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Abstract

Distributed memory parallel computers or distributed computer systems are widely
recognized as the only cost-effective means of achieving teraflops performance in the
near future. However, the fact remains that they are difficult to program and ad-
vances in software for these machines have not kept pace with advances in hardware.
This thesis addresses several issues in providing runtime support for in-core as well as
out-of-core programs on distributed memory parallel computers. This runtime sup-
port can be directly used in application programs for greater efficiency, portability
and ease of programming. It can also be used together with a compiler to translate
programs written in a high-level data-parallel language like High Performance Fortran
(HPF) to node programs for distributed memory machines.

In distributed memory programs, it is often necessary to change the distribution
of arrays during program execution. This thesis presents efficient and portable algo-
rithms for runtime array redistribution. The algorithms have been implemented on
the Intel Touchstone Delta and are found to scale well with the number of processors
and array size. This thesis also presents algorithms for all-to-all collective communi-
cation on fat-tree and two-dimensional mesh interconnection topologies. The perfor-
mance of these algorithms on the CM-5 and Touchstone Delta is studied extensively.
A model for estimating the time taken by these algorithms on the basis of system
parameters is developed and validated by comparing with experimental results.

A number of applications deal with very large data sets which cannot fit in main
memory, and hence have to be stored in files on disks, resulting in out-of-core pro-
grams. This thesis also describes the design and implementation of efficient runtime
support for out-of-core computations. Several optimizations for accessing out-of-core
data are presented. An Extended Two-Phase Method is proposed for accessing sec-
tions of out-of-core arrays efficiently. This method uses collective /O and the I/O
workload is divided among processors dynamically, depending on the access requests.
Performance results obtained using this runtime support for out-of-core programs on

the Touchstone Delta are presented.
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Chapter 1

Introduction

Massively Parallel Processors (MPPs) with peak performance greater than 100 Gflops
have already made their advent into the supercomputing arena. As a result, parallel
computers are increasingly being used in many applications which require a great
deal of computational power. FExamples of such applications include many large
scale computations in physics, chemistry, biology, engineering, medicine and other
sciences, which have been identified as Grand Challenge Applications [56, 131]. Many
applications dealing with information technology, such as multimedia systems, video
on demand, video compression and decompression, also require a large amount of
compute power. It is estimated that a computer capable of 1 Tflops (10'* flops) or
more would be required to solve these applications in a reasonable amount of time.
It is widely recognized that rather than conventional vector supercomputers, parallel
computers or distributed systems provide the only cost-effective means of achieving
teraflop performance.

However, software support for parallel computers has lagged far behind advances
in hardware. Programming a parallel machine can prove to be quite tedious. In
order to get the best performance from a parallel computer, the programmer has to
pay attention to many low-level implementation details. Also, the programs are very
often not portable. One way to tackle this problem is by using advanced compilers
and runtime support systems. The research presented in this thesis addresses several

issues in providing runtime support for in-core as well as out-of-core programs on
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distributed memory parallel computers. This runtime support can be directly used
in application programs for greater efficiency, portability and ease of programming.
It can also be used together with a compiler to translate programs written in a high-
level data-parallel language like High Performance Fortran (HPF) to node programs

for distributed memory parallel computers.

1.1 Distributed Memory Parallel Computers

In a distributed memory computer, the memory is physically distributed among pro-
cessors. Each processor has its own local memory and all processors are connected
together by an interconnection network such as a hypercube, mesh, torus, fat tree
or some other topology. A processor can directly access only its own local memory.
If data from some other processor is needed, it can be obtained by explicit mes-
sage passing. Examples of such systems are the Intel iPSC/860, Touchstone Delta
and Paragon; Thinking Machines CM-5; IBM SP-1, SP-2; Meiko CS-2; Cray T3D;
nCUBE-2 etc.

The main advantage of distributed memory computers is that they are scalable.
Advances in interconnection network technology have made it possible to connect
hundreds or thousands of processors into one large high-performance parallel com-
puter. Hence, such machines are also called Massively Parallel Processors (MPPs).
Each processor of an MPP is typically a powerful microprocessor like a DEC Alpha,
IBM PowerPC, Sun Sparc or Intel i860. Since these microprocessors are also used in
workstations or personal computers, they are available at competitive prices. Hence,

MPPs also prove to be very cost-effective.

1.2 Software for Distributed Memory Computers

Distributed memory machines are relatively hard to program. The most common
programming model for distributed memory computers is the Single Program Multiple
Data (SPMD) model in which each processor runs the same program, but on different

data sets. The program running on each node is essentially a sequential program
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(usually in C or Fortran) interspersed with calls to message passing routines. The
node program is written in the local address space and the absence of a single global
address space is what makes message passing programming difficult. The programmer
has to decide how data should be partitioned among the processors and has to manage
communication between processors explicitly. Interprocessor communication is at
least an order of magnitude more expensive than accessing data in local memory.
This forces the programmer to pay considerable attention to saving communication
costs. Since each machine has its own architectural features and idiosyncrasies, the
programmer tries to hardwire the program to exploit these peculiarities and get the
best performance. Hence a great deal of effort is required to port such programs to
other machines. These details also make it difficult to convert existing sequential
programs to parallel programs. Another problem is that each parallel machine has
its own message passing library which is quite different from that of other machines.
Some of the common communication libraries are NX for Intel machines, CMMD
for the CM-5, MPL for the IBM SP-1 and SP-2 etc. A program written using the
NX library for the Intel Paragon cannot be directly run on the CM-5 and vice-versa
because the message passing routines are totally incompatible.

There have been several attempts to provide some measure of portability in par-
allel programs. There are number of portable communication libraries like EX-
PRESS [90], PVM [114], PICL [47], P4 [19] etc. which provide a communication
layer above the native message passing library of the system. These libraries provide
a well-defined set of communication routines which remain the same for any system.
For example, a program written using EXPRESS or PVM can be run on almost any
parallel computer and even on a network of workstations. The EXPRESS or PVM
routines make calls to the message passing library provided on the system. However,
this portability is at the cost of slightly lower performance because of this additional
layer of communication software.

There has also been an effort to develop a standard Message Passing Interface
(MPI) [83]. The Message Passing Interface Forum, a group of researchers from indus-

try, academia and research laboratories, has defined a set of library interface standards
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for message passing called MPI. MPI has tried to make use of the most attractive
features of a number of existing message passing systems. The goal is to establish a
practical, portable, efficient and flexible standard for message passing. The definition
of a message passing standard such as MPI provides vendors with a clearly defined
set of routines that they can implement efficiently, or in some cases provide hardware
support for, thereby providing better performance. But the difficulty of explicitly

doing message passing still remains.

1.3 Data-Parallel Languages

Since message passing programming is difficult, the user would prefer to write a pro-
gram in global name space without any message passing, and have a compiler translate
it into a message passing program. This requires advanced compiler technology, but
it would result in parallel programming being easy and portable. Researchers have
found it very hard to build compilers which can parallelize sequential programs writ-
ten in standard C or Fortran 77. Hence, standard sequential languages have been
augmented with directives and constructs to aid the compiler in generating message
passing code. Fortran D [43, 58] is one such language. Fortran D consists of a set of
extensions to Fortran 77 which specify how data is to be distributed among the pro-
cessors of a distributed memory machine. The Fortran D compiler developed at Rice
University [122, 59] can translate a Fortran D program into a Fortran 77 plus mes-
sage passing node program. Another such language is Fortran 90D [128]. Fortran 90D
consists of a set of extensions to Fortran 90, similar to those used in Fortran D. The
Fortran 90D compiler developed at Syracuse University [13] translates Fortran 90D
programs to Fortran 77 plus message passing node programs. Vienna Fortran [21, 130]
and CM Fortran [121] also allow the user to write programs in global address space.

Recently, the High Performance Fortran Forum, comprising a group of researchers
from industry, academia and research laboratories, developed a standard language

called High Performance Fortran (HPF) [57, 67]. HPF was designed to provide a
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portable extension to Fortran 90 for writing data-parallel applications. It includes fea-
tures for mapping data to processors, specifying data-parallel operations, and meth-
ods for interfacing HPF programs to other programming paradigms. It is expected
that HPF will be a standard programming language for computationally intensive
applications on many types of machines, such as massively parallel MIMD and SIMD
multiprocessors as well as traditional vector processors. In order for HPF to be suc-
cessful, it needs a powerful compiler. Compiler technology for HPF is still in its
infancy and current versions of HPF compilers are not robust and mature enough to
compile large production codes efficiently. However once good compilers are available,
the modern features and powerful capabilities of HPF are expected to make it the
new popular version of Fortran for scientists and engineers solving complex large-scale

problems [67].

1.4 Need for High Performance I/0

Another important issue in high performance computing is providing support for high
performance parallel input-output (I/O). I/O for parallel systems has drawn increas-
ing attention in the last few years as it has become apparent that /O performance
rather than CPU or communication performance may be the limiting factor in fu-
ture computing systems. Large scale scientific computations, in addition to requiring
a great deal of computational power, also deal with large quantities of data. At
present, a typical Grand Challenge Application could require 1Gbyte to 4Thytes of
data per run [38]. These figures are expected to increase by orders of magnitude as
teraflop machines make their appearance. Although supercomputers have very large
main memories, the memory is not large enough to hold this much amount of data.
Hence, data needs to be stored on disk and the performance of the program depends
on how fast the processors can access data from disks. In order to have a balanced
system [75], it is essential that the I/O bandwidth is comparable to the CPU and
communication bandwidth. Unfortunately, the performance of the I/O subsystems of

MPPs has not kept pace with their CPU and communication capabilities. It is still
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orders of magnitude more expensive to do I/O than to do computation or communi-
cation. Improvements are needed in both hardware and software in order to improve

I/O performance.

1.5 Contributions of this Thesis

This thesis addresses several issues in providing runtime support for in-core as well
as out-of-core programs on distributed memory parallel computers. This runtime
support can be used for performing many of the commonly required operations in
application programs written using a distributed memory programming model. The
use of runtime support makes it easier to write application programs and provides
greater efficiency and portability. We mainly focus on runtime support for regular
computations in which the communication and 1/O patterns are known statically.
This runtime support can also be used together with a compiler to translate pro-
grams written in a high-level data-parallel language like HPF to node programs for
distributed memory parallel computers. In fact it forms an essential part of the For-
tran 90D/HPF compiler developed at Syracuse University [13]. Runtime support
helps to separate the machine dependent aspects of compilation from the machine
independent aspects. The compiler can do all the machine independent transforma-
tions and the runtime system can be optimized for each different machine. Thus,
a portable and efficient compiler can be obtained by porting the runtime system to
different machines. The runtime support discussed in this thesis is general and can be
used in any other HPF compiler or a compiler for any other data-parallel language.
In distributed memory programs, arrays are distributed across processors in some
fashion. For a number of reasons, it is often necessary to change the distribution, or
redistribute the arrays during the course of program execution. This thesis presents
efficient algorithms for runtime array redistribution. Since array distribution and
redistribution is rigorously defined in HPF, the algorithms are developed for redis-
tributing arrays as defined in HPF. The algorithms are independent of the commu-

nication mechanism used and hence are portable. A novel approach is proposed for
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performing the general cyclic(x) to cyclic(y) redistribution using two methods, called
the GCD Method and the LCM Method, which have low runtime overhead. We have
implemented all the algorithms on the Intel Touchstone Delta and they are found to
perform very well for different number of processors and array sizes.

A collective communication pattern which arises very often in many applications
such as two-dimensional Fast Fourier Transform, parallel quicksort as well as in array
redistribution, is the all-to-all communication pattern, also called complete exchange.
This thesis presents several algorithms for all-to-all collective communication on fat-
tree and two-dimensional mesh interconnection topologies. Previous work in this
area tried to minimize link contention by increasing the number of communication
steps. The algorithms proposed in this thesis take advantage of the fact that in
many of the present generation machines like the Touchstone Delta and Paragon, the

communication links have excess bandwidth and can tolerate a certain amount of

link contention. Hence communication can be performed in fewer steps by allowing a
small amount of link contention to exist. The performance of these algorithms on the
CM-5 and Touchstone Delta is studied extensively. A model for estimating the time
taken by these algorithms on the basis of system parameters has been developed and
validated by comparing with experimental results.

