Metadata, citation and similar papers at core.ac.uk

Provided by Syracuse University Research Facility and Collaborative Environment

Syracuse University

SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and College of Engineering and Computer Science
Projects

1994

The Transportation Primitive

Ravi V. Shankar
Syracuse University, School of Computer and Information Science, rshankar@top.cis.syr.edu

Khaled A. Alsabti
Syracuse University, School of Computer and Information Science, kaalsabt@top.cis.syr.edu

Sanjay Ranka
Syracuse University, School of Computer and Information Science, ranka@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

b Part of the Computer Sciences Commons

Recommended Citation

Shankar, Ravi V.; Alsabti, Khaled A.; and Ranka, Sanjay, "The Transportation Primitive" (1994). College of
Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. 30.
https://surface.syr.edu/lcsmith_other/30

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former Departments,
Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://core.ac.uk/display/215669619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/30?utm_source=surface.syr.edu%2Flcsmith_other%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

The Transportation Primitive

Khaled Alsabt:
Sanjay Ranka
Ravi Shankar

CRPC-TR94529-S
August 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

The Transportation Primitive *

Ravi V. Shankar Khaled A. Alsabti Sanjay Ranka
School of Computer and Information Science
Syracuse University, Syracuse, NY 13244-4100

e-mail: rshankar, kaalsabt, ranka@top.cis.syr.edu

August 1994

Abstract

This paper presents algorithms for implementing the transportation primitive on a distributed
memory parallel architecture. The transportation primitive performs many-to-many personalized
communication with bounded incoming and outgoing traffic. We present a two-stage deterministic
algorithm that decomposes the communication with possibly high variance in message size into
two communication stages with low message size variance. If the maximum outgoing or incoming
traffic at any processor is ¢, transportation can be done in 2ty time (4 lower order terms) when
t > O(p? + pr/p) (p is the inverse of the data transfer rate, 7 is the startup overhead). If the
maximum outgoing and incoming traffic are r and ¢ respectively, transportation can be done in
(r+c)u time when either r > O(p?) or ¢ > O(p?). Optimality and scalability are thus achieved when
the traffic is large, a condition that is usually satisfied in practice. The algorithm was implemented on
the Connection Machine CM-5. The implementation used the low latency communication primitives
(active messages) available on the CM-5, but the algorithm as such is architecture-independent. An
alternate single-stage algorithm using distributed random scheduling was implemented on the CM-5

and the performance of the two algorithms were compared.

*A preliminary version of this paper titled Many-to-many Personalized Communication with Bounded Traffic is to

presented at Frontiers 95 Mclean, Virginia, February 1995.

1 Basic Communication Primitives

Communication between processors on a parallel machine can generally be described as z-to-y commu-
nication where z and y can be substituted by one, all, or many. “Communication” implies processors
sending and receiving messages: = being one, all, and many respectively, indicates that only one of the
p processors sends data, that all processors send data, and that only some processors send data. Simi-
larly, y being one, all, and many indicate that from each of the senders, one, all, and many processors
receive data respectively. Communication can be further distinguished as a broadcast/accumulation
or as personalized communication. For example, one-to-all communication could be either a one-to-all
broadcast (single-node broadcast) where a single processor sends out the same message to all proces-
sors, or a one-to-all personalized communication (single-node scatter) where a single processor sends
out different messages to each processor. This classification is fairly standard in the literature. See, for
instance, [7]. Algorithms for performing broadcasts are comparatively easier than those for performing
personalized communication. All further discussion in this paper deals with personalized communi-
cation. Communication with multiple senders and multiple receivers is also referred to as collective

communication.

2 Collective Communication Parameters

Any type of communication in a machine with p processors can be represented using a communication
matrix, a p x p matrix M where the addresses of the sending and receiving processors are used as row
and column indices. The matrix entry m,;; denotes the size of the message being sent by processor F;
to processor P;. The rows of the matrix are called send vectors and the columns are called receive
vectors. The outgoing traffic r; is the sum of the sizes of the messages being sent by processor P;, while
the incoming traffic ¢; is the sum of the sizes of the messages being received by processor P;. The
outgoing traffic bound r is the maximum outgoing traflic at any processor, and the incoming traffic
bound ¢ is the maximum incoming traffic at any processor. The overall traffic bound ¢ is the maximum

traffic, incoming or outgoing, at any processor.
r, = E my; c; = E my;
7 7

r = max T; ¢ = max ¢; t = maximum(r,c)
7 J

The fan-out f; is the number of messages sent by processor P;, while the fan-in g; is the number of
messages received by processor P;. The fan-out bound f is the maximum fan-out at any processor,
and the fan-in bound ¢ is the maximum fan-in at any processor. The overall fan-in/fan-out bound h
is the maximum number of messages, being sent or received, at any processor.

fi =Y sgn(mi;) g; = Y sgn(mi)

7 7

f = max f; ¢ = max g; h = mazimum(f,q)
i J

Ph PP P, P P P Fs Pr

Py 3 2 1 2 1 110
Py 2 1 3 10
P | 4 2 1 110
Ps 2 3 114 |10
Py 3 4 2 1 10
Ps 1 2 4 110
Fs 1 7 10
Pl 1 1] 4 1 3 10

10 10 10 10 10 10 10 10

Figure 1: A matrix illustrating all-to-many communication with equal traffic

The sgn function returns +1,0.-1 depending on whether its argument is positive, zero, or negative.
The relation between the parameters just defined and the different kinds of collective communication
is as follows. If f; = p for all ¢ (0 < ¢ < p), the communication is all-to-all. This also implies that
g;=pforall j (0<j<p).If f; >0forall 7, the communication is all-to-many. If f; =0or f; =p
for each ¢, and g; > 0 for each j, the communication is many-to-all. The general case, where f; > 0
for all ¢ is many-to-many communication. Collective communication can be further classified based on
the sizes of the messages being sent and received. Messages could be uniform (of the same size) or
non-uniform (of different sizes). The variance in message size is an important factor that affects the
performance of an algorithm for collective communication. Most algorithms presented in the literature

deal only with all-to-all communication with uniform message sizes.

