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SCCS-273bThe Fifth Australian Supercomputing ConferenceRoyal Melbourne Institute of Technology and The University of MelbourneMelbourne, Australia, December 7-9, 1992Software Issues and Performanceof a Parallel Model for Stock Option Pricing 1Kim MillsGang ChengMichael VinsonSanjay RankaGeo�rey FoxNortheast Parallel Architectures CenterSyracuse University111 College Place, Syracuse, New York 13244-4100 U.S.kim@npac.syr.eduAbstractThe �nance industry is beginning to adopt parallel computing for numeri-cal computation, and will soon be in a position to use parallel supercomputers.This paper examines software issues and performance of a stock option pric-ing model running on the Connection Machine-2 and DECmpp-12000. Pricingmodels incorporating stochastic volatility with American call (early exercise) arecomputationally intensive and require substantial communication. Three paral-lel versions of a stock option pricing model were developed which varied in datadistribution, load balancing, and communication. The performance of this setof increasingly re�ned models ranged over no improvement, 10 times, and 100times faster than a sequential model. A straightforward approach to this prob-lem involves use of two-dimensional dynamic arrays. When asymmetric arraysare mapped on the DECmpp-12000, distribution of data to physical processors isine�cient and performance su�ers. The regular communication patterns in themodel can also be expressed in one-dimensional arrays, improving data distribu-tion. Performance of this version is similar on both parallel machines. Combiningone-dimensional parallel and sequential arrays achieves e�cient data distribu-tion, reduces interprocessor communication, and further improves performance(100 times faster than a sequential workstation model). The performance im-provements possible on parallel supercomputers presents new opportunities for1We gratefully acknowledge support for this study from the O�ce of the Vice President for Research andComputing at Syracuse University, and Corporate Partnership funding from Digital Equipment Corporation.



pricing entire portfolios, performing large scale model and market comparisons,and using optimization techniques to improve model price estimates.



IntroductionOption pricing modelsStock options are contracts that give the holder of the contract the right to buy or sell theunderlying stock at some time in the future. Option contracts are traded just as stocksare traded, and models that quickly and accurately price option contracts are valuable totraders and �nancial managers. Speculators participate in the option market to capturepotential high pro�ts with relatively small investment capital. Financial managers buy andsell options to hedge risk in their investment portfolios.Since the opening of the �rst organized options exchange in April, 1973, by the ChicagoBoard of Options Exchange, and the introduction of a constant volatility, European pricingmodel [1], �nance researchers have sought improvedmethods to price options with stochasticvolatility on American contracts. Key model parameters, which cannot be directly observedbut must be estimated from market information, include volatility of the underlying asset�, variance of the volatility �, and correlation between asset price and volatility �.Monte Carlo models are the conventional standard of comparison for option pricing mod-els, but are computationally so intensive that they tend to be used only for research purposes.Binomial models are used as approximations of Monte Carlo models for pricing options withstochastic volatility and American call (early exercise). Binomial models use binary treesto represent possible up/down movements in asset price over the life of an option contract,and are more e�cient than Monte Carlo methods. Finucane [2] demonstrated that bino-mial methods provide price estimates within a few cents of Monte Carlo models for marketobservations with known model parameters �, �, and �.Performance issuesThe purpose of this study is to examine performance issues encountered in implementingan option pricing model, written in Fortran90, on the CM-2 and the DECmpp-12000. Wefocus on a single model, a binomial model incorporating stochastic volatility and Americancall, and apply this model to a set of options market data. Load balancing and commu-nication are the important computational issues in this application. We use three versionsof the pricing model to examine performance. In a related study we compared four optionpricing models with historical market data [4]. Models incorporating stochastic volatilitywith American call produce more accurate price estimates than simpler models based onconstant volatility and European call. Option pricing models are highly sensitive to modelinput parameters. Preliminary studies show great promise for using optimization techniquesfor model parameter estimation [4].Summary of resultsIn our initial approach, we used two-dimensional arrays to run the pricing model in Fortran90on the Connection Machine-2 and DECmpp-12000. This approach follows the natural struc-ture of the problem, but requires dynamic distribution of data on the parallel machines. We



