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AbstractIn this paper we present several algorithms for performing all-to-many personalized commu-nication on distributed memory parallel machines. We assume that each processor sends adi�erent message (of potentially di�erent size) to a subset of all the processors involved inthe collective communication. The algorithms are based on decomposing the communicationmatrix into a set of partial permutations. We study the e�ectiveness of our algorithms bothfrom the view of static scheduling and from runtime scheduling.Index Terms: Loosely synchronous communication, node contention, non-uniform mes-sage size, personalized communications, runtime scheduling, static scheduling.



1 IntroductionLoad balancing and reduction of communication are two important issues for achieving goodperformance on distributed memory parallel computers. It is important to map the programsuch that the total execution time is minimized; the mapping typically can be performedstatically or dynamically. For most regular and synchronous problems [10], this mapping canbe performed at the time of compilation by giving directives in the language to decomposethe data and its corresponding computations (based on the owner computes rule|whereeach processor only computes values of data it owns [6, 7, 23, 28]). This typically resultsin regular collective communication between processors. Many such primitives have beendeveloped in [2, 21].For a large class of scienti�c problems that are irregular in nature, achieving a goodmapping is considerably more di�cult [8]. Further, the nature of this irregularity may notbe known at the time of compilation and can be ascertained only at runtime. The handlingof irregular problems requires the use of runtime information to optimize communication andload balancing [13, 18, 20]. These packages derive the necessary communication informationbased on the nonlocal data required for performing local computations.Consider the parallelization of a single concurrent computational phase of an explicit un-structured mesh uids calculation. This step is typically executed repeatedly without changein computational structure. The computational structure of the above code is given in Fig-ure 1. Similar examples of such computations are iterative solvers using sparse matrix-vectormultiplications [24]. Further, a multiple phase computation consists of a series of dissimilar,loosely synchronous computational phases where each individual phase is a single concurrentcomputational phase. Examples of these computations include unstructured multigrid [17],parallelized sparse triangular solver [1, 4], and particle-in-cell codes [15, 26].The key problem in e�ciently executing these programs is partitioning the data and com-putation such that the load on each node is balanced and the communication is minimized.Figure 2 describes a decomposition of such a problem. The x and y arrays in Figure 1represent the nodes in Figure 2, while the nde array represents the edges. This partitioningthen dictates the program's synchronization and communication requirements, which mustalso be computed. The computational pattern may only be available at runtime and maynot be done directly by the compiler; instead, calls to a runtime environment need to begenerated to do the partitioning. Several algorithms are available in the literature to performthis partitioning (see [16] for a detailed list of such references).The partitioning described in Figure 2 generates an 8 � 8 communication matrix COM(Table 1). A \1" in the (i; j) entry represents the fact that processor Pi needs to communicateto processor Pj . Each message is of di�erent size and each processor may send a di�erentnumber of messages. In our example, P0 sends only three messages while P4 sends �vemessages. If we allow processors to arbitrarily send their outgoing messages, it may happenthat at one stage processors P0, P1, P3, P4 and P6 will all try to send messages to processorP2. Since the receiving processor typically can receive messages from only one processor1



C This is a simpli�ed sweep over edges of a mesh. A ux across aC mesh edge is calculated. Calculation of the ux involvesC ow variables stored in array x. The ux is accumulated to array y.do i = 1; NS1 n1 = nde(i; 1)S2 n2 = nde(i; 2)S3 flux = f(x(n1); x(n2))S4 y(n1) = y(n1) + fluxS5 y(n2) = y(n2)� fluxend do Figure 1: Code representing a simple explicit unstructured uid calculation.at a time, one or more of the sending processors may have to wait for other processors tocomplete their communication. We use the term node contention to refer to this situation.We will show that node contention has a deteriorating e�ect on the total time required forcommunication.In this paper, we develop several simple methods of scheduling all-to-many personalizedcommunication. The cost of the scheduling algorithm can be amortized over several iter-ations, as the same schedule can be used several times. In the above unstructured meshexample, the same iteration is typically repeated several times.In general, assuming a system with n processors, our algorithms take as input an n � ncommunication matrix COM . COM(i; j) is equal to a positive integer m if processor Pineeds to send a message (of m unit) to Pj , 0 � i; j � n � 1. Our algorithms decompose thecommunication matrix COM into a set of partial permutations, pm1; pm2; � � � ; pml, where lis a positive integer and pmik represents the ith entry in vector pmk. The decomposition ismade such that if COM(i; j) 6= 0, then there exists a k, 1 � k � l, such that pmik = j.The communication matrix of Table 1 may be decomposed into the following permuta-tions:pm1 = (6; 7; 0; 1; 2; 3; 4; 5);pm2 = (2; 3; 6; 5; 7; 4; 0; 1);pm3 = (�; 0; 1; 2; 3; 7;�; 4);pm4 = (1; 2; 3; 4; 5;�; 7; 6); andpm5 = (�;�; 4;�; 6;�; 2;�):where in each permutation every processor both sends and receives at most one message.Assuming that the processors perform their operation in a synchronous fashion, the timetaken to complete a permutation depends on the largest message in the permutation. Sincethe message sizes in one permutation may vary widely, we develop several schemes to reduce2
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P1 P3 P5 P7Figure 2: The partitioning of irregular mesh.
0 1 2 3 4 5 6 70 1 1 11 1 1 1 12 1 1 1 1 13 1 1 1 14 1 1 1 1 15 1 1 16 1 1 1 17 1 1 1 1Table 1: An 8� 8 communication matrix (blank entries imply no communication).3