A large number of applications deal with very large data sets which cannot fit
in main memory, and hence have to be stored in files on disks. This thesis also
describes the design and implementation of efficient runtime support for out-of-core
computations. The runtime system supports three different models of data storage
and access. A number of optimizations have been incorporated for improved per-
formance. A new method, called the Extended Two-Phase Method, is proposed for
accessing sections of out-of-core arrays efficiently. This method uses collective 1/0O
in which processors cooperate to perform [/O in an efficient manner by combining
several 1/0 requests into fewer larger requests, eliminating multiple file accesses for
the same data and reducing contention for the /O subsystem. A dynamic scheme
is used for partitioning the I/O workload among processors, depending on the access

requests. Performance results obtained using this runtime support for out-of-core
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programs on the Touchstone Delta are presented.

A Parallel Compiler Runtime Consortium (PCRC) [45] has recently been formed
with the goal of developing a common runtime support for high level parallel lan-
guages. We believe that the research presented in this thesis would be very useful
to this consortium. It is also useful to vendors developing commercial HPF com-
pilers, such as The Portland Group Inc. (PGI), Applied Parallel Research (APR),
Digital Equipment Corporation (DEC) and others. Application programmers writ-
ing distributed memory programs would also benefit a great deal by using the ideas

proposed in this thesis.

1.6 Related Work

This section briefly describes some of the related research in parallel languages, par-
allel compilers, runtime support systems and support for high-performance parallel
I/0.

The concept of defining processor arrays and distributing data to them was first
introduced in the programming language BLAZE [82] in the context of shared memory
systems with non-uniform access times. This research was continued in the Kali [65]
programming language for distributed memory machines. The Kali compiler uses
the inspector/executor strategy to parallelize irregular computations. The compila-
tion system SUPERB [129] parallelizes sequential programs semi-automatically for
distributed memory machines. The SUPERB tool transforms sequential Fortran pro-
grams with data distribution annotations into parallel programs. Compilers for func-
tional languages like Id Nouveau and Crystal have been developed for distributed
memory machines. The Crystal compiler generates communication statements by
studying the access patterns of the arrays in a statement. Split-C [32] is a parallel
extension of C intended for high performance programming on distributed memory
multiprocessors. It provides a global address space and allows a mixture of shared

memory, message passing and data-parallel programming styles for both regular and
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irregular problems. A compiler for Split-C is being developed at the University of Cal-
ifornia, Berkeley, with a runtime support system which uses Active Messages [124].
pC++, a data-parallel extension to C++4, has been developed at Indiana Univer-
sity [5]. A Fortran D compiler is being developed at Rice University [122].

Some research has been done in developing compilers which can automatically
determine a good distribution and alignment of arrays instead of having the user
specify them. Gupta [50] has proposed a constraint based approach to automati-
cally determine a good data distribution. This method has been incorporated in the
PARADIGM compiler [49, 112]. The PARADIGM project at the University of Illi-
nois aims at developing a fully automated compiler to translate sequential programs
to parallel programs for distributed memory computers. The problem of automatic
alignment of arrays has been studied by Chatterjee et al. [22] and Li et al. [79].

There has been some research in runtime support for applications with irregular
data access patterns. The PARTI/CHAOS toolkit is a collection of runtime library
routines to handle irregular computations [35, 102]. These primitives have been inte-
grated with the Fortran D compiler at Rice University, the Fortran 90D /HPF com-
piler at Syracuse University and the Vienna Fortran compiler at the University of
Vienna. Compilation methods for irregular problems have been investigated by Pon-
nusamy [93], Das [34] and Hanxleden [125]. Agrawal et al. [1] describe how runtime
support can be integrated with a compiler to solve irregular block-structured prob-
lems.

Research has also been done in the area of array redistribution. Gupta et al. [53]
and Koelbel [66] provide closed form expressions for determining the send and re-
ceive processor sets and data sets for redistributing arrays between block and cyclic
distributions. An analytical model for evaluating the communication cost of data re-
distribution is presented in [63]. A multiphase approach to redistribution is discussed
in [64]. Wakatani and Wolfe [126] describe a method of array redistribution called
Strip Mining Redistribution in which parts of an array are redistributed in sequence,

instead of redistributing the entire array at one time as a whole. The reason for doing
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this is to try to overlap the communication involved in redistribution with some of
the computation in the program. Kalns and Ni [62] present a technique for mapping
data to processors so as to minimize the total amount of data that must be com-
municated during redistribution. Ramaswamy and Banerjee [99] discuss algorithms
for redistribution based on a mathematical representation for regular distributions
called PITFALLS. There has also been some research on the closely related prob-
lem of determining the local addresses and communication sets for array assignment
statements like A(ly : hy : s1) = B(lz: ha : 83) where A and B have different cyclic(m)
distributions [23, 110, 111, 52].

Algorithms for all-to-all communication (complete exchange) on a hypercube have
been proposed by Bokhari [6], and also by Johnsson and Ho [61]. Complete exchange
algorithms for a two-dimensional mesh are discussed in [103, 7, 113, 51, 54]. Optimal
communication algorithms on the hypercube have been developed by Fox and Fur-
manski [42]. Algorithms for scheduling irregular communication patterns have been
proposed by Wang and Ranka [100, 127] and also by Shankar and Ranka [106, 107,
108].

Compiling out-of-core data-parallel programs is a fairly new topic and there has
been very little research in that area. A model and compilation strategy for out-of-core
data-parallel programs is discussed in [10]. Bordawekar [11, 8] is developing a compiler
for out-of-core HPF programs which uses the runtime library [116, 25, 115, 118]
discussed in Chapters 5 and 6 of this thesis. Cormen and Colvin [31] are developing
a compiler-like preprocessor for out-of-core C*, called ViC*, which translates out-
of-core C* programs to standard C* programs with calls to a runtime library for
[/O. Paleczny et al. [89] are also developing techniques for compiling out-of-core
data-parallel programs. Brezany et al. [18] are working on compilation techniques
for out-of-core programs in the context of Vienna Fortran. Language extensions for
out-of-core data-parallel programs are proposed in [8, 17, 109, 18].

There has been a lot of effort to improve parallel [/O performance both by hard-

ware and software means. Various RAID schemes (Redundant Arrays of Inexpensive
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Disks) are proposed in [91] for better performance, reliability, power consumption and
scalability. An excellent overview of RAID concepts is given in [24]. Disk striping
where data is distributed across disks at a small granularity so that each block is
distributed across all disks is proposed in [101]. File declustering, where different
blocks of a file are stored on distinct disks is suggested in [81]. This is used in the
Bridge File System [39], in Intel’s Concurrent File System (CFS) [92] and in various
RAID schemes [91]. Vesta is a parallel file system which supports logical partitioning
of files [29, 27]. The RAMA [84] file system distributes file blocks across disks ran-
domly using a hash function, instead of the usual striped layout. Runtime libraries
for parallel 1/O, such as the Panda Library [104, 105] and the Jovian Library [4],
are being developed. Portable parallel file systems such as VIP-FS [55], PIOUS [85]
and PPFS [60] have been developed recently. Techniques for improving 1/O perfor-
mance using collective I/O have also been proposed. Two-phase 1/0 is a technique
for performing collective I/O using a runtime library [37, 12]. Disk-directed 1/O is a
technique for performing collective I/O at the file system level [69, 70, 71].

1.7 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an overview of some
of the issues in providing runtime support for in-core and out-of-core data-parallel
programs. Runtime support for array redistribution is discussed in Chapter 3. Chap-
ter 4 describes runtime support for all-to-all collective communication on fat-tree and
two-dimensional mesh interconnection topologies. Runtime support for out-of-core
programs is discussed in Chapters 5 and 6. Chapter 5 describes three models of data
storage and access for out-of-core programs, and a number of local optimizations for
accessing out-of-core data efficiently. Chapter 6 describes the Extended Two-Phase
Method for accessing sections of out-of-core arrays using collective 1/0. Finally, con-

clusions are presented in Chapter 7, along with some ideas for future work.



Chapter 2

Issues in Runtime Support

This chapter gives a brief overview of the various issues involved in providing runtime
support for programs on distributed memory parallel computers. Runtime support
can either be used directly in message passing application programs, or used together
with a compiler to translate programs written in a high-level data-parallel language

such as HPF.

2.1 Runtime Support for Regular Problems

There are many scientific applications which have very regular array access patterns.
These access patterns may arise either from the underlying physical domain being

studied, or the type of algorithm used. Examples of such applications include

o Matrix Multiplication, LU Decomposition and other operations in dense linear

algebra
e Solving Partial Differential Equations (PDEs) on regular meshes

o FFast Fourier Transform

The main characteristic of such applications is that the communication pattern is
known statically before program execution. Thus all the necessary optimizations

can be performed beforehand at compile time. In such applications, data is usually

12
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distributed using either a block, cyclic, or block-cyclic distribution [119]. The array
subscripts used in the program are usually linear functions of the loop indices.
Many different communication patterns are possible depending on the array ac-
cess pattern in the program. Li and Chen [78] characterize many of the commonly
occurring communication patterns. A library of collective communication routines is
needed for carrying out communication efficiently. A particular type of communica-
tion pattern which occurs frequently is the all-to-all communication pattern. Efficient
algorithms for all-to-all communication are presented in Chapter 4 of this thesis. Run-
time support is also needed for array redistribution. Although arrays are distributed
among processors at the start of the program, it is very often necessary to change
the distribution during program execution, which is called array redistribution. This
involves calculation of source and destination processor and index sets as well as in-
terprocessor communication. Runtime support for array redistribution is discussed

in detail in Chapter 3 of this thesis.

2.2 Runtime Support for Irregular Problems

There is another set of scientific applications in which the array access pattern is
irregular. This is usually due to the fact that the underlying physical domain is

irregularly connected. Examples of such applications include
e Computational Fluid Dynamics (CFD) codes using unstructured meshes
e Molecular dynamics codes
e Sparse iterative linear systems solvers

In irregular problems, arrays are accessed using one or more level of indirection. An
example of this is the following loop
do 1=1, n
A(x(i)) = B(y(@i)) + C(z(i))
end do
A regular distribution of data, such as block, cyclic or block-cyclic, may not be the best
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distribution for these problems because it may result in higher communication cost. A
graph partitioning algorithm is normally used to determine the best distribution in the
case of irregular applications. Such a distribution is called an irregular distribution.
Due to the indirection in the array access, the communication pattern is not known
statically at compile time. It depends on the values of the indirection arrays, which
may not be known until runtime. Thus a runtime resolution scheme is needed to
determine the communication required.

Runtime support for irregular problems has been studied by a number of re-
searchers [93, 102, 34, 35, 68]. One way of detecting and performing the communi-
cation is by using an inspector-executor [68, 102] approach. A parallel loop is trans-
formed into two constructs called an inspector and an executor. During program
execution, the inspector examines the data references made by a processor, and cal-
culates what off-processor data needs to be fetched and where that data will be stored
once it is received. The executor loop then uses the information from the inspector
to perform the actual communication and computation.

PARTI [35] is a library of runtime routines for solving irregular problems on
distributed memory computers. PARTI primitives can be directly used to generate
the inspector/executor pairs. Each inspector produces a communication schedule,
which is essentially a pattern of communication for gathering or scattering data. In
order to avoid duplicate accesses, a list of off-processor data references is stored locally
for each processor in a hash table. For each new off-processor data reference required,
a search through the hash table is performed in order to determine if this reference has
already been accessed. If the reference has not previously been accessed, it is stored
in the hash table, otherwise it is discarded. The primitives thus only fetch a single
copy of each unique off-processor distributed array reference. The executor contains
embedded PARTTI primitives to communicate data. The primitives issue instructions
to gather, scatter or accumulate (i.e. scatter followed by add) data according to the
schedule created by the inspector. Latency or startup cost is reduced by packing

small messages intended for the same destination into one large message.
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2.3 Runtime Support for Compilers

Data-parallel languages like HPF [57] and pC+4+ [5] have recently been developed
to provide support for high performance programming on parallel machines. These
languages provide a framework for writing portable parallel programs independent
of the underlying architecture and other idiosyncrasies of the machine. The same
program can be run on different machines by simply using a different compiler for
each machine. Compilers for such languages usually rely on runtime support to carry
out many of the commonly required operations usually involving communication.
Runtime support helps to separate the machine dependent aspects of compilation from
the machine independent aspects. The compiler can do all the machine independent
transformations and the runtime system can be optimized for each different machine.
Thus, a portable and efficient compiler can be obtained by simply porting the runtime
system to different machines.

We briefly describe some of the issues related to providing runtime support for an
HPF compiler. We do not discuss runtime support for compiling irregular problems;
that is explained in detail in [93]. We first outline the salient features of HPF in order

to explain the runtime support needed for an HPF compiler.

