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e-mail: { jwatts, marc, steve} @scp.syr.edu
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ABSTRACT

This paper presents techniques for dynamic load balancing
in heterogeneous computing environments. That is, the
techniques are designed for sets of machines with varying
processing capabiliti es and memory capacities. These
methods can also be applied to homogenous systems in
which the effective compute speed or memory availabilit y is
reduced by the presence of other programs running outside
the target computation. To handle heterogeneous systems, a
precise distinction is made between an abstract quantity of
work, which might be measured as the number of iterations
of a loop or the count of some data structure, and the
utili zation of resources, measured in seconds of processor
time or bytes of memory, required by that work. Once that
distinction is clearly drawn, the modifications to existing
load balancing techniques are fairly straight-forward. The
effectiveness of the resulting load balancing system is
demonstrated for a large-scale particle simulation on a
network of heterogeneous PC’s, workstations and
multiprocessor servers.

INTRODUCTION

The use of networks of personal computers, workstations
and symmetric multiprocessors as a computing platform
requires improved dynamic load balancing techniques.
Unlike traditional multicomputers, such as the Cray T3D/E
or the Intel Paragon, the computers in a typical network are
often not of the same processing performance nor do they
have the same available memory. As a result, most existing
techniques for dynamic load balancing, which consider
computing resources to be homogeneous, are insuff icient
(Watts and Taylor 1998b; Will ebeek-LeMair and Reeves
1993; Xu and Lau 1997). Those techniques which have
addressed heterogeneous environments have primarily been
geared towards manager-worker or task-queue problems
(Bowen et al. 1992; Li and Dorband 1997; Lin and

Raghavendra 1992; Zhou et al. 1993) rather than the single-
program, multiple-data (SPMD) style of scientific
computations (Cap and Strumpen 1993; Henriksen and
Keunings 1993). Our work addresses load balancing on
heterogeneous systems for large-scale scientific simulations.
These techniques involve relatively simple modifications to
existing methods already in the literature. Consequentially,
they can be incorporated into many existing load balancing
systems, allowing users to leverage a wider variety of
machines for a computation than previously possible.
Experiments conducted on a network composed of PC’s
running Windows NT, together with workstations and
multiprocessor servers running various versions of Unix,
demonstrate the effectiveness of these techniques.

Before one can address the problem of load balancing
in a heterogeneous environment, it is necessary to make
clear distinctions among certain terms. When dealing with
homogenous computing environments, notions of “ load,”
“work,” “utili zation,” and “runtime” are often used
interchangeably. This is perfectly acceptable because an
abstract quantity of work, say 100 iterations of a fluid flow
solver over a 100,000-cell grid partition, presumably
requires the same execution time on every machine. In
heterogeneous environments this is definitely not the case. If
a problem is characterized by abstract, algorithmic
considerations such as the number of operations or the count
of data structures, this will t ranslate differently into
processor or memory usage depending on the particular
machine on which the problem is run. So, a distinction must
be made between the quantities which are invariant across a
set of computers and those which vary according to the
computer in question. We refer to the former, abstract
algorithmic quantities as the load of a computer. For
example, in a particle simulation, a partition of the problem
may contain 125,000 particles. The load for that region
could be taken to be 125,000. On one machine, processing
those particles might require five compute seconds per
iteration and on another machine require ten seconds per
iteration. We refer to this variant quantity as the utili zation.
The degree to which a particular computer is utili zed by a
certain load is determined by that computer’s capacity.



BASIC METHODOLOGY

The heterogeneous dynamic load balancing techniques
presented here are a modification to the homogeneous load
balancing framework presented previously (Watts and
Taylor 1998b). That framework achieves load balance by
dynamically relocating tasks from computer to computer, as
well as increasing or decreasing the number of tasks by
dynamically dividing or merging them. The process occurs
in six phases:

1. Load measurement: The loads of the tasks on a
computer are determined, and those loads are summed
to yield the total load at each computer.

2. Profitability determination: Once the loads of the
computers are determined, the decision is made to
continue if the improvement possible with load
balancing justifies its cost.

3. Load transfer calculation: The ideal quantities of load
to transfer between computers are calculated.

4. Task selection: Tasks are selected for exchange
between computers to meet the ideal transfer quantities.
This process may be repeated several times until
transfer quantities are adequately met, and tasks may be
divided to increase the options available.

5. Task migration: Tasks’ data structures are transferred
to their new locations.

6. Granularity adjustment: Tasks may be divided to
make better use of multiple processors sharing memory
or merged to reduce system overhead.

This decomposition allows different components of the load
balancing framework to be replaced in a plug-and-play
fashion, providing the abilit y to customize it for particular
applications or computing environments.

