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ABSTRACT

Parallel computations comprised of multiple, tightly inter-
woven phases of computation may require a different
approach to dynamic load balancing than single-phase
computations. This paper presents a load sharing method
based on the view of load as a vector, rather than as a
scalar. This approach allows multiphase computations to
achieve higher eff iciency on large-scale multicomputers
than possible with traditional techniques. Results are
presented for two large-scale particle simulations running
on 128 nodes of an Intel Paragon and on 256 processors of
a Cray T3D, respectively.

INTRODUCTION

Load balancing techniques already in the literature have
concentrated entirely on single-phase computations (Boill at
1990; Cybenko 1989; Evans and Butt 1993; Heirich and
Taylor 1995; Horton 1993; Kohring 1995; Lin and Keller
1987; Muniz and Zaluska 1995; Song 1994; Walshaw and
Berzins 1995; Watts et al. 1996; Will ebeek-LeMair and
Reeves 1993; Willi ams 1991; Xu and Lau 1997). That is,
they work only for applications which are comprised of a
single mode of computation between synchronization
points.  Examples of such applications include Navier-
Stokes flow solvers and particle simulations without self-
consistent electromagnetic fields. As concurrent simulation
techniques become more advanced, however, multiphase
computations will appear with increasing frequency. Such
applications involve two or more tightly interleaved
computational phases separated by synchronization points.
Applications of this type include particle simulations with
self-consistent fields (such as particle-in-cell (PIC)
techniques) and flow solvers using grid adaptation.

The reason why traditional load balancing techniques
fail for multiphase applications is not immediately clear. A

simple example ill ustrates the problem: Consider a two-
phase computation running on only two computers. The first
phase of computation takes 20 seconds on computer one and
10 seconds on computer two. The second phase of computa-
tion requires 10 seconds on computer one and 20 seconds on
computer two. Most load balancing techniques, which do not
consider the phases separately, would see each computer as
having 30 total seconds of work; thus, the computation
appears to be balanced. If a synchronization point exists
between the phases, however, then the computation is not
actually balanced. Computer two must wait 10 seconds for
computer one during the first phase, and computer one must
wait 10 seconds for computer two during the second phase.
(See Figure 1.) Hence, the computation is only 75 percent
eff icient. Because the phases are brief, one cannot simply
load balance whenever the phases alternate; the cost of load
balancing would exceed the benefits it could provide.
Instead, one must load balance in such a way that the phases
are jointly balanced. To accomplish this, one can consider
the loads of the two computers as vectors, rather than as
scalars, where each component of the vector is the load of
one of the computational phases. Then, by balancing the
components of the vectors, one guarantees that the work for
each individual phase of the computation is balanced, as well
as the total work for all of the phases. For most load bal-
ancing algorithms, the modification to accommodate vectors

Figure 1: A “Balanced” System
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is a fairly easy one.
This paper presents the vector load balancing technique

as an effective mechanism for improving the efficiency of
multiphase simulations. In particular, we applied the tech-
nique to a concurrent three-dimensional Direct Simulation
Monte Carlo (DSMC) application (Rieffel et al. 1997). This
application is used to model plasmas in situations ranging
from reactor chambers used in sili con wafer fabrication to a
satellit e's reentry in the upper atmosphere. In the former
simulations, electromagnetic fields are of particular impor-
tance. Since the workload for the field calculation is only a
function of the number of grid cells assigned to a computer,
whereas in the particle movement phase it is a function of
both the number of grid cells and the number of particles,
the two phases have very different load distribution proper-
ties. As a result, scalar load balancing techniques fail to
improve the eff iciency as much as one would expect. A
similar problem occurred in a PIC simulation of ion thruster
backflow around a satellit e (Samanta Roy 1996). Like the
DSMC application, the PIC simulation was comprised of
two interwoven phases with very different load distribution
characteristics. Scalar load balancing thus faired poorly in
improving the eff iciency of the computation. We demon-
strate how vector load balancing techniques can circumvent
these limitations.