2.3.1 Overview of HPF

HPF was designed to be a standard portable programming language for writing effi-
cient computationally intensive parallel programs. HPF uses Fortran 90 as its base
language and provides several extensions to Fortran 90. The new HPF language fea-
tures fall into four categories with respect to Fortran 90: new directives, new language
syntax, new library routines, and some language restrictions. The new directives are
structured comments that suggest implementation strategies or assert facts about a
program to the compiler. They may affect the efficiency of the computation per-
formed, but do not change the value computed by the program. Compiler directives
form the heart of the HPF language. They start with the prefix 'HPF$, CHPF$ or

*HPF$ which would actually be treated as comments in Fortran 90. Some of the
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new language features are FORALL statement and FORALL construct. HPF extends
the Fortran 90 library of intrinsic functions to include additional reduction functions,
combining scatter functions, prefix and suffix functions, and sorting functions.

The HPF approach is based on two key observations. First, the overall efficiency
of the program can be increased if many operations are performed concurrently by
different processors, and secondly, the efficiency of a single processor is likely to be
the highest if the processor performs computations on data elements stored in its
local memory. Therefore, HPF provides means for explicit expression of parallelism
and data mapping. The data alignment and distribution directives in HPF allow the
programmer to inform the compiler how to partition arrays. Arrays are first aligned
to a template or index space using the ALIGN directive. The DISTRIBUTE directive
specifies how the template is to be distributed among a set of abstract processors.
The mapping of abstract processors to physical processors is not specified by HPF
and is language-processor dependent. The combination of alignment (from arrays
to templates) and distribution (from templates to processors) thus determines the
mapping of an array to the processors. The data mapping is declared using the
directives: PROCESSORS, ALIGN, DISTRIBUTE and, optionally, TEMPLATE. In addition,
arrays may be remapped at runtime. For this, the array must be declared using
the DYNAMIC directive and the actual remapping is specified using the executable
directives REALIGN and REDISTRIBUTE.

In HPF, an array may be aligned with another in many ways including shifts,
strides, or any other linear combination of a subscript (ie., n x ¢ +m), transposition
of indices, and collapse or replication of array dimensions. Irregular alignments are not
allowed. The template can be distributed as BLOCK, CYCLIC or CYCLIC(m). In a block
distribution, contiguous blocks of the array are distributed among the processors. In
a cyclic distribution, array elements are distributed among processors in a round-
robin fashion. In a cyclic(m) distribution, blocks of size m are distributed cyclically.

Irregular distributions are not allowed in version 1.0 of HPF.
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2.3.2 Compiler and Runtime Support for HPF

An HPF compiler which translates in-core HPF programs to message passing node
programs for distributed memory parallel computers has been developed at Syra-
cuse University [13, 15]. It translates HPF programs to Fortran 77 programs with
calls to a runtime library [2, 14, 119]. The compiler only exploits the parallelism
expressed in data parallel constructs such as FORALL, WHERE and array assignment
statements. It does not attempt to parallelize other constructs such as DO loops and
WHILE loops, since they are used only as naturally sequential control constructs in
HPF. The compiler mainly recognizes commonly occurring computation and com-
munication patterns. These patterns are then replaced by calls to the optimized
runtime support system routines. The runtime support system includes parallel in-
trinsic functions, data redistribution routines, communication primitives and several

other miscellaneous routines.

The basic structure of the HPF compiler is organized around four major mod-
ules — parsing, data partitioning, communication detection and insertion, and code
generation as shown in Figure 2.1. The compiler first creates a parse tree from the
input HPF program. Also, each array assignment statement and WHERE statement is
internally transformed into its equivalent FORALL statement, so that the subsequent
steps only need to deal with FORALL statements. The partitioning module processes
the data distribution directives, namely TEMPLATE, DISTRIBUTE and ALIGN, and par-
titions data and computation among processors. After partitioning, the parallel con-
structs in the node program are sequentialized since the code will be executed on a
single processor. Array operations and FORALL statements in the original program
are transformed into DO loops. The communication module detects communication
requirements and inserts appropriate communication primitives.

Finally, the code generator produces loosely synchronous [44, 46] SPMD code.
The generated code is structured as alternating phases of local computation and
communication. Local computations consist of operations by each processor on the
data in its own memory. The communication phase includes any transfer of data

among processors, possibly with arithmetic or logical computation on the data as it
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Figure 2.1: Phases of Compilation

is transferred (e.g. reduction functions). In such a model, processors do not need to
synchronize during local computation. But, if two or more processors communicate

with each other, they are implicitly synchronized during the communication.

Communication Library

The HPF compiler described above relies on a very powerful runtime support system
which includes a library of collective communication routines [13], a library of intrinsic
functions [2, 14] and other runtime routines such as for array redistribution [119].
The HPF compiler produces calls to collective communication routines instead of

generating individual send and receive calls inside the compiled code. This is done
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for the following reasons:

1. Improved performance: To achieve good performance, interprocessor communi-
cation must be minimized. By developing a separate library of interprocessor

communication routines, each routine can be optimized.

2. Increased portability of the compiler: By separating the communication library
from the basic compiler design, portability is enhanced because to port the
compiler, only the machine specific low-level communication calls in the library

need to be changed.

3. Better estimation of communication costs: The cost of collective communication
routines can be determined more precisely, which enables one to make a better

estimate of the time a program will take.

The compiler must recognize the presence of collective communication patterns in
the program in order to generate the appropriate communication calls. This involves
a number of tests on the relationship among subscripts of various arrays in a FORALL
statement. These tests also include information about array alignments and distri-
butions. The compiler uses pattern matching techniques to detect communication

patterns [13, 15].

Intrinsic Library

Intrinsic functions form an important feature of Fortran 90 and HPF. They directly
support many of the basic data-parallel operations on arrays and provide a means
for expressing operations on arrays concisely. HPF includes all Fortran 90 intrinsic
functions and also adds a number of new intrinsic procedures in three categories:
system inquiry intrinsics, mapping inquiry intrinsics, and computational intrinsics.

The computational intrinsic functions fall into the following main categories:-

o Simple Reduction Functions: ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT,
SUM.
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o Combining Scatter Functions: ALL_SCATTER, ANY_SCATTER, COUNT_SCATTER,
MAXVAL _SCATTER, MINVAL_SCATTER, PRODUCT_SCATTER, SUM_SCATTER

o Prefir and Suffix Functions: ALL_PREFIX, ANY PREFIX, COUNT_PREFIX,
MAXVAL PREFIX, MINVAL_PREFIX, PRODUCT PREFIX, SUM_PREFIX,
ALL_SUFFIX, ANY_SUFFIX, COUNT_SUFFIX, MAXVAL_SUFFIX, MINVAL_SUFFIX,
PRODUCT_SUFFIX, SUM_SUFFIX

o Array Sorting Functions: GRADE_UP, GRADE DOWN

o Array Manipulation Functions: CSHIFT, EOSHIFT, TRANSPOSE.

o Array Location Functions: MAXLOC, MINLOC

o Array Construction Functions: SPREAD, MERGE, PACK, UNPACK

o Vector and Matriz Multiplication Functions: DOT_PRODUCT, MATMUL.

o Bit Manipulation functions: IAND, I0R, POPCNT, POPPAR, LEADZ

Elemental Intrinsics functions: SIN, COS, TAN

It is necessary to have a library of these intrinsic functions which can be called
from the node programs of a distributed memory machine [14]. The HPF compiler
detects calls to intrinsic functions in the HPF program and replaces them with calls
to these routines. Since arrays in HPF can have up to seven dimensions and can be
distributed in many different ways, it is not feasible to write intrinsic libraries for all
possible distributions. A more practical approach is to write optimized routines for a
few distributions. If the distribution of an array is different from what is expected by
the intrinsic library, the array must first be redistributed to the desired distribution,
and after returning from the intrinsic, it must be redistributed back to the original
distribution. It is essential to use efficient algorithms for redistribution, so as to
minimize the redistribution overhead. FEfficient algorithms for redistributing arrays

are discussed in Chapter 3 of this thesis.
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2.4 Runtime Support for Out-of-Core Programs

An out-of-core program is one in which all the data required by the program cannot
fit in main memory at the same time. Hence data needs to be stored in files on
secondary storage such as disks. During program execution, only a portion of the
data can be present in memory at any time. This makes it necessary to move data
back and forth between main memory and disks. Since the cost of performing 1/0
is very high compared to computation and communication, this can prove to be very
expensive. Hence it is necessary to do the I/O in out-of-core programs efficiently to
get good performance.

The I/O performance is best when a processor makes large contiguous requests
instead of many small requests. This is because of the high latency time associated
with any [/O operation. In a parallel computer, when many processors need to do
[/O simultaneously, there is the additional problem of contention for the 1/O system.
Hence it is necessary to schedule I/O requests of different processors as well as reorder
and combine [/O requests within and across processors into large contiguous requests.
We believe that this can best be done by having a library of optimized routines which
can be directly called from an out-of-core program.

Another important factor is the portability of out-of-core programs. There is
no standard parallel file system interface or Application Program Interface (API)
at present. Each parallel machine has its own parallel file system with a completely
different interface from that of any other parallel file system. Hence programs written
directly using calls to the parallel file system are not portable to other systems. This
problem can be overcome by using runtime support. The application programs can
call a runtime library which provides a common interface for all machines. The
routines in the runtime library can be implemented using the native parallel file
system on each different machine.

Thus runtime support is needed in the case of out-of-core programs for efficiency
and portability. Asin the in-core case, this runtime support can also be used together

with a compiler to translate out-of-core programs written in a high-level language like
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HPF to node programs with calls to the runtime library for [/O and communication.
Chapters 5 and 6 of this thesis describe in detail the design and implementation of

runtime support for out-of-core programs, including a number of optimizations.

2.4.1 Out-of-Core Applications

There are a number of applications which deal with very large data sets, resulting in
out-of-core programs. These applications exist in diverse areas such as large scale sci-
entific computations, database and information processing, hypertext and multimedia
systems, information retrieval and many others.

del Rosario and Choudhary [38] have done a survey of the I/O requirements of
several Grand Challenge applications. They find that the data requirements of these
applications range from 1 Gbyte to 4 Thytes per run. Some of the applications they

surveyed are:-

o [maging of Planetary Data: The spacecraft Magellan has gathered more than
3 Thytes of data from the surface of the planet Venus. To produce a three-
dimensional rendering of the surface of Venus at 200 Mbytes of data per frame

would require over 13 Gbytes/sec. of 1/O throughput at 50 frames per sec-
ond [48].

o Climate Prediction: A climate prediction code using the General Circulation
Model (GCM) has the following requirements on the Intel Touchstone Delta.
For a 100-year atmosphere run with 300 km? resolution and 0.2 simulated
years/machine hour, the simulation takes 3 weeks run time and generates 1144
Gbytes of data at 38 Mbytes per simulation minute. For a 1000-year coupled
atmosphere-ocean run with a 150 km? resolution, the atmospheric simulation
takes about 30 weeks, while ocean simulation takes 27 weeks; the process pro-
duces 40 Mbytes of data per simulation minute, or a total of 20 Thytes of data

for the entire simulation [40].
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o Four-Dimensional Data Assimilation: This application from NASA incorpo-
rates actual space-time observations into mathematical and computational mod-
els in order to create a unified, complete description of the atmosphere. The
algorithm for this currently operates on a 3 Thyte database with single runs
producing 100Mbytes to several Gbytes of output. These figures are expected

to increase by orders of magnitude in the near future.

Cormen [30] has also compiled a list of several applications which deal with huge
data sets. These include applications in computational biology, computational fluid
dynamics, combinatorial search, conjugate gradient solvers, genetic algorithms, geo-
physics, region growing, logic simulation, computational physics, meteorology, molec-
ular dynamics, ocean modeling, partial differential equations solvers, synthetic aper-
ture radar image processing, visualization and graphics. The Applications Working
Group of the Scalable 1/0O Initiative has provided a description of the 1/0 require-
ments of several applications in biology, chemistry, physics, earth sciences, engineering
and graphics [97]. Fox [41] presents a performance analysis of applications on a hyper-
cube machine with a hierarchical memory at each node, consisting of a fast cache and
slower main memory. The applications considered are the N-body problem, Poisson’s
equation solver, matrix multiplication, LU Decomposition, Fast Fourier Transform
and neural networks. This performance analysis can be extended to out-of-core ap-
plications in which the memory hierarchy includes a much slower secondary memory.

