSIX.lc [1], POSIX.1d,
and POSIX.1j); and realtime object management (re-
altime CORBA). This article presents MPI/RT, the
real-time message passing interface, for high perfor-
mance applications.

The approved MPI-1 standard provides point-to-
point communication, collective operations, process
groups and communication domains, process topolo-
gies, environment management and inquiry [7], formu-
lated within language-independent specifications, to-
gether with C and FORTRAN API bindings. MPI-2,
which was standardized and published in June 1997,
provides additional functionality over MPI-1 in the ar-
eas of process creation and management, one-sided
communication, collective operations, external inter-
faces and I/0. It also provides a C++ binding for
MPI-1 and MPI-2 functionality.

By way of contrast, the main goal of MPI/RT is
to provide message-passing functionality with qual-
ity of service (QoS) for development of real-time
applications with performance portability. The pa-
rameters of QoS include a variety of fault-tolerant
and real-time application requirements. Since many
high-performance real-time applications would like to
take advantage of MPI functionality but require tim-
ing guarantees from the message-passing layer, the
MPI/RT working group was created with the ob-
jective of providing an appropriately designed ap-
plication programming interface (API). MPI/RT fol-
lows MPI’s underlying assumptions of reliable and or-
dered data transmission; programming assumptions,
that are common to a majority of parallel environ-
ments and platforms that are targeted by MPI/RT.
MPI/RT adds greater predictability and schedulabil-
ity to message-passing programming, while modifying

and extending the useful concepts embodied in the
original standard.

The rest of the paper is organized as follows. Sec-
tion 2 presents the underlying philosophy of MPI/RT.
Section 3 presents the common underlying layer for all
real-time models including buffer and queue manage-
ment abstraction, channel management abstraction,
and event handler abstraction. Section 4 presents
communication paradigms and real-time models, and
section 5 presents the current status of the MPI/RT
standard and future plans.

2 MPI/RT Philosophy

Currently, application developers must become ex-
perts on a platform before they can take advantage of
its message-passing facilities in order to achieve the de-
sired performance. The challenges are even greater for
developers of real-time applications that are required
to satisfy timing constraints and proper interaction
with the environment independent of the computing
platform. The application design is often so dependent
on the computing platform that it requires complete
redesign when ported to a different platform or tar-
geted for the next-generation platform.

This approach hinders the portability of an appli-
cation to a different platform or upgrades on the cur-
rently used one. The current philosophy is that the
platform provides the user with an API and places
the burden on the application developers to satisfy
timing and quality of service requirements. This phi-
losophy is contradictory to the “portability viewpoint”
and MPI/RT has consequently taken the opposite ap-
proach. Under MPI/RT, the user provides detailed
information about timing constraints of application
modules and the interactions between them including
message-passing data and control message exchanges.
The user’s requests are analyzed by the platform, in-
cluding middleware of which MPI/RT is a part, and
either satisfies them with user required QoS or states
that it cannot satisfy the user requested QoS. The de-
nial of a request usually results from a lack of platform
resources.

MPI/RT supports the view that middleware and
platform designers have greater insight into how
efficiently to provide QoS on the platform given
enough information about the application. With this
approach application programmers can concentrate
on improving application code and let middleware
providers concentrate on providing the best QoS avail-
able on the platform. Application programmers are
not required to reveal all the information to MPI/RT
and can take it upon themselves to provide some or all
QoS. It is quite clear that the exact boundary of the

responsibility for providing QoS for the user between
the platform (including system software and middle-
ware) and the application is still unknown, but the
same trends that lead to the development of higher
level languages, operating systems, and middleware,
are pushing the development of MPI/RT.

In order to provide the quality of service guaran-
tees for communication, an MPI/RT implementation
may need to address a difficult scheduling problem.
While there is a lot of work going on in CPU and net-
work real-time scheduling, these results in many cases
are insufficient to provide guarantees for communica-
tion. The number of resources that are involved in
communication is rather large and is different from
one platform to another. These resources can have
their own schedulers that may use completely differ-
ent techniques, like prioritities for CPUs, round robin
for network switches, and interrupts and signals for
network interface chips.