the variance of message size within one permutation. This is done by splitting large messagesinto smaller pieces, each of which is sent in di�erent phases.With the advent of new routing methods [9, 19, 25], the distance to which a message issent is becoming relatively less and less important [3]. Thus, assuming no link contention,permutation is an e�cient collective communication primitive. For an architecture like theCM-5, the data transfer rate seems to be bounded by the speed at which data can be sent orreceived by any processor [5]. Thus, if a particular processor receives more than one messageor has to send out more than one message in one phase, then the time will be lower boundedby the time required to remove the messages from the network by the processor receivingthe maximum amount of data.Clearly, this is not going to be the case for all architectures. The paths of two messagesmay have a common link. This may sequentialize the transfer of the two messages (especiallyfor machines that use circuit switching routing). Assuming that routing is static in nature(i.e., the path to send a message from one node to another node can be predetermined),we can build partial permutations that satisfy the property that no two messages interact;however, this would depend on the topology and routing methodology and would increasethe cost of obtaining a good schedule.The algorithms described in this paper do not take link contention into account. A mainreason for this is that message routing is randomized on the CM-5 [14, 25], it is not possible tostatically schedule messages in such a fashion that link contention can be avoided, althoughrandomization alleviates that problem to a large extent. The variation of time required fordi�erent random permutations (in which each node sends a data to a random, but di�erentnode) is very small on a 32-node CM-5 (cf. Section 3.2). The algorithms developed in thispaper can be extended to the architectures where link contention is an important issue bydecomposing communication matrix into partial permutations which avoid link contention.The cost of these algorithms would depend on the topology as well as the routing method.We show that our algorithms are inexpensive enough to be suitable for static as wellas runtime scheduling. If the number of times the same communication schedule is used islarge (which happens for a large class of problems [7]), the fractional cost of the schedulingalgorithm is quite small. Further, compared to naive algorithms, our algorithm can result ina signi�cant reduction in the total amount of communication.The rest of this paper is organized as follows. Notations, de�nitions, and general commu-nication properties used throughout are given in Section 2. Section 3 provides an overviewof CM-5. Section 4 presents a simple asynchronous communication algorithm. Section 5describes algorithms that avoid node contention. Section 6 proposes approaches to reducethe variance of message size in one permutation. Section 7 presents experimental results ona 32-node CM-5. Finally, conclusions are given in Section 8.4



2 PreliminariesThe communication matrix COM is an n � n matrix where n is the number of processors.COM(i; j) is equal to a positive integer m if processor Pi needs to send a message (of munits) to Pj, otherwise COM(i; j) = 0, 0 � i; j < n. Thus, row i of COM represents thesending vector, sendli, of processor Pi, which contains information about the destinationnode and the size of outgoing messages. Column i of COM represents the receiving vector,recvli, of processor Pi, which contains information about the source node and the size ofincoming messages. The entry sendlji (recvlji ) represents the jth entry in the vector sendli(recvli). Assuming COM(i; j) = m, then sendlji = recvlij = m. We will use sendl and recvlto represent each processor's sending vector and receiving vector when there is no ambiguity.COM can be decomposed into a set of communication phases, cpk, 1 � k � l, l, a positiveinteger, such thatCOM(i; j) = m; m > 0 ) 9!k; 1 � k � l; cpik = j :We de�ne the kth communication phase ascpik = j; i = 0; 1; : : : ; n� 1; and 0 � j < nif processor Pi needs to send a message to processor Pj at the kth phase, otherwise cpik = �1.Thus, node contention can be formally de�ned as9k; 1 � k � l; cpi1k = j1 and cpi2k = j2 ) i1 6= i2 and j1 = j2 6= �1 ;where i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n:A partial permutation pmk is a communication phase thatpmi1k = j1 and pmi2k = j2; i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n ;i1 = i2 , j1 = j2 ;pmik = �1 if Pi does not send a message at this permutation.Since permutation has the useful property that every processor both sends and receivesat most one message, it does not cause any node contention. In this paper we will usepermutation as our underlying communication scheme.2.1 Notation and AssumptionsWe categorize scheduling algorithms into several categories:1. Uniformity of message|Uniform messages mean all messages are of equal size. In thispaper we assume that messages are of non-uniform size. In case the messages are ofthe same size, the algorithms developed in [22] have considerably smaller schedulingoverhead. 5



2. Density of communication matrix|If the communication matrix is nearly dense, thenall processors send data to all other processors. If the communication matrix is sparse,then every processor sends to only a subset of processors. Our algorithms assume thatthe latter is true. There are a number of algorithms for the totally dense cases [2, 12].3. Static or runtime scheduling|Communication scheduling must be performed staticallyor dynamically.For the reasons mentioned in the previous section, the algorithms described in this pa-per do not take link contention into account. We also make the following assumptions fordeveloping our algorithms and their complexity analysis.1. Every permutation can be completed in (� +M') time, where � is the communica-tion latency, M is the maximum size of any message sent in this permutation, and 'represents the inverse of data transmission rate.2. In case communication is sparse, all nodes send and receive an approximately equalnumber of messages. Let density d represent the number of messages sent or receivedby every processor.3. We assume that each processor can send only one message and receive only one messageat a time. If the density is d, then at least d permutations are required to send allmessages.3 CM-5 System OverviewThis section gives a brief overview of the CM-5 system that we used to conduct our exper-iments. The CM-5 is available in con�guration of 32 to 1024 processing nodes, each nodebeing a SPARC microprocessor with 32M bytes of memory and optional vector units. Thenode operates at 33 MHz and is rated at 22 Mips and 5 MFlops. When equipped with vectorunits, each node of the machine is rated at 128 Mips (peak) and 128 MFlops (peak).The CM-5 internal networks include two components, data network and control network.The CM-5 has a separate diagnostics network to detect and isolate errors throughout thesystem.The data network provides high-performance data communications among all systemcomponents. The network has a peak bandwidth of 5M bytes/sec for node-to-node commu-nication. However, if the destination is within the same cluster of 4 or 16, it can give a peakbandwidth of 20M bytes/sec and 10M bytes/sec, respectively [5]. Figure 3 shows the datanetwork with 16 nodes.The control network handles operations that require the cooperation of many or allprocessors. It accelerates cooperative operations such as broadcast and integer reduction,and system management operations such as error reporting.6