There have also been studies of the file-access characteristics of application pro-
grams on multiprocessor systems. Kotz and Nieuwejaar [74] present the results of
a three week tracing study in which all file-related activity on an Intel iPSC/860
running production, parallel scientific applications at NASA Ames Research Center
was recorded. An interesting result of this study was that there were a large number
of small strided requests to the file system. They found that 96.1% of all reads were
for fewer than 4000 bytes, but those reads transferred only 2% of all data read. For
writing, 89.4% of all requests were for fewer than 4000 bytes, but those writes trans-
ferred only 3% of all data written. Another study of the file-access characteristics



CHAPTER 2. ISSUES IN RUNTIME SUPPORT 24

of production applications on the CM-5 at the National Center for Supercomputing
Applications, University of Illinois, also found similar results of a large number of
small requests [98]. This shows that although it is well-known that 1/O should be
done in large chunks to minimize the effect of high I/0 latency, many parallel out-
of-core applications actually access small strided data sets. Hence, it is necessary to
provide runtime support for accessing small strided data efficiently. This issue is ad-
dressed in this thesis and optimizations, such as data sieving and collective I/O using

an Extended Two-Phase Method, are proposed to access strided data in an efficient

manner.



Chapter 3

Runtime Support for Array
Redistribution

3.1 Introduction

In distributed memory parallel computers, arrays have to be distributed among pro-
cessors in some fashion. The distribution can either be regular i.e. block, cyclic or
block-cyclic as in Fortran D [43] and High Performance Fortran (HPF) [57, 67]; or
irregular in which there is no function specifying the mapping of arrays to processors.
The distribution of an array does not need to remain fixed throughout the program.
In fact, it is very often necessary to change the distribution of the array at runtime,
which is called array redistribution. This involves calculating source and destination
processor and index sets as well as data communication. It is essential to use efficient
algorithms for redistribution, otherwise the performance of the program may degrade
considerably.

This chapter describes efficient algorithms for runtime array redistribution. Since
array distribution and redistribution is rigorously defined in HPF, the algorithms are
developed for redistributing arrays as defined in HPF. We consider block(m) to cyclic,
cyclic to block(m) and the general cyclic(x) to cyclic(y) type redistributions. For the
general cyclic(x) to cyclic(y) redistribution, there is no direct algebraic formula to
calculate the source and destination processor and index sets [53]. We use a novel

approach for doing the general cyclic(x) to cyclic(y) redistribution, where we first

25



CHAPTER 3. RUNTIME SUPPORT FOR ARRAY REDISTRIBUTION 26

develop optimized algorithms for two special cases — when = is a multiple of y, or y
is a multiple of z. For the general case, we propose two algorithms called the GCD
Method and the LCM Method which make use of the optimized algorithms developed
for the above special cases. We initially describe algorithms for one-dimensional
arrays and then extend the methodology to multidimensional arrays. The algorithms
proposed have low runtime overhead. We study the performance of these algorithms

on the Intel Touchstone Delta.

3.1.1 Need for Redistribution

HPF provides directives (ALIGN and DISTRIBUTE) which specify how arrays should
be partitioned among the processors of a distributed memory computer. Arrays are
first aligned to a template or index space. The DISTRIBUTE directive specifies how the
template is to be distributed among the processors. In HPF, an array (or template)
can be distributed as BLOCK(m) or CYCLIC(m) [57]. Though the distribution of an
array is specified at compile time, there are a number of reasons for which it may be

necessary to redistribute an array during the execution of the program.

e HPF has a directive called REDISTRIBUTE by which an array can be redis-
tributed anywhere in the program provided the array was declared as DYNAMIC.
REDISTRIBUTE can be considered as an executable directive.

e HPF provides intrinsic functions which operate on arrays. It is not practical
to write intrinsic and runtime libraries for all possible distributions, especially
since arrays can have up to seven dimensions. Libraries can be written for
a few common distributions and for any other distribution it is necessary to
redistribute before calling the subroutine. After returning from the subroutine it
is necessary to redistribute back to the original distribution. We call this type of
redistribution as a circular redistribution. This is illustrated in Figure 3.1 which
shows an HPF program calling the MATMUL intrinsic with all arrays distributed as
(BLOCK,*). The MATMUL library routines have been written for (BLOCK,BLOCK)
and (CYCLIC,CYCLIC) distributions. So it is necessary to redistribute to one
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MATMUL()

SUBROUTINE
REAL A(N,N), B(N,N), C(N,N)
DISTRIBUTE (BLOCK.#) : A, B, C REDISTRIBUTE OR REDISTRIBUTE
C=MATMUL(A, B)

MATMULL() FOR MATMUL2() FOR
END (BLOCK ,BLOCK) (CYCLIC,CYCLIC)
HPF PROGRAM
REDISTRIBUTE REDISTRIBUTE
EXIT

Figure 3.1: Need for Redistribution

of these distributions before calling the intrinsic and then redistribute back to

(BLOCK, *) after the intrinsic.

o Arrays and array sections can be passed as arguments to subroutines. The array
(or array section) can be specified to have any distribution in the subroutine.
If this distribution is different from that in the calling program, the array (or
array section) needs to be redistributed before the subroutine is called. At the
end of the subroutine, the array (or array section) needs to be redistributed to

the original distribution.

e In many applications such as 2D FFT and the ADI method for solving multidi-
mensional PDEs, dynamic redistribution can result in significant performance

improvement [20].

An example of an HPF program using redistribution is shown in Figure 3.2. This

is a two-dimensional FF'T program in which the array is first block distributed along
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REAL A(1024,1024)

'HPF$ PROCESSORS P(4)

'HPF$ DISTRIBUTE A(BLOCK,*) ONTO P
'HPF$ DYNAMIC A

CALL ROW_FFT(A)
'HPF$ REDISTRIBUTE A(*,BLOCK) ONTO P
CALL COL_FFT(A)

Figure 3.2: 2D FFT Program using Redistribution

rows. A one-dimensional FFT is first performed along each row of the array, which
can be done without any communication. The array is then redistributed so that it
is block distributed along columns. A one-dimensional FFT is performed along each

column of the redistributed array, which again does not require any communication.

3.2 Notations and Definitions

The notations used in this chapter are given in Figure 3.3. We assume that all arrays
are indexed starting from 1, while processors are numbered starting from 0 and that
arrays are identically aligned to the template. The algorithms can be easily extended
for the general case. We also assume that the number of processors on which the
array is distributed remains the same before and after the redistribution.

The block(m) and cyclic(m) distributions in HPF are defined as follows. Consider

an array of size N distributed over P processors. Let us define the ceiling division
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global array size

=

number of processors

p; || logical processor 2

p || logical number of the processor
executing the program

Ps s0urce processor

pq || destination processor

L || local array size

m || block size

Figure 3.3: Notations

function CD(j,k) = (j + k — 1)/k and the ceiling remainder function CR(j, k) =
J — k x CD(y,k). Then block(m) distribution means that index j of the array is
mapped to logical processor number C'D(j,m) — 1. Note that for a valid block(m)
distribution, m x P > N must be true. Block by definition means the same as
block(C'D(N, P)). In a cyclic(m) distribution, index j of the global array is mapped
to logical processor number MOD(C D(j,m)—1, P)'. Cyclic by definition means the
same as cyclic(1).

Suppose we have 4 processors and an array of length 26. Distributing the array

as BLOCK results in this mapping of array elements to processors :-

Proc. 0| 1 | 2 (3|4 |56 |7
Proc. 1| 8 | 9 |10 11|12 |13 | 14
Proc. 2 |15 |16 | 17 | 18 | 19|20 | 21
Proc. 3|22 |23 (24|25 26

'MOD(a,b) = a modulo b
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Distributing the array as CYCLIC results in this mapping of array elements to proces-

SOrs -

Proc. 0|15 9 |13 |17 |21 |25
Proc. 1 |26 10|14 |18 | 22|26
Proc. 2 |3 | 7|11 |15 |19 |23
Proc. 3|4 |8 [12 |16 |20 | 24

Distributing the array as CYCLIC(3) results in this mapping of array elements to

Processors :-
Proc. 0| 1 | 2| 3 |13 (1415|2526
Proc. 1| 4 |5 | 6 |16 1718
Proc. 2| 71 819 192021
Proc. 3110|1112 122 (23|24

In other words, in a block distribution, contiguous blocks of the array are dis-
tributed among the processors. In a cyclic distribution, array elements are distributed
among processors in a round-robin fashion. In a cyclic(m) distribution, blocks of size
m are distributed cyclically. The cyclic(m) distribution with 1 < m < [N/P] is
commonly referred to as a block-cyclic distribution with block size m [43]. Block and
cyclic distributions are special cases of the general cyclic(m) distribution. A cyclic(m)
distribution with m = [N/ P] is a block distribution and a cyclic(m) distribution with
m = 1 is a cyclic distribution. The formulae for conversion between local and global
indices for the different distributions are given in Table 3.1.

The redistribution algorithms proposed in this thesis are intended to be portable.
Hence, we do not specity how data communication should be performed because
the best communication algorithms are often machine dependent. Redistribution
requires all-to-many personalized communication in general and in many cases it
requires all-to-all personalized communication. These communication algorithms are
described in detail in Chapter 4 of this thesis and in [117, 95, 120]. The performance
results presented in this chapter have been obtained using these algorithms. We

do assume that all the data to be sent from any processor ¢ to processor j has to be
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Table 3.1: Data Distribution and Index Conversion

Note: This assumes that arrays are indexed starting from 1

and processors are numbered starting from 0

CDG, k)= (j+k—1)/k and CR(,k)=j—kx CD(j k)

BLOCK(m) CYCLIC CYCLIC(m)
global index (g) to p=CD(g,m)—1 | p=MOD(g—-1,P) | p=MOD(CD(g,m)—-1,P)

processor number (p)

global index (g) l=m+CR(g,m) | I=(g—-1)/P+1 l=MOD(g—1,m)+ 1+
to local index ({) (g/(mP))m

local index () to g=Il+mp g={0-1)P+p+1 | g=MOD(I—-1,m)+ 1+
global index (g) (P((I1=1)/m)+ p)m

collected together in a contiguous packet in processor ¢ and sent in one communication
operation, so as to minimize the communication startup cost. In the rest of this
chapter, any division involving integers should be considered as integer division unless

specified otherwise.

3.3 Block(m) to Cyclic Redistribution

We first consider the case of block(m) to cyclic redistribution, a few examples of

which are shown in Figure 3.4.

Theorem 3.1 Let [;; and l;3 be the local array sizes in processor p; corresponding to
block(m) and cyclic distributions respectively. In a block(m) to cyclic redistribution,

the number of processors to which p; has to send data is

P—-1 if ;i >P
lil or 121—1 if 121<P

The number of processors from which p; has to receive data is at most

CD(N,m) if I3 > CD(N,m)
Lo if liz < CD(N,m)
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Po n P2 P3
\1 2 3 4\5 6 7 8\9 10 11 12\13 14 15 16\Block

Po b b2 p3
1 5 9 13]2 6 10 14[3 7 11 15[4 8 12 16| Cyclic

Po p p p p

1
[T 2[3 45

2 3 4
6‘7 8‘9 IO‘Block

Po p p p p

1
11 6]2 73

2 3 4
8‘4 9‘5 10‘Cyclic

Po n P2
\1 2 3 4 5\6 7T 8 9 10\11 12 13 14 15\Block

Po n P2
\1 4 7 10 13\2 5 8 11 14\3 6 9 12 15\Cyc1ic

P3

Po Pl
[I 2 3 4 5 6 [ 7 8 9 10 11 12 T 13 14 15 16 17 18 [ 19 20 21 22 23 24 ]| Block
bo Pl P2 P3
[I 5 9 13 17 21 [ 2 6 10 14 18 22 13 7 11 15 19 23 1 4 8 12 16 20 24 ] Cyclic

Figure 3.4: Block(m) to Cyclic Redistribution
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Proof: Note that if N is not a multiple of P, [;; may not be equal to l;5. If [;; < P,
each of the [;; elements of p; corresponding to a block(m) distribution will lie in a
different processor when the array is distributed cyclically. At most one of the [
elements will be remapped to processor p; itself. Therefore, p; will have to send data
to either l;; or l;; — 1 processors. If [;; > P, then clearly p; has at least one element
to send to every other processor.
In a block(m) distribution, the number of processors with data is given by C D(N, m).

Therefore, in the receive phase, if l;; < CD(N,m), each processor will receive data
from at most ;3 processors. If l;; > CD(N,m), each processor will receive data from

at most C'D(N, m) processors. O

The algorithm for block(m) to cyclic redistribution is given in Figure 3.5. In the
send phase, each processor only needs to calculate the destination processor of the first
element of the local array. The other elements have to be sent to the other processors
in a round-robin fashion. Thus the array is scanned only once, which makes good
use of the cache. In the receive phase, the data received from other processors has
to be stored in contiguous memory locations in order of logical processor number. In
every processor, the data received from processor 0 is stored first; from processor 1

second and so on. Hence addresses do not need to be calculated. If the amount of

data to be received from all processors is known, the data can be directly received
into appropriate locations in the array.

