
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1994

The Transportation Primitive The Transportation Primitive

Ravi V. Shankar
Syracuse University, School of Computer and Information Science, rshankar@top.cis.syr.edu

Khaled A. Alsabti
Syracuse University, School of Computer and Information Science, kaalsabt@top.cis.syr.edu

Sanjay Ranka
Syracuse University, School of Computer and Information Science, ranka@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shankar, Ravi V.; Alsabti, Khaled A.; and Ranka, Sanjay, "The Transportation Primitive" (1994). College of
Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. 30.
https://surface.syr.edu/lcsmith_other/30

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former Departments,
Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215669619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/30?utm_source=surface.syr.edu%2Flcsmith_other%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

The Transportation PrimitiveKhaled AlsabtiSanjay RankaRavi ShankarCRPC-TR94529-SAugust 1994Center for Research on Parallel ComputationRice University6100 South Main StreetCRPC - MS 41Houston, TX 77005

The Transportation Primitive �Ravi V. Shankar Khaled A. Alsabti Sanjay RankaSchool of Computer and Information ScienceSyracuse University, Syracuse, NY 13244-4100e-mail: rshankar, kaalsabt, ranka@top.cis.syr.eduAugust 1994AbstractThis paper presents algorithms for implementing the transportation primitive on a distributedmemory parallel architecture. The transportation primitive performs many-to-many personalizedcommunication with bounded incoming and outgoing tra�c. We present a two-stage deterministicalgorithm that decomposes the communication with possibly high variance in message size intotwo communication stages with low message size variance. If the maximum outgoing or incomingtra�c at any processor is t, transportation can be done in 2t� time (+ lower order terms) whent � O(p2 + p�=�) (� is the inverse of the data transfer rate, � is the startup overhead). If themaximum outgoing and incoming tra�c are r and c respectively, transportation can be done in(r+c)� time when either r � O(p2) or c � O(p2). Optimality and scalability are thus achieved whenthe tra�c is large, a condition that is usually satis�ed in practice. The algorithmwas implemented onthe Connection Machine CM-5. The implementation used the low latency communication primitives(active messages) available on the CM-5, but the algorithm as such is architecture-independent. Analternate single-stage algorithm using distributed random scheduling was implemented on the CM-5and the performance of the two algorithms were compared.
�A preliminary version of this paper titled Many-to-many Personalized Communication with Bounded Tra�c is topresented at Frontiers '95,Mclean, Virginia, February 1995. 0

1 Basic Communication PrimitivesCommunication between processors on a parallel machine can generally be described as x-to-y commu-nication where x and y can be substituted by one, all, or many. \Communication" implies processorssending and receiving messages: x being one, all, and many respectively, indicates that only one of thep processors sends data, that all processors send data, and that only some processors send data. Simi-larly, y being one, all, and many indicate that from each of the senders, one, all, and many processorsreceive data respectively. Communication can be further distinguished as a broadcast/accumulationor as personalized communication. For example, one-to-all communication could be either a one-to-allbroadcast (single-node broadcast) where a single processor sends out the same message to all proces-sors, or a one-to-all personalized communication (single-node scatter) where a single processor sendsout di�erent messages to each processor. This classi�cation is fairly standard in the literature. See, forinstance, [7]. Algorithms for performing broadcasts are comparatively easier than those for performingpersonalized communication. All further discussion in this paper deals with personalized communi-cation. Communication with multiple senders and multiple receivers is also referred to as collectivecommunication.2 Collective Communication ParametersAny type of communication in a machine with p processors can be represented using a communicationmatrix, a p x p matrix M where the addresses of the sending and receiving processors are used as rowand column indices. The matrix entry mij denotes the size of the message being sent by processor Pito processor Pj . The rows of the matrix are called send vectors and the columns are called receivevectors. The outgoing tra�c ri is the sum of the sizes of the messages being sent by processor Pi, whilethe incoming tra�c cj is the sum of the sizes of the messages being received by processor Pj . Theoutgoing tra�c bound r is the maximum outgoing tra�c at any processor, and the incoming tra�cbound c is the maximum incoming tra�c at any processor. The overall tra�c bound t is the maximumtra�c, incoming or outgoing, at any processor.ri = Xj mij cj = Xi mijr = maxi ri c = maxj cj t = maximum(r; c)The fan-out fi is the number of messages sent by processor Pi, while the fan-in gj is the number ofmessages received by processor Pj . The fan-out bound f is the maximum fan-out at any processor,and the fan-in bound g is the maximum fan-in at any processor. The overall fan-in/fan-out bound his the maximum number of messages, being sent or received, at any processor.fi = Xj sgn(mij) gj = Xi sgn(mij)f = maxi fi g = maxj gj h = maximum(f; g)1