However, it is hard, if not impossible, for the ap-
plication programmer to coordinate the use of these
resources in order to establish user-required quality of
service even with the complete knowledge of the appli-
cation. Furthermore, even if it was done successfully
on one platform, it cannot be ported to a different
platform because of the differences between platform
architectures. MPI/RT implementors have a better
chance of meeting the user’s quality of service require-
ments because of their knowledge of their platform,
since for most cases they work closely with or are part
of the same organization that designed and built the
platform.

In order to improve the chance for satisfying user
quality of service requests, MPI/RT recommends early
binding. Many of the highly demanding, real-time par-
allel applications are characterized by the periodic na-
ture of the environment outside the computing plat-
form, and for these applications establishing communi-
cation channels with QoS (see section 3) promises the
greatest benefits. Using application information about
the communication patterns and QoS requirements,
MPI/RT implementations can allocate resources using
an algorithm and run-time scheduling criteria that are
most suitable for the platform prior to the actual data
transfers. This allows an implementation to minimize
the critical execution path for message passing and the
overhead of MPI/RT implementation, so the message
passing performance using MPI/RT will come close to
the platform native message passing performance and,
hence, the so-called “price of portability” will be min-
imized.

3 Common Functionality

Due to the lack of space we just outline the sup-
porting functionality without any details (for details
see [5]). The supporting functionality contains a syn-
chronized clock definition with detail specifications for
resolution, drift, skew, accuracy and access time pa-
rameters; an instrumentation for MPI/RT and user
functionality, and a fault handling.

3.1 Channels

In MPI/RT, persistent channels offer the function-
ality of a virtual channel [4, 8] within the framework
of the MPI standard. Motivations for having virtual
channels in MPI/RT include: ability to exploit persis-
tent communications that are common for high per-
formance real-time applications, deadlock and livelock
avoidance, virtual channels guarantees for properties
critical for timing correctness, and more efficient re-
source usage by the implementations.

MPI/RT, as a specification and programming nota-
tion, encourages early binding in order for the imple-
mentations to establish user-required quality of ser-
vice, while providing both early and late bindings for
data transfer operations. The initialization of the
channels collectively provides MPI/RT with the big
picture of application-desired, point-to-point channels
and their respective QoSs. The early knowledge of
all the point-to-point channels allows MPI/RT imple-
mentation to exploit potential flexibility in satisfying
individual channels QoS rather than establishing each
channel individually and making arbitrary decisions
in the process, that may be detrimental to MPI/RT’s
ability to satisfy all channels QoSs. This approach
is not required to be done prior to any data transfer
operations, but is strongly encouraged to maximize
MPI/RT’s potential performance. The channel estab-
lishment operations as well as channel modifications
and deletions, can be used at any time, but these op-
erations are expensive and it is harder for the imple-
mentation to satisfy later requests and to optimize re-
source usage, especially if these requests are relatively
frequent.

Following the MPI principle that all communica-
tions are done over a communicator (clique or bi-
partite group formulation), group-oriented MPI/RT
channel initialization operations are done over a com-
municator. The same application process can partic-
ipate in more than one communicator group and by
default all processes are members of one communica-
tor MPT_COMM_WORLD. Hence, a process can participate
in channel initialization for more than one commu-
nicator. The MPI/RT standard is silent on how the
above established channels are mapped on the net-

work channels. This is left to the implementation and
is highly dependent on platform architecture, network
topologies, routing information, etc. The solutions
that shared memory platforms would like to use, may
not be applicable to the distributed memory platforms
and vice versa.

While suppressing the entire syntax of the collec-
tive point-to-point channel initialization operations
for brevity, we would like to stress several parame-
ters that carry semantic information. First, the oper-
ations allow specification of information for all point-
to-point channels over a single communicator the pro-
cess would like to use. This includes several point-
to-point channels between the same pair of processes.
Using this specification, an application can establish
any virtual topology between processes. The opera-
tion returns a request handle for each channel. Instead
of providing separate operations for creation, modifi-
cation and destruction of the channels, MPI/RT has
a single operation that combines all channel manage-
ment functionality into one atomic operation. This
allows application not to destroy existing channels if
new/modified channels cannot be established with the
requested QoS, and hence, preserve existing channels
and resources they are using.