HETEROGENEOUS METHODOLOGY

Each of the above phases must be modified for use in
heterogeneous environments. As stated above, the
modifications primarily entail the distinction between load
and utili zation, as well as the incorporation of computer
capacities.

Load measurement

In determining the load of a task, there are two options. One
is to use abstract, algorithmic quantities such as the number
of operations or data structures. If the load of task j is taken
to be l j, then the load of computer i is ∑

∈
=

iTj
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As a second option, one can measure the utili zation

using system faciliti es. For example, one might use system
calls to get the CPU time or amount of memory used by a
task. In that case, one simply reverses the above formulas to
calculate the abstract loads: jjMj uCl )(=  gives the load of

a task. The resulting task loads and utili zations are summed
to yield the computers’ total loads and utili zations,
respectively.

Of course, in both of the above cases, it is assumed that
one knows the resource capacity of a given computer. The
capacity can be determined in a number of ways. If the
capacity measured is processing speed, a benchmarking
program—possibly the target application with a smaller test
problem—can be used to determine the relative speeds of
various machines. These off line performance numbers,
along with other statistics, such as the machines’ memory
capacities, can be put into a file which is read at the start of
the computation. A third method is to use both invariant
algorithmic quantities and system-measured utili zation
numbers. For example, one might use the number of cells in
a grid partition as well as the CPU time required to process
those cells. By dividing the former by the latter, one can
calculate the capacity of the system dynamically during
execution.

If the application is run in the presence of external
programs which also compete for system resources, the
capacities must be adjusted. For example, one might divide
the processing capacity for a given machine by its “ load
average,” which is a measure of the average number of
processes competing for CPU time.

Profitability determination

In a heterogeneous environment, determining whether load
balancing is worthwhile is substantially the same as in the
heterogeneous case. The degree of load balance is given by
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where Uavg and Umax are the average and maximum
utili zations over the computers, respectively.

Load balancing would be considered whenever the
eff iciency falls below a user-specified minimum of effmin. If
one is attempting to balance the run time of the machines,
load balancing should be undertaken if the time required for
load balancing is exceeded by the improvement in execution
time that would result from a better load distribution. If one



is attempting to balance some other quantity, such as
memory, a possible criterion would be to load balance
whenever the physical memory capacity of any machine is
exceeded, since the resulting page swapping will probably
severely degrade the application’s performance.

Load transfer calculation

The step most affected by consideration of heterogeneous
systems is that of ideal load transfer calculation. The
literature contains a number of algorithms for calculating
how much load to transfer among computers, including the
hierarchical balancing method, the generalized dimensional
exchange, and heat diffusion methods (Boill at 1990;
Cybenko 1989; Heirich and Taylor 1995; Watts and Taylor
1998b; Will ebeek-LeMair and Reeves 1993; Xu and Lau
1997).

Before discussing the specifics of the modified
algorithms, it is important to reiterate the fact that these are
load transfer calculation algorithms. However, the goal of
these algorithms is not necessarily to balance the loads of
the computers in the sense of making them equal. Instead,
the algorithms should reassign load in such a way that the
load at each computer is proportional to that computer’s
capacity. In other words, the algorithms balance the
computers’ utili zations by determining the ideal
redistribution of their loads.

The hierarchical balancing method (HBM) is a
recursive approach in which the computers are divided into
two partitions, and the total load is calculated for each
partition. The load transfer from the first partition to the
second is that necessary to make their respective loads per
computer equal
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where L1 and L2 are the loads of the two partitions of
computers, and P1 and P2 are the number of computers in
each partition.

In the case of a heterogeneous system, we seek to
establish that the load per capacity (i.e., the utili zation) is
equal in each partition. Thus, the transfer becomes
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where C1 and C2 are the total capacities of the two partitions.
In both the homogeneous and heterogeneous cases, the two
partitions are then recursively divided and balanced
independently.

In the generalized dimensional exchange, the “ links”
between adjacent computers are colored so that no computer
has two links of the same color. The colors are iterated over,
and a computer transfers load to or from its neighbor along
the link of each color until an adequately balanced state is

reached. The load transfer accumulation between two
computers i and j at step k is
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where λ is a constant between 0 and 1. For a detailed
discussion of the selection of λ see (Xu and Lau 1997). Note
that the loads of the computers are adjusted to account for
previous load transfers.