P0 P1 P2 P3 P4 P5 P6 P7P0 3 1 2 1 2 1 10P1 1 2 2 1 1 3 10P2 4 1 2 2 1 10P3 2 3 1 4 10P4 3 4 2 1 10P5 1 2 1 2 4 10P6 2 1 7 10P7 1 1 4 1 3 1010 10 10 10 10 10 10 10Figure 1: A matrix illustrating all-to-many communication with equal tra�cThe sgn function returns +1,0,-1 depending on whether its argument is positive, zero, or negative.The relation between the parameters just de�ned and the di�erent kinds of collective communicationis as follows. If fi = p for all i (0 � i < p), the communication is all-to-all. This also implies thatgj = p for all j (0 � j < p). If fi > 0 for all i, the communication is all-to-many. If fi = 0 or fi = pfor each i, and gj > 0 for each j, the communication is many-to-all. The general case, where fi � 0for all i is many-to-many communication. Collective communication can be further classi�ed based onthe sizes of the messages being sent and received. Messages could be uniform (of the same size) ornon-uniform (of di�erent sizes). The variance in message size is an important factor that a�ects theperformance of an algorithm for collective communication. Most algorithms presented in the literaturedeal only with all-to-all communication with uniform message sizes.3 The Transportation PrimitiveThe transportation primitive is a general communication primitive that performs many-to-many per-sonalized communication in which message sizes could be highly non-uniform. It encompasses all thebasic communication primitives outlined in the last two sections.In the most general case, the transportation problem could have di�ering incoming and outgoingtra�c at every processor. The incoming and outgoing tra�c bounds determine the amount of time thetransportation takes. The transportation problem is illustrated in the communication matrices shownin �gures 1 and 2. The entry beyond the right margin of row Pi is the outgoing tra�c ri, while theentry below column Pj gives the incoming tra�c cj . Figure 1 illustrates the case where the incomingand outgoing tra�c at each processor is equal to the overall tra�c bound, a special case which willbe considered in the description of the algorithms. Figure 2 illustrates a case where the incoming andoutgoing tra�c at each processor are not equal, and the incoming and outgoing tra�c bounds aredi�erent.Transportation with an overall tra�c bound of t, illustrated in �gure 3, cannot be done in time less2

P0 P1 P2 P3 P4 P5 P6 P7P0 3 1 1 1 6P1 1 2 2 1 1 7P2 1 1 2 2 1 7P3 1 3 1 5P4 3 2 1 6P5 1 1 1 2 2 7P6 0P7 1 1 4 1 77 6 5 10 0 10 3 4Figure 2: A matrix illustrating many-to-many communication with bounded tra�cthan O(t). When the outgoing and incoming tra�c bounds r and c are di�erent, transportation cannotbe done in time less than O(r + c). The two-stage algorithms presented in this paper achieve thesetimes and are optimal under large tra�c conditions. Bounded transportation appears in a wide varietyof parallel algorithms such as matrix transpose on a rectangular grid, in the �nal phase of sortingalgorithms like sample sort, in transformations between any two distributions (like block, cyclic, andblock-cyclic) that distribute data equally among all processors, etc. We are using them for performingdynamic permutations [11] and for dealing with highly irregular data accesses involving hot-spots [12]on coarse-grained parallel machines.4 CM-5 System Overview4.1 Node/Network ArchitectureThe Connection Machine Model CM-5 [13] is a synchronized MIMD distributed-memory parallel ma-chine available in con�gurations of 32 to 1024 processing nodes. Each node contains a 33 MHz SPARCmicroprocessor with 32 megabytes of memory, and is rated at 22 Mips and 5 M
ops. Four optional
oating-point vector units can be added to each node, and this increases the node's peak performanceto 128 Mips and 128 M
ops.The CM-5 interconnection network has three components: a data network, a control network,and a diagnostic network. The data network has a fat-tree topology and provides high-performancedata communication between the system components. The network has a peak bandwidth of about5 megabytes per second for node-to-node communication. However, if the destination is within thesame same cluster of 4 or 16 nodes in the fat-tree, a peak bandwidth of 20 megabytes per second and10 megabytes per second, respectively, can be achieved [13]. The control network handles operationsrequiring the cooperation of many or all processors. This includes broadcasting, combining, and globaloperations. The diagnostic network helps in the detection and isolation of errors throughout the system.3

P
0

P
0

P
1

P
1

P
2

P
2

P
3

P
3

Data

 being

 sent

Interconnection

Network

 being

 received

Data

P
0

P
0

P
1

P
1

P
2

P
2

P
3

P
3

9

9

9

9

9999

6

2

1

4

5

1

3

4

2

35

Figure 3: The Bounded Transportation Problem4

Both, the control network and the diagnostic network, have a binary tree topology.Our implementations were performed on a 32-node CM-5 using active messages for low latencycommunication. Each 20-byte active message packet can carry up to 16 bytes of payload. Sendingand receiving a single-packet active message on the CM-5 takes 1.6 �s and 1.7 �s respectively [6]. Weused the CMMD message passing library and CMAML (the CMMD active messages layer) [14]. Twoother implementations of active messages on the CM-5 exist: the original CMAM library [6] from UCBerkeley and the Strata library from MIT [3].4.2 Modeling the CM-5� Sending a MessageThe time taken to send a message from one node on the CM-5 to another can be modeled asO(� + �M), where � is the startup overhead, � is the inverse of the data transfer rate and M isthe size of the message. As mentioned earlier, the value of � depends on whether the destinationbelongs to a speci�c subgroup and whether other nodes are sending messages. For our complexityanalysis we will assume that � and � are constant, independent of the congestion and distancebetween two nodes.� Global CombineAssume that each processor contains a vector Vi[0 � � � np � 1]. Let p be the number of processors.The global combine operation (also referred to as the global reduce operation) computes anelement-wise sum of the local list in each processor. The resultant vector R[0 � � � np � 1] is storedin all the processors. R[j] = p�1Xi=0 Vi[j]This operation can be completed in O(�2 np) time on the CM-5, where �2 is a small constant [2].� Global Vector ScanLet each processor contain a vector Vi[0 � � � np � 1]. The global vector pre�x-sum-scan operationcomputes an element-wise pre�x-sum-scan of the local list in each processor. The resultant vectorR[0 � � � np � 1] in processor q (0 � q < p) is given by:R[j] = qXi=0 Vi[j]This operation can be completed in O(�3np) time on the CM-5, where �3 is a small constant.5 Collective Communication with Low Message Size VarianceThe simplest version of collective communication involves all processors exchanging messages of thesame size s. This is all-to-all personalized communication with uniform messages. Under these condi-tions, a linear permutation algorithm [1] can be used to perform the communication. A linear permu-tation algorithm goes through p� 1 iterations, and in iteration k processor Pi (0 � i < p,0 < k < p)5