BASIC METHODOLOGY

Our approach to dynamic load balancing is based on the
following decomposition of the load balancing problem
(Watts et al. 1996; Willebeek-LeMair and Reeves 1993)

1. Load Measurement:  The load associated with each
computer is determined, either by having the programmer
provide an estimate of the workload associated with its tasks
or by actually timing the amount of computation required by
those tasks.
2. Load Imbalance Detection and Profitabili ty
Calculation: Based on the total load measured at each
computer, the degree of load balance is calculated, and
based on the estimated cost of load balancing, a profitabilit y
calculation is used to determine if the estimated improve-
ment possible with load balancing exceeds that cost.
3. Work Transfer Quantity Calculation: Using the
computer loads measured in the first step, the ideal amount
of work to be transferred between pairs of computers is
calculated. Work transfers equal to these pairwise, directed
quantities should result in an improved load balance.
4. Task Selection: Using the work transfer quantities
calculated previously, tasks are selected for transfer or
exchange. This phase may be repeated several times until
the transfer quantities have been adequately met.
5. Task M igration: Once the tasks’ new locations are
determined, any data structures associated with those tasks

are transferred from their old locations to their new loca-
tions, and the computation resumes.

The above strategy is designed for single-phase computa-
tions. To adapt the methodology for multiphase compu-
tations, we must modify the methodology to incorporate the
vector view of load.

VECTOR METHODOLOGY

This section presents the vector version of the dynamic load
balancing framework presented above. Changes are required
to the first four phases of the basic methodology.

Load Measurement

Load measurement becomes slightly more complex under the
vector model. Under the scalar model, the load of a task
could be readily obtained using standard operating system
routines to measure its resource usage. While such faciliti es
still prove useful for the vector model, additional effort is
required to determine the appropriation of load to phases.
The simplest way to do this is to have the programmer tell
the load balancing system where each phase begins and ends
by calli ng a routine before and after the code for that phase.
More complex strategies might analyze the runtime between
synchronization points, taking those portions with low
statistical correlation or even anticorrelation to be separate
phases.

Load Imbalance Detection and Profitability
Calculation

Once the load for each phase has been totaled at each
computer, the computers must communicate to detect the
presence of a load imbalance. For scalar load methods, the
global load balance is given by
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Equation 1: Scalar Efficiency

where Li is the load of computer i of P total computers.
Under the vector model, the efficiency equation changes
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where 
&
Li j,  is the load of phase j on computer i. Once the

eff iciency of the computation has been calculated, the
profitabilit y of load balancing is determined as described in
(Watts et al. 1996; Willebeek-LeMair and Reeves 1993).

Work Transfer Quantity Calculation

If load balancing is deemed profitable, the ideal amounts of
work to transfer between computers are calculated next.
This calculation typically treats work to be a continuous
quantity, denying its discrete nature until the next step. For
most work transfer quantity calculations, such as those
based on heat diffusion, the hierarchical balancing method,
or the generalized dimensional exchange method (Boill at
1990; Cybenko 1989; Heirich and Taylor 1995; Horton
1993; Watts et al. 1996; Will ebeek-LeMair and Reeves
1993; Xu and Lau 1997), the modification simply entails
replacing all of the scalar load quantities in the calculation
with vector load values. Alternatively, the scalar algorithm
can be run separately for each component of the load vector.

Task Selection

When loads are taken to be scalars, task selection may
consider either one-way transfers of tasks or two-way
exchanges. (The latter allows one to potentially satisfy small
ideal transfer quantities by exchanging two tasks of roughly
equal load.) The vector load model, however, actually
necessitates two-way exchanges since the components of the
ideal work transfer may in general occur in different direc-
tions. (E.g., phase one work may need to be transferred
from computer one to computer two, and phase two work
transferred from computer two to computer one.) As a
result, a more complicated task selection mechanism is
typically required.