In a block(m) distribution, the last element N of the global array is mapped to
processor py = (N — 1)/m. If py < P — 1, no elements of the array are mapped
to processors py + 1,pn + 2,..., P — 1. The index of the last element of the local
array in processors p < py is last indexr = m. The index of the last element in py 1s
lastandex = MOD(N —1,m) + 1. The index of the first element of p; < py that is

mapped to p in a cyclic distribution is given by

firstandex = MOD[p — MOD{ps MOD(m, P), P} + P, P] +1
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Send Phase

1. The destination processor (pq) of the first element of the local array is pg = MOD(pm, P).
2. Destination processor of element ¢, ¢ = 2: N, is MOD(pq + 1, P).

Receive Phase

1. Last processor with data is py = (N —1)/m
2. For p; = 0 to py do
3. If (ps = pn) then
last_index = MOD(N —1,m)+1
Else
last index = m
The index of the first element of p, mapped to p is
first_iindex = MOD[p — MOD{p, MOD(m, P),P}+ P, P]+1
8. Number of elements to be received from p; is 0, if (last_index < first_indez),
and (last_index — first_index)/P 4 1, otherwise
9. No data is to be received from processors py + 1,py + 2, ..., P — 1.
10 The received data is to be stored in order of processor number.

=R RN

Figure 3.5: Algorithm for Block(m) to Cyclic Redistribution

If m is divisible by P, the first element of p, that is mapped to p is p + 1. However,
if m 1s not divisible by P, a shift is introduced in this simple mapping which is taken
into account by the MOD expression in the above equation. Hence, the number of

elements to be sent from any processor p, to pis

0, if (last_index < first_index)

or (ps > pn)
(last_index — first_index)/P + 1, otherwise

where firstandex, last andex and py are calculated as above.
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3.4 Cyclic to Block(m) Redistribution

A cyclic to block(m) redistribution is essentially the reverse of a block(m) to cyclic
redistribution. The algorithm for cyclic to block(m) redistribution is given in Fig-

ure 3.6. In a cyclic distribution, the size of the local array in processor p is

L _JIN/Pl i MOD(N,P) =0, or p< MOD(N,P)
| [N/P] -1 otherwise

In the send phase, each processor p calculates the destination processor p; and
the destination local address I of the first element of its local array as p; = CD(p +
IL,m)—1and l;=m+CR(p+1,m). The first (m —13)/P + 1 elements from p; have
to be sent to pg. The next set of elements starting from ¢ = (m — [;)/P 4 2 have to
be sent to processor pyn = CD((i —1)P+p+1,m)—1. The destination local address
of element ¢ is given by ln = m+ CR((1 — 1)P 4+ p+ 1,m) and so (m — ln)/P + 1
elements starting from ¢ have to be sent to processor pg;. This process is continued
for the remaining elements of the array. Thus blocks of elements have to be sent to
different processors.

In the receive phase, the data received cannot be directly stored in the array as
the data has to be stored with a stride equal to the number of processors. Hence the
data received has to be stored in a temporary buffer in memory. This gives us two

choices in implementing the receive phase :—

1. Synchronous Method: Each processor waits till it receives data from all other

processors, before placing any data in the local array. This increases the memory
requirements of the algorithm and also increases processor idle time. These
problems worsen as the number of processors is increased, so this method is not

scalable.

2. Asynchronous Method: The processors do not wait for data from all processors

to arrive. Instead, each processor takes any packet which has arrived and places

the data from that packet into appropriate locations in the local array. This
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Send Phase
l.e=1
2. While (¢ < L) do
3. The destination processor (pq) and destination local address (I;) of element ¢ of the

local array is pg = CD((i— )P+ p+1,m)—land lj=m+CR((: —1)P+p+1,m)
The destination processor of elements ¢ to ¢ + (m — lg)/ P is pq.

i=i+(m—1g)/P+1

o

Receive Phase

Synchronous Method:

1. Receive packets from all processors.

2. The source processor of the first element of the local array p, = MOD(m p, P).
3. The source processor of element ¢,7 =2: N, is p, = MOD(ps + 1, P).

Asynchronous Method:

1. The source processor of the first element of the local array is p, = MOD(m p, P).
2. The source processor of the k* element, 2 < k < P, is MOD(p; + k — 1, P).

3. Fort=0to P—1do
4
5

Receive a packet from any processor p;
Starting from the location calculated above, place elements from
the packet into the array with stride P.

Figure 3.6: Algorithm for Cyclic to Block(m) Redistribution

method overlaps computation and communication. Each processor posts non-
blocking receive calls and waits for any packet to arrive. As soon as a packet is
received, it places the data in appropriate locations in the local array. During
this time, other packets may reach the processor. When the processor has placed
all the data from the earlier packet into the local array, it takes up the next
packet and so on. This reduces processor idle time. Since all packets do not
have to be in memory at the same time, it also reduces memory requirements.
This method is scalable as neither processor idle time nor memory requirements

increase as the number of processors is increased.
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Figure 3.7: Performance of Cyclic to Block Redistribution, array size 1M integers

The array locations where incoming data has to be stored can be calculated as fol-
lows. The source processor (ps) of the first element of the local array is given by
ps = MOD(mp, P). The next (P — 1) elements will be received from the remaining
processors in order of processor number. This cycle is repeated for all elements of
the local array. If all packets are present in memory (Synchronous Method), the local
array needs to be scanned only once to be filled. If the packets are processed one at
a time (Asynchronous Method), the array elements are filled with stride P and the
array has to be scanned P times. So, clearly the Synchronous Method makes better
use of the cache than the Asynchronous Method. Figure 3.7 compares the perfor-
mance of the Synchronous and Asynchronous Methods on the Intel Touchstone Delta
for a global array with 1M (22°) integers and the number of processors varied between
8 and 128. We observe that the Asynchronous Method performs much better than
the Synchronous Method as it overlaps computation and communication and thus
reduces processor idle time. This difference is larger for a small number of processors

because the amount of data communicated per processor is larger.
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3.5 Cyclic(z) to Cyclic(y) Redistribution

For a general cyclic(z) to cyclic(y) redistribution, there is no direct algebraic formula
to calculate the set of elements to send to a destination processor and the local
addresses of these elements at the destination [53]. Several complex schemes have been
proposed for performing this redistribution [110, 111, 23, 99]. Since redistribution
has to be done at runtime, a simple and efficient algorithm with minimum runtime
overhead is necessary. We propose a new method for performing the general cyclic(x)
to cyclic(y) redistribution, which has low runtime overhead. We first consider two
special cases where x is a multiple of y, or y is a multiple of x, and develop optimized
algorithms for these two special cases. For the general case where there is no particular
relation between x and y, we have developed two algorithms called the GCD Method
and the LCM Method, which make use of the optimized algorithms developed for the

above two special cases.

3.5.1 Special case ©r =ky

We first consider the special case where x is a multiple of y. Let + = ky. An example

of this is given in Figure 3.8.

Theorem 3.2 In a cyclic(x) to cyclic(y) redistribution where x = ky, if k < P,
each processor communicates with k or k — 1 processors. If k > P, each processor

communicates with all other processors.

Proof: Assume k < P. Since x = ky, each block of size x is divided into k sub-
blocks of size y and distributed cyclically. Consider any processor p;. Assume that
it has to send its first sub-block of size y to processor p;. Then the remaining k£ — 1
sub-blocks of the first block are sent to the next & — 1 processors in order. The next
k(P — 1) sub-blocks of the global array are located in the other P — 1 processors.
This results in a total of & P sub-blocks. Hence the (k -+ 1) sub-block of size y in p;

is also sent to p;. Thus all sub-blocks from p; are sent to k processors starting from
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Po P1 b2
[T 2 3 4 13 14 15 16 [ 5 6 7 8 17 18 19 20 [ 9 10 11 12 21 22 23 24 ]
Cyclic(4)
Po Pl P2
[1 2 7 8 13 14 19 20 [ 3 4 9 10 15 16 21 22 [ 5 6 11 12 17 18 23 24 |
Cyclic(2)

Figure 3.8: Cyclic(4) to Cyclic(2) Redistribution

p;. One of these processors may be p; itself, in which case p; has to send data to
k — 1 processors. For the receive phase, consider the first & P sub-blocks of size y in
the global array corresponding to the first P blocks of size x. Let us number these
k P sub-blocks from 0 to £ P — 1. Out of these, the sub-blocks that are mapped to

processor p; in the new distribution are numbered p; to P(k — 1) + p; with stride P.
These sub-blocks come from ﬁ% +1 = k processors. One of these processors

might be p; itself, in which case p; receives data from k£ — 1 processors.

If &£ > P, each block of size x has to be divided into & sub-blocks and distributed
cyclically, where the number of sub-blocks is greater than or equal to the number
of processors. So clearly each processor has to send to and receive from all other

processors (all-to-all communication). O

The algorithm for cyclic(z) to cyclic(y) redistribution, where @ = ky is given in
Figure 3.9. We call this the KY_TO_Y algorithm. In the send phase, each processor
p calculates the destination processor p; of the first element of its local array as p; =
MOD(k p, P). The first y elements have to be sent to py, the next y to MOD(pq +
1, P), the next to MOD(py + 2, P) and so on till the end of the first block of size
x. The next k& sub-blocks of size y have to be sent to the same set of & processors
starting from py;. The sequence of destination processors can be stored and need
not be calculated for each block of size x. In the receive phase there are two cases

depending on the value of £ :-
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. (k< P)and (MOD(P,k) = 0) : In this case, each processor p calculates the
source processor of the first block of size y of its local array as p, = p/k. The
next block of size y will come from processor MOD(ps+ P/k, P), the next from
MOD(ps + 2(P/k), P) and so on till the first k& blocks. The above sequence of
processors is repeated for the remaining sets of £ blocks of size x and hence can
be stored and used. If the Synchronous Method is used for receiving data, the
local array needs to be scanned only once and the 7' block, 0 <7 < [L/y] — 1,
of size y of the local array will be read from the packet received from processor
MOD(ps + «(P/k), P). If the Asynchronous Method is used, the first block
from the packet received from some processor p; will be stored starting at the

location calculated above. The remaining blocks will be stored with stride x.

2. If k does not satisfy the above condition, it is necessary to calculate the source
processor of the first element (j = ¢y + 1) of each block of size y, 0 < ¢ <
[L/y] — 1, of the local array as ps = MOD[(¢ P + p)/k, P]. The block is read
from the packet received from ps;. The sequence of processors does not repeat

itself and hence cannot be stored. In this case, the Synchronous Method is used.

We have tested the performance of the KY_TO_Y Algorithm using both Syn-
chronous and Asynchronous Methods on the Intel Touchstone Delta. Figure 3.10 com-
pares the performance of the Synchronous and Asynchronous Methods for a cyclic(4)
to cyclic(2) redistribution of a global array of 1M integers for different number of
processors. We observe that the Asynchronous Method performs better than the
Synchronous Method, even though in this case each processor communicates with at
most two other processors. This is because the Asynchronous Method overlaps com-
putation and communication and thus reduces processor idle time. The better cache
utilization of the Synchronous Method does not improve its overall performance. Fig-
ure 3.11 shows the performance of the KY_TO_Y Algorithm for a cyclic(4) to cyclic(2)
redistribution on 64 processors for different array sizes. For small arrays, the differ-
ence in performance between the Synchronous and Asynchronous Methods is small,

because of the small data sets. For large arrays, the difference is significant because
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Send Phase

1. The destination processor (pq) of the first element of the local array is
pa = MOD(kp, P).
. For each block of size z in the local array
Fori=0tok -1
4. The destination processor of elements (¢ y 4+ 1) to (¢ + 1)y of this block of
size x is MOD(pg + ¢, P).

W N

Receive Phase

—_

(k< P)and (MOD(P,k)=0) then
The source processor (ps) of the first element of the local array is p, = p/k.

[\

Synchronous Method:

3. Receive data from all processors.

4. Yor j=1to [L/z] do

5. Fori=0to k—1do

6 Read the next block of size y from the data received from

processor MOD(ps + i(P/k), P).

Asynchronous Method:

3. The i*" block of size y, 0 < i < k — 1, is to be received from
processor MOD(ps + i(P/k), P).

4. TFori=0tok—14do

5. Receive data from any processor p;.

6. Place the first block of size y in the local array starting from the
location calculated above, and the other blocks with stride x.