Linear PermutationFor all processors Pi, 0 � i � p� 1, in parallel doGenerate receive vector recvl from the send vectors sendl in all the processors;for k = 1 to p� 1 doj = i� k;if sendlj > 0 then Pi sends a message of size sendlj to Pjif recvlj > 0 then Pi receives a message of size recvlj from PjBarrier synchronize with all processors;endfor Figure 4: The Modi�ed Linear Permutation Algorithmexchanges data with processor Pi � k (� is the bitwise exclusive OR operator). The time complexityof linear permutation is O(sp).A slightly modi�ed linear permutation algorithm can be used when the messages are not uniformbut exhibit only a small variation in size. Here, processors no longer send messages of exactly the samelength. Instead they exchange send and receive vectors, and exchange only messages of the requiredlengths. The algorithm is shown in �gure 4, where sendlj is the size of the message sent to processorPj (from Pi) and recvlj is the size of the message received from processor Pj (by Pi). The implicitsynchronization in the linear permutation algorithm is replaced by an explicit barrier synchronization,and the algorithm retains the deterministic time complexity of O(sp) where s is the upper bound on thesizes of the messages exchanged. The barrier also prevents the communication network from gettingcongested and this has been shown to improve performance [4]. This is the algorithm referred to when\linear permutation" is mentioned in the rest of this paper.6 Collective Communication with High Message Size VarianceDealing with communication in which message sizes show a large variation is a di�cult problem. Alinear permutation algorithm could take as much as O(tp) time. Sorting messages by size is notguaranteed to improve performance either. We use a distributed random scheduling algorithm usingspin locks to deal with such a situation. The distributed scheduling algorithm [15] was chosen overother graph based techniques because its low overhead enables scheduling to be done dynamically.The algorithm is presented in �gure 5. Each processor maintains a status bit that indicates whetherthe processor is busy or free. Processors which have messages to send perform a test-and-set operationto determine whether the intended destination is free. If the destination is free, its status bit is set tobusy, and data is transferred as a single message. If the destination is busy, the sending processor tries6

Distributed Random SchedulingFor all processors Pi, 0 � i � p� 1, in parallel doGenerate receive vector recvl from the send vectors sendl in all the processors;Pre-allocate receiving bu�ers according to receive vector recvl;RepeatSelect a destination node from send vector sendl, use active messages to test-and-set des-tination node's busy lock;If the destination node is free to receive message,Send message to the destination node;Upon completion, reset destination node's busy lock to free;Reset the corresponding entry in send vector sendl;Until send vector sendl is emptyWait until all incoming messages arrive at their proper bu�ers.Figure 5: The Distributed Random Scheduling Algorithmanother intended destination using the same procedure. The test-and-set inquiry operation is shownin �gure 6.We re-implemented the distributed scheduling algorithm using active messages on the CM-5. Twoimprovements were incorporated into the new implementation, which also replaced the interrupts in theearlier implementation with polling. First, a busy destination processor when replying to the sender ofan inquiry gives a measure of how busy it is. The sender notes down this measure and makes sure thatthe destination will not be disturbed for this measure of time. If the sender receives busy signals fromall the intended destinations, it goes to sleep for the amount of time indicated by the minimum of themeasures returned by the destinations. The second improvement allowed busy destination processorsto give the go-ahead for a new message transfer when the current message transfer is about to get over.7 Two-stage Algorithm for the Bounded Transportation ProblemWe have developed a two-stage algorithm that decomposes the transportation problem involving com-munication with high message size variance, into two communication stages with low message sizevariance. In the general case, the fan-out and fan-in at each processor is less than or equal to p and thetra�c bound is t. Results are given separately for the equal tra�c case, where the incoming tra�c andthe outgoing tra�c at each processor is exactly equal to the overall tra�c bound t. Each processor takeson three roles in this two-stage algorithm. First, each processor Pi for which the fan-out fi is non-zero7

