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ABSTRACT

Parallel computations comprised of multiple, tightly inter-
woven phases of computation may require a different
approach to dynamic load balancing than single-phase
computations. This paper presents a load sharing method
based on the view of load as a vedor, rather than as a
scdar. This approach allows multiphase cmputations to
achieve higher efficiency on large-scde multicomputers
than posdble with traditional techniques. Results are
presented for two large-scde particle simulations runnng
on 128 nodes of an Intel Paragon and on 256 processors of
a Cray T3D, respdively.

INTRODUCTION

Load balancing techniques aready in the literature have
concentrated entirely on single-phase computations (Boill at
1990 Cybenko 1989 Evans and Butt 1993 Heirich and
Taylor 1995 Horton 1993 Kohring 1995 Lin and Keller
1987 Muniz and Zaluska 1995 Song 1994 Walshaw and
Berzins 1995 Watts et al. 1996 Will ebeek-LeMair and
Reeves 1993 Williams 1992, Xu and Lau 1997. That is,
they work only for applicaions which are mmprised of a
single mode of computation between synchronization
points. Examples of such applicaions include Navier-
Stokes flow solvers and particle simulations without self-
consistent eledromagnetic fields. As concurrent simulation
techniqgues beame more alvanced, however, multiphase
computations will appea with increasing frequency. Such
applicaions involve two o more tightly interleaved
computational phases sparated by synchronizaion points.
Applications of this type include particle simulations with
self-consistent fields (such as particle-in-cdl (PIC)
techniques) and flow solvers using grid adaptation.
The reason why traditional load balancing techniques
fail for multiphase goplicdions is not immediately clea. A

simple example illustrates the problem: Consider a two-
phase mmputation running on only two computers. The first
phase of computation takes 20 seconds on computer one and
10 seaonds on computer two. The second phase of computa
tion requires 10 seaonds on computer one and 20seconds on
computer two. Most load balancing techniques, which do not
consider the phases sparately, would see eab computer as
having 30 tota sewmnds of work; thus, the computation
appeas to be balanced. If a synchronization point exists
between the phases, however, then the cmputation is not
adually balanced. Computer two must wait 10 seaonds for
computer one during the first phase, and computer one must
wait 10 seaonds for computer two during the second phase.
(See Figure 1.) Hence, the computation is only 75 percent
efficient. Because the phases are brief, one canot simply
load balance whenever the phases alternate; the mst of load
balancing would exceeal the benefits it could provide.
Instead, one must load balance in such a way that the phases
are jointly balanced. To acaomplish this, one can consider
the loads of the two computers as vedors, rather than as
scdars, where eab component of the vedor is the load of
one of the cmputational phases. Then, by balancing the
components of the vedors, one guarantees that the work for
ead individual phase of the cmputation is balanced, as well
as the total work for al of the phases. For most load bal-
ancing algorithms, the modificaion to acaommodate vedors
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is a fairly easy one.

This paper presents the vedor load balancing technique
as an effedive mechanism for improving the dficiency of
multiphase simulations. In particular, we gplied the tedh-
nique to a mncurrent threedimensional Dired Simulation
Monte Carlo (DSMC) application (Rieffel et al. 1997). This
applicaion is used to model plasmas in situations ranging
from reador chambers used in sili con wafer fabrication to a
satellite's reentry in the upper atmosphere. In the former
simulations, eledromagnetic fields are of particular impor-
tance Since the workload for the field cdculation is only a
function of the number of grid cdls assgned to a computer,
whereas in the particle movement phase it is a function of
both the number of grid cdls and the number of particles,
the two phases have very different load distribution proper-
ties. As a result, scdar load balancing techniques fail to
improve the dficiency as much as one would exped. A
similar problem occurred in a PIC simulation of ion thruster
badflow around a satellite (Samanta Roy 1996. Like the
DSMC application, the PIC simulation was comprised of
two interwoven phases with very different load distribution
charaderistics. Scdar load balancing thus faired poaly in
improving the dficiency of the computation. We demon-
strate how vedor load belancing techniques can circumvent
these limitations.