observed important di�erences in performance between CM-2 and DECmpp-12000 for thisversion of the model. This pricing model requires a substantial amount of communication,but happens to be nearest neighbor communication along only one axis. This feature allowedus to de�ne a second version of the model using a static data distribution, and similar per-formance was observed for both parallel machines. In a third version of the model, we tookadvantage of a data layout strategy making use of serial arrays, and reduced interprocessorcommunication. This version of the model runs approximately 100 times faster on the CM-2and DECmpp12000 than a sequential version of the model running on a SUN4(25MHZ)workstation.A Parallel Binomial Pricing ModelMathematical formulationThe binomial model represents the continuous time processes of stock price and volatility asdiscrete up/down movements. Following the discussion in [2], the mathematical formulationof the binomial pricing model can be outlined in the following way. Volatility, �, and stockprice, S, follow continuous time stochastic processes represented asd�2�2 = ��dt+ �dfW (1)dSS = �sdt+ �d eZ (2)where fW and eZ are standard Wiener processes with correlation �. Change in stock price, ormore accurately, the ratio of stock price change to initial stock price dSS is expressed as thesum of an expected component �sdt (drift of stock price over time) and a random component�d eZ (volatility).The magnitude of the increase (u) or decrease (d) in volatility for any given time periodis expressed as u = e(����2=2)�t+�p�t (3)d = e(����2=2)�t��p�t (4)where the probability of an increase/decrease being equally likely, �� is the drift of thevolatility process (a constant) and � is the variance of the volatility (not directly observed,but estimated from market data). With the introduction of correlation, �, the variance ofstock price (which is volatility squared) after i periods with j upward movements and i� jdownward movements is de�ned as�2 = ��20;0�u(�)id(�)i�j (5)where �20;0 is initial volatility (estimated from market data). In the limit, as �t approacheszero, the binomial process approaches the continuous time processd�2 = ���2dt+ ��2dfW (6)



The magnitude of increases (U) and decreases (D) in stock price at the i; jth position withinthe binomial lattice is de�ned as Ui;j = e(rf��2i;j=2)�t+�i;j�t (7)Di;j = e(rf��2i;j=2)�t��i;j�t (8)Problem structureA binomial lattice is illustrated in Figure 1 showing asset price or volatility over time.Important elements of the binomial lattice include initial price (S0) and volatility (�0 orV0), time of dividend payout (tdiv), the 2tdiv nodes at time of the dividend where tdiv rangesover values 1 to T � 1, and the 2T nodes at terminal time T . A single option price C0, isestimated by integrating over the 2T prices at time T and discounting to the present timeT0. The life of an option contract is typically represented in T = 17; 18; 19; 20 periods. Amodel of size of T = 17 was used by [2] in a previous, related study, and we found littleimprovement in model error reduction with model sizes greater than 17 periods in this study.We applied the binomial model to Chicago Board of Options Exchange (CBOE) market datafor January through June, 1988. In the discussion below, we compare parallel versions of thepricing model with a sequential Fortran77 version of the model running on a SUN4 (25MHZ)workstation. The sequential model runs in approximately 4.0 seconds.Early exercise and shape of arraysAmerican pricing models incorporate early exercise, which can occur at any time in the lifeof the option contract. In practice, early exercise occurs just prior to dividend payout. Inthe �rst version of our model, we express the two-dimensional lattice structure (stock priceover time, volatility over time) in two-dimensional Fortran arrays. We designate the timesteps in our model from 1 to tdiv as stage 1 of the model, and timesteps from tdiv to maturityT as stage 2 of the model. This breakdown of the American pricing model allows us to easilytrack price movements after dividend payout and determine percentages of early exercise.Figure 2 illustrates how we express the binomial lattice in two-dimensional Fortran arrays.Stage 1 of the model runs from period T = 1 through the time of dividend payout, tdiv.After dividend payout, further up/down moves of the 2tdiv nodes in the lattice at time tdivare tracked in stage 2 of the model. As Figure 2 shows, when tdiv = 2, the 2tdiv or 4 nodesin the lattice evolve into 2T�2 nodes at terminal time T . In version one of our model, thevalue of tdiv de�nes the shape of the two dimensional Fortran array (1 : 2tdiv ; 1 : 2T�tdiv).Each market observation has its own value of tdiv which is not accessible to the model untilruntime, requiring dynamic arrays.Data distributionWe observed important di�erences in performance between the CM-2 and DECmpp-12000 for version one of our model. Figure 3 illustrates the di�erence in performance between