Px Py Pz

inquiry

return status

if OK

resetelseinquiry

send message

busy lock

test-and-set
busy lock

Figure 6: The inquiry operation in Distributed Schedulingacts as a source processor, sending out data during the �rst stage. Second, each processor participatesas an intermediary, receiving data during the �rst stage, and sending data during the second stage.Third, each processor Pj for which the fan-in fj is non-zero acts as a destination processor, receivingdata during the second stage. The organization of data in the source, intermediate and destinationprocessors is shown in �gure 7.7.1 The First StageLocal pre-processingIn source processor Pi (0 � i < p) let ai0,ai1,...,ai(p�1) be the number of elements being sent todestination processors P0, P1,...,Pp�1 respectively. In stage 1, each of the aij elements is divided into pparts (each of size either daij=pe or baij=pc) to be sent to processors P0 to Pp�1. 1 At the end of stage1, processor Pk acting as an intermediary could receive messages of size up to t=p+ p, sincep�1Xi=0 daik=pe � p�1Xi=0 aik=p+ p � ck=p+ p � t=p + pThe lower bound for the message size is 0, unless we are dealing with the equal tra�c case, when thelower bound becomes t=p� p, sincep�1Xi=0 baik=pc � p�1Xi=0 aik=p� p � ck=p� p � t=p � pOur goal is to achieve communication with low variance in message sizes for both stages. A simplechange in the algorithm can achieve the balance we desire for the �rst stage. At any processor Pi,1In reality, this is only p � 1 messages, since one of the messages is to be sent to the sending processor itself. Ourimplementations take this into account, but this paper, for the sake of simplicity, continues to refer to p as the number ofmessages being sent out. 8

P
0

P
1

P
2

P
3

i0
a a

i2 i3
aa

i1

P
0

P
0

P
0

P
1

P
1

P
1

P
2

P
2

P
2

P
3

P
3

P
3

P
0

P
1

P
2

P
3

P
0

P
2

P
3

P
1

P
0

P
1

P
2

P
3

P
0

P
2

P
3

P
1

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
0

P
3

P
2

P
1

P
0

P
3

P
2

After local pre-processing

 in stage 1

destination

processor

to intermediate

intended final
destination

processor
from source

destination
intended final

1 t/p + 1p

processor

1 p t/p + p

from source
processor

from intermediate

processor

to intermediate

Intended final

 At start

 in stage 2

After local pre-processing

After stage 1 communication

After stage 2 communication

(in source processor Pi)

(in destination processor Pk)

(in intermediate processor Pj)

Figure 7: Organization of Data in the Two-stage Algorithm9

when dividing the aij elements into p parts for sending, the last aij mod p elements are assigned to thep intermediate processors in a round robin fashion. This ensures that each intermediate processor Pkreceives messages of size no more than dt=pe. In the equal tra�c case, the message sizes can vary byonly one element since the smallest message size is bt=pc.Figure 8 gives the details of algorithm used for local pre-processing in stage 1. The overall timerequired is O(p2).CommunicationIn an initial version of the implementation, local reshu�ing was done at the source processors in orderto get all the data elements being sent to the same intermediate processor into contiguous memorylocations. Such reshu�ing gets prohibitively expensive when t is large. Our current implementationrequires that the communication routines take as arguments pointers to p memory locations in thesource processor and p associated lengths for each message being sent, as shown in �gure 7. Note thatthis does not increase the communication startup latency by a factor of p.In the equal tra�c case, since the communication is balanced with message lengths di�ering byjust one element, linear permutation works best. In the general case, distributed scheduling for the�rst stage's communication may perform better, but linear permutation gives an upper bound on thetime taken for communication. A maximum of p messages of length no more than dt=pe may need tobe sent. In addition, each of these messages has to be padded with p lengths (and the sum of these plengths, see �gure 7) to help the intermediate processor determine the message portions to be sent toeach destination processor. The time required for communication is O(p(� + �(t=p+ p))).Figure 9 illustrates the two-stage algorithm through an example, showing how messages from aparticular source processor to a particular destination processor are split and sent through the in-termediate processors. This example uses an additional step to ensure that the total length of themessages reaching an intermediate processor in stage 1 is not greater than pdt=pe, that is, t+ p. In thealgorithm description above the total length was upper-bounded by t + p2. (However, if t=p < O(p),communication in stage 1 takes only O(p(� + �(t=p+ 1))), as explained later. The additional step re-duces the total length of messages reaching an intermediate processor from t+ p to t). This additionalstep involves a global pre�x-sum-scan on the quantity (Pp�1j=0 aij) mod p in each processor Pi. Theresult of the scan indicates the intermediate processor at which the round-robin assignment of excesselements should begin. If the cost of a pre�x-sum-scan is less than the savings obtained through thetighter bound on the total length of the messages, the additional step should be used.7.2 The Second StageLocal pre-processingAt the intermediate processors, each of which receives p messages, local pre-processing is done aspreparation for the second stage. An initial implementation performed reshu�ing. Our current imple-mentation sets up, for each message sent out in the second stage, two arrays containing p pointers and10