3 The Transportation Primitive

The transportation primitive is a general communication primitive that performs many-to-many per-
sonalized communication in which message sizes could be highly non-uniform. It encompasses all the
basic communication primitives outlined in the last two sections.

In the most general case, the transportation problem could have differing incoming and outgoing
traffic at every processor. The incoming and outgoing traffic bounds determine the amount of time the
transportation takes. The transportation problem is illustrated in the communication matrices shown
in figures 1 and 2. The entry beyond the right margin of row P; is the outgoing traffic r;, while the
entry below column P; gives the incoming traffic ¢;. Figure 1 illustrates the case where the incoming
and outgoing traffic at each processor is equal to the overall traffic bound, a special case which will
be considered in the description of the algorithms. Figure 2 illustrates a case where the incoming and
outgoing traflic at each processor are not equal, and the incoming and outgoing traffic bounds are
different.

Transportation with an overall traffic bound of ¢, illustrated in figure 3, cannot be done in time less

Ph P P P P P Fs Pr

Py 3 1 1 116
Pl 2 1 1 7
P 1 1 2 1|7
Ps 1 3 1 5
Py 3 2 1 6
Ps 1 1] 2 2 17
Fs 0
Pl 1 1] 4 1 7

T 6 5 10 0 10 3 4

Figure 2: A matrix illustrating many-to-many communication with bounded traffic

than O(t). When the outgoing and incoming traffic bounds r and ¢ are different, transportation cannot
be done in time less than O(r 4 ¢). The two-stage algorithms presented in this paper achieve these
times and are optimal under large traffic conditions. Bounded transportation appears in a wide variety
of parallel algorithms such as matrix transpose on a rectangular grid, in the final phase of sorting
algorithms like sample sort, in transformations between any two distributions (like block, cyclic, and
block-cyclic) that distribute data equally among all processors, etc. We are using them for performing
dynamic permutations [11] and for dealing with highly irregular data accesses involving hot-spots [12]

on coarse-grained parallel machines.

4 CM-5 System Overview

4.1 Node/Network Architecture

The Connection Machine Model CM-5 [13] is a synchronized MIMD distributed-memory parallel ma-
chine available in configurations of 32 to 1024 processing nodes. Fach node contains a 33 MHz SPARC
microprocessor with 32 megabytes of memory, and is rated at 22 Mips and 5 Mflops. Four optional
floating-point vector units can be added to each node, and this increases the node’s peak performance
to 128 Mips and 128 Mflops.

The CM-5 interconnection network has three components: a data network, a control network,
and a diagnostic network. The data network has a fat-tree topology and provides high-performance
data communication between the system components. The network has a peak bandwidth of about
5 megabytes per second for node-to-node communication. However, if the destination is within the
same same cluster of 4 or 16 nodes in the fat-tree, a peak bandwidth of 20 megabytes per second and
10 megabytes per second, respectively, can be achieved [13]. The control network handles operations
requiring the cooperation of many or all processors. This includes broadcasting, combining, and global

operations. The diagnostic network helps in the detection and isolation of errors throughout the system.

R A Rk
Pl 1]5 3|9
Pl 2 5 2|09
P, 411|409
Pl 6 3 9
9 9 9 9

Data
being
sent

_
_
2 Wl il §

Interconnection
Network

VA - |
being

received
Figure 3: The Bounded Transportation Problem

7T3
e
]

Both, the control network and the diagnostic network, have a binary tree topology.

Our implementations were performed on a 32-node CM-5 using active messages for low latency
communication. Each 20-byte active message packet can carry up to 16 bytes of payload. Sending
and receiving a single-packet active message on the CM-5 takes 1.6 ps and 1.7 us respectively [6]. We
used the CMMD message passing library and CMAML (the CMMD active messages layer) [14]. Two
other implementations of active messages on the CM-5 exist: the original CMAM library [6] from UC
Berkeley and the Strata library from MIT [3].

4.2 Modeling the CM-5

¢ Sending a Message
The time taken to send a message from one node on the CM-5 to another can be modeled as
O(7 4+ M), where 7 is the startup overhead, u is the inverse of the data transfer rate and M is
the size of the message. As mentioned earlier, the value of i depends on whether the destination
belongs to a specific subgroup and whether other nodes are sending messages. For our complexity
analysis we will assume that 7 and p are constant, independent of the congestion and distance

between two nodes.