7. Else

8. Receive data from all processors.
9. Fori=0to [L/y]—1do

10. The source processor (ps) of the first element (j = ¢y + 1) of
this block of size y is ps = MOD[(¢ P + p)/k, P]
11. Read this block of size y from the data received from p;.

Figure 3.9: KY_TO_.Y Algorithm for Cyclic(z) to Cyclic(y) Redist., where @ = ky
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Figure 3.10: KY_TO_.Y Algorithm, cyclic(4) to cyclic(2), array size 1M integers

of the higher processor idle time in the Synchronous Method.

3.5.2 Special case y = kux

We now consider the special case where y is a multiple of . Let y = kx. This is

essentially the reverse of the case where @ = ky.

Theorem 3.3 In a cyclic(x) to cyclic(y) redistribution where y = kx, if k < P,
each processor sends data to k or k — 1 processors and receives data from k or k — 1
processors. If k > P, each processor has to communicate with all other processors

(all-to-all communication).

Proof: Assumek < P. Consider the first & P sub-blocks of size x in the global array
corresponding to the first P sub-blocks of size y. Let us number these k£ P sub-blocks
from 0 to £ P — 1. Out of these, the sub-blocks that are located in processor p; are
numbered from p; to P(k—1)—14p; with stride P. In the new distribution, these sub-

+ 1 = k processors. One of these processors

. {P(k—1)—14p;}—p;
blocks will be mapped to ( )P pp
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Figure 3.11: KY_TO_.Y Algorithm, cyclic(4) to cyclic(2), 64 processors

might be p; itself, in which case p; sends data to k—1 processors. In the receive phase,
since y = k x, each block of size y in the new distribution consists of k& sub-blocks of
size * which will come from k processors. Consider any processor p;. Assume that
it receives its first sub-block of size x from processor p;. Then the remaining & — 1
sub-blocks of the first block are received from the next k — 1 processors in order. The
other P — 1 processors receive the next k(P — 1) sub-blocks of the global array. This
results in a total of & P sub-blocks. Hence the next sub-block in p;, which is the first
sub-block of the next block of size y, is also received from p;. Thus all sub-blocks
from p; are received from k processors starting from p;. One of these processors may
be p; itself in which case p; receives data from k& — 1 processors.

If £ > P, each block of size y will consist of k& sub-blocks of size =, where the
number of sub-blocks is greater than or equal to the number of processors. So clearly
each processor has to send to and receive from all other processors (all-to-all commu-

nication). O



CHAPTER 3. RUNTIME SUPPORT FOR ARRAY REDISTRIBUTION 44

The algorithm for cyclic(x) to cyclic(y) redistribution, where y = kx, is given in
Figure 3.12. We call this the X_ TO_KX Algorithm. In the send phase, there are two

cases depending on the value of £ :-

. (k< P)and (MOD(P,k) = 0) : In this case, each processor p calculates the
destination processor of the first block of size x of its local array as p; = p/k.
The next block of size « has to be sent to processor MOD(pg+ P/k, P), the next
to MOD(pg + 2(P/k), P) and so on till the first k& blocks. The above sequence
of processors is repeated for the remaining sets of k& blocks of size x, and hence

need not be calculated again.

2. If & does not satisfy the above condition, it is necessary to individually calculate
the destination processor of each block ¢ of size x, 0 < ¢ < [L/x] — 1, as
pa = MODI[(i P + p)/k, P].

In the receive phase, each processor p calculates the source processor of the first
element of its local array as p, = MODI[kp, P]. As in the KY_TO.Y algorithm,
the receive phase can be implemented using either the Synchronous Method or the
Asynchronous Method. If the Synchronous Method is used to receive data, for each
block of size y of the local array, the k& sub-blocks of size & are read from the packets
received from the k processors starting from ps in order of processor number. If the
Asynchronous Method is used, we know that the i** block of size = of the local array,
0 <i < k—1, will be received from processor MOD(ps + ¢, P). Thus the local index
of the first block received from any source processor can be calculated. The remaining
blocks have to be stored with stride y.

We have tested the performance of the X_TO_KX Algorithm on the Intel Touch-
stone Delta for different array sizes and number of processors. Figure 3.13 compares
the performance of the Synchronous and Asynchronous Methods for a cyclic(2) to
cyclic(4) redistribution of an array of 1M integers for different number of processors.

Figure 3.14 compares the performance of the two methods for different array sizes on

64 processors. The results are similar to those obtained for the KY_TO_Y Algorithm.
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Send Phase
1. If (k < P)and (MOD(P,k)=0) then
2. The destination processor (p,) of the first element of the local array is pg = p/k.
3. Forj=0to[L/y]—-1
4. Fori=0to k-1
5. The destination processor of the next block of size z of the local array
is MOD(pqg+i(P/k), P).
6. Else
7. Fori=0to[L/z] -1
8. The destination processor (pg) of the first element (j = 72 + 1) of this

block of size x is pg = MODI[(¢ P + p)/k, P].

Receive Phase

1. The source processor (ps) of the first element of the local array is element of the
local array is p; = MO DIk p, P].

Synchronous Method:

2. Receive data from all processors.

3. For each block of size y in the local array do

4. Fori=0tok —1do

5. Read elements (i 2 4 1) to (i + 1)z of the current block of size y from the
packet received from processor MO D(ps + 1, P).

Asynchronous Method:

2. The ™" block of size z, 0 < i < k — 1, is to be received from processor MO D(p, + i, P).
3. Fort=0tok—1do

4. Receive data from any processor p;.

5. Place the first block of size & in the local array starting from the location
calculated above, and the other blocks with stride .

Figure 3.12: X_TO_KX Algorithm for Cyclic(x) to Cyclic(y) Redist., where y = k«
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Figure 3.13: X_TO_KX Algorithm, cyclic(2) to cyclic(4), array size 1M integers

The Asynchronous Method is found to perform better in all cases.

3.5.3 General Case

Let us consider the general case of a cyclic(x) to cyclic(y) redistribution in which there
is no particular relation between = and y (Figure 3.15). One algorithm for doing this
is to explicitly calculate the destination and source processor of each element of the
local array, using the formulae given in Table 3.1. We call this General Algorithm

and is described below.

General Algorithm

In the send phase, the destination processor of each element of the local array can be
determined by first calculating its global index based on the current distribution and
then the destination processor based on the new distribution. These two calculations
can be combined into a single expression to give the destination processor of element
i of the local array as pg = MOD[{MOD(i—1,2)+(P((:—1)/x)+p)a+y}/y—1, P].

Similarly in the receive phase, the source processor of each element of the local array
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Figure 3.14: X_TO_KX Algorithm, cyclic(2) to cyclic(4), 64 processors
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Figure 3.15: General Cyclic(z) to Cyclic(y) Redistribution

can be determined by first calculating its global index based on the new distribution
and then the source processor based on the old distribution. These two calculations
can be combined into a single expression to give the source processor of element ¢ of
the local array as p, = MOD{MOD(i — L,y)+ (P((e — 1)/y)+p)y + x}/x— 1, P].

The drawback of this algorithm is that calculations are needed individually for all
elements of the array. We propose two algorithms called the GCD Method and the
LCM Method, which make use of the optimized KY_TO_Y and X_TO_KX algorithms

and hence require a lot less calculations.
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GCD Method LCM Method
1. Let m = GCD(z,y). 1. Let m = LCM(z,y).
2. Redistribute from cyclic(z) to cyclic(m) 2. Redistribute from cyclic(z) to cyclic(m)
using the KY_TO_Y Algorithm. using the X_TO_KX Algorithm.
3. Redistribute from cyclic(m) to cyclic(y) 3. Redistribute from cyclic(m) to cyclic(y)
using the X_TO_KX Algorithm. using the KY_TO_Y Algorithm.

Figure 3.16: GCD and LCM Methods

GCD Method

This method takes advantage of the fact that we have developed special optimized
algorithms for a cyclic(x) to cyclic(y) redistribution when « = ky (the KY_TO.Y
Algorithm) and y = ka (the X_.TO_KX Algorithm). In the GCD Method, the re-
distribution is done as a sequence of two phases — cyclic(z) to cyclic(m) followed
by cyclic(m) to cyclic(y), where m = GCD(z,y). Since both & and y are multiples
of m, the KY_TO_Y Algorithm can be used for the cyclic(x) to cyclic(m) phase and
the X_TO_KX Algorithm can be used for the cyclic(m) to cyclic(y) phase. This is
described in Figure 3.16. The GCD Method involves the cost of having to do two sep-
arate redistributions. For small arrays, the increased communication may outweigh
the savings in computation, but for large arrays in some cases, the performance is
better than that of the General Method. This can be observed from Figure 3.17
which shows the performance of a cyclic(15) to cyclic(10) redistribution, for an array
of size 1M integers on the Delta. We see that for small number of processors, the
GCD Method performs considerably better than the General Method because of the
saving in the amount of computation per processor. Since the size of the global array
is kept constant, as the number of processors is increased, the size of the local array
in each processor becomes smaller and each processor spends less time on address
calculation. Hence the improvement of the GCD Method over the General Method

is also small.
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Figure 3.17: GCD, LCM and General Methods; cyclic(15) to cyclic(10); 1M array

One disadvantage of the GCD Method is that in the intermediate cyclic(m) dis-
tribution, the block size m is smaller than both z and y. In the KY_TO.Y and
X_TO_KX algorithms, all the address and processor calculations are done for blocks
of size x or y. Since m is the GCD of = and y, m can even be equal to 1 in some cases.
When m = 1, calculations have to be done for each element, which is no better than
in the General Method. In this case the General Method performs better than the
GCD Method. Figure 3.18 shows an example of cyclic(11) to cyclic(3) redistribution
on the Delta for an array of size 1M integers. Since the GCD of 11 and 3 is 1, we find
that the General Method always performs better than the GCD Method.

LCM Method

The key to getting good performance in this two-phase approach for redistribution is
to have a large value for m. One way of ensuring that m is always large is by choosing
m as the LCM of = and y. Since m is a multiple of both x and y, the X_TO_KX Algo-
rithm can be used for the cyclic(z) to cyclic(m) phase and the KY_TO._Y algorithm

can be used for the cyclic(m) to cyclic(y) phase. This is described in Figure 3.16.
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Figure 3.18: GCD, LCM and General Methods; cyclic(11) to cyclic(3); 1M array

Also, since m is larger than x and y, all calculations are done for this larger block
size. This results in fewer calculations than in the GCD and General Methods. Fig-
ures 3.17 and 3.18 compare the performance of the LCM, GCD and General Methods
for an array of 1M integers on different number of processors. We observe that the
LCM Method performs better in all cases. Figure 3.19 compares the performance of
the LCM and General Methods for a cyclic(11) to cyclic(3) redistribution keeping the
number of processors fixed at 64 and varying the array size. We observe that for small
arrays, the General Method performs better because it has less communication, but
for large arrays the LCM method performs better because the saving in computation

is higher than the increase in communication.

3.6 Redistribution of Multidimensional Arrays

The redistribution of two and higher dimensional arrays can be classified into two

types :-
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Figure 3.19: LCM v/s General Methods, cyclic(11) to cyclic(3), 64 processors

1. Shape Retaining: The shape of the local array remains unchanged after the

redistribution, eg. (block,block) to (cyclic,cyclic).

2. Shape Changing: The shape of the local array changes after the redistribution,

eg. (block,®) to (*,block) where ™ indicates that the corresponding dimension
is collapsed. This type of redistribution is used for example in 2D FFT and the

ADI method for solving multidimensional partial differential equations.

The shape retaining and shape changing redistributions are quite different from each

other and require different algorithms.

3.6.1 Shape Retaining Redistribution

A shape retaining redistribution may involve redistribution in only one dimension
{eg. (block,block) to (cyclic,block)} or more than one dimension {eg. (block,block)
to (cyclic,cyclic)}. If the redistribution is only along one dimension, it is similar to
the redistribution of one-dimensional arrays and the same algorithms described earlier

can be used. If both dimensions have to be redistributed, it can either be done directly
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Figure 3.20: (block,block) to (cyclic,cyclic) Redistribution, 1K x 1K array

or indirectly as a series of one-dimensional redistributions. In the Indirect Method,
the array is redistributed separately along each dimension. For example, if an array
has to be redistributed from (block,block) to (cyclic,cyclic), it is first redistributed to
(block,cyclic) and then to (cyclic,cyclic). This method has the advantage that all the
optimizations developed for one-dimensional arrays in the previous sections can be
easily extended to multidimensional arrays. The order in which the dimensions are
redistributed does not affect the performance. This is because the order of dimensions
chosen only results in a different set of data values being communicated, and does
not affect the amount or type of communication. So, one could also do the above
redistribution as (block,block) to (cyclic,block) to (cyclic,cyclic).