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Figure 3: CM-5 data network with 16 nodes.3.1 Node Contention on CM-5Table 2 shows the impact of node contention on a 32-node CM-5. In these experiments,processor P31 is the receiving node, and processors Pi, 0 � i < d are sending nodes. In everyphase, each sending node sends an equal amount of data (256 bytes or 4K bytes) to P31simultaneously. We record the time (in milliseconds) taken for P31 to complete receiving allincoming data, and the maximum, minimum, and average time taken among sending nodesto complete sending data.The results reveal that when the number of messages sent to the same node (at the sametime) increases, the average time each sending node needs to complete sending its messageincreases (the same holds true for the maximumtime and minimum1 time among the sendingprocessors). Thus it is ine�cient to allow more than one node to send a message to the sameprocessor simultaneously.These observations suggest that node contention will result in overall performance degra-dation. Avoiding node contention should therefore be considered as an important factorwhen we conduct communication scheduling.3.2 Cost of Random PermutationsWe randomly generated 2 test sets, each containing 5000 random permutations. The sizes ofthe message used in each of these permutations are 1K bytes and 256K bytes, respectively.The communication cost distribution (in terms of average communication cost) is given inFigures 4 and 5. The results depict that for most cases the communication cost is within�10% of average cost (the average communication costs for message of size 1K bytes and256K bytes are 0.543 milliseconds and 62.923 milliseconds, respectively). Thus the perfor-1One exception to the time increase is that when all 31 nodes send messages to processor P31, nodes P28,P29, P30, and P31 are in the same 4-node cluster, which can provide higher communication bandwidth, sothe minimum time taken in this case is less compared with the 16-node case.7



d 256 bytes 4096 bytesrecv send recv sendmax min ave max min ave1 0.089 0.131 0.050 0.061 0.516 0.504 0.485 0.4882 0.125 0.150 0.070 0.081 1.083 1.048 1.023 1.0384 0.205 0.199 0.098 0.116 2.189 2.124 2.085 2.0978 0.375 0.298 0.173 0.210 4.693 4.844 4.353 4.50216 0.731 0.575 0.302 0.394 9.865 10.065 9.155 9.47631 1.396 1.279 0.151 0.815 19.485 19.544 2.847 15.550Table 2: The impact of node contention on a CM-5.dist 1 2 4 8 16 avecomm 47.136 47.143 47.320 62.582 68.006 62.923� comm: communication cost in milliseconds.�� ave: average communication cost of 5000 randomly generated permutation samples.Table 3: Communication cost for permutations with message of length 256K bytes withindi�erent cluster sizes.mance of our algorithms, which use permutation as the underlying communication scheme,are not signi�cantly a�ected by a given sequence of permutation instances. The bandwidthachieved for these permutations is approximately 4M bytes/sec, which is close to the peakbandwidth of 5M bytes per second provided by the underlying hardware for long distancemessages.There are some permutations for which the performance is expected to be better thanrandom permutations. One such class of permutations is when processor Pi exchanges mes-sages with processor Pi�dist2, 0 � i < n and dist = 1; 2; 4; 8; 16. Each permutation representsa communication pattern where processors communicate with processors within the clustersof 2, 4, 8, 16, and 32, respectively. The results for these permutations are given in Table 3.These results show that these specialized permutations, in which every processor sends amessage to another processor within the same group of 8 nodes, take approximately 25%less time over random permutations. However, our algorithms do not exploit these specialcases.2� represents bitwise exclusive OR operator. 8



010002000300040000.4 0.6 0.8 1 1.2 1.4 1.6# samples commcomm ave dist32
Figure 4: Communication cost distribution for 5000 permutation samples with message oflength 1K bytes on a 32-node CM-5.

05001000150020000.4 0.6 0.8 1 1.2 1.4 1.6# samples commcomm ave dist32
Figure 5: Communication cost distribution for 5000 permutation samples with message oflength 256K bytes on a 32-node CM-5.4 Asynchronous Communication (AC)The most straightforward approach is to use asynchronous communication. The algorithmis divided into three phases:1. Each processor �rst posts requests for expected incoming messages (this operation willpre-allocate bu�ers for those messages).2. Each processor sends all of its outgoing messages to other processors.3. Each processor checks and con�rms incoming messages (some of which may alreadyhave arrived at their receiving bu�er(s)) from other processors.9