IMPLEMENTATION

The vector dynamic load balancing methodology described
above was implemented in terms of the Scalable Concurrent
Programming Library (SCPlib). This library is the successor
to the Concurrent Graph Library (Taylor et al. 1996). The
latter library was successfully applied to a number of large-
scale industrial problems, including fluid flow calculations
for the Titan IV and Delta II launch vehicles, the PIC ion
thruster simulation described in the introduction and an
earlier version of the DSMC application. SCPlib itself has
been used to implement the DSMC application as well as
the integrated field solver. This section briefly describes
SCPlib and gives details of the implementation of each of
the steps in the vector load balancing methodology.

SCPlib

SCPlib provides basic programming technology to support
irregular applications on scalable concurrent hardware. The
library provides architecture- and application-independent
faciliti es for communication, synchronization, thread man-
agement and performance monitoring. The library runs on a
wide variety of platforms, ranging from large-scale multi -
computers such as the Intel Paragon and the Cray T3D, to
medium-sized systems such as the Sili con Graphics
PowerChallenge and Avalon A12, to networks of Unix
workstations.

The SCPlib programming model is based on the concept
of a concurrent graph of communicating tasks. A task is
comprised of a thread of execution, a communication list and
user state. The mapping of these tasks to computers is
transparent to the user. This allows the mapping of tasks to
computers to be changed at runtime, providing the basis for
dynamic load balancing.

Also, under SCPlib, all communication and I/O occurs
through objects called ports. These ports are roughly analo-
gous to Unix descriptors in that the same routines can be
used to write to a channel port or a file port. This allows
considerable reuse of user application code; the same
routines used to read and write a data structure can be used
for communication and I/O (as well as load balancing, as
described below).

Load Measurement

SCPlib provides routines that allow the user to mark the
beginning and end of computational phases. Execution time
between these marker routines is automatically accumulated
into the appropriate counter. Another routine allows the user
to extract these values and pass them on to the load balanc-
ing routine in the form of a load vector.

Load Imbalance Detection and Profitability
Calculation

A load imbalance is detected by performing a global opera-
tion to calculate the average and maximum vector load over
all of the computers. If the eff iciency is less than that re-
quested by the user, effmin, and if, based on previous load
balancing attempts, the estimated improvement in runtime
possible with load balancing exceeds its cost, load balancing
is deemed profitable. (On the first attempt to load balance,
SCPlib assumes that at least the eff iciency requested by the
user will be achieved, and that the cost of load balancing is
zero.)



Work Transfer Quantity Calculation

Heat diffusion provides an intuitive, correct and scalable
mechanism for calculating the volume of work to be trans-
ferred between computers (Boill at 1990; Cybenko 1989;
Heirich and Taylor 1995; Horton 1993; Watts et al. 1996;
Will ebeek-LeMair and Reeves 1993; Xu and Lau 1997). Its
inherent nearest neighbor approach also tends to preserve
existing communications locality, and it is robust in the
presence of asynchronous load injections. The vector
version of the fully implicit, first-order accurate diffusion
iteration which appeared in (Heirich and Taylor 1995)
appears in Figure 2. In that figure, Ni is the set of network
neighbors of computer i, Nmax is the largest such set, and&
T i j( , ) is the work transfer quantity from computer i to com-

puter j. SCPlib uses a vector version of the second-order
accurate diffusion algorithm, based on the Crank-Nicholson
scheme; this algorithm was presented in (Taylor et al.
1996). In both of these algorithms, each computer
repeatedly exchanges load information with its neighbors in
the physical network, updating its load and accumulating
into the work transfer quantities based on a results of a
simple arithmetic operation. The accuracy and termination
point of the iteration are determined directly by the
eff iciency requested by the user in the initial call to the load
balancing routine: α = −1 eff min