For the heterogeneous case, the transfer must be
weighted to account for the relative capacities of the two
computers. The resulting transfer iteration becomes
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Finally, the heat diffusion algorithm can be modified to
accommodate heterogeneous systems. Most presentations of
heat diffusion solve the underlying partial differential
equation using explicit methods (Boill at 1990; Cybenko
1989; Will ebeek-LeMair and Reeves 1993; Xu and Lau
1997). The problem with these methods is that they are
unstable for large time steps. To solve this problem, implicit
methods can be used (Heirich and Taylor 1995). Figure 1
gives the implicit heterogeneous heat diffusion algorithm as
executed by a particular computer i. (Unfortunately, there is
insuff icient space to present the full derivation of this
somewhat complex algorithm.) In that figure, Ni is the set of
network neighbors of computer i; α is the accuracy of the
algorithm and is typically set to be .1 mineff−

Task selection

Once the ideal load transfer quantities have been calculated,
the next step is to determine which tasks to transfer or
exchange among computers to meet those quantities. The
problem of selecting which tasks to transfer is essentially the
subset sum problem, for which polynomial time
approximation algorithms exist. An alternative approach,
however, is to formulate the problem in terms of the 0-1
knapsack problem, allowing transfer cost to be factored into
the decision process (Watts and Taylor 1998a). For
example, one might wish to reduce the effect that task
transfer has on an application’s communication locality.

The selection process is repeated multiple times until
the transfer quantities are adequately achieved or no further
progress is made. If the tasks are too coarse-grained, it may
be impossible to balance the load. If the user has provided
the appropriate support routines, one can divide the data
structures of a given task to produce multiple smaller tasks.
One way to select tasks for division is to choose a threshold
and divide any tasks whose utili zations exceed that
threshold. If the division of tasks results in a better, but still
inadequate load balance, the threshold would then be
lowered so that more tasks would be divided. This would



continue until an adequate load balance is achieved, until no
benefit results from finer granularity, or until further task
divisions are impossible, possibly due to algorithmic
considerations.

Task migration

A task can be transferred from one computer to another if
the user provides three functions—one function to write the
state of the task to the network, another function to read the
task’s state from the network, and a third function to
continue execution of the computation. The transfer of a task
from one computer to another is complicated in the
heterogeneous case by the fact that the underlying data
structures may be represented differently on different
computers. For example, integers may be 32 or 64 bits in
length and may be stored in either big-endian (most
significant byte first) or littl e-endian (least significant byte
first) fashion. The communication layer must thus provide

conversion between the data types of the respective
machines.

Note that the tasks with which a migrated task
communicates must be notified of the task’s new location.
Moreover, if the application is not quiescent at the time of
load balancing, it may be necessary to forward messages to
the tasks’ new locations. Ideally this process would be
accomplished by the underlying concurrent programming
library and would use completely local, asynchronous
protocols to re-establish communication (Taylor et al.
1996).

Granularity adjustment

Once tasks have arrived at their new computers, it may be
beneficial to increase or reduce the number of tasks on a
given computer. For example, on a computer with more than
one processor, there may be too few tasks to use all of the
processors. In that case, tasks whose utili zations exceed the
average computer utili zation should be divided.

Specifically, divide a task if its utili zation exceeds 
min

avg

eff

U
,

where Uavg is the average utili zation per computer and effmin

is the minimum desired computational eff iciency.

RESULTS

The heterogeneous load balancing framework described
above was applied to a large-scale concurrent particle
simulation (Rieffel et al. 1997). This application uses a
technique called direct simulation monte carlo (DSMC). The
DSMC method solves the Boltzmann equation by simulating
individual particles. Since it is impossible to simulate the
actual number of particles in a realistic system, a smaller
number of macroparticles are used, each of which represents
a large number of real particles. The simulation of milli ons
of these macroparticles is made practical by decoupling their
interactions. First, the space through which the particles
move is divided into a grid. Particle colli sions are
considered only for those particles within the same grid cell .
Furthermore, the colli sions are not detected by path
intersection but are instead determined by a stochastic model
whose inputs include the relative velocities of the particles
in question. Statistical methods are used to recover
macroscopic properties such as temperature and density.

The DSMC technique described above was
implemented using the Scalable Concurrent Programming
Library (SCPlib). This library has been applied to a variety
of large-scale industrial simulations and is portable to a wide
range of platforms. On each of these platforms, the library
provides a common set of low-level functionality, including
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Figure 1: Heterogeneous diffusion algorithm.



message-passing, thread management, synchronization, I/O,
and performance monitoring.

The SCPlib programming model is based on the
concept of a concurrent graph of communicating tasks
(Taylor et al. 1996). A task is comprised of a thread of
execution, a set of communication ports and the user’s state.
In the case of the DSMC application, each task is a partition
of the grid. The thread executes the DSMC algorithm over
that partition, transferring particles to and from neighboring
partitions via the communication ports. These
communication ports automatically convert basic data types
between different architectures, and they effectively hide the
mapping of tasks to computers. Because of this, tasks can be
relocated during the course of computation for the purpose
of load balancing. The load balancing framework in SCPlib
uses the heat diffusion algorithm for transfer quantity
calculation, cost functions to improve communication
locality during task selection, and finally, faciliti es for task
division to assist in the task selection and granularity
adjustment phases.