MPI/RT also provides functionality to establish col-
lective channels with quality of service. These play the
same role for collective operations (like scatter, gather,
broadcast, all-to-all scatter-gather) as point-to-point
channels for individual send/receive operations. The
specification of the quality of service, buffers and other
data may differ from one collective operation to an-
other.

Each channel is specified by quality of service pa-
rameters, message buffers, buffer iterators and han-
dlers that can be used for QoS and other errors. In
order to simplify the application specification of the
channels information, MPI/RT adopted the object-
oriented design methodology of cloning and composi-
tion. An application uses the hierarchy of the objects
where an object include both an object descriptor and
a handle to the “physical” object. Uncommitted ob-
jects only have an object description without a handle
to the actual object; these uncommitted objects col-
lect the channel information for all channels. Once
the information is collected for all the channels over
the same communicator into a channel set, a single
construction operation creates all the channels and
channel objects that include: channel buffer iterators,
buffers, handler handles, channel handles, and a chan-
nel set handle. Object operations are also defined by
the MPI/RT standard that allow user create objects,

“shallow” duplicate committed and uncommitted ob-
jects, and to query and set individual parameters of
uncommitted objects to simplify the job of channel
specification definition. The same object methodol-
ogy is used by MPI/RT for QoS objects, events objects,
and handler objects for both user and error handling.

The channel QoS specify timing and triggering re-
quirements of either one of the real-time models that
for which user request system guarantees, or a “softer”
quality of service that does not provide an absolute
guarantee for each data transfer. The detail QoS pa-
rameters of each model are presented in the Paradigm
and Models section 4. Since no guarantee can be abso-
lute (hardware and software faults) the channel initial-
ization operation allows users to specify error handlers
that will be invoked by MPI/RT when the data trans-
fer quality of service is not achieved. This is a part
of the generic functionality MPI/RT provides for an
application fault-handling.

3.2 Buffer and Queue Management

The buffer set and queue management specifica-
tion allows an implementation to minimize message
copying and more efficient use of memory by applica-
tion and implementation. The main difficulty in buffer
management specification comes from the requirement
that the same specification should support both im-
plicit (time-driven and event-driven) triggering of mes-
sage transfers and explicit message transfers which are
the most common communication paradigms today.

The buffer pool is just a collection of the memory
pieces (buffers), where each buffer has the same length,
the same datatypes and application view layout. The
buffers can be allocated by the users prior to an es-
tablishment of the buffer pool or by the system at the
request of the user at the channel creation time. The
latter allows implementation to allocate buffers from
memory that system uses for message transfers rather
than just from user space.

For each end of a channel user specifies two itera-
tors. One is in-iterator that specifies the ordered col-
lection of buffers ready to receive a message from the
channel or the user. Another is out-iterator that spec-
ifies the ordered collection of filled buffers ready to be
delivered to the user or the channel. For the send-
ing side of the channel the buffer circulates from in-
iterator (initially), out-iterator (upon receiving mes-
sage from the channel), to user (upon explicit appli-
cation request, or implicitly upon time instance or
prespecified event), and back to the in-iterator again
(upon explicit application request, or implicitly upon
time instance or prespecified event).

The buffer iterator is defined over a subset (or the

full set) of a buffer pool. The buffers are managed
by the implementation on behalf of the application.
The buffer iterator specifies the maximum length of
the queue and which buffers from the specified buffer
pool should be put in the queue initially. Users can
also assign a label to each chosen buffer. The labels
allows users to group buffers in the iterator together
so that any buffer with the same label can be used
from the group.

The main parameter of the buffer iterator is policy.
The iterator policy defines where the next buffer goes
in or taking from the iterator. Currently, the standard
specifies four policies:

e MPIRT_BUFITER_FIFO specifies a first-in, first-
out policy. That is, buffers are taken from the
iterator in the order they were put into it.

e MPIRT_BUFITER_LIFO specifies a last-in, first-
out policy. That is, buffers are taken from the
iterator in the opposite order as they were put
into it.

e MPIRT_BUFITER_SORTED specifies that
buffers are ordered from lowest label to highest
label. Since users define the labels, they can
achieve any order the choose. For example,
a priority scheme can be defined by assigning
labels in reverse order.

e MPIRT BUFITER_-UNORDERED specifies that
buffers are not ordered.