¢ Global Combine
Assume that each processor contains a vector V;[0 - - -% — 1]. Let p be the number of processors.
The global combine operation (also referred to as the global reduce operation) computes an
element-wise sum of the local list in each processor. The resultant vector R[0-- i 1] is stored

in all the processors.)
—
R[5} =) _Vilj]
=0
This operation can be completed in O(sz%) time on the CM-5, where ¢ is a small constant [2].
¢ Global Vector Scan
Let each processor contain a vector V;[0 - - -% — 1]. The global vector prefix-sum-scan operation

computes an element-wise prefix-sum-scan of the local list in each processor. The resultant vector

R[0---% — 1] in processor ¢ (0 < ¢ < p) is given by:

This operation can be completed in O((bg%) time on the CM-5, where ¢3 is a small constant.

5 Collective Communication with Low Message Size Variance

The simplest version of collective communication involves all processors exchanging messages of the
same size s. This is all-to-all personalized communication with uniform messages. Under these condi-
tions, a linear permutation algorithm [1] can be used to perform the communication. A linear permu-

tation algorithm goes through p — 1 iterations, and in iteration k processor P; (0 < i < p,0 < k < p)

Linear_ Permutation
For all processors P;, 0 < ¢ < p— 1, in parallel do

Generate receive vector recvl from the send vectors sendl in all the processors;
fork=1top—1do

J=idk;

if sendl? > 0 then P; sends a message of size sendl’ to P;

if recvl? > 0 then P; receives a message of size recol’ from P;

Barrier synchronize with all processors;

endfor

Figure 4: The Modified Linear Permutation Algorithm

exchanges data with processor P; g (6 is the bitwise exclusive OR operator). The time complexity
of linear permutation is O(sp).

A slightly modified linear permutation algorithm can be used when the messages are not uniform
but exhibit only a small variation in size. Here, processors no longer send messages of exactly the same
length. Instead they exchange send and receive vectors, and exchange only messages of the required
lengths. The algorithm is shown in figure 4, where sendl’ is the size of the message sent to processor
P; (from P;) and recvl’ is the size of the message received from processor P; (by P;). The implicit
synchronization in the linear permutation algorithm is replaced by an explicit barrier synchronization,
and the algorithm retains the deterministic time complexity of O(sp) where s is the upper bound on the
sizes of the messages exchanged. The barrier also prevents the communication network from getting
congested and this has been shown to improve performance [4]. This is the algorithm referred to when

“linear permutation” is mentioned in the rest of this paper.

6 Collective Communication with High Message Size Variance

Dealing with communication in which message sizes show a large variation is a difficult problem. A
linear permutation algorithm could take as much as O(#p) time. Sorting messages by size is not
guaranteed to improve performance either. We use a distributed random scheduling algorithm using
spin locks to deal with such a situation. The distributed scheduling algorithm [15] was chosen over
other graph based techniques because its low overhead enables scheduling to be done dynamically.
The algorithm is presented in figure 5. Ilach processor maintains a status bit that indicates whether
the processor is busy or free. Processors which have messages to send perform a test-and-set operation
to determine whether the intended destination is free. If the destination is free, its status bit is set to

busy, and data is transferred as a single message. If the destination is busy, the sending processor tries

Distributed Random_Scheduling
For all processors P;, 0 < ¢ < p— 1, in parallel do

Generate receive vector recvl from the send vectors sendl in all the processors;
Pre-allocate receiving buffers according to receive vector recwl;
Repeat

Select a destination node from send vector sendl, use active messages to test-and-set des-
tination node’s busy_lock;
If the destination node is free to receive message,
Send message to the destination node;
Upon completion, reset destination node’s busy_lock to free;

Reset the corresponding entry in send vector sendl;
Until send vector sendl is empty

Wait until all incoming messages arrive at their proper buffers.

Figure 5: The Distributed Random Scheduling Algorithm

another intended destination using the same procedure. The test-and-set inquiry operation is shown
in figure 6.

We re-implemented the distributed scheduling algorithm using active messages on the CM-5. Two
improvements were incorporated into the new implementation, which also replaced the interrupts in the
earlier implementation with polling. First, a busy destination processor when replying to the sender of
an inquiry gives a measure of how busy it is. The sender notes down this measure and makes sure that
the destination will not be disturbed for this measure of time. If the sender receives busy signals from
all the intended destinations, it goes to sleep for the amount of time indicated by the minimum of the
measures returned by the destinations. The second improvement allowed busy destination processors

to give the go-ahead for a new message transfer when the current message transfer is about to get over.

7 Two-stage Algorithm for the Bounded Transportation Problem

We have developed a two-stage algorithm that decomposes the transportation problem involving com-
munication with high message size variance, into two communication stages with low message size
variance. In the general case, the fan-out and fan-in at each processor is less than or equal to p and the
traffic bound is ¢. Results are given separately for the equal traffic case, where the incoming traffic and
the outgoing traffic at each processor is exactly equal to the overall traffic bound ¢. Each processor takes

on three roles in this two-stage algorithm. First, each processor F; for which the fan-out f; is non-zero

I:)x I:)y I:)z
inquiry
test-and-set
busy_lock
return status
if OK | send message
inquiry else bugﬁck

Figure 6: The inquiry operation in Distributed Scheduling

acts as a source processor, sending out data during the first stage. Second, each processor participates
as an intermediary, receiving data during the first stage, and sending data during the second stage.
Third, each processor P; for which the fan-in f; is non-zero acts as a destination processor, receiving
data during the second stage. The organization of data in the source, intermediate and destination

processors is shown in figure 7.

