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THERMIONIC EMISSION MODEL FOR INTERFACE EFFECTS ON THE OPEN-CIRCUIT VOLTAGE 

OF AMORPHOUS SILICON BASED SOLAR CELLS 

E. A. Schiff 

Department of Physics, Syracuse University, Syracuse NY 13244-1130 U.S.A. 

 

ABSTRACT 

We present computer modeling for effects of the p/i 
interface upon the open-circuit voltage VOC in amorphous 
silicon based pin solar cells. We show that the modeling is 
consistent with measurements on the intensity-
dependence for the interface effect, and we present an 
interpretation for the modeling based on thermionic 
emission of electrons over the electrostatic barrier at the 
p/i interface. We present additional modeling of the 
relation of VOC with the intrinsic layer bandgap EG. The 
experimental correlation for optimized cells is 
VOC = (EG/e)-0.79. The correlation is simply explained if 
VOC in these cells is determined by the intrinsic layer, and 
in particular by the (variable) bandgap and by a non-
varying valence bandtail width (about 48 meV) of this 
layer. 

 

INTRODUCTION 

In Fig. 1 we have illustrated results on the correlation 
of VOC with the bandgap of the intrinsic layer for 
amorphous silicon based, pin solar cells from United Solar 
Systems Corp. [1-5]. We also illustrate a fitting line 

( ) 79.0−= eEV GOC V. The data are strongly biased – 
they represent the best, “optimized” cells obtainable at a 
particular time. The span of devices represented in this 
figure is enormous. The intrinsic layers included 
germanium-silicon alloys deposited under quite variable 
conditions. 

It is thus remarkable that the correlation is so simple. 
The correlation also gains significance because VOC varies 
rather little with the thickness of the intrinsic layer or with 
the state of light-soaking of the sample. 

The simple correlation ( ) 79.0−= eEV GOC  V 
demands an equally simple explanation. Such an 
explanation would also permit us to assess whether 
present values of VOC might be improved by further 
optimization of these cells. The fact that the slope of the 
linear fitting to VOC vs. EG/e is unity suggests that, for 
these cells, there is relatively little influence of the doped 
layers and interfaces on VOC; one may say that these cells 
have reached the intrinsic limit where VOC is determined by 
the properties of the intrinsic layer. It further appears that 
the offset of 0.79 V is determined by the width of the 
exponential bandtail of the valence band. This valence 
bandtail width doesn’t vary much with bandgap, and is 

reported to be 48 meV in several experiments with a-Si:H 
and a-SiGe:H [6,7]. 

Objections may be raised to this highly simplified 
viewpoint, and we are neglecting several well established 
effects. In this paper we delve into just one of these 
effects, which is the influence of the p/i interface upon VOC. 
Open-circuit voltages lower than those illustrated in  Fig. 1 
are found in cells with sub-optimal p/i interfaces. By 
modeling these effects, we hope to better understand 
them and thus to ascertain the extent to which the p/i 
interface is affecting it. 

p/i INTERFACE EFFECTS 

Perhaps the best-known evidence for significant 
interface effects upon VOC is the observation that improved 
p-layers and p/i interface regions leads to increases in VOC 
[8,9,10]. This type of information is not, however, well-
suited for modeling studies. In recent years, the 
Pennsylvania State University (PSU) group has 
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Fig. 1: Correlation of the open-circuit voltage with the 
optical bandgap for a-Si:H and a-SiGe:H based solar cells. 
MRS92-[3], PVSEC7-[4], MRS94-[2], APL93-[5]. 
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championed the intensity-dependence of VOC for its 
sensitivity to interface and light-soaking effects [11]. 

Some of the PSU measurements are replotted in Fig. 
2 (upper panel), which illustrates VOC vs. log(JSC) for two 
pin solar cells with comparable intrinsic (i) layers but 
different p/i interfaces. The difference between the two 
samples depends only logarithmically upon intensity. It is 
noteworthy that defective interfaces have a larger effect on 
VOC for higher intensities. To the best of our knowledge, 
this fairly simple aspect of interface effects on VOC has not 
been studied prior to the PSU work, and we don’t 
presently know whether the behavior in Fig. 2 is universal 
[12]. 

In the lower panel, the “experimental” line is the 
difference in the VOC fitting lines for the two samples. The 
curve labeled “simulation” is based on calculations using 
the AMPS PC computer program [13]. The intrinsic layer 

parameters are described elsewhere [14], but we do note 
here that deep levels (dangling bonds, etc.) were not 
included. VOC was calculated for two p-layers (energy gap 
1.96 eV) with Fermi energies EF that were 1.68 eV and 
1.43 eV below the conduction bandedge EC [15]. The 
larger value of EC-EF yields a fairly ideal p-layer, and for 
this simulation VOC was close to its intrinsic limit for the 
entire range of intensities. The lower value is less ideal, 
and was chosen so that the interface loss in VOC is close 
to the experimental value at 10-2 A/cm2. The intensity-
dependences of the experimental and simulation curves 
coincide fairly well without further parameter adjustments. 