Task Selection

As pointed out previously, task selection is somewhat more
complicated under the vector load model. As in the scalar
case, the problem of selecting the subset of tasks whose
exchange best approximates the ideal transfer quantity is
NP-complete, by reduction from the subset sum problem.
Fortunately, there exist fully polynomial-time
approximation algorithms for the subset sum problem
(Papadimitriou 1994). The load balancing framework in
SCPlib uses a generalized version of such an approximation
algorithm based on the notion of Euclidean distance in an n-
dimensional space for n-dimensional load vectors. In short,
the algorithm finds the subset of tasks whose exchange is
the represented by the point closest (within the given
tolerance) to the point represented by the ideal transfer
vector. As the transfer quantity is fulfill ed by repeated
applications of the selection mechanism, the accuracy of the
approximation algorithm is reduced accordingly.

Task Migration

SCPlib provides a routine which allows a task to relocate
itself from one computer to another. Communication
channels are automatically rerouted and any incoming
messages forwarded appropriately. The protocol which does

this is completely local in that only the computers on which
the task originally resided, to which it is moving, and with
which it directly communicates are informed of the move.

The task movement mechanism requires the user to sup-
ply routines that read and write the task’s state to and from a
port, as well as a routine to free the old state. Note that for
applications that already support checkpointing, the same
routines used to read and write a task’s state to a file can be
used to read and write its state between two computers. As
the result of this reuse of existing code, we were able to
integrate load balancing into the DSMC application within a
few hours.

RESULTS

The dynamic load balancing framework described in the
previous section was applied to a large-scale, concurrent
particle dynamics simulation tool called Hawk (Rieffel et al.
1997). This application is based on a technique called Direct
Simulation Monte Carlo (DSMC). The DSMC method
solves the Boltzmann equation by simulating individual
particles. Since it is impossible to simulate the actual number

Figure 2: Diffusion Algorithm
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of  particles in a realistic system, a smaller number of
macroparticles are used, each representing a large number
of real particles. The simulation of milli ons of these
macroparticles is made practical by decoupling their
interactions. First, the space through which the particles
move is divided into a grid. (For complex geometries, this
grid is typically made up of tetrahedra.) Particle colli sions
are considered only for those particles within the same grid
cell . Furthermore, colli sions themselves are not detected by
path intersection but rather are approximated by a stochastic
model whose parameters are the relative velocities of the
particles in question. Statistical methods are used to recover
macroscopic properties such as temperature and density. By
limiting and simpli fying the interactions in this fashion, the
order of the computation is drastically reduced.

When the particles being simulated are ions, they con-
tribute to and are influenced by an electromagnetic field.
Consequentially, an electrostatic field solver has been
incorporated into Hawk. This solver uses a face-based finite
element (FEM) technique, taking as its input the charge
density in each grid cell and returning the electric field for
each cell (Watts, 1996). A preconditioned conjugate gradi-
ent method is used to solve the system of equations that
results from the FEM.

The spatial decoupling at the core of the DSMC
method makes it an ideal candidate for parallelization, since
two partitions of grid cells interact only along their
boundaries. The same applies to the field solver. The grid
for a problem is prepared for parallel simulation by first
dividing it into five to ten partitions per computer. Load
balance is achieved by remapping these partitions to
computers during execution. For the particle transport phase
of Hawk, dynamic load balancing is necessary because the
concentration of particles in a region of the grid changes
during the course of the simulation. The grid may be refined
in areas of high particle concentration in order to preserve
the integrity of the DSMC model. This in turn affects the
runtime of the field solver, which currently operates on the
same grid used in the particle transport phase.

The necessity of dynamic load balancing to Hawk’s
eff iciency was ill ustrated during a 1.2 milli on-particle
simulation on a 124,000-cell grid of the Gaseous
Electronics Conference (GEC) reactor. This simulation was
run on 128 nodes of an Intel Paragon. Each node had
approximately five partitions mapped to it. (Some of the
partitions generated by the static partitioner were empty due
to the simple geometric partitioning mechanism used. One
advantage of the overall system is that the static partitioner
can be quite simple since the burden of load balancing is
borne by SCPlib.) The simulation was begun with the
reactor empty, and particles were injected through one of its
inlets.