7.1 The First Stage
Local pre-processing

In source processor P; (0 < i < p) let @i0,@i15--,0;(p—1) be the number of elements being sent to
destination processors Py, P,...,P,_1 respectively. In stage 1, each of the a;; elements is divided into p
parts (each of size either [a;;/p] or |ai;/p|) to be sent to processors Py to P,—1. ' At the end of stage
1, processor Py, acting as an intermediary could receive messages of size up to t/p + p, since

p—1

> Tai/p] Zazk/erp < a/ptp < tp+p

=0
The lower bound for the message size is 0, unless we are dealing with the equal traffic case, when the
lower bound becomes ¢/p — p, since

p—1

> lair/p) Zazk/p p > c/p—p > t/p—p

=0
Our goal is to achieve communication with low variance in message sizes for both stages. A simple

change in the algorithm can achieve the balance we desire for the first stage. At any processor P;,

'n reality, this is only p — 1 messages, since one of the messages is to be sent to the sending processor itself. Our
implementations take this into account, but this paper, for the sake of simplicity, continues to refer to p as the number of

messages being sent out.

Intended fina P0 P1 |:>2 P3

esunatlon T T T T T T T T T T
I S S D R B At gart
toiné?(r)rgarte P P P, PR P P P PPPPRP (in source processor Pi)
P, — =
to intermediate 1 After local pre-processing
processor p _
2 instage 1
E
from source ___PCL_\ P, P P
processor . 4= =
intended final " __ \
destmanc;h PPPP
Jr P After stage 1 communication
/ ‘ [(in intermediate processor Pj)
!]
\\\ // PO
P N W L S intended final .
T m--- - inten in .
o After | re-processin
destination P, ter OC?I pre-processing
in stage 2
P
3
from intermediate P P P, P,
processor . p=—————=
o
g T W RARRR RARR RARR
1P tpp el
)’ P PrP | After stage 2 communication
l\) (in destination processor Pk)
.. R R B R

Figure 7: Organization of Data in the Two-stage Algorithm

when dividing the a;; elements into p parts for sending, the last a;; mod p elements are assigned to the
p intermediate processors in a round robin fashion. This ensures that each intermediate processor Py
receives messages of size no more than [¢/p]. In the equal traffic case, the message sizes can vary by
only one element since the smallest message size is [t/p].

Figure 8 gives the details of algorithm used for local pre-processing in stage 1. The overall time

required is O(p?).

Communication

In an initial version of the implementation, local reshuffling was done at the source processors in order
to get all the data elements being sent to the same intermediate processor into contiguous memory
locations. Such reshuffling gets prohibitively expensive when t is large. Our current implementation
requires that the communication routines take as arguments pointers to p memory locations in the
source processor and p associated lengths for each message being sent, as shown in figure 7. Note that
this does not increase the communication startup latency by a factor of p.

In the equal traffic case, since the communication is balanced with message lengths differing by
just one element, linear permutation works best. In the general case, distributed scheduling for the
first stage’s communication may perform better, but linear permutation gives an upper bound on the
time taken for communication. A maximum of p messages of length no more than [¢/p] may need to
be sent. In addition, each of these messages has to be padded with p lengths (and the sum of these p
lengths, see figure 7) to help the intermediate processor determine the message portions to be sent to
each destination processor. The time required for communication is O(p(7 + p(t/p + p))).

Figure 9 illustrates the two-stage algorithm through an example, showing how messages from a
particular source processor to a particular destination processor are split and sent through the in-
termediate processors. This example uses an additional step to ensure that the total length of the
messages reaching an intermediate processor in stage 1 is not greater than p[t/p], that is, t + p. In the
algorithm description above the total length was upper-bounded by t + p?. (However, if t/p < O(p),
communication in stage 1 takes only O(p(7 + p(t/p+1))), as explained later. The additional step re-
duces the total length of messages reaching an intermediate processor from ¢ + p to ¢). This additional
step involves a global prefix-sum-scan on the quantity (Zf;é a;;) mod p in each processor P;. The
result of the scan indicates the intermediate processor at which the round-robin assignment of excess
elements should begin. If the cost of a prefix-sum-scan is less than the savings obtained through the

tighter bound on the total length of the messages, the additional step should be used.

7.2 The Second Stage
Local pre-processing

At the intermediate processors, each of which receives p messages, local pre-processing is done as
preparation for the second stage. An initial implementation performed reshuffling. Our current imple-

mentation sets up, for each message sent out in the second stage, two arrays containing p pointers and

10

procedure Stgllpp(sendl, send_msg_start, send_msg_len)

/* This is code that runs in every processor.