One difficulty with simulation work is that one can 
conceive of many different implementations of either the 
p/i interface, and there is very little experimental data with 
which to constrain the choice of models. It is therefore 
important to have some idea as to the universality of a 
behavior such as we have illustrated in Fig. 2. Based on 
our modeling experiments thus far, it appears that 
interface loss of VOC is primarily due to thermionic 
emission of electrons from the quasi-Fermi energy in the 
intrinsic layer, over the barrier at the p/i interface, and into 
the p-layer where they immediately recombine [14]. 

This thermionic emission perspective is helpful 
because it suggests that most of the interface loss can be 
attributed to the barrier height which limits the thermionic 
process. A full description of this viewpoint cannot be 
given here. In Fig. 3, I have illustrated the profiles for the 
conduction bandedge EC and the electron quasi-Fermi 
level EFe under open-circuit conditions. The same 
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Fig. 2: (upper) Open-circuit voltage as a function of white-
light intensity for two pin cells with comparable i-layers and 
differing p-layers; the short-circuit current JSC is a 
surrogate for intensity. Solar (AM 1.5) illumination 
corresponds roughly to 10-2 A/cm2. After Pearce, et al. 
[11]. (lower) Interface effect on VOC as a function of 
illumination intensity. Experimental data are from the upper 
panel. The simulation is described in the text, and used a 
p-layer Fermi energy that was 1.43 eV below the 
conduction bandedge EC to model the “defective” p/i 
interface. 
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Fig. 3: Calculated profiles for the conduction bandedge EC 
and the electron quasi-Fermi level EFe in a pin solar cell 
under open-circuit conditions. Results are shown for two 
different illumination intensities. An electron current flows 
across the p/i interface at the left; the current is due to 
thermionic emission over the barrier W. 
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parameter set was used as for the simulations in Fig. 2. 
Two different illumination intensities are shown. 

For both intensities, the electron quasi-Fermi energy 
EFe is essentially constant across the cell. There is 
nonetheless a current of electrons traveling from right to 
left across the p/i interface. Numerical study of this current 
density shows that it may be interpreted as thermionic 
emission over the barrier W illustrated in the figure. The 
exactly matching countercurrent of holes across the p/i 
interface is the origin of interface losses to VOC. The fact 
that the barrier W increases strongly as the intensity falls 
means that the thermionic emission current falls strongly, 
and this is the fundamental reason that interface losses 
are lower at lower intensities [16]. 

DISCUSSION 

In Fig. 4 we illustrate the model predictions for how 
VOC  (under solar illumination) depends on the intrinsic 
layer bandgap for the two different p-layers. The curve 
labeled “fit to data” is copied from Fig. 1. We first discuss 
the curve labeled “Simulation (ideal p/i).” This simulation 
used the p-layer parameter EC-EF = 1.68 eV. As the 
intrinsic layer bandgap shrunk, all of the difference in 
bandgap between the p-layer and the i-layer was taken as 
the conduction bandedge. The assumption that all of the 
offset is at the conduction bandedge was also taken for 
the n-layer [17]. Interestingly, the slope of the VOC vs. 
(EG/e) line is slightly less than unity for the simulations, 
and the simulation thus predicts slightly larger values for 
VOC for lower bandgaps than are measured. In the model, 
this effect is due to the increase in JSC as the bandgap 
declines; VOC declines at exactly the same rate as (EG/e) if 
the short-circuit current densities are kept exactly the 
same. 

We thus learn that the unity slope for the experimental 
correlation of VOC with EG most likely represents an 
accidental cancellation of two effects. The first is the 
increase in JSC as EG declines, which increases VOC 
slightly. We speculate that the second, canceling effect is 
a slight increase in the valence bandtail width as the 
bandgap is reduced. The present experimental knowledge 
is inadequate to exclude such a small effect. 

We now turn to the “poor p/i” simulation, which is 
based on EC-EF = 1.43 eV in the p-layer. For EG less than 
1.55 eV even this “poor” p-layer is effectively ideal. The 
effects of a poor p-layer lead to a significant interface loss 
in VOC only at larger values of EG. 

The only measurements of which we are aware that 
may be compared with these simulations are the recent 
ones of Liu and Dalal  [18], where VOC was measured for a 
series of pin cells with widely varying intrinsic layer 
bandgaps, and an intentionally defective p-layer. As can 
be seen in Fig. 4, the measurements are different in their 
trend from the “poor p/i” simulation. 

This discrepancy should not be overinterpreted; at 
present, it is unclear whether the simulations need to be 
modified, or whether the sample series would have 
reproduced the “optimal” trend line with a better p-layer. 
The discrepancy does indicate the type of experiment that 

would be conclusive as to the extent of interface effects on 
the upper, “optimized” VOC vs. EG line. Such an experiment 
would include pairs of samples at each bandgap. Each 
pair would include an optimized cell, with VOC near the 
upper, “optimal” line, and a second with an intentionally 
defective p/i interface. 

I thank Joshua Pearce and Chris Wronski 
(Pennsylvania State University) for generously sharing 
their insight, data, and simulation parameters, and Kai Zhu 
(Syracuse University) and Gautam Ganguly (BP Solar, 
Inc.) for access to unpublished measurements. This 
research was supported by the National Renewable 
Energy Laboratory through its Thin Film Photovoltaics 
Partnership. 
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