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AbstractWith the advent of new routing methods, the distance to which a message is sentis becoming relatively less and less important. Thus assuming no link contention,permutation seems to be an e�cient collective communication primitive. All-to-many communication is required for solving a large class of irregular and looselysynchronous problems on distributed memory MIMD machines. In this paper wepresent several algorithms for decomposing all-to-many personalized communicationinto a set of disjoint partial permutations. These partial permutations avoid nodecontention and/or link contention. We discuss several algorithms and study theire�ectiveness both from the view of static scheduling as well as runtime scheduling.Experimental results for our algorithms are presented on the iPSC/860.Index Terms - Asynchronous communication, link and node contention, looselysynchronous communication, runtime and static scheduling.



1 IntroductionExperience with parallel computing has shown that a `good' mapping is a criticalpart of executing a program on such computers. This mapping can be typicallyperformed statically or dynamically. For most regular and synchronous problems,this mapping can be performed at the time of compilation by giving directives in thelanguage to decompose the data and its corresponding computations (based on theowner computes rule) [6]. This typically results in regular collective communicationbetween processors. Many such primitives have been developed in [1, 16].For a large class of scienti�c problems, which are irregular in nature, achievinga good mapping is considerably more di�cult [7]. The nature of this irregularitymay not be known at the time of compilation, and can be derived only at run time.Packages like PARTI [9, 12, 15] derive the necessary communication information basedon the data required for performing the local computations and data partitioning.This tends to result in unstructured communication patterns. Each processor needsto send messages to some number of processors, with no obvious patterns. Further,for a large class of such problems, the same schedule is used a large number of times[6]. Thus, it may be feasible to perform the scheduling of communication at runtimeif the e�ective gains from using such an schedule are greater than the cost of �ndingsuch a schedule.In this paper we develop and analyze several simple methods of scheduling all-to-many personalized communication. The scheduling overhead of many of the methodsdeveloped in this paper is small enough that they can be used at runtime.These methods can be classi�ed into three categories:1. Methods based on asynchronous communication2. Methods which avoid node contention3. Methods which avoid link contentionIn the algorithms presented in this paper, we assume that the communication isrepresented by a matrix, COM, which is sparse in nature. COM(i; j) = m;m > 0 if1



processor Pi needs to send a message of length m units to Pj , 0 � i; j � n� 1. Ouralgorithms decompose the communication matrix COM into a set of disjoint partialpermutations, pm1; pm2; � � � ; pml, such that if COM(i; j) > 0 then there exists a k,1 � k � l, that pmk(i) = j.With the advent of new routing methods [8], the distance to which a message issent is becoming relatively less and less important. Thus assuming no link contention,permutation seems to be an e�cient collective communication primitive. Permuta-tions have a useful property that each node receives at most one message and sends atmost one message. If a particular node receives more than one message or has to sendout more than one message in one phase, then the time would be lower bounded bythe time required to remove the messages from the network by the processor receivingthe maximum number of messages.There are some permutations (partial) which avoid link contention (e:g: bit com-plement permutation on the hypercube [16]). We call such permutations a link con-tention avoiding permutation (LCAP). We also extend our methods to provide de-compositions of the communication into a set of LCAPs. Our experimental resultsare presented on the iPSC/860. There are several idiosyncrasies of the iPSC/860architectures. We also present modi�cations to our algorithms to exploit these id-iosyncrasies.The rest of this paper is organized as follows. Section 2 gives the assumptionsof message routing algorithms and an overview of iPSC/860. Section 3 presents asimple asynchronous communication algorithm. Section 4 develops algorithms thatwill avoid node contention and discusses their time complexity. Section 5 describesan algorithm which avoids link contention. The algorithms given in section 4 and 5assume that all messages are of equal size. In section 6, modi�cations are presentedto the algorithms in the previous sections, in case the messages are of unequal size.Section 7 presents experimental results for a 64 node iPSC/860. Finally, conclusionsare given in Section 8. 2