* sendl[0..P-1] is the send vector

* index j gives destination processor #, index k gives intermediate proc #
*

* send_msg_start[0..P-1][0..P-1] gives the index of the element from the

* input array marking the start of each of the P parts of the P

* messages sent out from this source processor;

* send_msg_len[0..P-1][0..P] gives the length of those parts; in
* particular, the entry send_msg_len[0..P-1]1[0] gives the total
* length of messages to each intermediate processor

*/

begin

for j := 0 to P-1 do
for k := 0 to P-1 do
send_msg_len[k] [j+1] := sendl[j] div P;
/* (sendl[j] div P) is the # of elements originally meant for

processor j now being sent to every intermediate processor */

k := 0;
for j := 0 to P-1 do
for x := 1 to (sendl[j] mod P) do
/* (sendl[j] mod P) is the # of elements meant for destination processor

j that could not be divided equally among the intermediate processors */

begin
send_msg_len[k][j+1] := send_msg_len[k][j+1] + 1;
k := (k+1) mod P;

end;

data_ptr := 0;
for j := 0 to P-1 do
for k := 0 to P-1 do
begin
send_msg_start[k][j] := data_ptr;
data_ptr := data_ptr + send_msg_len[k][j+1];
send_msg_len[k][0] := send_msg_len[k][0] + send_msg_len[k][j+1];
/* send_msg_len[k][0] is current message size for interm. proc k */

end

end;

Figure 8: Local Pre-processing in Stage 1

11

destination

U WU
wY

processor
R R R R
P0 11 | 1 4 117
P| 2 3 |12 |17
source
processor
P| 3|10 31117
Fg 1 6 7 3|17
17 17 17 17
i?)t source P, source P, source P, source
R PR BER R PR BER R PR BER R R
X X X X X X X X X
dastlnatlonP0 X X X X
X X X
dastinationF’1 X X X X X X X
X X X X X X
X X
deﬂinatioanxxxx X X X X X X X X
X
dastinationP3 X X X X X X X

Figure 9: Splitting of Messages in the Two-Stage Algorithm

12

procedure Stg2pp (send_msg_start, send_msg_len)

/* send_msg_start[0..P-1][0..P-1] gives the index of the element from the
* input array marking the start of each of the P parts of the P
* messages sent out from this intermediate processor;

*

* send_msg_len[0..P-1][0..P] gives the length of those parts; in
* particular, the entry send_msg_len[0..P-1]1[0] gives the total
* length of messages to each destination processor

*/
begin

/* initializing the total length of each message */

for i := 0 to P-1 do

send_msg_len[i][0] := O;

for i := 0 to P-1 do

begin
start := (T/P)*i + 1 + P; /* start position of current message */
for j := 0 to P-1 do /* T is the traffic bound */
begin
total := data_int[start*i+j+1]; /* length of current sub-message */
send_msg_start[j]1[i] := start;
start := start + total;

send_msg_len[j]1[0] := send_msg_len[j]1[0] + total;
send_msg_len[jI1[i] := total;
end
end

end;

Figure 10: Local Pre-processing in Stage 2

p lengths. Since a maximum of p messages could be sent out, this takes O(p?) time. Figure 10 gives

the steps used for local pre-processing in stage 2.

Communication

Messages sent out in stage 2 could be of size up to t/p + p. In the general case, the lower bound on
message size is 0, but in the equal traffic case, message size cannot be lower than t/p — p. Lowering
the variance in message size, as was done in stage 1, is not as easy any more. The total size of the
messages received at a destination processor is upper bounded by t + p?. The upper bound on the
communication time required in stage 2 is O(p(7 + p(t/p + p))). In practice, a random reshuffling of
messages at the source processor, as explained in the appendix, could reduce the expected length of

the messages in stage 2. The expected upper bound on the communication time required in stage 2

would then be O(p(7 4+ u(t/p + vpInp))).

13

7.3 Analysis of Deterministic Time Complexity

e The local pre-processing needed for the two-stage algorithm takes O(p?) time. The two commu-
nication stages take O(p(7 4 p(t/p+p))) time. Thus the two-stage algorithm has a deterministic
time complexity of O(p? + pr + u(t + p*)). The constants associated with the O notation in the
analysis are small, typically between 2 and 3. The algorithm takes time O(¢) and is optimal when
traffic t > O(p* + pr/p).

e For O(pr/p) <t < O(p? + pr/u), local pre-processing becomes a bottleneck to achieving opti-
mality. This bottleneck can be overcome and the pre-processing time can be reduced to O(t) by
working with sparse representations (storing just the non-zero entries and their indices) of the
p? sized arrays used in pre-processing. Further, the padding with p lengths done during stage 1
can be replaced by padding with [¢/p] lengths, making O(p(7 4 u(t/p+ 1))) the communication
time required for the first stage. Time taken for the second stage’s communication remains as

the algorithm’s bottleneck for achieving optimality when O(pr/p) <t < O(p* + pr/u).

e In the case where every a;; is a multiple of p, that is, if the message sent by any source processor
to any destination processor is a multiple of p, optimality is achieved for ¢ > O(p7/u). This
result is significant because it says that transportation with highly non-uniform messages can be
performed in using a theoretically optimal and a very practical algorithm, if the message sizes
are divisible by p. The constraint ¢t > O(pr/u) is satisfied when startup time does not dominate

the time taken for communication.

An algorithm for transportation based on sorting can provide a better asymptotic time complexity
in the general case when the traffic is small. Since the destination processors are numbers from a fixed
range, local sorting done using a radix-sort takes just O(¢) time. Data movement between processors
can be achieved using an adaptation of rotate-sort [8]. All communication between processors can be
done as fixed (or static) permutations. Such a combination was used to perform sorting for geometric
hashing in [10]. This rotate-sort and radix-sort combination performs transportation in O(t) time, but
requires nine local radix-sorts, six rotates (fixed permutations), and three row-wise sorts. Performing
each row-wise sort through a transpose, followed by a radix-sort and another transpose, implies that
the three row-wise sorts require three radix-sorts and six transposes (fixed permutations). The sorting
based algorithm requires that the data be moved about 9 to 12 times between the processors, compared
to the 2 movements required in the two-stage algorithm. The difference in the constants associated
with the communication term in the time complexity of both algorithms is significant, especially for
coarse-grained architectures. This makes the sorting based algorithm highly impractical in spite of its

better asymptotic time complexity for smaller traffic.