Asynchronous Send Receive()For all processors Pi, 0 � i � n� 1, in parallel doallocate bu�ers and post requests for incoming messages;send out all outgoing messages to other processors;check and con�rm incoming messages from other processors.Figure 6: Asynchronous Communication Algorithm.During the send-receive process, the sending processor need not wait for a completionsignal from the receiving processor, but can keep sending outgoing messages until they areall done. This naive approach is expected to perform well when density d is small. Theasynchronous algorithm is given in Figure 6.The worst case time complexity of this algorithm is di�cult to analyze, as it will dependon the congestion and contention on the nodes and network. Also, each processor mayhave only limited space in message bu�ers. In such cases, when the system bu�er spaceis fully occupied by uncon�rmed messages, further messages will be blocked at the senderprocessors' side. The overow may block processors from doing further processing (includingthe receiving of messages) because processors are waiting for other processors to consumeand empty their bu�ers in order to receive new incoming messages. This situation may neverbe resolved and a deadlock may occur among processors.In case the sources of incoming messages are not known in advance or there is no bu�erspace available for pre-allocation, we may replace the post-send-con�rm operation by thesend-detect-receive operation, where we use busy waiting to detect incoming messages andcopy them into the application bu�er. Bu�er copying is very costly and should generally beavoided. The experimental results described in this paper use the approach given in Figure 6.5 Methods Avoiding Node ContentionOur scheduling algorithms assume the availability of a global communication matrix COM .A concatenation operation [5] can be performed on the sending vector (of length n) of eachprocessor to derive this matrix at runtime. For an n-node CM-5, performing a concatenateoperation with each node contributing a message of size n is e�cient and can be completedin O(n2 + � log n) amount of time [5]. Concatenate operation has e�cient implementationon other architectures like hypercubes and meshes [2, 21]. In case the communication matrixCOM is sparse in nature, each processor will send and receive d messages in a system withn processors (d < n), we can reduce the total time to O(dn + � log n) by using a sparserepresentation for the sending vector. In such a case, the communication matrix would bean n� d matrix such that each row is a sparse representation of the corresponding sendingvector. 10



Linear Permutation()For all processors Pi, 0 � i � n� 1, in parallel dofor k = 1 to n-1 doj = i� k;if COM(i; j) > 0 then Pi sends a message to Pj ;if COM(j; i) > 0 then Pi receives a message from Pj ;endfor Figure 7: Linear Permutation Algorithm.5.1 Linear Permutation (LP)In this algorithm (Figure 7), each processor Pi sends a message to processor P(i�k) andreceives a message from P(i�k), where 0 < k < n. When COM(i; j) = 0, processor Pi willnot send a message to processor Pj, but will receive a message from Pj if COM(j; i) > 0. Theentire communication uses pairwise exchange (j = i� k , i = j � k). A simple variation ofLP is that each processor Pi sends a message to processor P(i+k) mod n and receives a messagefrom P(i�k) mod n, where 0 < k < n. The experimental results show that, for the CM-5, theformer approach performs slightly better.This algorithm assumes that the number of processors, n, is a power of 2, and thealgorithm can easily be extended when n is not a power of 2.5.2 Random Scheduling Using Heaps (RS NH)During the communication scheduling, the worst case time complexity to access each entry ofCOM isO(n2). In order to reduce this overhead, the �rst step of this algorithm is to compressthe COM into an n � d matrix CCOM by a simple compressing procedure (Appendix A).This procedure will improve the worst case time to access each active element (of CCOM)to O(dn).If we perform this compression statically, the time complexity is O(n(n + d)) = O(n2).When performing this operation at runtime, each processor compacts one row, and then allprocessors participate in a concatenate operation to combine individual rows into an n � dmatrix. The cost of this parallel scheme is O(n+(dn+ � log n)) = O(dn+ � log n) (assumingthe concatenate operation can be completed in O(dn + � log n) time).The vector prt is used as a pointer whose elements point to the maximum number ofpositive columns in each row of CCOM. In order to schedule the communication in such away that each processor will try to send out larger messages �rst, we sort the active entries inCCOM by message size. A heap (denoted by heapk in row k) is embedded such that the rootentry CCOM(k; 0) contains the largest message size among all the entries in row k. Threeheap procedures are needed in the algorithm: Heap Extract Max() returns the location of the11



RS NH()1. Use matrix COM to create an n� d matrix CCOM ;2. In each row k, 0 � k < n, build a heap heapk based on the entries CCOM(k; j)'scorresponding message size, where 0 � j < d;3. Generate Permutations().Figure 8: Random Scheduling using Heaps (RS NH) Algorithm.entry with largest message size within a heap; Heap Remove() removes the speci�ed entryfrom the heap; and Heap Insert() inserts an entry into the heap. Each of these procedurescan be completed in O(log d) time [11].The vectors send and receive are used to record the destination of each outgoing messageand the source of each incoming message in one permutation, respectively; send(i) = jdenotes processor Pi needs to send a message to processor Pj, and receive(j) = i denotesprocessor Pj will receive a message from processor Pi. These two vectors are initialized to�1 at the beginning of each iteration. We assume that CCOM(i; j) = �1 if no message isto be sent. After the compressing procedure, the �rst d columns of each row may containactive entries. When searching for a available entry along row i, the �rst column j withCCOM(i; j) = k and receive(k) = �1 will be chosen. We then set send(i) = k andreceive(k) = i. Since the messages are non-uniform, the message sizes in one permutationmay vary in a wide range. If we allow every processor to completely send its message, thenthe communication time in each step is upper bounded by the maximummessage size in eachstep. (Although RS NH is executed in a loosely synchronous fashion, processors with smallmessages may be idle while waiting for processors with large messages to complete.) In orderto eliminate idle time for processors, we introduce several approaches to choose a reasonablemessage size in each communication phase such that processors with small messages willsend their messages completely, while processors with large messages will send only part oftheir messages.The RS NH algorithm is described in Figure 8.Step 1 (Figure 8) takes O(n2) time to complete sequentially. When used at runtime,each processor creates one row of CCOM , then all processors participate in a concatenateoperation. The time required for this step is O(dn + � log n). The time required for Step 2is O(dn).Step 1 (Figure 9) takes O(n) time. Step 3 requires a sort operation (we use merge sortin our experiments, which has a time complexity of O(n log n)). This sort operation canbe approximated by using a histogram-based approach to reduce the scheduling time. Thetime required for communication in Step 4 is O(� + 'Mkthresh) time where Mkthresh is the12