In the Direct Method, data is sent directly to the destination processor corre-
sponding to the new distribution. Hence the optimized algorithms developed for
the one-dimensional case cannot be used. This method requires different algorithms
for different number of dimensions and different types of redistributions, and these

algorithms cannot be optimized much. However, data needs to be communicated
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only once in the Direct Method. Figure 3.20 compares the performance of the Di-
rect and Indirect Methods for redistributing an array of size 1K x 1K integers from
(block,block) to (cyclic,cyclic) on the Touchstone Delta. The Indirect Method is found
to perform much better even though data is communicated twice. This is because
the algorithms for one-dimensional redistribution are highly optimized and a lot of
the communication during each one-dimensional redistribution actually takes place
in parallel.

Another interesting observation comes from Figure 3.21 which compares the per-
formance of the Direct and Indirect Methods for a (cyclic(11),cyclic(11)) to
(cyclic(3),cyclic(3)) redistribution of a 1K x 1K array. The indirect redistribution
is done in two ways — using the General Method and the LCM Method for each
cyclic(11) to cyclic(3) redistribution. We find that the General Method performs
better than the LCM Method. This is because in the General Method, for each
one-dimensional redistribution, the destination and source processors need to be cal-
culated for each row (or column) of the array and the entire row (or column) has to
be communicated. In the LCM Method, this communication needs to be done twice.
Since the amount of communication is much higher than the amount of computation,
the General Method performs better. In the Direct Method, destination and source
processor calculations have to be done for each element of the local array. If the local
array size is L x L, L? calculations have to be done. In the Indirect Method, calcu-
lations are done for each column during the column redistribution and for each row
during the row redistribution. Hence the number of calculations is only L + L = 2L.
Therefore, the Direct Method performs considerably worse than any of the Indirect
Methods in this case.

3.6.2 Shape Changing Redistribution

This type of redistribution occurs when at least one dimension of the array is collapsed
before or after the redistribution. Consider the redistribution from (X,*) to (*,Y) or

vice-versa, where X and Y can be either block, cyclic or cyclic(m). This is basically a
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Figure 3.21: (cyclic(11),cyclic(11)) to (cyclic(3),cyclic(3)) Redist., 1K x 1K array

collapsed to distributed type of redistribution in one of the dimensions, which is done
as follows. Each processor divides the local array into packets along the collapsed
dimension, depending on the type of the new distribution Y. The processors then
exchange packets with other processors. At the receiving end, packets are placed in
the local array in order of source processor number. Data from the received packets
may have to be placed in the local array either contiguously or with a stride, depending
on the type of distributions X and Y.

The other type of redistribution involving change of shape of the local array is of
the type (X,*) or (*,X) to (Y,Z), or vice versa. That is, in either the source or target
distributions, one of the dimensions is collapsed and in the corresponding target or
source distributions, both dimensions are distributed. Each case of this type requires
a different algorithm and so has to be considered separately. Note that we do not use

the Indirect Method for shape changing redistributions.
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3.7 Circular Redistribution

Very often, it is necessary to redistribute from a distribution X to a distribution Y
and then sometime later in the program it is required to redistribute back from Y to
X. We call this X — Y — X type redistribution as a circular redistribution and is
denoted as X « Y. The redistribution from X to Y is called a forward redistribution
and from Y to X is called a backward redistribution. For example when the main
program calls a subroutine with a different distribution, it is necessary to redistribute
from say X to Y. After returning from the subroutine, it is necessary to redistribute
back to X to restore the original distribution.

In the case of a circular redistribution, the backward redistribution is essentially
the reverse of the forward redistribution. The calculation of the destination processors
and addresses done during the forward redistribution can be saved and reused in the
backward redistribution. Thus, no calculations need be done during the backward
redistribution. This decrease in computation is at the cost of increased memory for

saving the information calculated in the forward redistribution.

3.7.1 Circular Block(m) < Cyclic Redistribution

We first consider a circular block(m)«cyclic redistribution.  In the forward
block(m)—cyclic redistribution, each processor calculates the destination processor
to which the first element of the local array is to be sent. This information can be
saved (A). In the receive phase, each processor calculates how much data is to be
received from other processors. This information can also be saved (B). In the back-
ward cyclic—block(m) redistribution, Information (B) is sufficient for each processor
to know how many elements to send to other processors. Information (A) is sufficient
for the receiving processor to know where to store incoming data. Thus, no calcula-
tions need to be done in the backward redistribution phase. However, this saving in
computation is at the cost of increased memory requirements. Information (A) can
be stored in a single variable. Information (B) requires an array of length equal to

the number of processors.
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3.7.2 Circular Cyclic < Block(m) Redistribution

This is essentially the reverse of a circular block(m) « cyclic redistribution. In
the send phase of the forward cyclic—block(m) redistribution, each processor stores
the set of destination processors and the number of elements sent to them (A). In
the receive phase, each processor stores the source processor of the first element of
the local array (B). In the backward block(m)—cyclic redistribution, Information
(B) is sufficient to carry out the send phase and Information (A) can be used by
the receiving processor to know how many elements are to be received from which
processor. Information (B) can be stored in a single variable. Information (A) requires

an array of length equal to the number of processors.

3.7.3 Circular Cyclic(r) « Cyclic(y) Redistribution

Let us first consider the special case of a circular cyclic(z) < cyclic(y) redistribution
where © = ky. In the forward cyclic(a)—cyclic(y) redistribution, each processor
calculates the sequence of processors to which sub-blocks of size y have to be sent.
This information is stored (A). In the receive phase, each processor calculates the
source processors for blocks of size y of the local array. This information is also stored
(B). In the backward cyclic(y)—cyclic(x) redistribution where « = ky, information
(B) can be used in the send phase to determine the sequence of processors to send
blocks of size y. In the receive phase, information (A) can be used to determine the
source processors for blocks of size y of the local array. Thus, no calculations need to
be done in the backward redistribution phase. In the forward redistribution phase,
since the sequence of processors to send sub-blocks of size y remains the same for
every block of size x, information (A) can be stored in an array of size x/y = k.
Similarly, information (B) also requires an array of size k.

The other special case y = kx is similar.

For the general case where there is no particular relation between = and y, if the

LCM or GCD Methods are used, information can be stored and reused in the same
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Figure 3.22: Circular cyclic(11) to cyclic(3) Redistribution, array size 1M integers

manner as described above for the & = ky case.

If the General Method is used, then in the send phase of the forward redistribution,
each processor calculates the destination processor of each element of the local array.
This information can be stored (A). In the receive phase, each processor calculates
the source processor of each element of the local array. This can also be stored (B).
For the backward cyclic(y)—cyclic(x) redistribution, Information (B) gives the set of
destination processors and Information (A) gives the set of source processors. This
saves a lot of computation in the backward redistribution, since it would otherwise be
required to compute the source and destination processors for each individual element.
However the amount of storage required is twice the size of the local array. Figure 3.22
compares the performance of a circular cyclic(11) < cyclic(3) redistribution with and
without saving any information in the forward redistribution, for an array of size
1M integers. We observe that there is considerable improvement in performance by

reusing the information.



Chapter 4

Runtime Support for All-to-All
Collective Communication

Programs on distributed memory parallel computers typically require interprocessor
communication. In loosely synchronous parallel programs[46], all processors perform
similar operations but on different data sets. Hence it is very likely that a group of
processors or even all processors may need to perform communication at the same
time. This makes it possible for processors to cooperate with each other to perform
communication efficiently, which is known as collective communication. Depending on
the type of communication required, different communication patterns are possible.

These can be generally classified into the following types:-
o All-to-all: All processors need to send data to all other processors.
o All-to-many. All processors need to send data to some other processors.
o Many-to-all: Some processors need to send data to all other processors.
o Many-to-many: Some processors need to send data to some other processors.

Efficient algorithms are needed to implement these communication patterns on
different network topologies. In this chapter, we consider the all-to-all communication
pattern in detail. The other communication patterns, namely all-to-many, many-to-

all and many-to-many, have been studied in [100, 127, 106, 107, 108].

38
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The all-to-all communication pattern (also called complete exchange!) occurs fre-
quently in many important parallel computing applications such as array redistri-
bution, parallel quicksort, some implementations of two-dimensional Fast Fourier
Transform, matrix transpose etc. It is the densest form of communication because all
processors need to communicate with all other processors. This can result in severe
link contention and degrade performance considerably. Hence, it is necessary to use
efficient algorithms in order to get good performance over a wide range of message
sizes and number of processors.

We describe several algorithms for all-to-all communication on fat-tree and two-
dimensional mesh interconnection topologies. We use the Thinking Machines CM-5
as an example machine with a fat tree topology and the Intel Touchstone Delta as
an example machine with a two-dimensional mesh topology. Since these machines
have different architectures and communication capabilities, different algorithms are
needed to get the best performance on each of them. We present four algorithms for
the CM-5 and six algorithms for the Delta. Extensive performance results on the CM-
5 and Delta are presented and analyzed. We have also developed analytical models to
estimate the performance of the algorithms on the basis of system parameters. The

analytical models are validated by comparing with experimental results.

4.1 Architecture and Communication Issues

4.1.1 CM-5

The CM-5 is a scalable distributed memory multiprocessor system which can be scaled
up to 16K processors. It supports both SIMD and MIMD programming models. Each
node on the CM-5 is a SPARC processor and has four optional vector processors.
The CM-5 has two internal networks that support interprocessor communication —
the Control Network and the Data Network. The control network is responsible for

communication patterns in which many processors may be involved in the processing

'We use the words “all-to-all communication” and “complete exchange” interchangeably in this

chapter.
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Figure 4.1: CM-5 fat tree

of each datum, such as global reduction operations, parallel prefix operations and
processor synchronization. The data network supports point-to-point communication
and has a fat tree topology [76, 77] as shown in Figures 4.1 and 4.2. It is actually a
4-ary fat tree or quad tree, where each node has four children. Each internal node
of the fat tree is implemented as a set of switches. The number of switches per
node depends on where it is in the tree. Nodes at level 1 have two switches. The
number of switches per node doubles for each higher level till level 3, from where
on it quadruples. Each level 1 or level 2 switch has two parents and four children;
switches at higher levels have four parents and four children. The data network has
a guaranteed system-wide bandwidth of 5 Mbytes/sec. Messages are divided into
packets of size 20 bytes of which 4 bytes is the header. The routing algorithm for the
Data Network compares the destination address with the source address to determine
how far up the tree the message must travel. The message can then take any path
up the tree. This allows the switches to perform load balancing on the fly. Once
the message has reached the necessary height in the tree, it must follow a particular
path down. A detailed discussion of the interprocessor communication overhead on

the CM-5 is given in [96, 16, 94].



CHAPTER 4. RUNTIME SUPPORT FOR ALL-TO-ALL COMMUNICATION 61

Figure 4.2: CM-5 Data Network with 64 Processing Nodes

4.1.2 Touchstone Delta

The Intel Touchstone Delta is a 16 x 32 mesh of computational nodes, each of which
is an Intel i860/XR microprocessor. The two-dimensional mesh interconnection net-
work has bidirectional links and uses wormhole routing. The links have a maximum
bandwidth of 10 Mbytes/sec in each direction. Messages are divided into packets of
size 512 bytes of which 32 bytes is the header. It uses deterministic XY routing in
which packets are first sent along the X dimension and then along the Y dimension.
In other words, at most one turn is allowed, and that turn must be from the X di-
mension to the Y dimension. For a 2D mesh, the XY routing algorithm is guaranteed
to be deadlock free [33].

In wormbhole routing, a packet is divided into a number of flits (flow control digits)
for transmission. The size of a flit is typically the same as the channel width. The
header flit of a packet determines the route. As the header advances along the route,
the remaining flits follow in a pipeline fashion. If the header flit encounters a channel
already in use, it is blocked until the channel becomes available. The flow control

within the network blocks the trailing flits and they remain in flit buffers along the
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established route. Once a channel has been acquired by a packet, it is reserved for the
packet. The channel is released when the last flit has been transmitted on the channel.
The pipelined nature of wormhole routing makes the communication latency almost
insensitive to path length in the absence of network contention. The network latency
for wormhole routing is (Ls/B)D + L/ B, where L is the length of each flit, B is the
channel bandwidth, D is the path length, and L is the length of the message [87].
Thus, if Ly << L, the path length D will not significantly affect the network latency

unless it is very large. Further details of wormhole routing can be found in [87].