2 Preliminaries2.1 System Overview: Intel iPSC/860The experiments described in this paper are developed on a 64 node iPSC/860 atCalTech. The Intel iPSC/860 system consists of compute nodes, I/O nodes, and ahost computer [11].1. The nodes are i860-based processor boards.2. The I/O nodes are Intel386-based processor boards through which the nodeshave access to the Concurrent File System (CFS) and an Ethernet network.3. The host computer, called the System Resource Manager (SRM), is an Intel386-based computer that runs UNIX1. Users logged into the SRM can allocate com-puter nodes and run node programs.The iPSC/860 uses a circuit-switched communication via a hypercube intercon-nection network. When two nodes need to communicate, a dedicated path is set upbetween them. The communication path is determined by the e-cube routing algo-rithm. This algorithm chooses a �xed, shortest-path by changing the source node'saddress one bit at a time (from the least signi�cant bit to the most signi�cant bit) un-til the address of the destination node is achieved. Since the routing is deterministic,a message may encounter node or link contention during the communication.Following are several observations about the communication network of iPSC/860[3, 4, 13]:1. Each node can support at most one send and one receive operation concurrently.A pairwise exchange is guaranteed to proceed concurrently if the two nodesinvolved �rst do a \pairwise synchronization" [3, 4]. However, if the two nodesdo not start at the same time, the communication is essentially unidirectional.If a node Pi sends data to node Pj , and at same stage receives data from nodePk, where j 6= k, the send and receive operations rarely proceed concurrently.1UNIX is a registered trademark of AT&T Bell Laboratories.3



2. A communication circuit passing through a node has no discernible e�ect onother communication operations performed by that node.3. Intersecting communication paths have no discernible e�ect on any of thesepaths.4. For long messages, bu�er copying is costly enough that the sender should waituntil the receiver indicates that it is ready. This can typically be accomplishedby the exchange of a dummy (i:e: 0 byte) message.The detailed measurements of these observations are given in [2, 3, 19].The iPSC/860 provides three kind of message types: the regular (unforced) mes-sage type, the forced message type, and the system message type (which is dedicatedto system and should be avoided by general users) [10]. If a message with a regularmessage type arrives at a node before a receive bu�er being posted for it, it will beput into a system bu�er. The message is then copied into application bu�er when thereceiver node issues a receive command. In contrast, a message with a forced type isdiscarded upon arrival if no receive is posted for it.The iPSC/860 uses di�erent communication protocols for sending short and longmessages. The long message protocol is used for messages of length greater than 100bytes. It consists of three phases: (sender node) informs the receiver, (receiver node)requests the message, and then message transmission occurs [3]. The short messageprotocol is used for messages of length � 100 bytes. It skips the �rst two phases andgoes directly into data transmission.For messages of length � 100 bytes, it doesn't make di�erence for using forced orunforced message type. For larger messages, the unforced message type will requirethe additional inform-request overhead described above; If forced message type isused, it is user's responsibility to guarantee the availability of an application bu�erwhen the message arrives. In this paper, we use regular (unforced) message typethroughout our experiments.Thus, in order to maximize the utilization of iPSC/860 interconnection network,care should be taken to avoid contention by e�cient communication scheduling. The4



communication scheduling should also exploit special features of the machine likeconcurrent bidirectional communication (by pairwise exchange).2.2 AssumptionsWe make the following assumptions for the development of our algorithms and com-plexity analysis.1. All permutations can be completed in (� +M') time, where � is the commu-nication latency,M is the maximum size of any message sent, and ' representsthe inverse of the data transmission rate.2. In case the communication is sparse, all nodes send and receive approximatelyequal number of messages. If the density of sparseness is d, then at least dpermutations are required for processors to complete sending their outgoingmessages.3. Each processor knows the destinations of its outgoing messages as well as thesources of its incoming messages. The latter restriction can be removed by aninitial exchange of the local destination vectors.3 Asynchronous Communication (AC)The most straightforward approach is asynchronous communication. This schemedoes not introduce any scheduling overhead. The algorithm is divided into threephases1. each processor �rst post requests for incoming messages (this operation willpre-allocate bu�ers for those messages).2. each processor sends out all of its outgoing messages to other processors.3. Each processor checks and con�rm incoming messages (some of them may al-ready arrived at its receiving bu�er(s)) from other processors.5