BASIC METHODOLOGY

Our approach to dynamic load balancing is based on the
following decomposition of the load balancing problem
(Wattset al. 1996; Willebeek-LeMair and Reeves 1993)

1. Load Measurement: The load aswociated with ead
computer is determined, either by having the programmer
provide an estimate of the workload associated with its tasks
or by acdually timing the anount of computation required by
those tasks.

2. Load Imbalance Detedion and Profitability
Calculation: Based on the total load meeasured at ead
computer, the degree of load balance is cdculated, and
based on the estimated cost of load balancing, a profitability
cdculation is used to determine if the estimated improve-
ment posible with load balancing exceeds that cost.

3. Work Transfer Quantity Calculation: Using the
computer loads measured in the first step, the ided amount
of work to be transferred between pairs of computers is
cdculated. Work transfers equal to these pairwise, direded
guantities should result in an improved load balance.

4., Task Seledion: Using the work transfer quantities
cdculated previoudly, tasks are seleded for transfer or
exchange. This phase may be repeaed severa times urtil
the transfer quantities have been adequately met.

5. Task Migration: Once the tasks new locaions are
determined, any data structures associated with those tasks

are transferred from their old locaions to their new loca
tions, and the computation resumes.

The &ove strategy is designed for singe-phase mmputa
tions. To adapt the methoddogy for multiphase compu-
tations, we must modify the methoddogy to incorporate the
vector view of load.

VECTOR METHODOLOGY

This sdion presents the vedor version of the dynamic load
balancing framework presented above. Changes are required
to the first four phases of the basic methodology.

Load Measurement

Load measurement becomes dightly more complex under the
vedor model. Under the scdar model, the load o a task
could be redlily obtained using standard operating system
routines to measure its resource usage. While such fadliti es
gtill prove useful for the vedor model, additiona effort is
required to determine the gpropriation of load to phases.
The simplest way to do this is to have the programmer tell
the load balancing system where eat phase begins and ends
by cdling a routine before and after the ade for that phase.
More mmplex strategies might analyze the runtime between
synchronization poaints, taking those portions with low
dtatisticd correlation or even anticorrelation to be separate
phases.

Load Imbalance Detection and Profitability
Calculation

Once the load for eath phase has been totaded at eath
computer, the cmmputers must communicate to deted the
presence of a load imbalance For scadar load methods, the
global load balance is given by
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Equation 1: Scalar Efficiency

where L; is the load of computer i of P tota computers.
Under the vector model, the efficiency equation changes
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Equation 2: Vector Efficiency




where I:i' j isthe load of phasej on computer i. Once the

efficiency of the mmputation has been cdculated, the
profitability of load balancing is determined as described in

(Wattset al. 1996; Willebeek-LeMair and Reeves 1993).

Work Transfer Quantity Calculation

If load balancing is deamed profitable, the ided amounts of
work to transfer between computers are cdculated next.
This cdculation typicdly treds work to be a ontinuous
guantity, denying its discrete nature until the next step. For
most work transfer quantity cdculations, such as those
based on hea diffusion, the hierarchicd balancing method,
or the generalized dmensional exchange method (Boill at
1990 Cybenko 1989 Heirich and Taylor 1995 Horton
1993 Watts et al. 1996 Will ebeek-LeMair and Reeves
1993 Xu and Lau 1997, the modification simply entails
repladng all of the scdar load quantities in the cdculation
with vedor load values. Alternatively, the scdar algorithm

can be run sepately for each component of the load vector.

Task Selection

When loads are taken to be scdars, task seledion may
consider either one-way transfers of tasks or two-way
exchanges. (The latter all ows one to paentially satisfy small
ided transfer quantiti es by exchanging two tasks of roughy
equal load.) The vedor load model, however, adualy
necesstates two-way exchanges sncethe mmponents of the
ided work transfer may in general occur in different direc
tions. (E.g., phase one work may need to be transferred
from computer one to computer two, and phase two work
transferred from computer two to computer one) As a
result, a more complicaed task seledion medhanism is
typically required.