procedure Stg1lpp(sendl, send_msg_start, send_msg_len)/* This is code that runs in every processor.* sendl[0..P-1] is the send vector* index j gives destination processor #, index k gives intermediate proc #** send_msg_start[0..P-1][0..P-1] gives the index of the element from the* input array marking the start of each of the P parts of the P* messages sent out from this source processor;** send_msg_len[0..P-1][0..P] gives the length of those parts; in* particular, the entry send_msg_len[0..P-1][0] gives the total* length of messages to each intermediate processor*/beginfor j := 0 to P-1 dofor k := 0 to P-1 dosend_msg_len[k][j+1] := sendl[j] div P;/* (sendl[j] div P) is the # of elements originally meant forprocessor j now being sent to every intermediate processor */k := 0;for j := 0 to P-1 dofor x := 1 to (sendl[j] mod P) do/* (sendl[j] mod P) is the # of elements meant for destination processorj that could not be divided equally among the intermediate processors */beginsend_msg_len[k][j+1] := send_msg_len[k][j+1] + 1;k := (k+1) mod P;end;data_ptr := 0;for j := 0 to P-1 dofor k := 0 to P-1 dobeginsend_msg_start[k][j] := data_ptr;data_ptr := data_ptr + send_msg_len[k][j+1];send_msg_len[k][0] := send_msg_len[k][0] + send_msg_len[k][j+1];/* send_msg_len[k][0] is current message size for interm. proc k */endend; Figure 8: Local Pre-processing in Stage 111

source
processor

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
1

P
2

P
3

P
0

P
0

P
0

P
1

P
1

P
2

P
2

P
3

P
3

1

3

1 3

17

17

17

17

17171717

2

11 1

3

4

10

3

6

12

7

1

source source sourcesource

destination

destination

destination

destination

 processor
destination

intermediate
processor

 x x x x

 x x x x

 x x x x x x x x

 x x x x

 x x x x

 x x x x

 x x x x

 x x x x

 x x x x

 x x x

x

x

x x

x x x

x

x x

 x x x

 x x x

x x x x

x

 x x x

x

Figure 9: Splitting of Messages in the Two-Stage Algorithm12

procedure Stg2pp (send_msg_start, send_msg_len)/* send_msg_start[0..P-1][0..P-1] gives the index of the element from the* input array marking the start of each of the P parts of the P* messages sent out from this intermediate processor;** send_msg_len[0..P-1][0..P] gives the length of those parts; in* particular, the entry send_msg_len[0..P-1][0] gives the total* length of messages to each destination processor*/begin/* initializing the total length of each message */for i := 0 to P-1 dosend_msg_len[i][0] := 0;for i := 0 to P-1 dobeginstart := (T/P)*i + 1 + P; /* start position of current message */for j := 0 to P-1 do /* T is the traffic bound */begintotal := data_int[start*i+j+1]; /* length of current sub-message */send_msg_start[j][i] := start;start := start + total;send_msg_len[j][0] := send_msg_len[j][0] + total;send_msg_len[j][i] := total;endendend; Figure 10: Local Pre-processing in Stage 2p lengths. Since a maximum of p messages could be sent out, this takes O(p2) time. Figure 10 givesthe steps used for local pre-processing in stage 2.CommunicationMessages sent out in stage 2 could be of size up to t=p + p. In the general case, the lower bound onmessage size is 0, but in the equal tra�c case, message size cannot be lower than t=p � p. Loweringthe variance in message size, as was done in stage 1, is not as easy any more. The total size of themessages received at a destination processor is upper bounded by t + p2. The upper bound on thecommunication time required in stage 2 is O(p(� + �(t=p + p))). In practice, a random reshu�ing ofmessages at the source processor, as explained in the appendix, could reduce the expected length ofthe messages in stage 2. The expected upper bound on the communication time required in stage 2would then be O(p(� + �(t=p+pp ln p))). 13

7.3 Analysis of Deterministic Time Complexity� The local pre-processing needed for the two-stage algorithm takes O(p2) time. The two commu-nication stages take O(p(� +�(t=p+ p))) time. Thus the two-stage algorithm has a deterministictime complexity of O(p2 + p� + �(t + p2)). The constants associated with the O notation in theanalysis are small, typically between 2 and 3. The algorithm takes time O(t) and is optimal whentra�c t � O(p2 + p�=�).� For O(p�=�) � t < O(p2 + p�=�), local pre-processing becomes a bottleneck to achieving opti-mality. This bottleneck can be overcome and the pre-processing time can be reduced to O(t) byworking with sparse representations (storing just the non-zero entries and their indices) of thep2 sized arrays used in pre-processing. Further, the padding with p lengths done during stage 1can be replaced by padding with dt=pe lengths, making O(p(� + �(t=p+ 1))) the communicationtime required for the �rst stage. Time taken for the second stage's communication remains asthe algorithm's bottleneck for achieving optimality when O(p�=�) � t < O(p2 + p�=�).� In the case where every aij is a multiple of p, that is, if the message sent by any source processorto any destination processor is a multiple of p, optimality is achieved for t � O(p�=�). Thisresult is signi�cant because it says that transportation with highly non-uniform messages can beperformed in using a theoretically optimal and a very practical algorithm, if the message sizesare divisible by p. The constraint t � O(p�=�) is satis�ed when startup time does not dominatethe time taken for communication.An algorithm for transportation based on sorting can provide a better asymptotic time complexityin the general case when the tra�c is small. Since the destination processors are numbers from a �xedrange, local sorting done using a radix-sort takes just O(t) time. Data movement between processorscan be achieved using an adaptation of rotate-sort [8]. All communication between processors can bedone as �xed (or static) permutations. Such a combination was used to perform sorting for geometrichashing in [10]. This rotate-sort and radix-sort combination performs transportation in O(t) time, butrequires nine local radix-sorts, six rotates (�xed permutations), and three row-wise sorts. Performingeach row-wise sort through a transpose, followed by a radix-sort and another transpose, implies thatthe three row-wise sorts require three radix-sorts and six transposes (�xed permutations). The sortingbased algorithm requires that the data be moved about 9 to 12 times between the processors, comparedto the 2 movements required in the two-stage algorithm. The di�erence in the constants associatedwith the communication term in the time complexity of both algorithms is signi�cant, especially forcoarse-grained architectures. This makes the sorting based algorithm highly impractical in spite of itsbetter asymptotic time complexity for smaller tra�c.14