Asynchronous Send Receive()For all processor Pi, 0 � i � n� 1, in parallel doallocate bu�ers and post requests for incoming messages;sends out all outgoing messages to other processors;check and con�rm incoming messages from other processors.Figure 1: Asynchronous Communication AlgorithmDuring the send-receive process, the sender processor does not need to wait for acomplete signal from the receiver processor, so it can keep sending outgoing messagestill they are all done. This naive approach is expected to perform well when thedensity d is small. The asynchronous algorithm is given in Figure 1.The worst case time complexity of this algorithm is di�cult to analyze as it willdepend on the congestion and contention on the nodes and the network. Also, eachprocessor may only have limited space of message bu�ers. In such cases, when thesystem bu�er space is fully occupied by uncon�rmed messages, further messages willbe blocked at sender processors side. The overow will block processors from doingfurther processing (include receiving messages) because processors are waiting forother processors to consume and empty their bu�er to receive new incoming messages.The situation may never resolve and a dead lock may occur among processors. In casethe sources of incoming messages are not known in advance or there is no bu�er spaceavailable for pre-allocation, we may replace the post-send-con�rm operation by send-detect-receive operation, where we use busy waiting to detect incoming messages andcopy them into the application bu�er. As mentioned in the previous section, bu�ercopying is very costly and should be avoided. The experimental results described inthis paper use the approach given in Figure 1.6



4 Methods Avoiding Node ContentionThe input to the algorithms developed in this paper is a communicationmatrixCOM ,COM(i; j) represents the amount of data which needs to be sent from node i to node j(for cases that all messages are assumed to be of equal length, we will use COM(i; j) =1). The communication matrix COM is sparse in nature, i:e: each processor sendsand receives at most d di�erent messages (in a system with n processors, d � n).Our algorithms can be easily modi�ed to be useful at runtime. Assuming that eachprocessor knows its sending vector only at runtime, all processors can then participatein a concatenate operation [5] which will combine each processor's sending vector toform the communication matrix COM and leave a copy at every processor. Thisoperation has e�cient implementation on architectures like hypercubes and meshes.We propose several algorithms that decompose the communication matrix COMinto a set of disjoint partial permutations, pm1; pm2; � � � ; pml, such that if COM(i; j) >0 then there exists a unique k, 1 � k � l, that pmk(i) = j. We present several schedul-ing algorithms, and the analysis of their time complexity in following subsections.4.1 Linear Permutation (LP)In this algorithm (Figure 2), each processor Pi sends a message to processor P(i�k)2and receives a message from P(i�k), where 0 < k < n [3]. If COM(i; j) = 0, pro-cessor Pi will not send message to processor Pj (but will receive message from Pj ifCOM(j; i) > 0). The entire communication uses pairwise exchanges.The worst case time complexity of this algorithm is O(n(�+'M)). One advantageof this algorithm is that it uses pairwise exchange throughout the entire communi-cation. Further, the paths between di�erent pairs in same phase do not have anylink contention with each other. This feature of the algorithm can be used to exploitbidirectional communication on iPSC/860.2� represents bitwise exclusive OR operator. 7



Linear Permutation()For all processor Pi, 0 � i � n� 1, in parallel dofor k = 1 to n-1 doj = i� k;if COM(i; j) > 0 then Pi sends a message to Pj ;if COM(j; i) > 0 then Pi receives a message from Pj ;endfor Figure 2: Linear Permutation Algorithm4.2 Random Scheduling Avoiding Node Contention (RS N)During the communication scheduling, the worst case time complexity to access eachentry of COM is O(n2). In order to reduce this overhead, the �rst step of thisalgorithm is to compress the COM into a n�d matrixCCOM by a simple compressingprocedure [17]. This procedure will improve the worst case time to access each activeelement (of CCOM) to O(dn).The vector prt is used as a pointer whose elements point to the maximum numberof non-negative columns in each row. CCOM also randomizes the list of destinations.This is necessary to reduce collisions and thus keep the expected number of collisionsto be bounded. If we perform this compression statically, the time complexity isO(n(n + d)) = O(n2). This operation can be performed at runtime: each processorcompacts one row, and then all processors participate in a concatenate operationwhich will combine all rows into a n � d matrix. The cost of this parallel scheme isO((n + d) + (dn + � log n)) = O(dn + � log n) (assuming the concatenate operationcan be completed in O(dn + � log n) time).We set CCOM(i; j) = �1 if an entry doesn't contain active information. Af-ter the compressing procedure, the �rst d columns of each row may contain ac-tive entries. Two associated vectors, send and receive, are introduced in this al-gorithm, where send(i) = j denotes processor Pi need to send a message to processor8