IMPLEMENTATION

The vedor dynamic load balancing methoddogy described
above was implemented in terms of the Scdable Concurrent
Programming Library (SCPlib). Thislibrary is the successor
to the Concurrent Graph Library (Taylor et al. 1996. The
latter library was siccesdully applied to a number of large-
scde industrial problems, including fluid flow cdculations
for the Titan 1V and Delta Il launch vehicles, the PIC ion
thruster simulation described in the introduction and an
ealier version of the DSMC applicaion. SCPlib itself has
been used to implement the DSMC applicaion as well as
the integrated field solver. This sdion briefly describes
SCPlib and gives detail s of the implementation of ead of
the steps in the vector load balancing mddhagy.

SCPIlib

SCPlib provides basic programming technology to suppart
irregular applicaions on scdable cncurrent hardware. The
library provides architedure- and application-independent
fadlities for communication, synchronizaion, thread man-
agement and performance monitoring. The library runs on a
wide variety of platforms, ranging from large-scde multi-
computers guch as the Intel Paragon and the Cray T3D, to
medium-sized systems gsich as the Silicon Graphics
PowerChallenge and Avalon A12, to networks of Unix
workstgtions.

The SCPlib programming model is based on the concept
of a mncurrent graph of communicaing tasks. A task is
comprised of athread of exeaution, a mmunication list and
user state. The mapping of these tasks to computers is
transparent to the user. This alows the mapping of tasks to
computers to be dhanged at runtime, providing the basis for
dynamic load balancing.

Also, under SCPIib, all communicaion and 1/0 occurs
through objeds cdled pats. These ports are roughy analo-
gous to Unix descriptors in that the same routines can be
used to write to a channel port or a file port. This alows
considerable reuse of user applicaion code; the same
routines used to read and write adata structure can be used
for communicaion and 1/0 (as well as load balancing, as
described below).

Load Measurement

SCPlib provides routines that allow the user to mark the
beginning and end of computational phases. Exeaution time
between these marker routines is automaticdly acawmulated
into the gpropriate counter. Another routine dl ows the user
to extrad these values and passthem on to the load balanc-
ing routine in the form of a load vector.

Load Imbalance Detection and Profitability
Calculation

A load imbalance is deteaed by performing a global opera
tion to cdculate the average and maximum vedor load over
al of the ommputers. If the dficiency is less than that re-
quested by the user, eff.;, and if, based on previous load
balancing attempts, the estimated improvement in runtime
possble with load balancing exceals its cost, load balancing
is deamed profitable. (On the first attempt to load balance,
SCPlib assumes that at least the dficiency requested by the
user will be adieved, and that the st of load balancing is
zero.)



Work Transfer Quantity Calculation

Hea diffusion provides an intuitive, corred and scdable
medanism for cdculating the volume of work to be trans
ferred between computers (Boillat 1990 Cybenko 1989
Heirich and Taylor 1995 Horton 1993 Watts et al. 1996
Will ebeek-LeMair and Reeves 1993 Xu and Lau 1997). Its
inherent nearest neighbor approach also tends to preserve
existing communicaions locdity, and it is robust in the
presence of asynchronous load injedions. The vedor
version of the fully implicit, first-order acarate diffusion
iteration which appeaed in (Heirich and Taylor 1995
appeas in Figure 2. In that figure, N; is the set of network
neighbors of computer i, Ny« iS the largest such set, and

'f(i' j)is the work transfer quantity from computer i to com-

puter j. SCPlib uses a vedor version of the second-order
acaurate diffusion algorithm, based on the Crank-Nicholson
scheme; this algorithm was presented in (Taylor et al.
1996. In both of these dgorithms, eah computer
repeaedly exchanges load information with its neighbors in
the physicd network, updating its load and acawmulating
into the work transfer quantities based on a results of a
simple aithmetic operation. The acaracy and termination
point of the iteration are determined dredly by the
efficiency requested by the user in theinitial cdl to the load
balancing routineor =1-€ff i,

Task Selection

As pointed out previoudly, task seledion is mewhat more
complicated under the vedor load model. As in the scdar
case, the problem of seleding the subset of tasks whose
exchange best approximates the ided transfer quantity is
NP-complete, by reduction from the subset sum problem.
Fortunately, there  e&ist fully  polynomia-time
approximation algorithms for the subset sum problem
(Papadimitriou 1994. The load balancing framework in
SCPIib uses a generalized version of such an approximation
algorithm based on the notion of Euclidean distancein an n-
dimensional spacefor n-dimensional load vedors. In short,
the dgorithm finds the subset of tasks whose exchange is
the represented by the point closest (within the given
tolerance) to the point represented by the ided transfer
vedor. As the transfer quantity is fulfilled by repeded
appli cations of the seledion medanism, the acaracy of the
approxination algorithm is reduced accordingly.