The sharing iterators between multiple channels
(point-to-point and collective) allows user to set up
pipeline processing, data fusion between multiple
channels, load balancing, and, in general, various ways
users would like to share buffers between multiple
channels. To support explicit operations for message
transfers, two operations are defined that allow users
to insert a buffer into a buffer iterator, and to remove
a buffer from the buffer iterator.

3.3 Handlers

The system event handlers are a generic mechanism
that allows users and implementors to handle events,
errors and other conditions that arize during an ap-
plication execution. The handlers are created by the
users or the implementors and are waiting for local
events. These events can be arrival of the message
over a channel, completion of the data transfer, un-
fulfilled QoS guarantee, channel errors (hardware or
software), buffer iterator overflow, buffer iterator un-
derflow and other MPI/RT or platform-defined events.

The handler mechanism provides the functionality
for a request handler and a local event that will be
used by a MPI/RT implementation as a trigger to

schedule the request. Request handlers are an ideal
mechanism for implementing the event-driven model
that can be used by both an MPI/RT implementa-
tion and an application. This functionality can be
used with either MP| or MPI/RT operations’ requests.
To help users better manage resources, two events for
the data transfer completions over a channel (point-
to-point or collective) are introduced. One event spec-
ifies the local completion of the data transfer, that is
when the message buffer can be reused, an event which
is currently available on most platforms. The other
specifies the global completion of the data transfer,
meaning the channel resources can be reused.

The event handler can be persistently posted (e.g.,
for a channel) or a one-time only posting, with the
handler function to be called within the system-wide
event triggering QoS (either time duration or priority
provides by the operating system in the component
where handler reside) after the given request reaches
the event condition. This system event handler pro-
vides a mechanism for scheduling (with QoS) an appli-
cation handler upon the completion of a data transfer
operation (implicit polled delivery). When the han-
dler is called, it is passed the object handle and the
condition that causes the handler invocaction, and the
input parameters for the handler. If the condition han-
dler cannot be called within the specified QoS then the
handler failure handler is called.

4 Paradigms and Models

MPI/RT provides support for three application
message passing paradigms. The first is the most com-
monly used two-sided communication. It is character-
ized by the application issuing data transfer operations
for two sides of the data exchange. This paradigm
is commonly called send-receive. The second omne-
stded communication paradigm allows only one side
of the application data exchange to issue data trans-
fer operations. The most commonly used one-sided
operations are put and get. The last data transfer
paradigm is zero-sided communication. It is charac-
terized by the absence of any data transfer operation
by either side of the data exchange. It is the respon-
sibility of a communication service to move the data
from /to prespecified application memories, at prespec-
ified times, or in response to certain events. With
the pre-established early binding channels it is pos-
sible to exploit “no-sided” communication where the
middleware (MPI/RT) does the data transfer opera-
tions on behalf of the application at the predetermined
times [6] that are part of the channel QoS.

The three real-time models presented in this article
span the most commonly used real-time programming

models: time-driven, event-driven and priority-driven.
The primary goal of all real-time MPI/RT program-
ming models is to allow a real-time application suf-
ficient control of the environment in which it is run-
ning so that it can explicitly or implicitly schedule its
message-passing activities and resource usage. Since
MPI, the underpinning of MPI/RT, is designed as a
message-passing library, it cannot schedule by itself,
but must depend upon the operating system and com-
munication and network protocols to enforce specified
schedules. While the time-driven and event-driven
models specify explicit schedules, the priority-driven
model specifies implicit ordering for message passing
activities.

The specification of the real-time models either
states an application QoS requirements for data trans-
fer, or triggering mechanisms for data transfer, or
both. The time-driven model parameters specify
both triggering mechanism for data transfer (start
and stop) and application QoS requirements (dead-
line). The priority-driven model parameters only spec-
ify only QoS requirement (priority), while event-driven
model parameters only specify triggering events for
data transfer (start and stop). Because of the lack of
full data transfer specifications for the last two real-
time models the mixture of the models are used. The
two most common mixed specifications and event and
time-driven one, and event and priority-driven one. In
both mixtures, the full set of QoS and triggering mech-
anisms are now defined for a channel for persistent ot
one at a time data transfers.

4.1 Time-Driven Paradigm

An application using time-driven MPI/RT QoS will
be able to specify time intervals to bound the resource
usage of communication operations using globally syn-
chronized clock values.