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
1

P
2

P
3

P
0

source source sourcesource

destination

destination

destination

destination

intermediate
processor

 x x x x

 x x x x

 x x x x x x x x

 x x x x

 x x x x

 x x x x

 x x x x

 x x x x

 x x x x

 x x x

 x x x

 x x x

 x x x

 x x x

x

x

xx x

x

x x

x x x

x

xFigure 11: An Alternate Scheme for the Splitting of Messages8 Transportation with Di�ering Incoming and Outgoing Tra�cBoundsWith an outgoing tra�c bound r and an incoming tra�c bound c, the two-stage algorithm takesminimum(p2; r) and minimum(p2; c) for the local pre-processing in the two stages. Communicationin stage 1 takes O(p(� + �(r=p + 1))) time and communication in stage 2 takes O(p(� + �(c=p+ p)))time. The algorithm takes O(r+ c) time and is optimal for r � O(p) (unless the startup time is high)and c � O(p2). Incorporating the additional step shown in �gure 9 reduces the stage 1 communicationtime to O(p� + �r=p) making the algorithm optimal for c � O(p2). The only constraint on r is thatthe startup time should not dominate the time taken by stage 1, that is, r � O(p�=�).If, on the other hand, the outgoing tra�c bound r is higher than the incoming tra�c bound c, analternate scheme can be used for message splitting. This scheme is illustrated through an example in�gure 11. The change in the stage 1 local pre-processing algorithm to accomodate the new scheme isshown in �gure 12. At any processor Pi, when dividing the aij elements into p parts for sending duringthe �rst stage, the last aij mod p elements are assigned to the p intermediate processors in a round15

... for j := 0 to P-1 dosendl[j] := sendl[j] mod P;Global_Vector_Prefix_Sum_Scan(sendl, sendl_new);for j := 0 to P-1 dosendl_new[j] := sendl_new[j] mod P;for j := 0 to P-1 dobegink := sendl_new[j];for x := 1 to sendl[j] do/* sendl[j] is the # of elements meant for destination processor jthat could not be divided equally among the intermediate processors */beginsend_msg_len[k][j+1] := send_msg_len[k][j+1] + 1;end;end... Figure 12: Changes to the Stage 1 Local Pre-processing Algorithmrobin fashion. In the earlier message splitting scheme, we ensured that each intermediate processorreceives messages of size no more than dt=pe from any source processor. The new scheme ensures thateach intermediate processor sends messages of size no more than dt=pe to any destination processor.This is achieved by performing the round-robin assignment across all the source processors rather thaninside each source processor. A global pre�x-sum scan with the vector (ai0 mod p, ai0 mod p, ... ,ai(p�1) mod p) in each source processor Pi is needed. This takes O(p) time and does not a�ect thetime complexity of pre-processing. Communication in stage 1 takes O(p(� + �(r=p + p))) time andcommunication in stage 2 takes O(p(� + �(c=p + 1))) time. The algorithm takes O(r + c) time andis optimal for r � O(p2) and c � O(p). As with the earlier scheme, an additional step (not shown in�gures 11 and 12) can reduce the upper bound on the total length of messages leaving an intermediateprocessor from pdt=pe to t. The additional step involves a global sum-combine with vectors of size p.This additional step reduces the stage 2 communication time to O(p� + �c=p) making the algorithmoptimal for r � O(p2). The only constraint on c is that the startup time should not dominate the timetaken by stage 2, that is, c � O(p�=�)).9 Performance ResultsThe two-stage algorithm and the single-stage algorithm were implemented on the CM-5 using theCMMD message passing library with CMAML active message routines. Communication matrices weregenerated such that message sizes were non-uniform while the tra�c was bounded. Three parameters16