Task Migration

SCPlib provides a routine which alows a task to relocate
itself from one @mputer to another. Communication
channels are aitomaticdly rerouted and any incoming
messages forwarded appropriately. The protocol which does

Figure 2: Diffusion Algorithm
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Ta.p) =T +a(L - L)) for all neighborsg ON;

end while
end diffuse

this is completely locd in that only the computers on which
the task originally resided, to which it is moving, and with
which it directly communicates are informed of the move.
The task movement mechanism requires the user to sup-
ply routines that read and write the task’s gate to and from a
port, as well as a routine to freethe old state. Note that for
applicaions that already suppat chedkpointing, the same
routines used to read and write atask’s gate to afile can be
used to read and write its tate between two computers. As
the result of this reuse of existing code, we were @le to
integrate load balancing into the DSMC applicaion within a
few hours.

RESULTS

The dynamic load balancing framework described in the
previous edion was applied to a large-scde, concurrent
particle dynamics smulation tool caled Hawk (Rieffel et al.
1997). This application is based on atechnique cdled Dired
Simulation Monte Carlo (DSMC). The DSMC method
solves the Boltzmann equation by simulating individual
particles. Sinceit isimpasdble to simulate the ad¢ual number



of particles in a redistic system, a smaller number of
maaoparticles are used, eat representing a large number
of red particles. The simulation of millions of these
maaoparticles is made pradicd by deooupling their
interadions. First, the space through which the particles
move is divided into a grid. (For complex geometries, this
grid is typicdly made up dof tetrahedra.) Particle allisions
are onsidered only for those particles within the same grid
cdl. Furthermore, colli sions themselves are not deteded by
path intersedion but rather are gproximated by a stochastic
model whose parameters are the relative velocities of the
particles in question. Statistica methods are used to recover
maaoscopic properties sich as temperature and density. By
limiting and simplifying the interadions in this fashion, the
order of the computation is drastically reduced.

When the particles being simulated are ions, they con-
tribute to and are influenced by an eledromagnetic field.
Consequentially, an eledrostatic field solver has been
incorporated into Hawk. This lver uses afacebased finite
element (FEM) tedchnique, taking as its input the darge
density in ead gid cdl and returning the dedric field for
ead cdl (Watts, 1996. A preoonditioned conjugate gradi-
ent method is used to solve the system of equations that
results from the FEM.

The gpatial dewupling at the core of the DSMC
method makes it an ided candidate for parall €lizaion, since
two partitions of grid cdls interad only aong their
boundaries. The same gplies to the field solver. The grid
for a problem is prepared for parallel simulation by first
dividing it into five to ten partitions per computer. Load
balance is adhieved by remapping these partitions to
computers during exeaution. For the particle transport phase
of Hawk, dynamic load balancing is necessary because the
concentration of particles in a region of the grid changes
during the murse of the simulation. The grid may be refined
in areas of high particle concentration in order to preserve
the integrity of the DSMC model. This in turn affeds the
runtime of the field solver, which currently operates on the
same grid used in the particle transport phase.

The necesdty of dynamic load balancing to Hawk’s
efficiency was illustrated during a 1.2 milli on-particle
simulation on a 124000cdl grid o the Gaseous
Eledronics Conference (GEC) reador. This smulation was
run on 128 nodes of an Intel Paragon. Each node had
approximately five partitions mapped to it. (Some of the
partiti ons generated by the static partitioner were empty due
to the simple geometric partitioning mecdhanism used. One
advantage of the overall system is that the static partitioner
can be quite simple since the burden of load balancing is
borne by SCPlib.) The simulation was begun with the
reador empty, and perticles were injeded through one of its
inlets.