the two machines. As tdiv approaches 1 (or 16), arrays become asymmetric and deteriorationin performance occurs on the DECmpp-12000.To illustrate how the DECmpp [3] ine�cientlymaps asymmetric arrays to the 8K physicalprocessor grid (PE grid) of 128�64, we �rst consider a worst-case example for our application.In this case, illustrated in Figure 4A, T = 17, tdiv = 1, and T � tdiv = 16. This results inan array shape of (1 : 21; 1 : 216). The DECmpp operating system uses a cut and stackmethod which maps two-dimensional arrays column-to-row. Column one of this Fortranarray, which contains two elements, is mapped to row one of the PE grid (along PE x inFigure 4A). Column two of the Fortran array is mapped to row two of the PE grid. Whenthe number of columns in the Fortran array exceeds the number of rows in the PE grid,which is �xed at 26, the remaining columns in the array are \wrapped around" into memory.In our worst-case mapping example, the �rst 26 columns of the Fortran array are mappedto dimension PE x, and the remaining 216 � 26 = 210 columns of the array are wrapped orlayered into memory.Another view of a worst-case example is illustrated in Figure 4B. In this case, tdiv = 16and the resulting Fortran array has shape (1 : 216; 1 : 21). Part of column one of this Fortranarray, which contains 216 elements, is mapped to row one of the PE grid, which has a capacityof 27 elements. When the capacity of PE x is reached, the remaining elements are wrappedinto memory. To map this Fortran array of shape (1 : 216; 1 : 21) requires 216 � 27 = 29layers.The best-case mapping example for our application occurs when tdiv = 7. A nearlysymmetric two-dimensional array results from this value of tdiv. Figure 4C illustrates howthe resulting Fortran array of shape (1 : 27; 1 : 210) is mapped in 24 layers.In comparison, the CM-2 arranges array elements \horizontally". Arrays of multidi-mensional rank are mapped as a one-dimensional array across processors, one element perprocessor. This approach �lls up the processor grid so as to maximize the number of physicalprocessors in use and minimize virtual processor looping [5].In summary, performance of the binomial model on the DECmpp-12000 is sensitive toarray shape. When the two-dimensional Fortran arrays used to express stock price or volatil-ity in the model are asymmetric, data are ine�ciently distributed to the �xed processor gridof the DECmpp-12000. DECmpp mapping directives can be speci�ed to change the defaultmapping, but we cannot take advantage of compile-time directives for this application. TheFortran array dimensions of version one of our model are de�ned by tdiv which is accessibleto the model only at run-time.Strategies for Improved Model PerformanceTo address the load balancing issue described above, we de�ned a second version of thebinomial model based on static, one-dimensional Fortran arrays. This approach improvesload balancing by completely �lling the 8K physical processors of the DECmpp. In a thirdform of the model we combine a one-dimensional array model with a data layout strategy tomake use of in-processor arrays. This implementation combines load balancing with reduced



communication for improved performance.Load balancingIn the second version of our model, we represent the the 2T points in the binomial latticein a Fortran array of size (1 : 2T ). Figure 5 illustrates this one-dimensional array model forT = 17 and tdiv = 2. In stage 2 of the model each subtree, one for each node in the lattice attime tdiv, is mapped to a section of the array of size 2T�tdiv . The �rst element of each arraysegment corresponds to a node at the time of dividend. From this initial state, the volatilityand price lattice evolves forward in time. We use the Fortran 90 intrinsic function eoshiftinside a loop to calculate, then to communicate values representing up/down moves in priceand volatility through the array section.The DECmpp maps one-dimensional arrays to the processor grid in raster-scan fashion.For a model of T = 17 periods, the 217 one-dimensional array completely �lls the 128 � 64physical processors of the 8K DECmpp, then is layered into memory. By using a one-dimensional array to represent the binomial lattice, we limit the number of required layersto 24 for any value of tdiv. Program performance remains constant for all values of tdiv.Version two of our model, based on static one-dimensional arrays, is similar on both parallelmachines, and an order of magnitude faster than the sequential version (Figure 6).Reduced CommunicationIn the third version of our model, we combine one-dimensional arrays with in-processorarrays to provide load balancing and reduced communication. We use a one-dimensionalstatic array to represent the �rst 8K nodes of the binomial lattice, and the eoshift functionto completely �ll the 8K physical processors of the DECmpp. Depending on the value oftdiv, the model may be in either stage 1 (tdiv < 13), or in stage 2 (tdiv > 13). Once the 8Kprocessor grid is �lled, all further movements of stock price and volatility are expressed inlocal arrays. Each processor calculates up/down movements in stock price and volatility andassigns the result of the computation to an element of a serial array stored in local processormemory. Reduced communication improves model performance by two orders of magnitudeover the sequential version (Figure 7).ResultsWe implemented three forms of the binomial pricing model and compared performance be-tween the CM-2 and DECmpp-12000. The �rst version of our model expresses the two-dimensional structure of a binary tree in two-dimensional Fortran arrays. We used the valueof (tdiv), known only at runtime, to de�ne the second dimension of the array. This approachis straightforward and allows us to easily track up/down movements in the lattice and de-termine percentages of early exercise. The DECmpp ine�ciently maps asymmetric arraysto the �xed processor grid, and performance is slower in some cases than a SUN4 IPC, 25MHZ workstation. CM-2 performance is not sensitive to asymmetric arrays. Performance is