Generate Permutations()For all processors Pi, 0 � i � n� 1, in parallel doRepeat1. Set all entries of vectors send and receive to �1;2. x = random(1..n);for y = 0 to n-1 doi = (x+ y) mod n; j = 0; S = �;while (send(i) = -1 AND j � prt(i)) dok = CCOM(i; l), where l = Heap Extract Max (heapi);if (receive(k) = -1) then;send(i) = k; receive(k) = i;endifS = S [ CCOM(i; l); Heap Remove(heapi,l); j = j + 1;endwhileFor all entries, CCOM(i; k), in S (except the last one), Heap Insert(heapi;Mik);/* Mik is CCOM(i; k)'s corresponding message size */endfor3. Mthresh = Decide Size();4. if (send(i) 6= -1) then Pi sends a message, no bigger than Mthresh, to Psend(i);if (receive(i) 6= -1) then Pi receives a message from Preceive(i);5. For each row k which sent a complete message at this iteration, decreases prt(k) by1; For each row l which only sent partial message, add the remainder of the messageback to its proper location in heapl;Until all messages are sent.Figure 9: Procedure Generate Permutations().13
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Figure 10: (Number of heap operations / n) versus ( d� ln d).most e�cient message size at permutation pmk. (We develop methods to choose the valueof Mkthresh in the next section.) Step 5 takes O(n log d) time.The maximummessage size allowed to be sent in one iteration is Mthresh (each iterationmay have a di�erent value of Mthresh, which is decided by the function Decide Size()). Sup-posing the threshold is chosen so that only (n� k) messages are greater than the threshold,we set � = kn .The algorithm in Figure 9 can be decomposed into two stages. The �rst stage performsonly the scheduling required for all communication phases. The second stage performs allnecessary communication. For ease of explanation, we have combined these two stages. Theworst case computational complexity of the algorithm is O(Cdn), where C is the number ofpermutations generated by this algorithm. This assumes that all of the entries are searchedin every iteration (Step 3 of Figure 8)However, one would expect that on an average the algorithm should have much betterbehavior. The analysis is very di�cult as it depends on several parameters (n, d, sizes ofdi�erent messages, destinations of di�erent messages). Further, the number of messagesto be sent (and received by every processor) may be di�erent at intermediate stages, eventhough this value may be the same for all nodes before the beginning of �rst stage.The number of heap operations in Step 2 (Figure 9) was measured for di�erent values ofn and � for randomly generated communication matrices with uniform message sizes. Wehave plotted number of heap operations / n against d lnd� in Figure 10. In this simulation,we arbitrarily picked up n(1 � �) messages in each permutation (to simulate the (n � k)messages that are greater than the threshold Mthresh in the permutation) and put them(entire messages) back in the heap. The results show that the number of heap operations inStep 2 is approximatelyO(dn� ln d). Thus, the time taken for this step could be approximatedby O(dn� log2 d). This shows that the expected behavior of this algorithm could be muchbetter then the worst case. In Section 6, we propose several schemes to choose the value �.14



6 Approaches for Evaluating �When the message sizes in one permutation are non-uniform, communication time is boundedby the maximummessage size in that permutation and processors with smaller message sizemay be idle. A suitable value of � needs to be found to decide the threshold for message sizeto be sent in one permutation.In function Decide Size(), the �rst step is to sort all messages in one iteration by theirsize. There are several schemes that can be used to decide on an appropriate value of �.6.1 Fixed �The most straightforward approach is for � to be �xed throughout the entire scheduling.This approach requires running the application program several times with di�erent valuesof � in order to �nd the best value. If the algorithm needs to be executed at runtime,each processor can begin with a di�erent � to schedule the communication. The processorwith the minimum estimated communication time will send the schedule generated to otherprocessors. This can then be used by all processors to carry out the communication.6.2 � Proportional to dIn this approach, the value � is proportional to the value of d�3 at the current stage. Forexample, � can be set as 0:8d�, where d� is the average number of active entries in each rowat the current stage. The implementation of this scheme is similar to \Fixed �" approach.6.3 Incremental ApproachIn Figure 11, when value � increases by 4�, the message size will increase by 4M . Thiswill a�ect the communication cost in the following ways:� Since the maximummessage size is increased by 4M , the cost of this extra communi-cation = 4M � '.� The additional utilization of bandwidth = (1 � �) �4M � '.� The approximate reduced cost due to decrease in set up cost � 4�� � .Thus we should choose � +4� instead of � if(1 � �)�4M � ' � 4M � '�4�� �=) 4M � �' � 4�� �3We denote d� as the expected average number of active entries in each row of CCOM after one iterationof scheduling. 15
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λFigure 11: � versus M graph.=) � � 4��4M' : (1)The above analysis assumes that all permutations are completed synchronously. Clearly,this is not the case in the RS NH algorithm given in Figure 9, in which some processors maybegin the next permutation while other processors are still executing the current permuta-tion.7 Experimental ResultsWe have implemented our algorithms on a 32-node CM-5. In this section we describe thedi�erent versions of our algorithms tested and di�erent data sets used for their evaluation.Preliminary simulation results show that for schemes which use �xed value of �, by thetime the average number of messages left on nodes (after some iterations) is close to 1, thenumber of entries left in each row are uneven. Further, the degree of unevenness increasesif one chooses a smaller value of �. This e�ect is ampli�ed for large values of n. Hence, weused a two-phase approach for choosing �. In the �rst phase, we use one of the approachespresented in Section 6 until d� is reduced to a small value (we use maxf2; d16g in this paper).Then, in the second phase (where d� is small), � is reset to 1, i.e., completely send out everymessage in one permutation.7.1 AlgorithmsIn our experiments we used the following algorithms:1. AC (the Asynchronous Communication algorithm).16