Pj , and receive(j) = i denotes processor Pj will receive a message from proces-sor Pi. When searching for a available entry along row i, the �rst column j withCCOM(i; j) = k and receive(k) = �1 will be chosen. We then set send(i) = k andreceive(k) = i. In order to prevent creating a hole in CCOM (i:e:, CCOM(x; y) = 0,while CCOM(x; y � k1) = 1 and CCOM(x; y + k2) = 1, k1; k2 > 0), we move entryCCOM(i; l) to CCOM(i; j) and reset CCOM(i; l) = �1, where l = prt(i). Theworst case time complexity to form one partial permutations using this algorithm isO(dn), as compared to O(n2) using the method without the compressing operation.The RS N algorithm is described in Figure 3.The detailed complexity analysis of the RS N algorithm is given in [18]. Assumingthat each node is sending d messages to random destinations and receives d messagesfrom di�erent sources, we have the following results:� The average time complexity for generating a permutation in one iteration isO(n ln d+ n);� The number of iterations needed to complete the entire message scheduling isupper bounded by d + log d.Thus,� Time for compressing COM into CCOM is O(n2) in sequential case and O(dn+� log n) in the parallelized version;� Time for performing the scheduling: O(d + log d) � O(n ln d + n), which is ap-proximately O(dn ln d);5 Methods Avoiding Link ContentionFor systems that use circuit switched message routing, the path between two pro-cessors is pre-claimed before the actual data is transferred. During the time data istransferred, no other communication paths are allowed to overlap with this path. The9



Random Scheduling Node()1. Use matrix COM to create a n� d matrix CCOM ;2. For all processor Pi, 0 � i � n � 1, in parallel doRepeat(a) Set vectors send = receive = �1;(b) x = random(1..n);for y = 0 to n-1 doi = (x+ y) mod n; j = 0;while (send(i) = -1 AND j � prt(i)) dok = CCOM(i; j);if (receive(k) = -1) thensend(i) = k; receive(k) = i;CCOM(i; j) = CCOM(i; prt(i));CCOM(i; prt(i)) = �1;prt(i) = prt(i)� 1;endifj = j + 1;endwhileendfor(c) if (send(i) 6= -1) then Pi sends a message to Psend(i);if (receive(i) 6= -1) then Pi receives a message from Preceive(i);Until all messages are sentFigure 3: RS N Algorithm: Random Scheduling Avoiding Node Contention10



scheduling algorithm proposed in this section modi�es the previous algorithm (RS N)to avoid any link contention. In this algorithm RS NLP3 (Figure 4), we introduce an � n array PATHS which is used to record all claimed paths in one iteration (Ob-viously, for regular topologies like mesh and hypercube, the size of PATHS can bemuch smaller than the one we propose here). The function Check Path() is used toverify that the path between Pi and Pj is not occupied by other communication pairsin the same iteration. The underlying assumption is that the hardware uses a deter-ministic routing algorithm. The function Check Path() will return a TRUE if there isno contention, otherwise, the value returned is FALSE. Once a path is available, theprocedure Mark Path() is called to mark the path's corresponding entries in PATHSso no other communication can overlap this path in the same iteration.For iPSC/860 which supports concurrent send and receive only under certaincircumstances (specially pairwise exchange), locating all pairwise exchange withinone iteration reduces the total communication time (which we prove to be correctin our experiment results). The function Locate Pair() is inserted to �nd out thepossible pairwise exchanges in each iteration and modify the corresponding entries invectors send and receive. With the help of an associated array PAIRS, each pairwiseexchange can be easily detected: if PAIRS(i; j) = k1 and PAIRS(j; i) = k2, then theentries CCOM(i; k1) and CCOM(j; k2) can form a pairwise exchange. Once a entryCCOM(i; j) is selected, its corresponding entry PAIRS(i; k) is reset to -1. Readersare referred to [17] for detailed description of Locate Pair() and PAIRS.6 Methods for Non-uniform Message SizeThe RS N and RS NLP algorithms proposed in previous sections assume uniformmessage size. When the messages in one permutation are non-uniform, the largestmessage may dominate the communication cost (RS N and related algorithms are3The naming convention used in this paper is as following: RS implies random scheduling; Nimplies the algorithm avoids node contention; L implies the algorithm avoids link contention; Pimplies the algorithm uses Locate Pair() to detect pairwise exchange; and H implies the algorithmuses heap structure (which will be addressed in next section).11