The existing MPI message transfer operations lack
two parameters that we consider critical for real-time
applications. These are a starting time of the oper-
ation and a timeout for completion of the operation.
The starting time of an operation and the timeout
should be considered special cases of an event. While
certain applications (especially embedded ones) pre-
fer an even finer granularity of control, we sought to
strike a balance between the feasibility of an imple-
mentation and what time-driven application designers
want to use. For example, there is a hard lower bound
for the starting time, but no hard upper bound on the
starting time, in the current specification.

One distinctive characteristic of the time-driven ap-
proach to real-time message-passing is its lack of need
for queues and system buffers. On many systems,

this allows the removal of a hand-shake operation
and results in improved performance. Since a par-
allel time-driven program must globally schedule all
message transmissions, the message receiver always
knows when to expect an incoming message. Thus,
for reasons of efficiency and simplicity, a time-driven
MPI1/RT implementation should not do any handshak-
ing (as many of the existing non-real-time implemen-
tations do). It is rather up to the application to spec-
ify times (for start and timeout) to ensure that the
sender /receiver pairs are working in synchrony.

Another distinctive feature is a potentially more ef-
ficient way of using notifications, which can be more
minimal (shorter critical instruction path) than with
other approaches. A time-driven MPI/RT application
does not need to be notified when a message is trans-
mitted successfully and on time; instead it is notified
only when an error occurs (e.g., a timeout expires).

An activity interval, specified by a starting time
and a timeout, is an input parameter for a scheduled
message send. The purpose of this parameter is to
ensure that the system resources required to satisfy
this operation will not be used outside of a specified
interval. These resources can be narrowly interpreted
to refer to the interprocess communications network.
A broader interpretation would include memory ac-
cesses, node busses, network interface cards, and so
on. Again, while we prefer a finer granularity of con-
trol, we have tried to strike a balance between the
feasibility of an implementation and what time-driven
schedule designers want to use.

The starting time and timeout are somewhat sym-
metric. The starting time ensures that the resources
needed for a data transfer operation will be available
at the specified start time. The timeout parameter, in
contrast, would ideally specify the time when all re-
sources required by the message transfer operation are
no longer in use. That is, after the time specified in the
timeout, irrespective of whether the operation com-
pleted successfully or not, all system resources (physi-
cal network, network interface cards, node buses, mes-
sage buffers, etc.) have been released and can be used
for subsequent message-passing operations.

Unfortunately, in practice these guarantees cannot
always be met. The MPI/RT timeout therefore speci-
fies that the message transfer should be stopped and
the calling application should be notified if the op-
eration has not completed by the time specified by
the timeout. Since the message may be progressing
through a multi-stage network, a time-driven MPI/RT
implementation may need to send a message from the
receiver node to the sender to indicate that the time-

out has occurred. The resulting error messages may
not be received by the timeout deadline, and they may
use resources after the timeout. Thus the application
may need to reserve resources to handle such events.
It should not be the respousibility of the MPI/RT im-
plementation to provide this bound, since any guar-
antees that can be given from the perspective of a
user-level message-passing library would be too naive
to be useful. The application itself is in a much better
position to know timing and performance details rele-
vant to establishing such a bound, including details of
the platform and knowledge of the run-time patterns
of communication. Even for the application, it may be
extremely difficult to establish such bounds, especially
if the real-time performance characteristics of the op-
erating system or the underlying runtime system are
poorly known or highly variable. The situation is even
more difficult for collective data transfer operations
that use time-driven model.

The starting times and timeouts of the activity in-
terval in time-driven MPI/RT data transfer operation
calls are specified either as an absolute time instance
of the synchronized clock, or a relative to the current
synchronized clock value. In the latter case the actual
scheduling time is derived by adding the relative value
to the most recent reading of the global synchronized
clock.

4.2 Event-Driven with Priority Paradigm

The event-driven model supports the specification
of events that either trigger or stop an application or
MPI/RT data transfer operations. The event-driven
model provides a mechanism for scheduling any appli-
cation activity with QoS, including an MPI/RT data
transfer and an application function triggered by a sys-
tem, an application, or an MPI/RT event. This model
allows users to synchronize and manage MPI/RT, sys-
tem, and user resources using events.