14

intermediate source P, source P, source P, source

pracessor
K—»P P P

oY wU

o R R R P R R R P R R R PR R
X X X X X X X X X X
d&cnnanonl% X X X X
X X X
da'stinationP1 X X X X X X X X X
X X X X X X
X X
destinatioan X X X X X X X X X X X X X X
X X X
da'stinationP3 X X X X X X X X X

Figure 11: An Alternate Scheme for the Splitting of Messages

8 Transportation with Differing Incoming and Outgoing Traffic

Bounds

With an outgoing traffic bound r and an incoming traffic bound ¢, the two-stage algorithm takes
minimum(p?,) and minimum(p?, c) for the local pre-processing in the two stages. Communication
in stage 1 takes O(p(7 + p(r/p + 1))) time and communication in stage 2 takes O(p(7 + p(c/p+ p)))
time. The algorithm takes O(r 4 ¢) time and is optimal for r > O(p) (unless the startup time is high)
and ¢ > O(p?). Incorporating the additional step shown in figure 9 reduces the stage 1 communication
time to O(pr + pur/p) making the algorithm optimal for ¢ > O(p?). The only constraint on r is that
the startup time should not dominate the time taken by stage 1, that is, r > O(p7/u).

If, on the other hand, the outgoing traflic bound r is higher than the incoming traffic bound ¢, an
alternate scheme can be used for message splitting. This scheme is illustrated through an example in
figure 11. The change in the stage 1 local pre-processing algorithm to accomodate the new scheme is
shown in figure 12. At any processor P;, when dividing the a;; elements into p parts for sending during

the first stage, the last a;; mod p elements are assigned to the p intermediate processors in a round

15

for j := 0 to P-1 do

sendl[j] := sendl[j] mod P;
Global_Vector_Prefix_Sum_Scan(sendl, sendl_new);
for j := 0 to P-1 do

sendl_new[j] := sendl_new[j] mod P;

for j := 0 to P-1 do
begin
k := sendl_new[j];
for x := 1 to sendl[j] do
/* sendl[j] is the # of elements meant for destination processor j

that could not be divided equally among the intermediate processors */

begin
send_msg_len[k] [j+1] := send_msg_len[k][j+1] + 1;
end;

end

Figure 12: Changes to the Stage 1 Local Pre-processing Algorithm

robin fashion. In the earlier message splitting scheme, we ensured that each intermediate processor
receives messages of size no more than [t/p] from any source processor. The new scheme ensures that
each intermediate processor sends messages of size no more than [¢/p]| to any destination processor.
This is achieved by performing the round-robin assignment across all the source processors rather than
inside each source processor. A global prefix-sum scan with the vector (a;o mod p, ajp mod p, ... ,
Ai(p—1) mod p) in each source processor P; is needed. This takes O(p) time and does not affect the
time complexity of pre-processing. Communication in stage 1 takes O(p(T + u(r/p + p))) time and
communication in stage 2 takes O(p(T + p(c/p + 1))) time. The algorithm takes O(r + ¢) time and
is optimal for r > O(p?) and ¢ > O(p). As with the earlier scheme, an additional step (not shown in
figures 11 and 12) can reduce the upper bound on the total length of messages leaving an intermediate
processor from p[t/p] to t. The additional step involves a global sum-combine with vectors of size p.
This additional step reduces the stage 2 communication time to O(pr 4+ pc/p) making the algorithm
optimal for r > O(p?). The only constraint on c is that the startup time should not dominate the time

taken by stage 2, that is, ¢ > O(pt/p)).

9 Performance Results

The two-stage algorithm and the single-stage algorithm were implemented on the CM-5 using the
CMMD message passing library with CMAML active message routines. Communication matrices were

generated such that message sizes were non-uniform while the traffic was bounded. Three parameters

16

were used to control the kind of matrix that was generated. The fan-out parameter k specified the
number of processors that each processor communicates with (k < p). The sum of the messages being
sent out and received at each processor was fixed at t, the traffic parameter. A parameter [was used
to control the non-uniformity of messages sent out by the processors. It was used as follows: Of the
k processors receiving messages from a single processor, the fraction [t of the traffic reached (1 — [)k
processors, while the remaining (1 — [)¢ traffic reached [k processors.

Figure 13 compares the performances of the single-stage distributed scheduling algorithms with
and without the improvements. The horizontal axis gives the traffic (in words) at each processor
and the vertical axis gives the time taken in seconds. The parameter k£ was varied from 2 to 32
and the parameter [was varied from 1/2 to 1/k. The algorithm with the improvements performed
better. The variation in the time taken for different values of & and [is large for both algorithms.
Figure 14 compares the performance of the two-stage algorithm with that of the single-stage algorithm
with the improvements. The single-stage algorithm consistently performed better than the two-stage
algorithm, although it exhibited a much larger variance in the time taken. The two-stage algorithm
timings were within a factor of 1.5 times the single-stage readings. It should be noted that the two-stage
algorithm is fairly architecture-independent, while the single-stage algorithm (particularly the one with
the improvements) is architecture-dependent. The latter is also highly dependent on the availability of
low latency communication primitives.