RS Node/Link Pairwise()1. Use matrix COM to create matrix CCOM and matrix PAIRS;2. Set matrix PATHS to -1;3. For all processor Pi, 0 � i � n � 1, in parallel doRepeat(a) Set vectors send = receive = �1;(b) x = random(1..n);Locate Pair(x);for y = 0 to n-1 doi = (x+ y) mod n;j = 0; found = FALSE;while ((NOT found) AND (j � prt(i))) dok = CCOM(i; j);if (receive(k) = -1 AND Check Path(i,k,PATHS)) thensend(i) = k; receive(k) = i;Mark Path(i,k,PATHS);CCOM(i; j) = CCOM(i; prt(i)); CCOM(i; prt(i)) = �1;prt(i) = prt(i)� 1; found = TRUE;endifj = j + 1;endwhileendfor(c) if (send(i) 6= -1) then Pi sends a message to Psend(i);if (receive(i) 6= -1) then Pi receives a message from Preceive(i) ;Until all messages are sentFigure 4: RS NLP Algorithm: RS Avoiding Node/Link Contention and Using Pair-wise Exchange 12



loosely synchronous in nature, processors with smaller messages may be idle whilewaiting for processors with largest message to complete), thus we introduce methodsto reduce the variance of message size within one permutation. The scheme we usedin this section is to split large messages into smaller pieces such that the varianceof message size within one permutation can be minimized, and each of these smallerpiece is sent in di�erent phases. The algorithms in this section decompose the COMinto a set of partial permutations, pm1; pm2; � � � ; pml, such that if COM(i; j) > 0then there exists at least a k, 1 � k � l, that pmk(i) = j.In order to schedule the communication in such a way that each processor willtry to send out larger messages �rst, we sort the active entries in CCOM by messagesize. A heap (denoted by heapk in row k) is embedded such that the root entryCCOM(k; 0) contains the largest message size among all the entries in row k.To reduce the variance of message size within one permutation, we propose asimple method to choose a reasonable message size in one permutation such thatprocessors with smallermessages will send their messages completely, while processorswith bigger messages only send part of their messages and restore the remainingmessage back to their proper location within heaps.RS NLPH is the new algorithm which includes a heap operation in the origi-nal RS NLP algorithm (readers are referred to [17] for detailed description of theRS NLPH algorithm). A simple method is used to evaluate the most e�cient mes-sage sizeMthresh in one permutation, where messages smaller than or equal to Mthreshare completely sent out, while only part of the message is sent out for messages largerthan Mthresh. The partial messages are inserted in their new location (based on theremaining size) in the heap. The value of Mthresh is equal to the kth message size (inascending order) in a particular permutation (if a node does not send a message inone permutation, its message size is assumed to be 0). We de�ne � = kn .The value � is �xed throughout the entire scheduling. This approach requiresrunning the application program several times with di�erent value of � in order to �ndout the best value. If this algorithm needs to be executed at runtime, each processorcan begin with a di�erent � to schedule the communication. The processor withminimum estimated communication time will send the schedule generated to other13



processors. This can then be used by all processors to carry out the communication.The runtime approach will require an estimation function. We are currently workingon methods for estimating the total communication cost for a given schedule.7 Experimental ResultsWe have implemented our algorithms on iPSC/860. The experiments are focused onevaluating three factors: (1) the number of permutations required to complete thecommunication; (2) the cost of executing the communication scheduling algorithms;and (3) the communication cost. The algorithms presented in section 4, 5, and 6assume phase synchronization, i:e: phase i+ 1 should not start before phase i. Thiswould require an expensive global synchronization at the end of every phase. Toavoid global synchronization, we have modi�ed the communication strategies in thefollowing manner: whenever a node needs to receive data at one communicationphase, it �rst posts its message bu�er, then sends a signal (0 bytes message) to thesender node. Once the sender node receives the signal, it sends out the data. By usingthis strategy (we will call it S1 from now on), we can maintain a loose synchrony ata relatively lower cost. Another advantage of this method is that all the data will godirectly into receiver node's application bu�er, which will avoid extra bu�er copyingoperations (from system bu�er to application bu�er).We also experimented with other communication scheme: According to its com-munication scheduling table, every processor �rst posts all of its receiving requests(and allocates receiving bu�ers), then sends out all of its outgoing messages (withoutwaiting for any kind inquire or completion signal), and �nally veri�es and con�rmsits incoming messages (we will call this scheme as S2). This scheme is essentiallythe scheme described in section 3, with the modi�cation that the communication or-dering is chosen so as to reduce node and/or link contention. Any of S1 or S2 canbe performed in conjunction with the algorithms described in the previous sections.Our experimental results suggest that S1 performs better (in terms of communicationcost) than S2 in most cases unless the density is small and/or the algorithm does not14