2. LP (the Linear Permutation algorithm).3. RS N. This is essentially the same as the RS NH algorithm, but the RS N algorithmassumes that all the messages are of equal size and does not employ any heap operation.4. RS NH. The RS NH algorithm with \Incremental" approach. Let �k = �0 + k � 1n ,where �0 = 0:75 and 0 � k � 0:25. We de�neGaink = 4��k � �' �4Mk ;and � is chosen to be �k such that k�1Xi=0 Gainiis maximized. The additional complexity of choosing � by using this scheme is O(n)per iteration.5. RS NH+�xed. The RS NH algorithm with �xed value of �. We experimented withthe following � values: 34 ; 78 ; 1516 ; 3132, and 1.0. In each instance we used the best perfor-mance among di�erent values of � to represent the performance (including number ofpermutations, scheduling cost, and communication cost) of this algorithm.6. RS NH+(� = 1). This scheme is equivalent to the RS NH+�xed with � = 1 through-out the scheduling. We maintained the heap structures during the process, and let themessages in every permutation be completely sent out (i.e., there are no message split-ting operations).7. RS N+sort. This algorithm is the same as RS N except for the fact that we sort theactive entries in each row of CCOM by message size at the beginning of the schedulingalgorithm. We sort the rows only once, and do not make an e�ort to maintain the sortsequences during the scheduling. In contrast, RS NHs maintain the sort sequencesthroughout the scheduling.All the algorithms are executed in a loosely synchronous fashion. We did not explicitlyuse global synchronization to enforce synchronization between communication stages in anyof the algorithms proposed above.7.2 Data SetsThe data sets for our experiments can be classi�ed into three categories:1. This test set contains two subgroups, each of which has 50 di�erent communicationmatrices with the same value of d. In each matrix, every row and every column have17



approximately d active entries (d is equal to 8 and 16, respectively). The procedurewe used to generate these test sets is described in [27].The messages in one communication phase are non-uniform, where the size is equal toCOM(i; j) multiplied by msg unit. The di�erent values of msg unit used in this testset are 2k for 4 � k � 13.2. This test set (skewed distribution) contains samples with skewed size distribution.Three information arrays can be used to represent the characteristics of these samples:dist[5] = f1; 2; 4; 8; 17g, dense[5] = f1; 2; 4; 8; 16g, and length[5] = f16; 8; 4; 2; 1g. Therows of COM are grouped into �ve sets. Set k (1 � k � 5) can be characterizedby dist[k], dense[k], and length[k]. dist[i] = number of rows in the set i; dense[i] =number of active entries in a row belonging to the set i; and length[i] = length of eachmessage in the set i.The motivation of this test set is to observe the case where a few processors have asmall number of large messages, while other processors have a bulk of small messages.The total amount of data to be sent by every processor is equal. The di�erent valuesof msg unit used for our experiments are 2k for 4 � k � 14.3. This test set contains communication matrices generated by graph partitioning algo-rithms [16]; the samples represent uid dynamics simulations of a part of an airplane(Figure 12) with di�erent granularities (2800-point and 53961-point). In order toobserve the algorithm's performance with di�erent message sizes, we multiplied thematrices in this test set by a variable msg unit. The di�erent values of msg unit usedfor our experiments are 2k for 4 � k � 12.In the test set 3, the number of messages sent (or received) by each node is uneven. Forexample, for the 2800-point sample we have the following parameters:1. The maximum number of messages sent by any processor = 15.2. The minimum number of messages sent by any processor = 3.3. The average number of messages sent by any processor = 9.25.4. The maximum length of all messages = 36 units.5. The minimum length of all messages = 1 unit.6. The average length of all messages = 14.2 units.The corresponding values for the 53961-point sample are 18, 6, 10.81, 276, 1, and 93.21,respectively.7.3 Results and DiscussionThe scheduling costs of various algorithms do not include the time for the following opera-tions: 18
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NKFigure 12: The unstructured grid used for our simulations.1. Time to compress COM into CCOM (RS Ns and RS NHs, which will take O(n2) timein the sequential mode and O(dn + � log n) time in the parallelized version).2. Time to sort CCOM at the beginning of scheduling for RS N+sort, which will takeO(nd log d) time in the sequential mode and O(dn) time in the parallelized version.3. Time to create heaps in CCOM at the beginning of scheduling (RS NHs), which willtake O(nd) time in the sequential mode as well as in the parallel version.The main reasons for not including these timings are that they would be di�erent in thestatic (sequential) and runtime (parallel) version. Although the time complexity of some ofthese operations looks very high, it is worth noting that these operations are executed onlyonce during the scheduling. So the constant values before of the complexity terms are verysmall when compared with the constant before of the complexity terms of the schedulingcost.Clearly, one could add these costs to the costs given in this section to get a more accurateestimate of the total cost. Table 4 shows that the exclusion of most of the above operationsa�ects the total cost by only a small fraction. The sort portion of RS N+sort is expensive;however, our experimental results (in the later sections) reveal that this method provides no19