Sample values of k& and ! were chosen to highlight a best-case and a worst-case performance of
the two-stage algorithm among the trials that were conducted. Figure 15 illustrates the best case in
which the two-stage algorithm performed as well as the single-stage algorithms, even out-performing
the single-stage algorithm without the improvements. In this trial £ and [were fixed at 32 and 1/32
respectively, which indicates that 1 out of 32 processors received 31/32 of the total traffic, while the
other 31 processors received in total 1/32 of the traffic. It was a trial in which the messages were
highly non-uniform in size. Figure 16 illustrates a worst case for the two-stage algorithm. Both the
single-stage algorithms out-performed the two-stage one. In this trial £ and [were fixed at 2 and 1/2
respectively. This indicates that only 2 processors receive data from a single processor, and both of
them receive exactly the same amount of traffic. It was a trial in which the messages were uniform in
size. The two-stage algorithm’s performance remained roughly close to its best-case performance, but

the single-stage algorithm’s performance improved considerably.

10 Conclusions

We have presented a variety of solutions for the transportation problem on a distributed memory
parallel machine. A two-stage algorithm that takes time no more than 2ty (4 lower order terms) when
traffic ¢ > O(p?+ p7/u) was presented. For smaller traffic (¢ > O(py/pInp)), the two-stage algorithm is
expected to work well, as shown in the probabilistic analysis in the appendix. An algorithm using sorting
can improve the result to O(¢) time for ¢ > O(p), but the associated constants make this algorithm less
desirable for implementation. The two-stage algorithm can also be used when any processor is receiving

at most ¢ amount of data and sending at most r» amount of data. Time taken is no more than (r + ¢)u

17

o
\'

o
o

— one_stage old
- one_stage_new |

Time taken (sec)
o o o

w BN o1

T T T

o
N
|

01

|
0 50000 100000 150000 200000 250000 300000
Traffic (in words)

Figure 13: Comparison between the two single-stage algorithms

0.7

06 —— two Stage
one_stage new

o
o1
T

o
~
T

Time taken (sec)
o
w
T

o
N
|

01

2%%
22

zs
i | | | | |

0 50000 100000 150000 200000 250000 300000
Traffic (in words)

Figure 14: Comparison of the two-stage and single-stage algorithms

18

o
\'

I I
— one _stage old
- one_stage new
--- two_stage

Time taken (sec)
o o 9o o o 9o
- N w BN o1 [op)
T I T T T
11
w
N
I
=
w
N
|

| | | | |
0 50000 100000 150000 200000 250000 300000
Traffic (in words)

o

Figure 15: One of the good performances of the two-stage algorithms

o
~l

I I
— one_stage old
- one_stage_new
-~ two_stage i

Time taken (sec)
o o o o
w =N ()] (o]

T

o
N

01

0 50000 100000 150000 200000 250000 300000

Traffic (in words)

Figure 16: One of the bad performances of the two-stage algorithms

19

(+ lower order terms) when one of the bounds is O(p?). A single-stage algorithm using distributed
random scheduling was implemented and compared with an implementation of the two-stage algorithm.
The distributed scheduling algorithm performed better on the CM-5, but this result is not expected to
apply to other architectures. Besides, the single-stage algorithm is not deterministic, and that makes
it difficult to ascertain its time complexity.

We have shown that many-to-many personalized communication with non-uniform messages can be
performed using two stages of all-to-all personalized communication with uniform messages. Thus, the
performance of the two-stage algorithm is roughly half that of an all-to-all personalized communication
with the same amount of traffic. The latter problem has been widely investigated in the literature for
a variety of interconnection networks (meshes, hypercubes, etc), message passing strategies (wormhole
routing, store-and-forward routing, etc), single-port vs. multi-port communication. This makes the
two-stage decomposition method useful for a wide variety of architectures. We are currently investi-
gating the performance of these algorithms on other parallel architectures (Intel Paragon, iPSC 860,
and the IBM SP1).

References

[1] Shahid H. Bokhari. Complete Exchange on the iPSC/860. ICASE Technical Report No. 91-4,
NASA Langley Research Center, January 1991.

[2] Zeki Bozkus, Sanjay Ranka, Geoffrey C. Fox. Benchmarking the CM-5 Multicomputer, Proceedings
of the Frontiers of Massively Parallel Computation, pp. 100-107, October 1992.

[3] Eric A. Brewer and Robert Blumofe, Strata: A Multi-Layer Communications Library, MIT Lab-
oratory of Computer Science Technical Report, February 1994.

[4] Eric A. Brewer, Bradley C. Kuszmaul, How to Get Good Performance from the CM-5 Data
Network, Proceedings of the 8th International Parallel Processing Symposium, April 1994.

[5] Herbert A. David, Order Statistics, John Wiley and Sons, New York, 1981.

[6] T. von Eicken, D.E. Culler, S.C. Goldstein, K.E.Schauser. Active Messages: a mechanism for
integrated communication and computation. Proceedings of the ISCA ’92, Gold Coast, Australia,
May 1992.