The DSMC application was applied to a 54,000-cell
box grid containing 432,000 particles. This problem was
partitioned uniformly to run on a network of 10 PC’s,
workstations and multiprocessor servers connected via a
10/100 Mbit/sec Ethernet switch. This network included
single- and dual-processor Dell PC’s, a Sili con Graphics
Origin 200 two-processor server, two Indigo 2 and three
Indy workstations, a Sun SparcServer and a Digital
Equipment AlphaStation. Included in that list are machines
with both 32-and 64-bit words as well as big- and littl e-
endian byte orderings. These machines are described in
greater detail i n Figure 2. Note that the performance of the
machines for a small DSMC benchmark problem varied by a
factor of almost 40, and the available memory varied by
over a factor of four.

Processor Memory
(MB)

Operating
System

Relative
Speed

30 MHz Sparc 128 SunOS 4.1.3 1.0
150 MHz Alpha 64 Digital UNIX 3.2 4.4
133 MHz R4600 64 IRIX 5.3 6.0
133 MHz R4600 64 IRIX 6.2 6.0
133 MHz R4600 64 IRIX 6.2 6.0
150 MHz R4400 288 IRIX 6.2 6.8
200 MHz R4400 128 IRIX 5.3 8.6
200 MHz Pentium 64 Windows NT 4.0 13.0
180 MHz R10000 (x2) 128 IRIX 6.4 38.0
266 MHz Pentium II (x2) 256 Windows NT 4.0 39.0

Figure 2: Processor architectures, memory capacities,
operating systems and relative speeds of computers in
heterogeneous testbed.

Four experiments were conducted. First, the problem
was run without load balancing. In this case, time steps

required an average of 14.1 seconds each. Next, a
homogeneous load balancing strategy was used with CPU
time as the task loads. Although CPU time is actually a
utili zation metric and not a load metric, it can be used as the
load if the computers are considered to be homogeneous. If
a capacity-invariant quantity such as the particle count were
used, no tasks would have been moved, since all of the
computers initially had the same number of particles. As in
all the remaining cases, load balance was achieved by
dynamically repartitioning the problem and redistributing
the resulting partitions according to the methods described
above. After homogeneous load balancing, simulation steps
required 6.5 seconds each. Also, in subsequent load
balancing steps, computers continued to transfer large
numbers of tasks, without improving the step time. This was
due to the absence of computer capacity estimates; the
utili zations of the computers did not vary as the load
balancing algorithms expected. For example, transferring 10
seconds of work from one computer to another might change
the utili zation of the latter computer by much more or much
less that 10 seconds. In the third test case, a small
benchmark problem, roughly 20% as large as the full
problem, was run on each machine. Using these static
capacity estimates, the problem was balanced. The time per
step dropped to 2.5 seconds. Unlike the homogeneous case,
the number of tasks transferred dropped off rapidly after the
first two load balancing rounds. A few tasks continued to be
transferred in subsequent load balancing rounds, however,
due to the differences between the capacity estimates and the
actual capacities of the computers. In the final test, the
computers’ capacities were calculated dynamically by
dividing the total number of particles on each computer by
the CPU time required to process them. This improved
performance even more, reducing the step time to 2.0
seconds. No further task transfers took place after the third
load balancing round, as the capacity estimates were quite
exact. These results are summarized in Figure 3. Because
the improvement numbers in Figure 3 were skewed by the
presence of a very slow computer (the SparcServer), which
made the unbalanced case extremely slow, another round of
tests were conducted in which that machine was omitted.
The results from those tests are given in Figure 4.

Scenario Step Time (sec) Improvement
No LB 14.1 None
Homogeneous  LB 6.5 2.2x
Heterogeneous LB
with static capacities

2.5 5.6x

Heterogeneous with
dynamic capacities

2.0 7.1x

Figure 3: Results of load balancing experiments for entire
heterogeneous testbed.



Scenario Step Time (sec) Improvement
No LB 4.3 None
Homogeneous LB 5.2 None
Heterogeneous LB
with static capacities

2.4 1.8x

Heterogeneous LB
with dynamic
capacities

2.0 2.2x

Figure 4: Results of load balancing experiments for
heterogeneous testbed without the slowest machine.

CONCLUSION

As this work has shown, substantial improvements in
performance are possible when one takes into account the
individual resource capacities of the computers on which a
concurrent application is running. The extensions required
to existing load balancing frameworks are fairly simple
ones. These modifications can be combined with our
previous work on vector load balancing techniques (Watts et
al. 1997) to simultaneously redistribute the utili zation of
multiple resources, such as both processing time and
memory. Coupled together, these techniques allow the
effective use of machines with disparate memory and
computational capabiliti es.
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