were used to control the kind of matrix that was generated. The fan-out parameter k speci�ed thenumber of processors that each processor communicates with (k � p). The sum of the messages beingsent out and received at each processor was �xed at t, the tra�c parameter. A parameter l was usedto control the non-uniformity of messages sent out by the processors. It was used as follows: Of thek processors receiving messages from a single processor, the fraction lt of the tra�c reached (1 � l)kprocessors, while the remaining (1� l)t tra�c reached lk processors.Figure 13 compares the performances of the single-stage distributed scheduling algorithms withand without the improvements. The horizontal axis gives the tra�c (in words) at each processorand the vertical axis gives the time taken in seconds. The parameter k was varied from 2 to 32and the parameter l was varied from 1=2 to 1=k. The algorithm with the improvements performedbetter. The variation in the time taken for di�erent values of k and l is large for both algorithms.Figure 14 compares the performance of the two-stage algorithm with that of the single-stage algorithmwith the improvements. The single-stage algorithm consistently performed better than the two-stagealgorithm, although it exhibited a much larger variance in the time taken. The two-stage algorithmtimings were within a factor of 1.5 times the single-stage readings. It should be noted that the two-stagealgorithm is fairly architecture-independent, while the single-stage algorithm (particularly the one withthe improvements) is architecture-dependent. The latter is also highly dependent on the availability oflow latency communication primitives.Sample values of k and l were chosen to highlight a best-case and a worst-case performance ofthe two-stage algorithm among the trials that were conducted. Figure 15 illustrates the best case inwhich the two-stage algorithm performed as well as the single-stage algorithms, even out-performingthe single-stage algorithm without the improvements. In this trial k and l were �xed at 32 and 1/32respectively, which indicates that 1 out of 32 processors received 31/32 of the total tra�c, while theother 31 processors received in total 1/32 of the tra�c. It was a trial in which the messages werehighly non-uniform in size. Figure 16 illustrates a worst case for the two-stage algorithm. Both thesingle-stage algorithms out-performed the two-stage one. In this trial k and l were �xed at 2 and 1/2respectively. This indicates that only 2 processors receive data from a single processor, and both ofthem receive exactly the same amount of tra�c. It was a trial in which the messages were uniform insize. The two-stage algorithm's performance remained roughly close to its best-case performance, butthe single-stage algorithm's performance improved considerably.10 ConclusionsWe have presented a variety of solutions for the transportation problem on a distributed memoryparallel machine. A two-stage algorithm that takes time no more than 2t� (+ lower order terms) whentra�c t � O(p2+p�=�) was presented. For smaller tra�c (t � O(ppp ln p)), the two-stage algorithm isexpected to work well, as shown in the probabilistic analysis in the appendix. An algorithm using sortingcan improve the result to O(t) time for t � O(p), but the associated constants make this algorithm lessdesirable for implementation. The two-stage algorithm can also be used when any processor is receivingat most c amount of data and sending at most r amount of data. Time taken is no more than (r+ c)�17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50000 100000 150000 200000 250000 300000

T
im

e
ta

k
en

 (
se

c)

one_stage_old
one_stage_new

Traffic (in words)Figure 13: Comparison between the two single-stage algorithms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50000 100000 150000 200000 250000 300000

T
im

e
ta

k
en

 (
se

c)

one_stage_new
two_stage

Traffic (in words)Figure 14: Comparison of the two-stage and single-stage algorithms18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50000 100000 150000 200000 250000 300000

one_stage_old
one_stage_new
two_stage

Traffic (in words)

T
im

e
ta

k
en

 (
se

c)
k =32, l = 1/32

Figure 15: One of the good performances of the two-stage algorithms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50000 100000 150000 200000 250000 300000

one_stage_old
one_stage_new
two_stage

T
im

e
ta

k
en

 (
se

c)

Traffic (in words)

k=2, l=1/2

Figure 16: One of the bad performances of the two-stage algorithms19

(+ lower order terms) when one of the bounds is O(p2). A single-stage algorithm using distributedrandom scheduling was implemented and compared with an implementation of the two-stage algorithm.The distributed scheduling algorithm performed better on the CM-5, but this result is not expected toapply to other architectures. Besides, the single-stage algorithm is not deterministic, and that makesit di�cult to ascertain its time complexity.We have shown that many-to-many personalized communication with non-uniform messages can beperformed using two stages of all-to-all personalized communication with uniform messages. Thus, theperformance of the two-stage algorithm is roughly half that of an all-to-all personalized communicationwith the same amount of tra�c. The latter problem has been widely investigated in the literature fora variety of interconnection networks (meshes, hypercubes, etc), message passing strategies (wormholerouting, store-and-forward routing, etc), single-port vs. multi-port communication. This makes thetwo-stage decomposition method useful for a wide variety of architectures. We are currently investi-gating the performance of these algorithms on other parallel architectures (Intel Paragon, iPSC 860,and the IBM SP1).References[1] Shahid H. Bokhari. Complete Exchange on the iPSC/860. ICASE Technical Report No. 91-4,NASA Langley Research Center, January 1991.[2] Zeki Bozkus, Sanjay Ranka, Geo�rey C. Fox. Benchmarking the CM-5 Multicomputer, Proceedingsof the Frontiers of Massively Parallel Computation, pp. 100-107, October 1992.[3] Eric A. Brewer and Robert Blumofe, Strata: A Multi-Layer Communications Library, MIT Lab-oratory of Computer Science Technical Report, February 1994.[4] Eric A. Brewer, Bradley C. Kuszmaul, How to Get Good Performance from the CM-5 DataNetwork, Proceedings of the 8th International Parallel Processing Symposium, April 1994.[5] Herbert A. David, Order Statistics, John Wiley and Sons, New York, 1981.[6] T. von Eicken, D.E. Culler, S.C. Goldstein, K.E.Schauser. Active Messages: a mechanism forintegrated communication and computation. Proceedings of the ISCA '92, Gold Coast, Australia,May 1992.[7] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis. Introduction to Parallel Computing:Design and Analysis of Algorithms, Benjamin-Cummings, 1994.[8] J. Marberg, E.Gafni. Sorting in Constant Number of Row and Column Phases on a Mesh. Algo-rithmica, Vol.3, pp.561-572, 1988.[9] K. Mehrotra, S. Ranka, J.C. Wang. A Probabilistic Analysis of a Locality Maintaining LoadBalancing Algorithm, Proc. 7th International Parallel Processing Symposium, April 1993.20