The event-driven model does not have an explicit
quality of service the same way as deadline provides
for time-driven model. Consequently, it is most com-
monly used in conjunction with the priority-driven
model (that specifies an integer priority of the chan-
nel for the data transfer operations), or with the time-
driven model (that specifies the deadline as an event
relative to the start of the data transfer) models.

In MPI/RT, priorities are specified per channel as
part of the the channel QoS. Because varying plat-
forms may provide different levels of support for mes-
sage priority at the OS level and below, MPI/RT spec-
ifies little about how message priorities are imple-
mented. In addition to passing message priority in-
formation to the appropriate OS and hardware layers,

a high-quality MPI/RT implementation will order op-
erations internally according to priority information.
For example, given the choice between performing two
different communication operations (such as receiving
one message or another), the higher priority commu-
nication should be performed first. If the high priority
communication blocks or stalls, lower priority commu-
nication may be initiated. Notice that in the general
case, this implies that communication may need to be
preempted. MPI/RT makes no attempt to correlate
process (or thread) and message priorities.

The only explicit QoS for the event-driven model is
the bound required on starting time of the user activ-
ity that is guarded by an event, which is more a re-
quirement for the operating system where the MPI/RT
implementation is running. Additional specification is
under consideration that allows users to provide the
bound on the number of events over some time inter-
val. This is similar to most specifications for aperiodic
tasks [4].

In a nutshell, an application using event-driven
MPI/RT will be able to specify intervals guarded by
the specified events in order to bound the resource
usage of communication and computation activities.
Coordination is required between MPI, the operating
system, and communication and network protocols to
enforce the schedules.

Currently many applications “wait” on system
events or user control messages to schedule a handler,
that in turn schedules several application activities:
functions, processes, threads, and data transfers. The
model for the event-driven model presented in this sec-
tion establishes the direct coupling between events and
application activities without user handlers. Just as
MPI provides the interface for data flow, the high level
event-driven section provides the interface for control
flow. The events can be both persistent and one-shot
only. Three types of events are specifiable: system
events, communication events, and user events. Each
event is identified by name. A name is associated with
a persistent event. The type of event indicates the
type of the resource that generated the event. System
events are generated by the platform environment, for
example the operating system. Communication events
are coupled with persistent channels and are generated
by MPI/RT. User events are dedicated to the synchro-
nization of the resource usage among different pro-
cesses (nodes) on the platform, and are generated by
the application.

Events are not necessarily local to the process or

even a node. Each process registers the persistent
event names with MPI/RT that it wants MPI/RT to

“monitor” and the persistent event names that the
process will generate.

All the communication events are associated with
the MPI/RT channel usage. Currently, the specifi-
cation document contains only two events associated
with the channel: local and global communication
completion. In order to match these events with the
guarded activities properly, MPI/RT associates a per-
sistent global name with a channel. The channel
name can be either provided to an implementation
by the application or the implementation will assign
a name to a channel. Hence, there are two persis-
tent event names associated with the channel. For
a channel named « they are: a_local_complete and
a_global_complete. The user can provide the channel
names and MPI/RT will assign them to the channels,
or the user can request MPI/RT to provide the chan-
nel names and return them as an out parameter. The
names on both endpoints of the channel must match.

User events have meaning only to the application.
MPI/RT is just a mechanism to match user events and
responses as well as the mechanism for event delivery
and response triggers. An application assigns a persis-
tent name to a user event and notifies MPI/RT about
which process generates this event. This is the only
event type that is generated by the user. The events
of two other event types are generated by MPI/RT
and the system. MPI/RT delivers all the events to the
processes that are registered for them and then trig-
gers application functions or data transfers according
to the events that guard the activity.

For any function or communication operation, an
application can specify events that trigger its start and
its termination if it is not finished. Events “guard” a
liveliness interval within which the activity can use
resources. The guards use two lists. The first one is
the list of events whose conjuncture trigger the activ-
ity. The second one is the list of events, such that
any event on the list stops the activity if it is not yet
finished by itself. For completeness an empty list is
defined. The well-known priority-driven model can be
specified using empty guards and a priority for the
channel.