[7] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis. Introduction to Parallel Computing:
Design and Analysis of Algorithms, Benjamin-Cummings, 1994.

[8] J. Marberg, E.Gafni. Sorting in Constant Number of Row and Column Phases on a Mesh. Algo-
rithmica, Vol.3, pp.561-572, 1988.

[9] K. Mehrotra, S. Ranka, J.C. Wang. A Probabilistic Analysis of a Locality Maintaining Load
Balancing Algorithm, Proc. 7th International Parallel Processing Symposium, April 1993.

20

[10] Victor K. Prasanna, Cho-Li Wang, Scalable Data Parallel Object Recognition using Geometric
Hashing on the CM-5. Scalable High Performance Computing Conference, SHPCC, 1994.

[11] Ravi V. Shankar, Sanjay Ranka. Random Data Accesses on a Coarse-Grained Parallel Machine -
I. One-to-one Mappings, CIS Technical Report, Syracuse University, October 1994.

[12] Ravi V. Shankar, Sanjay Ranka. Random Data Accesses on a Coarse-Grained Parallel Machine -
II. One-to-many and Many-to-one Mappings, CIS Technical Report, Syracuse University, October
1994.

[13] Thinking Machines Corporation. The Connection Machine CM-5 Technical Summary, October
1991.

[14] Thinking Machines Corporation. CMMD Reference Manual Version 3.0, October 1991.

[15] Jhy-chun Wang, Tseng-Hui Lin, Sanjay Ranka. Distributed Scheduling of Unstructured Collective

Communication on the CM-5. Hawaii International Conference on System Sciences, 1993.

A Probabilistic Analysis of Time Taken

The purpose of the first stage in the two-stage algorithm was to spread out data leaving the source
processors evenly among the intermediate processors. The intended intermediate processor numbers
for the p messages leaving a source processor can be shuffled randomly within groups of messages of size
[t/p] and [t/p]|, without affecting the algorithm. This would still preserve the upper bound derived
earlier for total number of data elements sent or received in the first stage. The stage 1 communication
now needs to include an extra array of length minimum(p, [t/p]) tagged on to each outgoing message.
This array gives the permutation that was performed locally before the send. It is needed at the
destination processors since the p parts of a message reaching a destination processor must be put back
together in order to complete the transportation.

A probabilistic analysis of the improvement in time due to the above modification follows. Let

%) | % R %ijlM | be the p parts of a message of length m reaching destination processor P;.
The notation | % | stands for [%} (with probability W;%Odp) or L%J (with probability 1— W;%Odp).

This assumes that a;; mod p being 0,1, ..., p—11is equally likely. In the deterministic analysis, the length

m of the message reaching destination processor P; was taken to be ¢/p+p to accomodate the worst case.

The expected value of | % | is

a;j-, ai; mod p a;; a;; mod p
Iy ettt o Y e N O Mttt o
[pW(P) LpJ(P)
_ (%—I—l—aij modp)(aijmodp)_l_(%_aij modp)(l_aij modp)
P P P P P
- Y
P

21

. ay, .
The variance of | =% [is

(140 - Yoy Lo o0R | %y g G odD,
P P P P P
a;; mod p.o, a;; mod p —a;; mod p a;; mod p
=(1—]p)2(]]))+ (]p (1]p)
a;; mod p. a;; mod p
= (1-— (=)
P P
The expected value of m is
p—1
i
Y = tfp
=0 p
The variance of m is
pz_:l(l 4 mod p)(aij mod p)
=0 p p
The expected value for the variance of m is
12
'3 Z (p—)
=1
_ i(pQ(p +1) plp+D(2p+ 1))
p? 2 6
1
= @P(P‘F (p-1)
_ pol
= 6
L P
6

Let X1, X5, ..., X,, be independent and identically distributed random variables with mean 0 and
variance 1. Let X = max{Xy, Xo, ..., X;;}. Then, for large n, the distribution for the normalized X is
given by the extreme-value-distribution [5, 9]. Using the extreme-value-distribution assumption gives
us B(X) = a, + 3~ where y = Euler’s constant = 0.5772, and Var(X) = %. In particular, if
the X;s are normally distributed, then both a,, and b, are approximately equal to v/21n n. If the mean
and variance of the n random variables are p and o2, rather than 0 and 1 respectively, the values of

E(X)and Var(X) are given by F(X) = p+o(v2Inn + yﬂm) and and Var(X) = gzgj = 17;2132_

In two-stage algorithm, the length of a message reaching a destination processor, from a particular

intermediate processor, has a mean of ¢/p and an expected variance of p/6. Each destination processor

22

could receive such messages from each intermediate processor. This is done through the p iterations in
the linear permutation algorithm used to perform communication. The time taken by any iteration of
the linear permutation algorithm is dictated by the longest of the messages that need to be sent during
that iteration. The length of a message in any iteration is given by the sum of p uniform distributions.
We approximate this by a normal distribution. We can now use the properties of the extreme-value-
distribution to obtain the expected value of the upper bound on the length of messages sent out during

any iteration. This expected value is

v
V21
pto(v2np+ 2111p)

t/p+£(\/21np+ \/271719)
t/p+ @\/2111]7

4

The expected value of the maximum time needed for the communication in the second stage is O(pr +

u(t + pyv/pInp)).

23

	The Transportation Primitive
	Recommended Citation

	tmp.1286816405.pdf.noYtO