an order of magnitude faster than the SUN4 sequential model, which runs in approximately4.0 seconds (Figure 3).The second version of our model is based on one-dimensional static arrays. The DECmppe�ciently maps one-dimensional arrays, improving load balancing and performance. A one-dimensional array model on the DECmpp performs similarly to one and two-dimensionalarray models on the CM-2. This version of the model is an order of magnitude faster thanthe sequential version (Figure 6).The third version of our model combines one-dimensional arrays with in-processor ar-rays. One-dimensional arrays provide load balancing|all 8K physical processors of bothmachines are used. Once the �rst 8K nodes of the binomial lattice are mapped to the 8Kphysical processors, all future stock/volatility movements are represented in in-processorarrays. This approach reduces inter-processor communication and improves program per-formance. Figure 7 summarizes model performance for a sequential Fortran model runningon a workstation (SUN4 25MHZ) and three versions of the model running on the DECmpp.Our third model implementation approaches two orders of magnitude improved performanceover the sequential version.Discussion and ConclusionOur description of three increasingly re�ned models for stock option pricing on parallelsupercomputers demonstrates a methodology for application development on parallel su-percomputers. Our approach is based on integrating software, data decomposition, andalgorithms to solve a real world application problem.The binomial pricing model presents load balancing and communication issues that mustbe addressed to achieve high performance on the CM-2 and DECmpp-12000. Substantialload imbalances for the �rst several periods of the model are inherent to the binomial model,yet the most important load balancing issue in this application is due to the way model arraysare mapped by the compiler to physical processors. In versions two and three of our binomialpricing model, we observe similar performance between the CM-2 and DECmpp. Only whenasymmetric two-dimensional arrays are involved does the DECmpp fail to perform on thelevel of the CM-2.We speculate that the compiler design of the two machines was inuenced by the networktopology. The CM-2 is based on a hypercube topology and allows expression of exibleor general meshes. The CM-2 compiler e�ciently maps one and two-dimensional arrays,including asymmetric shapes, to the physical processors. The physical processor grid of theDECmpp presents a less exible topology and is perhaps the reason why the current softwareis not designed to e�cientlymap asymmetric two-dimensional arrays. We emphasize that theproblem we have seen with dynamic asymmetric arrays is a feature of the current software,not the hardware, of the DECmpp-12000. Future generations of software will likely solvethis type of problem.High performance option pricing models running on parallel supercomputers provide aneeded tool for investigating how di�erent pricing models perform over a long period of



time and under varying conditions. Model parameter estimation based on optimizationtechniques holds great promise for improving pricing model accuracy, but this approachis possible only on the most powerful computers. We expect to see the rate of adoptionof parallel supercomputing technology in �nance to accelerate as the relative advantage ofparallel pricing models becomes better understood. Traders and �nancial managers requiremodels that can price a single stock in fractions of a second, and investment portfolios inminutes, with accuracies within a few cents of the true market price. Running pricing modelson parallel supercomputers make this a near-term possibility.References[1] Black, F. and M. Scholes. The Pricing of Options and Corporate Liabilities. Journalof Political Economy, May{June 1973, 637.[2] Finucane, T. 1991. Binomial Approximations of American Call Option Prices withStochastic Volatilities. to be published in Advances in Futures and Options Research.[3] MasPar Computer Corporation, 1991. Maspar Fortran User Guide, Version 1.1, Revi-sion A2, pp. 2{9.[4] Mills, K., Vinson, M., and G. Cheng. 1992. A Large Scale Comparison of OptionPricing Models with Historical Market Data. The Fourth Symposium on the Frontiersof Massively Parallel Computation, October 19-21, McLean, Virginia. IEEE ComputerSociety and NASA GSFC. SCCS-260. 7 pps.[5] Thinking Machines Corporation. 1989. CM Fortran Reference Manual. Version 5.2-0.6.pp. 368.
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