d compresscomp heapcomp sortcomp4 0.206 0.108 0.4458 0.087 0.095 0.85516 0.037 0.075 1.43524 0.023 0.065 1.575Table 4: Compress, heap, and sorting overhead in terms of corresponding scheduling costfor sequential execution.improvement over RS N in terms of the total cost of communication (RS N has a signi�cantlylower scheduling cost).7.3.1 Uniform DistributionTable 5 and Figure 13 show the results of d = 8 and d = 16. Results show that RS Noutperforms AC and LP by a big margin. RS N+sort does not provide improvement overRS N. The di�erent variations of RS NHs have very similar results, all of which provide aconsiderable improvement over RS N. This clearly shows the usefulness of heap structuresand thresholding to reduce the variance of messages in one permutation.When d = 16, the performance di�erence between algorithms becomes prominent. Thus,when the density or message size increases, the RS NH algorithms are the algorithms ofchoice.Figure 14 shows that maintaining heaps (which are used in RS NHs) is expensive. Theoverhead fraction of RS N is less than 0.25 for messages of size 16K on a 32-node CM-5.The overhead of RS NH remains high when the message size is less than 16K (msg unit =29); it becomes negligible for larger messages. This overhead computation is based on theassumption that the same schedule is used only once. In most applications the same scheduleis utilized many times, hence the fractional cost would be considerably lower (inverselyproportional to the number of times the same schedule is used). In such cases, all ouralgorithms are also suitable for runtime scheduling.7.3.2 Skewed DistributionIn test set 2, the total number of messages sent by every processor is same. This characteristicmakes RS NH+(� = 1) useless. This is because the heap structure will keep the active entriesin each row in a similar order. This should, in general, make the probability of �nding anentry in each row non-random and result in more permutations and larger communicationcost. Our experimental results support this fact.The rows with larger messages have a smaller number of messages, and the rows withthe smallest messages have the largest number of messages, which in turn will dominate20



the number of permutations needed. Thus, the splitting of large messages should evenout the message sizes in one permutation without signi�cantly increasing the number ofpermutations.Table 6 and Figure 15 show the results of test set 2. As expected, the RS NH+(� = 1)has a similar performance to that of RS N. The results also show RS NH and RS NH+�xedhave clear improvements over other approaches.7.3.3 Airfoil MeshTable 7 and Figure 16 show the results for a 2800-point and 53961-point sample, respectively.The results for both samples have behavior similar to the �rst test set, which reveals thateven if the number of messages in each row is non-uniform, our algorithms maintain theircharacteristics and performance. The RS NHs are superior when the msg unit becomeslarge, which in turn means that it is worth the extra e�ort (of using heap and messagebreaking) to reduce the variance of message sizes in each permutation. These results alsoshow the comparison of �xed � and variable � (incremental approach). The observationreveals that the two methods have comparable performance. So for static applications (whichcan be pre-run to �nd the best value of �), a �ne-tuned �xed value of � may be as good as (oreven better than) the dynamic values of � found during the scheduling. We can potentiallyrun the algorithms for di�erent values of � in parallel and choose the best one; however, itis di�cult to estimate the actual performance (with varying �) and choose the best value of�.7.4 DiscussionIt is hard to make generalizations on which algorithms are better, based on the limitednumber of experimental results presented above. In general, scheduling costs vary in thefollowing manner:S cost(AC) � S cost(LP) � S cost(RS Ns) � S cost(RS NHs) ;while the communication costs vary in the following fashion:C cost(RS NHs) � C cost(RS Ns) � C cost(LP) � C cost(AC) :Clearly, depending on the structure of the communication matrix and the number oftimes a particular schedule is used, one method may be superior to another. However, if thenumber of times the same schedule is utilized is large, RS NH seems to be a better approach.8 ConclusionsIn this paper we have developed several algorithms for scheduling all-to-many personalizedcommunication with non-uniform message sizes. The performance of the asynchronous com-munication algorithm (AC) depends on network congestion. The memory requirements of21



this algorithm are large. This algorithm is only suitable for small message sizes. The linearpermutation algorithm (LP) is very straightforward and introduces little computation over-head, but it needs to go through the same number of communication phases (n� 1) even ifthe density d is small.The RS NH algorithms are found to be very useful in handling non-uniform messages.The use of a heap structure to maintain the sort sequences so that the bigger messages willbe scheduled earlier, and the decomposition of large messages into smaller messages, give asigni�cant reduction of the total time required for communication.We have proposed three approaches to decide the value � (the number of complete mes-sages sent out in every phase of communication). The �rst two require pre-running forseveral �xed values of �, while the third chooses the value on-the-y. Experimental resultshave shown that our algorithms perform well with arti�cially generated samples as well aswith samples from an actual application.Another advantage of our algorithms as compared to the other algorithms is that oncethe schedule is completed, communication can potentially be overlapped with computation,i.e., computation on a packet received in the previous phase can be carried out while thecommunication of the current phase is being performed. It is also worth noting that dueto compaction, nearly all processors receive data packets (of nearly equal size). If anycomputation needs to be performed using incoming data and it is proportional to the size ofthe packet, it should lead to good load balance.There is a large amount of literature on how to partition a task graph so as to minimizecommunication cost. A few methods that are iterative in nature can be found in [16]. Aftera particular threshold any improvement in partitioning is expensive. For problems requiringruntime partitioning, it is critical that this partitioning be completed extremely fast. Forsuch problems, the gains provided by e�ective communication scheduling may far outweighthe gains obtained by spending the same amount of time on achieving better partitioning.For di�erent applications, di�erent kinds of communication patterns are used. It is un-clear which methods will be better than others for speci�c classes of communication patterns.However, we do believe that our methods can signi�cantly reduce the total time of commu-nication. Choosing the best method among the variety of algorithms presented in this paperwill depend on the underlying architecture, the type of communication patterns, and onwhether the scheduling has to be performed statically or at runtime.One of the issues we have not addressed in this paper is link contention. On the CM-5, linkcontention does not signi�cantly a�ect the communication cost of the schedules generatedby our algorithms. We are currently developing algorithms for architectures on which linkcontention is an important issue. 22
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d msg unit AC LP RS N RS N RS NH RS NH+sort +(� = 1)comm�16 3.820 7.943 3.380 4.066 3.839 3.77764 8.124 11.463 5.455 6.370 5.879 5.901256 24.873 26.771 15.101 16.840 15.176 15.2918 1024 89.027 83.063 57.825 59.436 53.744 54.5604096 301.681 282.814 222.201 225.684 207.420 209.6618192 830.939 967.832 592.921 656.096 467.793 519.234compy 0 0.091 3.211 3.245 16.872 10.1permz 0 31.0 10.1 10.22 11.2 10.14comm16 8.178 9.514 6.408 7.653 7.050 7.12664 17.780 16.112 10.494 12.152 10.959 11.212256 52.173 43.161 29.385 32.330 28.607 29.12116 1024 176.308 144.127 112.133 114.414 101.869 103.6604096 819.440 971.286 588.601 601.386 396.460 400.6448192 2916.056 2851.732 1609.473 1633.950 1309.655 1310.013comp 0 0.091 6.57 6.62 45.403 31.502perm 0 31.0 18.56 18.52 19.8 18.8�: Communication cost, in milliseconds.y: Scheduling cost, in milliseconds.z: Number of communication phases needed.Table 5: Experimental results for non-uniform message sizes on a 32-node CM-5. Theminimummessage size in each level ismsg unit bytes, and the maximumsize is 32�msg unitbytes.
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02505007501000 0 2048 4096 6144 8192Times(msec) Msg unit AC 3333333 3 3 3 3 LP +++++++ + + + + RS N 2222222 2 2 2 2 RS NH ������� � � � �(density d = 8)
0750150022503000 0 2048 4096 6144 8192Times(msec) Msg unit AC 3333333 3 3 3 3 LP +++++++ + + + + RS N 2222222 2 2 2 2 RS NH ������� � � � �(density d = 16)Figure 13: Communication cost for non-uniform message sizes on a 32-node CM-5.02468 4 6 8 10 12 14Fraction(comp/comm) Msg unit (2X ) d = 4 33 3 3 3 3 3 3 3 3 3 d = 8 ++ + + + + + + + + + d = 16 22 2 2 2 2 2 2 2 2 2 d = 24 �� � � � � � � � � �Figure 14: Computation overhead of RS NH algorithm in terms of communication cost.27