As a result of the rapid load change during the early
timesteps, the eff iciency of the computation was quite low.
Without load balancing, the first 150 timesteps required

1,762 seconds, with an eff iciency of 31 percent. Scalar load
balancing, which considered the particle transport and field
calculations in aggregate, improved the situation somewhat:
eff iciency was improved to 45 percent, and execution time
reduced to 1,217 seconds. (83 of those seconds were
required by two attempts to balance the load.) Because the
load distribution characteristics of the particle transport and
field calculation phases were quite different, scalar load
balancing failed to generate much of an improvement.
Although the scalar load balance as given by Equation 1 was
high (the library estimated it to be over 75 percent), the
actual eff iciency, in terms of available compute cycles being
usefully employed, was much lower.

To use the vector load balancing mechanisms described
here, load phase measurement calls were inserted before and
after both the particle transport and field solver phases. The
loads of these two phases where then passed on to the load
balancing routine. Using the additional information provided
by the vector loads, the eff iciency improvement was much
greater. The runtime was reduced to 787 seconds, for an
overall eff iciency of 70 percent. (98 seconds were required
by two instances of load balancing.) The results of DSMC
load balancing are summarized in Figure 3. One would
expect the eff iciency improvement and runtime reduction to
be even greater as the problem approaches steady state, and
the particle concentration begins to change less rapidly.

The advantages offered by vector load balancing were
also seen in a preliminary implementation of vector load
balancing under the Concurrent Graph Library (Taylor et al.
1996). In that case, the application in question was a parti-
cle-in-cell (PIC) simulation of ion thruster backflow around a
satellit e (Samanta Roy et al. 1996). Like the DSMC
application, this simulation involved particle transport and
field calculation phases. The primary differences between the
two were that the PIC code simulated colli sionless plasmas
and used a regular grid on a simpler geometry. The satellit e
grid was divided into 1,575 partitions and mapped onto 256
processors of a Cray T3D. As with the GEC reactor
simulation described above, the eff iciency was quite low, at
54 percent. Scalar load balancing reduced the runtime for
100 timesteps of this simulation from 2,374 seconds to 2,014
seconds, for an improved eff iciency of 63 percent. (The lack
of eff iciency improvement was independently noted for
another concurrent PIC application, but the authors
suggested no solution to the problem (Ferraro et al. 1991)).
An even greater improvement in eff iciency was offered by
vector load balancing. The vector approach improved the
eff iciency to 72 percent, reducing the runtime to 1,775
seconds. A detailed breakdown revealed that vector load
balancing had improved the field calculation eff iciency from
73 percent to 94 percent and the particle transport eff iciency
from 29 percent to 43 percent. (These results are summa-
rized in Figure 4.) A larger improvement in the particle
transport eff iciency was impossible because the load for that
phase in one of the partitions was so high that no matter what



computer it was assigned to, that computer was overworked,
slowing down the entire computation. This suggests that in
general, dynamic granularity control (i.e., the abilit y to
divide and merge tasks at runtime) must be coupled with the
vector load view to achieve load balance in all cases.

CONCLUSION AND FUTURE WORK

As the previous section shows, vector load balancing pro-
vides a superior alternative to scalar load balancing for
multiphase computations. By considering the loads of such
applications to be scalars rather than vectors, the load
balancing framework is able to make the correct decisions
to achieve higher load balance. Further improvements to the
load balancing framework described herein will i nclude the
incorporation of dynamic granularity control to increase or
reduce the task relocation options available to the load
balancing mechanism. Also, extensions to the diffusion
model and task selection mechanism will allow cases in
which the computers are of heterogeneous processing
capacity to be handled appropriately.
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Figure 3: DSMC Load Balancing Results
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