exploit the pairwise bidirectional communication on iPSC/860.The experimental results presented in this paper are thus for S1 in case the al-gorithm exploit pairwise bidirectional communication (LP, RS NLP, RS NLPH), andfor S2 otherwise (AC, RS N, RS NLH).To measure the time spent on communication, we perform the communicationseveral times for each scheduling table generated by a particular algorithm. In eachrun, we take the maximum time spent by any processor. The average of this com-munication cost is the cost of a given schedule. Each test data set contains numberof samples. We use the average communication cost of each sample to calculate theaverage communication cost of a given scheduling algorithm.The experiments are divided into two categories, the �rst part assumes of equalmessage size, and the second part concentrates on non-uniform message size.7.1 Uniform Message SizeBesides the algorithms we mentioned in previous sections, we also performed experi-ments on two other variations:1. RS NP: RS N with Locate Pair() to �nd out possible pairwise exchanges, butdoes not use Check Path() and Mark Path() to avoid link contention;2. RS NL: RS N with Check Path() and Mark Path() to avoid link contention, butdoes not use Locate Pair() to �nd out possible pairwise exchanges).For each algorithm evaluated in this section, we use the same test data set. Thisset contains 50 random generated samples for each density d, the value of d rangesfrom 4 to 48. The number of nodes, n, is 64.
15



d msg size AC LP RS N RS NLP RS NP RS NLcomm1K 5.908 34.313 6.514 6.507 6.484 6.4634 128K 579.249 1318.438 505.875 486.111 504.598 486.538# iters - 63.0 5.92 7.1 5.78 7.04comp - 0.056 1.727 8.157 5.026 4.539comm1K 14.002 40.238 13.462 13.157 13.333 13.2358 128K 1378.551 1898.211 1069.595 1008.682 1051.873 1019.104# iters - 63.0 10.5 11.92 10.46 11.88comp - 0.055 3.159 13.558 7.794 8.593comm1K 33.004 48.118 27.198 25.859 26.581 26.30616 128K 3211.788 2610.740 2186.585 2018.767 2114.707 2067.697# iters - 63.0 19.16 20.74 19.14 20.62comp - 0.054 6.365 24.531 13.274 17.064comm1K 75.267 57.415 54.384 49.52 51.683 52.12732 128K 7176.156 3271.964 4408.187 3854.764 4077.744 4155.519# iters - 63.0 35.52 37.76 35.66 37.7comp - 0.054 13.236 46.409 24.225 35.054comm1K 117.184 62.731 81.148 69.417 72.702 77.56848 128K 11188.302 3631.686 6610.211 5260.511 5554.96 6214.995# iters - 63.0 51.58 53.74 51.6 53.84comp - 0.056 20.26 65.434 34.095 53.6Table 1: Experimental Results on a 64 node iPSC/860 for �xed message size (Timingsare in milliseconds; # iters means number of phases of communication).16
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Figure 5: Communication cost for d = 4 and n = 64 for small message sizes. Thecost of LP is at least 20 msec higher than others.
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Figure 6: Communication cost for d = 4 and n = 64 for large message sizes17
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Figure 7: Communication cost for d = 16 and n = 64 for small message sizes
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Figure 8: Communication cost for d = 16 and n = 64 for large message sizes18
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Figure 9: Communication cost for d = 32 and n = 64 for small message sizes
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Figure 10: Communication cost for d = 32 and n = 64 for large message sizes19