As a result of the rapid load change during the ealy
timesteps, the dficiency of the computation was quite low.
Without load balancing, the first 150 timesteps required

1,762 semnds, with an efficiency of 31 percent. Scdar load
balancing, which considered the particle transport and field
cdculations in aggregate, improved the situation somewhat:
efficiency was improved to 45 percent, and exeaution time
reduced to 1,217 seoconds. (83 d those seconds were
required by two attempts to balance the load.) Becaise the
load distribution charaderistics of the particle transport and
field cdculation phases were quite different, scdar load
balancing failed to generate much of an improvement.
Althoughthe scdar load balance @ given by Equation 1 was
high (the library estimated it to be over 75 percent), the
acdua efficiency, in terms of avail able cmmpute ¢ycles being
usefully employed, was much lower.

To use the vedor load balancing mecdhanisms described
here, load phase measurement cdls were inserted before and
after bath the particle transport and field solver phases. The
loads of these two phases where then passed on to the load
balancing routine. Using the alditional information provided
by the vedor loads, the dficiency improvement was much
greaer. The runtime was reduced to 787 seconds, for an
overall efficiency of 70 percent. (98 seconds were required
by two instances of load balancing.) The results of DSMC
load belancing are summarized in Figure 3. One would
exped the dficiency improvement and runtime reduction to
be even geaer as the problem approaches geady state, and
the particle concentration begins to change less rapidly.

The alvantages offered by vedor load balancing were
aso seen in a preliminary implementation of vedor load
balancing urder the Concurrent Graph Library (Taylor et al.
1996. In that case, the gplication in question was a parti-
cle-in-cdl (PIC) ssimulation of ion thruster badkflow around a
satellite (Samanta Roy et al. 1996. Like the DSMC
applicaion, this smulation involved particle transport and
field cdculation phases. The primary diff erences between the
two were that the PIC code simulated colli sionless plasmas
and used aregular grid on a simpler geometry. The satellite
grid was divided into 1,575 gartitions and mapped onto 256
procesors of a Cray T3D. As with the GEC reador
simulation described above, the dficiency was quite low, at
54 percent. Scdar load balancing reduced the runtime for
100timesteps of this smulation from 2,374 seands to 2,014
seoonds, for an improved efficiency of 63 percent. (The ladk
of efficiency improvement was independently noted for
another concurrent PIC application, but the aithors
suggested no solution to the problem (Ferraro et al. 19917)).
An even geder improvement in efficiency was offered by
vedor load balancing. The vedor approach improved the
efficiency to 72 percent, reducing the runtime to 1,775
seonds. A detailed bre&kdown reveded that vedor load
balancing hed improved the field cdculation efficiency from
73 percent to 94 percent and the particle transport efficiency
from 29 percent to 43 percent. (These results are summa
rized in Figure 4.) A larger improvement in the particle
transport efficiency was impossble becaise the load for that
phase in one of the partitions was © high that no matter what



computer it was assgned to, that computer was overworked,
dowing down the entire computation. This suggests that in
general, dynamic granuarity control (i.e., the &ility to
divide and merge tasks at runtime) must be mupled with the
vector load view to achieve load balance in all cases.

CONCLUSION AND FUTURE WORK

As the previous dion shows, vedor load balancing pro-
vides a superior aternative to scdar load balancing for
multiphase computations. By considering the loads of such
applicaions to be scdars rather than vedors, the load
balancing framework is able to make the mrred dedsions
to achieve higher load balance. Further improvements to the
load balancing framework described herein will i nclude the
incorporation of dynamic granularity control to increase or
reduce the task relocaion options available to the load
balancing mechanism. Also, extensions to the diffusion
model and task seledion mecdhanism will allow cases in
which the @mputers are of heterogeneous processng
capacity to be handled appropriately.
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Figure 3: DSMC Load Balancing Results

Unbalanced Scalar Vector
Balanced | Balanced
Runtime (sec) 1,762 1,217 787
Efficiency 31% 45% 70%
Figure 4: PIC Load Balancing Results
Unbalanced| Scalar Vector
Balanced | Balanced
Runtime (sec) 2,374 2,014 1,774
Total 54% 63% 72%
Efficiency
Field Solve 73% 78% 94%
Efficiency
Particle Trans. 29% 41% 43%
Efficiency
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