The event-driven guards are analogous to the time-
driven model where no resources will be used by an
MPI/RT data transfer operation prior to its starting
time of the operation time interval and, to the best
of the MPI/RT implementation’s ability, no resources
will be used after timeout of the operation time inter-
val. The time interval of time-driven MPI/RT contains
two events that are specified by time stamps. From
this perspective, the time-driven model is just a sub-

set of the event-driven one. There is, however, one
critical difference that lies in the ability of the appli-
cation to schedule its non-MPI/RT activities. For the
time-driven model, there are existing facilities to start
non-MPI/RT activities using OS timers, spin-locks and
others. These facilities and the synchronized clocks
allow the application to coordinate all of its activi-
ties, MPI/RT and non-MPI/RT, both local and global.
There are no analogous mechanisms for the event-
driven model, and event delivery/monitoring across
the entire platform requires application action and
sufficient communication support. This is the place
where MPI/RT can really help.

MPI/RT is responsible for delivering events and
for triggering (start or stop) an activity if it is eli-
gible. Each application process registers event names
it wants MPI/RT to monitor and event names it will
generate. Since an application can only generate user
events, only user event names that application will
generate need to be registered with MPI/RT. MPI/RT
is already aware of where and how system and com-
munication events are generated. The issue of how
the events are delivered to the guarded activity is left
to the implementation. The MPI/RT standard pro-
vides the functionality for an application to notify an
MPI/RT implementation about application generated
events.

5 Conclusions

The MPI/RT standard constitutes the first effort
to provide a portable specification for real-time mes-
sage passing user requirements. It allows the domain
of portable message passing high performance parallel
computation (MPI domain) to be enlarged to include
embedded and time-critical applications. While still
not in its final stage, MPI/RT clearly reveals the func-
tionality missing from MPI and different application
design approaches that real-time applications are us-
ing, and addresses these omissions.

The latest draft of the standard can be found in
http://www.mpirt.org [5]. One can join the MPI/RT
standard working group by sending a message sub-
scribe mpi-realtime to majordomo@mpirt.org.

Acknowledgements

The authors would like to thank all the members of
the MPI/RT working group without whom this work
would not been achieved.

References

[1] ISO/IEC 9945-1. Information technology -
Portable Operating System Interface (POSIX) -
Part 1: System Application Program Interface

[10]

[11]

(API) [C Language/, 1996. ANSI/IEEE Std
1003.1, second edition, 1996-07-12.

C. M. Aras, J. P. Kurose, D. S. Reeves, and
H. Schulzrinne. Real-time communication in
packet-switched networks. Proceedings of the
IEEE, January 1994. Special issue on Real-Time
Systems.

U.S. Department of Defense. Survivable Adapt-
able Fiber Optic Embedded Network, MIL-STD-
2204A edition, January 1994.

D. Ferrari. A new admission control method for
real-time communication in an Internetwork. In
D. Son, editor, Advances in Real-Time Systems.
Prentice Hall, 1995. Chapter 5.

Message Passing Interface Forum. Real-
time message passing interface standard draft.
http://www.mpirt.org, October 1997.

Richard A. Games, Arkady Kanevsky, Peter C.
Krupp, and Leonard G. Monk. Real-time commu-
nication scheduling for massively parallel proces-
sors (position paper). In Real-Time Technology
and Applications Symposium, pages 76-85. IEEE,
1995.

William Gropp, Ewing Lusk, and Anthony Skjel-
lum. Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press,
1994.

A. Mehra, A. Indiresan, and K. G. Shin. Re-
source management for real-time communication:
Making theory meet practice. In Proceedings of
the 2nd IEEE Real-Time Technology and Appli-
cations, pages 130 138, 1996.

Object Management Group (OMG). Re-
altime distributed systems communi-
cation application program interface.

ftp://ftp.omg.org/pub/docs/orbos/96-09-02.pdf,
1996.

IEEE Information Technology-Portable Operat-
ing System Interface (POSIX). Realtime dis-
tributed systems communication application pro-
gram interface. ftp://ftp.sei.comu.edu/pub/posix,
1996.

L. Sha, R. Rajkumar, and J. Lehoczky. Real-time
computing using Futurebus+. IEEE Micro, June
1991.

	Standardization of a Communication Middleware for High-Performance Real-Time Systems
	Recommended Citation

	tmp.1287766504.pdf.LjGMC