Table 1 and Figure 5 to 9 show the experimental results for message sizes of 1Kbytes and 128K bytes. These results reveal the following:1. AC performs better than all algorithms for small density (d � 4) and/or smallmessages (� 1K bytes for d = 4 and � 128 bytes for d = 32);2. LP performs better than all algorithms for large density and large messages (>1K bytes and d � 32);3. For most of the other cases RS NLP has superior performance than all theother algorithms. This observation con�rms the importance of exploiting nodecontention, link contention, and pairwise bidirectional communication.The experiments demonstrate that each of the above algorithms is useful for cer-tain (d;M) combinations.In Figure 11 and 12, we present the scheduling overhead for a 64 node iPSC/860using the RS N algorithm and RS NLP algorithm respectively for cases where eachnode has to send d messages. It depicts that this fraction decreases as the messagesize increases (assuming the same communication schedule is utilized only once).The fraction declines sharply when the message size is between 64 and 128 bytes;this behavior is caused by the change of the underlying iPSC/860 communicationprotocols. In such cases, we have shown (in Figure 9) that when message size issmall, the AC algorithm is the better choice. For message size ranging from 128 bytesto 128K bytes, the cost of scheduling for RS N algorithm is thus at most 0.6 thecost of communication and the cost is negligible for large messages (less than 0.25 formessages of size 2K bytes). For RS NLP algorithm, the cost of scheduling is at most2.5 the cost of communication for small messages and negligible for large messages(less than 0.25 for messages of size 8K bytes). (We did not spend much e�ort tryingto improve the time spent on scheduling by optimizing the program to make it runfaster. This can be done to reduce the scheduling overhead by a signi�cant factor.) Inmost applications the same schedule will be utilized many times. Hence, the fractionalcost would be considerably lower (inversely proportional to the number of times the20
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same schedule is used). In such cases, our algorithms are also suitable for runtimescheduling.7.2 Non-uniform Message SizeIn addition to the RS NLPH algorithm we proposed in the previous section, we alsoexperimented on another variation:1. RS NLH: same as RS NLPH except that no extra e�ort is given to exploitpossible pairwise bidirectional communication.In the experiments, we test each sample with di�erent values of � (� = n�1n , n�21n ,n�22n , : : :, 34). The best result (in terms of communication cost) is the cost of a givensample.The test data sets used for non-uniform message size can be classi�ed into twocategories. In the following we present the test sets and corresponding results forthese cases.1. The �rst test set (uniform distribution) contains 50 random generated samplesfor each density value d (d = 4; 8; 16; 32; 48). The value of each entry COM(i; j)is decided by following expression: COM(i; j) = random() mod n. The actualmessage size in each level is COM(i; j) � msg unit, where msg unit rangesfrom 24 to 211. Thus the minimum message size may be msg unit bytes, whilethe the maximum size can be n�msg unit bytes.Table 2 and Figure 14 to 15 show the results of d from 4 to 16. Since the LP andRS NLP do not use the heap structure, the message sizes in each permutationmay vary in a large range such that the maximum message size in each per-mutation will a�ect the outcome. On the contrary, RS NLPH (and RS NLH)always begins with the largest message sizes possible. An e�cient message size(Mthresh) is obtained in each permutation. The results show that RS NLPH(and RS NLH) have a signi�cant improvement over RS NLP. This observationreveals that when the variance in message size is large, it is worthwhile main-taining the heap structure. 22



Figure 13: The unstructured grid used for our simulations2. The second test set (applications) contains communication matrices generatedby load balancing algorithms [14] on some realistic data samples for a 32 nodehypercube. The samples represent uid dynamics simulations of a part of aairplane (Figure 13) with di�erent granularities (2800-point, 3681-point, 9428-point, and 53961-point). We will only present the results of 53961-point samples.In order to observe the algorithms' performance with di�erent message sizes, wehave multiplied each entry of the matrix in this test set by a variable msg unitwhich we mentioned above.In this test set, the number of messages sent (or received) by each node isuneven. For example, the 53961-point sample has: max d = 18, min d = 6,ave d = 10:81, and the length of each message sent is also variable: max len =276, min len = 1, ave len = 93:21.Table 3 and Figure 16 show the results of test set 2 with 53961-point granu-larity. The results reveal that even when the number of messages sent by eachprocessor is non-uniform, our algorithms still maintain their characteristics andperformance. In this test set, RS NLPH produces better results than RS NLH.23



d Msg unit ACy LPz RS NLPz RS NLPHz RS NLHycomm256 56.807 99.659� 52.167 42.306� 42.2864 2048 437.516 741.833� 392.286 331.106� 328.542# iters - 63 7.04 8.32 8.16comp - 0.063 8.277 17.838 10.836comm256 123.849 147.657� 97.166 81.291� 80.1868 2048 957.764 1111.647� 740.803 630.406� 628.348# iters - 63 11.86 13.5 13.62comp - 0.063 13.775 35.677 24.004comm256 271.679 223.482� 180.348 155.767� 156.56216 2048 2101.211 1708.177� 1378.729 1210.089� 1213.994# iters - 63 20.78 23.42 23.16comp - 0.064 24.999 81.032 59.126comm256 591.937 304.078 335.545 314.442 310.25832 2048 4577.354 2251.429 2570.522 2394.474 2404.86# iters - 63 37.74 42 42.3comp - 0.065 47.335 198.336 153.925comm256 926.605 336.451 460.094 441.018 461.97548 2048 7128.014 2505.107 3513.423 3361.018 3585.96# iters - 63 53.68 60.98 60.78comp - 0.065 66.965 330.038 273.988y: Using S2; z: Using S1 unless otherwise mentioned.�: For these entries S2 produces better results than S1.Table 2: Experimental Results for non-uniform messages: test set 1 on a 64 nodeiPSC/860 24
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Figure 14: Communication cost for d = 4 and n = 64 for non-uniform messages: testset 1
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Figure 15: Communication cost for d = 16 and n = 64 for non-uniform messages:test set 1 25