[10] Victor K. Prasanna, Cho-Li Wang, Scalable Data Parallel Object Recognition using GeometricHashing on the CM-5. Scalable High Performance Computing Conference, SHPCC, 1994.[11] Ravi V. Shankar, Sanjay Ranka. Random Data Accesses on a Coarse-Grained Parallel Machine -I. One-to-one Mappings, CIS Technical Report, Syracuse University, October 1994.[12] Ravi V. Shankar, Sanjay Ranka. Random Data Accesses on a Coarse-Grained Parallel Machine -II. One-to-many and Many-to-one Mappings, CIS Technical Report, Syracuse University, October1994.[13] Thinking Machines Corporation. The Connection Machine CM-5 Technical Summary, October1991.[14] Thinking Machines Corporation. CMMD Reference Manual Version 3.0, October 1991.[15] Jhy-chun Wang, Tseng-Hui Lin, Sanjay Ranka. Distributed Scheduling of Unstructured CollectiveCommunication on the CM-5. Hawaii International Conference on System Sciences, 1993.A Probabilistic Analysis of Time TakenThe purpose of the �rst stage in the two-stage algorithm was to spread out data leaving the sourceprocessors evenly among the intermediate processors. The intended intermediate processor numbersfor the p messages leaving a source processor can be shu�ed randomly within groups of messages of sizedt=pe and bt=pc, without a�ecting the algorithm. This would still preserve the upper bound derivedearlier for total number of data elements sent or received in the �rst stage. The stage 1 communicationnow needs to include an extra array of length minimum(p; dt=pe) tagged on to each outgoing message.This array gives the permutation that was performed locally before the send. It is needed at thedestination processors since the p parts of a message reaching a destination processor must be put backtogether in order to complete the transportation.A probabilistic analysis of the improvement in time due to the above modi�cation follows. Letj a0jp j, j a1jp j, ..., j a(p�1)jp j be the p parts of a message of length m reaching destination processor Pj .The notation j aijp j stands for daijp e (with probability aij mod pp) or baijp c (with probability 1� aij mod pp).This assumes that aij mod p being 0; 1; :::; p�1 is equally likely. In the deterministic analysis, the lengthm of the message reaching destination processor Pj was taken to be t=p+p to accomodate the worst case.The expected value of j aijp j isdaijp e(aij mod pp) + baijp c(1� aij mod pp)= (aijp + 1� aij mod pp)(aij mod pp) + (aijp � aij mod pp)(1� aij mod pp)= aijp 21

The variance of j aijp j is(daijp e � aijp)2(aij mod pp) + (baijp c � aijp)2(1� aij mod pp)= (1� aij mod pp)2(aij mod pp) + (�aij mod pp)2(1� aij mod pp)= (1� aij mod pp)(aij mod pp)The expected value of m is p�1Xi=0 aijp = t=pThe variance of m is p�1Xi=0(1� aij mod pp)(aij mod pp)The expected value for the variance of m is1p2 pXi=1 (p� i)i= 1p2 (p2(p+ 1)2 � p(p+ 1)(2p+ 1)6)= 16p2p(p+ 1)(p� 1)= p2 � 16p� p6Let X1, X2, ..., Xn be independent and identically distributed random variables with mean 0 andvariance 1. Let X = maxfX1; X2; :::; Xng. Then, for large n, the distribution for the normalized X isgiven by the extreme-value-distribution [5, 9]. Using the extreme-value-distribution assumption givesus E(X) = an +
bn where
 = Euler's constant = 0.5772, and V ar(X) = �26bn2 . In particular, ifthe Xis are normally distributed, then both an and bn are approximately equal to p2 lnn. If the meanand variance of the n random variables are � and �2, rather than 0 and 1 respectively, the values ofE(X) and V ar(X) are given by E(X) = �+�(p2 lnn+
p2 lnn) and and V ar(X) = �2�26bn2 = �2�212 lnn .In two-stage algorithm, the length of a message reaching a destination processor, from a particularintermediate processor, has a mean of t=p and an expected variance of p=6. Each destination processor22

could receive such messages from each intermediate processor. This is done through the p iterations inthe linear permutation algorithm used to perform communication. The time taken by any iteration ofthe linear permutation algorithm is dictated by the longest of the messages that need to be sent duringthat iteration. The length of a message in any iteration is given by the sum of p uniform distributions.We approximate this by a normal distribution. We can now use the properties of the extreme-value-distribution to obtain the expected value of the upper bound on the length of messages sent out duringany iteration. This expected value is � + �(p2 ln p+
p2 ln p)= t=p +rp6(p2 ln p+
p2 ln p)� t=p +rp6p2 ln pThe expected value of the maximum time needed for the communication in the second stage is O(p� +�(t+ ppp ln p)).

23

	The Transportation Primitive
	Recommended Citation

	tmp.1286816405.pdf.noYtO