msg unit AC LP RS N RS N RS NH RS NH RS NH+sort +(� = 1) +�xedcomm16 5.893 9.049 6.673 6.711 10.111 6.722 6.48564 8.231 10.066 7.490 7.552 11.052 7.494 7.398256 15.841 15.938 12.911 12.928 15.705 12.876 12.2791024 44.761 40.159 36.977 36.741 36.655 36.513 32.7224096 154.052 134.647 132.543 131.628 119.861 130.678 114.36516384 813.610 904.941 949.817 1003.330 707.041 967.669 598.615comp 0 0.097 7.678 8.84 43.41 21.77 34.451perm 0 31.0 20.1 20.2 31.7 20.4 21.45Table 6: Experimental results for skewed distribution pattern on a 32-node CM-5. Theminimummessage size in each level ismsg unit bytes, and the maximumsize is 16�msg unitbytes.
02505007501000 0 4096 8192 12288 16384Times(msec) Msg unit AC 33333333 3 3 3 3 LP ++++++++ + + + + RS N 22222222 2 2 2 2 RS NH �������� � � � � RS NH+�xed 444444444 4 4 4

Figure 15: Communication cost for skewed distribution.28



points msg unit AC LP RS N RS N RS NH RS NH RS NH+sort +(� = 1) +�xedcomm16 5.340 8.959 5.595 5.632 7.272 5.624 5.40932 6.710 9.762 6.258 6.264 7.886 6.264 6.12264 9.674 11.991 7.879 7.837 9.284 7.717 7.606128 15.323 16.861 11.478 11.359 12.226 10.805 10.8752800 256 25.870 26.322 19.502 18.986 18.607 17.690 17.274512 47.209 44.454 35.147 34.045 31.365 31.247 30.0761024 86.679 79.324 65.342 63.657 57.582 57.224 55.5372048 165.237 146.995 125.460 119.634 108.972 110.711 104.9514096 297.637 283.917 232.721 225.080 208.906 209.687 197.226comp 0 0.097 5.052 5.03 29.38 14.523 22.137perm 0 31.0 15.15 15.2 19.65 15.45 15.55comm16 16.103 17.941 12.907 12.718 14.920 11.700 12.25332 26.826 27.349 20.965 20.619 21.536 18.532 18.95064 48.367 46.552 37.662 36.642 35.513 32.599 32.77153961 128 87.700 80.769 69.874 67.731 63.126 60.816 60.148256 163.598 149.746 135.387 129.456 118.149 115.609 113.558512 300.644 280.240 256.659 250.574 228.418 225.190 219.322comp 0 0.097 6.059 6.024 40.231 19.245 28.396perm 0 31.0 18.05 18.15 26.4 18.15 20.05Table 7: Experimental Results for airfoil mesh simulations on a 32-node CM5. The minimummessage size in each level is msg unit bytes, and the maximum size is 36 (for grid of size2800) and 276 (for grid of size 53961) �msg unit bytes.
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075150225300 0 1024 2048 3072 4096Times(msec) Msg unit AC 333333 3 3 3 3 LP ++++++ + + + + RS N 222222 2 2 2 2 RS NH ������ � � � � RS NH+�xed 4444444 4 4 4(2800-point)
080160240320 0 128 256 384 512Times(msec) Msg unit AC 333 3 3 3 3 LP +++ + + + + RS N 222 2 2 2 2 RS NH ��� � � � � RS NH+�xed 4444 4 4 4(53961-point)Figure 16: Communication cost for airfoil mesh simulation on a 32-node CM-5.

30


	Irregular Personalized Communication on Distributed Memory Machines
	Recommended Citation

	tmp.1286816405.pdf.3ojlE