Msg unit AC LP RS NLP RS NLPH RS NLHcomm32 62.995 51.968 45.923 40.52 38.091128 240.519 168.497 158.011 130.738 139.012512 917.665 641.116 606.411 500.528 544.592# iters - 31 18.8 21.06 26.63comp - 0.034 7.904 21.15 19.226Table 3: Experimental Results for non-uniform messages: test set 2 { 53961-point ona 32 node iPSC/860. The minimummessage size in each level is Msg unit bytes, andthe maximum size is 276 �Msg unit bytes.8 ConclusionsThis paper develops several algorithms for all-to-many communication on iPSC/860and shows that using the above methods can signi�cantly reduce the communicationtime over naive methods. For many cases the cost of scheduling is small enough thatit can be performed at runtime.The performance of these algorithms are presented for a 64 node iPSC/860 ma-chine. The following conclusions are based on the limited experimental results for a�xed number of nodes.1. The performance of asynchronous communication algorithm (AC) will dependon the network congestion and contention on the underlying architecture. Thememory requirements of this algorithm is large. This algorithm is only suitablefor small message sizes.2. The linear permutation algorithm (LP) is very straightforward, it introducesvery low computation overhead. One bene�t of LP is its inherent propertyof pairwise exchange, which can be easily implemented to achieve concurrentsend and receive for machines like iPSC/860. Further, there is no node or link26
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Figure 16: Communication cost for non-uniform messages: test set 2 { 53961-pointcontention. This approach is not suitable for low values of d, because it needsto go through n iterations even when the value d is very small, but it performsvery well for large value of d.3. Avoiding node contention and link contention can signi�cantly reduce the totaltime spent on the communication.4. For iPSC/860, it is worthwhile exploiting pairwise bidirectional communicationfor machines which support concurrent send and receive.5. Using a heap structure to keep all the messages approximately of the same size,in every phase, can pay reasonable dividend in terms of communication cost(although at a higher computation cost).There is a large amount of literature on how to partition the task graph so asto minimize the communication cost. Many of these methods are iterative in nature[14]. After a particular threshold any improvement in partitioning is expensive. For27



problems which require runtime partitioning, it is critical that this partitioning becompleted extremely fast. For such problems, the gains provided by e�ective commu-nication scheduling may far outperform the gains by spending the same amount oftime on achieving a better partitioning. In this paper, we provide schemes which cane�ciently execute and achieve good performance in lowering communication cost.The experimental results presented in this paper are for limited communicationpatterns which are randomly generated (except non-uniform test data set 2). For dif-ferent applications, the kind of patterns used are di�erent. It is unclear which methodswill be better than others for speci�c class of communication patterns. However, webelieve the methods which avoid node/link contention can signi�cantly reduce thetotal time of communication. Choosing the best method among the variety of algo-rithms presented in this paper will depend on the underlying architecture, the type ofcommunication patterns, and whether the scheduling has to be performed staticallyor at runtime.AcknowledgmentsAll the experiments conducted in this paper were performed on the CalTech's 64 nodeiPSC/860 machine. We would like to thank the support sta� at CCSF for their help.We wish to thank Raja Das, Joel Saltz, and Dimitri Mavriplis at ICASE; andNashat Mansour for the illustration depicted in Figure 13 and the correspondingcommunication matrices.References[1] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on ConcurrentProcessors, volume 2. Prentice Hall, Englewood Cli�s, NJ, 1990.[2] Shahid H. Bokhari. Communication overhead on the Intel iPSC/860 hypercube.Technical Report NASA Contractor Report: ICASE Interim Report No. 10,NASA Langley Research Center, May 1990.28
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