4.1.3 Performance Models

Barnett et. al. [3] have proposed algorithms and performance models for global com-
bine operations on a wormhole routed mesh. We use similar models for our all-to-all
communication algorithms, which take into account link conflicts and other charac-
teristics of the underlying communication system. The following notations are used

in our models :-

«o startup time per message

Ber | transfer time per byte for an exchange with no link conflicts

Bsr | transfer time per byte to send to and receive from different processors
with no link conflicts

Bsqt | transfer time per byte on a saturated link

transfer time per byte for a single send-recv with no link conflicts

number of bytes to be exchanged per processor pair

maximum number of messages contending for a saturated link at step ¢

| | B>

total number of processors

The time taken for an exchange operation may be different from the time to send
to and receive from different processors, because in the latter case the incoming and
outgoing messages may traverse links with different amount of contention. Hence,
we use fJ.; or 35 depending on the algorithm. We assume that the time taken is

independent of distance, a property of both CM-5 and Delta [95, 3]. Thus, the time
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required for an exchange step ¢ is given by

T =a+ L max(Bey, [(1)Bsat)

We assume that conflicting messages share the bandwidth of a network link. The
network may have excess bandwidth, enabling multiple messages to traverse a link in
the same direction without conflict. In other words, Bsu; < Bews Bsat < Bors Boar < Bs.

Also, in any expression in this chapter, the division of two integer variables should

be considered as integer division, ie. 5/2 = 2.

4.2 All-to-All Communication on a Fat Tree

In this section, we describe four algorithms for all-to-all communication on the fat

tree topology of the CM-5.

4.2.1 Linear Exchange (LEX)

The Linear Exchange algorithm is the simplest of the four algorithms. In step ¢,
0 < @ < P, processor ¢ receives messages from every processor except itself. The
algorithm clearly requires P steps. Since at every step one processor receives from
all other processors, there is a lot of link contention. At step ¢, every processor sends
data to processor 7. Processor 7 has two links to its parent node and P — 1 processors

simultaneously need to use these links. Hence, the maximum number of messages

P-1

5~ |- The time taken for any step ¢ is

contending for a link at any step is |

T() =a+ Lmax(fs, (T

The cost of LEX is obtained by summing over all steps of the algorithm :

TLEX = Z_:[Oé—I-LmCll'(ﬂs, (%—‘ﬂsat)] = Q(P—1)+L(P—1)max(ﬂs7 (u

=1
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doi=1, P -1
destination = xor(mynumber, i)
Exchange with destination

end do

Figure 4.3: Pairwise Exchange (PEX)

Table 4.1: Communication Schedule for PEX on & Processors

Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7
011020304105 |0«6 |07
23|13 |1«<2 |15 |14 |1<T7|1«<6
451464 T7|2<=6|2«T|2<=4|2<5)
67 |HeT|be—6[3«=T7T|3<—6|3«5 |34

4.2.2 Pairwise Exchange (PEX)

We consider the Pairwise Exchange (PEX) algorithm which has been shown to be the
best algorithm for a hypercube network, on which it guarantees no link contention at
any step [6, 103]. The algorithm is described in Figure 4.3. It requires P —1 steps and
the communication schedule is as follows. At step 7, 1 <1 < P — 1, each processor
exchanges a message with the processor determined by taking the exclusive-or of its
processor number with . Therefore, this algorithm has the property that the entire
communication pattern is decomposed into a sequence of pairwise exchanges. The
communication schedule of the pairwise exchange algorithm for 8 processors is given

in Table 4.1. The entry ¢ «» j in the table indicates that processors ¢ and j exchange

messages.
The time taken by this algorithm on the CM-5 can be estimated as follows. When
a processor has to communicate with another processor in its cluster of 4* processors,

k > 1, the message has to travel a maximum of &k levels up the tree. When a cluster
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of 16 processors exchange among themselves, the messages have to travel either 1
or 2 levels up the tree depending on the source and destination. There are 32 links
from level 0 to level 1 and 16 links from level 1 to 2 for this cluster, enough for
the 16 processors to exchange among themselves without contention. However, when
processors in a cluster of 16 need to exchange with processors in another cluster of
16, there are only 8 links from a level 2 node to a level 3 node, which results in 16
processors contending for 8 links. A similar bottleneck exists at higher levels. For
example, a level 3 node has 32 links upwards and downwards, and 64 processors in

its subtree.

The communication schedule of PEX is such that in the first 15 steps, processors
exchange completely within a cluster of 16 processors and after that they exchange
across clusters. Hence, in the first 15 steps there is no contention. From step 16
onwards, there are a maximum of 2 messages contending for a link. The time taken

for step ¢ is given by

() = a+ LB, for 1 <:<15
Y a + Lmax(Bey, 2Bsar) for ¢ > 15

The time for the entire PEX algorithm can be obtained by summing over all steps

15 P-1
TPEX — Z[a + L 661’] + Z [05 + L max(ﬂexv 265(115)]

which can be simplified to
TPEX = (P - 1)05 + L [15ﬂ6x + (P - 16) max(ﬂexv 265(115)]
For a complete exchange on 16 processors, this algorithm has no contention.

4.2.3 Recursive Exchange (REX)

The Recursive Exchange algorithm is described in Figure 4.4. The number of proces-

sors is halved in each step and each processor exchanges data with the corresponding
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Table 4.2: Communication Schedule for REX on 8 processors

Step 1 | Step 2 | Step 3
0=4]10=2 |01
l5]1-3[2«3
26|46 |45
3757|617

processor in the other half. A processor sends all the data intended for all processors
in the other half to only one processor in that half, which forwards that data to the
remaining processors in a later step. The number of steps required is lg P and each
message is of size L x P/2. The communication schedule for REX on 8 processors is
given in Table 4.2. Although this algorithm takes less number of steps than LEX and
PEX, the amount of data transmitted in each step is much higher. Since it is a store-
and-forward type algorithm, each step incurs the additional overhead of reshuffling
data

In step 7z, 1 < ¢ <lg P each processor j exchanges with processor j £+ ;. Commu-

nication always takes place either entirely within a cluster of 16 processors or entirely
across clusters. In steps 1 to lg P — 4, communication takes place across clusters,
so the maximum number of messages contending for a link is 2. In steps lg P — 3
to lg P, communication takes place within a cluster of 16 processors, so there is no

contention. Hence, the time taken by REX is

lg P-4 P g P P
TREX = Z [05 + L 5 max(ﬂexa 265(125)] + Z [05 + L 5 661’]
=1 i=lg P-3

which can be simplified to

P
TREX - Oélg P + L 5 [4661’ + (1g P — 4) max(ﬂexv 265(115)]
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size = P

pos =0

bytes = L x P/2
doi=1,lg P

size = size/2
if (mynumber < (size + pos)) then
dest = mynumber + size

else
dest = mynumber - size
pos = pos + size
end if
exchange message of size “bytes” with dest
end do

Figure 4.4: Recursive Exchange (REX) on CM-5

4.2.4 Balanced Exchange (BEX)

In the PEX algorithm, the communication schedule is such that all processors in a
cluster first exchange completely with each other and then exchange with processors
in other clusters. In other words, all the communication is either entirely within the
cluster or entirely across clusters. As explained above, this gives rise to contention
from step 16 onwards. An improvement in performance can be expected if there is
a balance of local and long distance communication at every step, which will reduce
contention in step 16 onwards. The Balanced Exchange (BEX) algorithm provides
such a schedule. BEX is a simple modification of PEX and is described in Figure 4.5.
For the purpose of determining the communicating pairs of processors, we define a
mapping between the physical number of a processor and its virtual number as
virtual no = MOD(physical no + 1, P)

Balanced exchange consists of using the pairwise exchange algorithm with this map-
ping and the virtual processor numbers. The communication schedule for BEX is

given in Table 4.3.



CHAPTER 4. RUNTIME SUPPORT FOR ALL-TO-ALL COMMUNICATION 68

virtual = MOD(mynumber + 1, P)
do j=1, P -1

dest = xor(virtual, j) — 1

if (dest == -1)

dest = P —1

end if

exchange with dest
end do

Figure 4.5: Balanced Exchange (BEX)

The BEX algorithm has the property that in steps 0 to P/2 — 1, two processors
in each cluster of size P/2 communicate across clusters while the rest communicate
within the cluster. In steps P/2 to P — 1, two processors in each cluster of size
P/2 communicate within the cluster, while the other processors communicate across
clusters. In steps 0 to 15, there is no contention as in the PEX algorithm. In step
i > 15, instead of 2181 processors contending for 2181U=1 links, there are (2181 — 2)
processors contending for 2084=1 links. Hence the maximum contention for any link

at step ¢ > 15 is 22(%?% on an average. The total time taken by BEX is

15 P-1 2|_lgij -9
Tpex = Z[Oé + L Bes] + Z [ + L maz(fey, mﬂsat)]
=1 =16

which can be simplified to

olgd _ 9

Terpx = (P —1l)a+ L[155.; + (P — 16) maz(Bes, mﬂm)]

4.2.5 Performance of Algorithms on the CM-5

We have implemented the above algorithms on the CM-5 using the message passing

library CMMD Version 3.0 Beta. Figure 4.6 compares the communication time of
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Table 4.3: Communication Schedule for BEX on 8 processors

Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7
07102010403 ]0<=6|0<5
1217|2715 |1<6|1«<3]|1<4
341|135 306 |26 |2<d 24|23
56|46 |4Dd |37 4T |57 |67

the four algorithms on a 32 node CM-5 with message size varied between 0 and 2048
bytes. As expected, LEX performs much worse than the other algorithms, so we
do not consider it any further. For small message sizes, the performance of PEX,
REX and BEX is virtually indistinguishable. However, for large message sizes, PEX
performs much better than REX and BEX performs better than PEX. This is because
of the following reasons. First, even though the number of steps in REX is only lg P,
as compared to P — 1 steps in PEX, the message size in REX remains constant at
L x P/2, whereas the size of each message in PEX is L. Also, REX uses a store-
and-forward approach in which a message is sent from source to destination processor
through one or more intermediate processors. Sending a message from source to
destination through k intermediate processors costs k times more than sending it
directly. In addition, each node needs to buffer and reshuffle data in REX so that
appropriate data can be sent to the appropriate node. These two overheads outweigh
the savings in the number of communication steps. BEX performs the best because
it maintains a balance of local and remote communication at each step.

Figures 4.7 and 4.8 show the performance of the algorithms on up to 256 proces-
sors for message size 512 bytes and 2 Kbytes respectively. PEX and BEX perform
better than REX for small number of processors because the overhead of message
size and number of steps dominate for REX. As the number of processors increases,
the overhead of the larger number of messages in PEX and BEX is higher than the
overhead of larger message size and reshuffling in REX, and therefore, REX performs

better.
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Figure 4.6: Performance on 32 node CM-5 for different message sizes

0.25 |
.o +
0.2 REX <— L -
BEX -O -
0.15 _
Time
(Secs.)
0.1 _
0.05 _

0 =3 ! ! ! ! !
0 50 100 150 200 250 300

Number of Processors

Figure 4.7: Performance on CM-5 for message size 512 bytes
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Figure 4.8: Performance on CM-5 for message size 2 Kbytes

4.3 All-to-All Communication on a 2D Mesh

This section describes algorithms for all-to-all communication on the two-dimensional
mesh topology of the Intel Touchstone Delta. A mesh is a low-dimension high-
bandwidth network which performs well when there is no link contention. However, a
dense communication pattern like complete exchange results in a lot of link contention
which can degrade performance considerably. Also, the algorithms discussed above
for the CM-5 and the existing algorithms for a hypercube assume that the number of
processors is a power-of-two. This is a valid assumption for hypercube and fat-tree
architectures because the number of processors is always a power-of-two. However,
on the Delta, the user can allocate a mesh which may not be a power-of-two and may
even be an odd number (eg. 5 x 4 or 3 X 3). So, it is necessary to develop algorithms
which work even on non power-of-two meshes.

Bokhari and Berryman describe two algorithms for a circuit-switched mesh, which

assume that the number of processors is a power-of-two [7]. Scott has shown that a*/4



CHAPTER 4. RUNTIME SUPPORT FOR ALL-TO-ALL COMMUNICATION 72

is the lower bound on the number of phases required to perform complete exchange
on an a x a mesh such that there is no link contention in any phase [103]. However, if
we allow link contention to exist, the operation can be performed in fewer steps. We
have adopted this approach of allowing a small amount of link contention to exist,
thereby reducing the number of steps and keeping all processors active at every step.
This approach also takes advantage of the fact that the communication links in the
Delta have excess bandwidth [3], so that a small number of contending messages will

not affect the communication time.

We consider six algorithms on the Delta, for power-of-two and non-power-of-two
meshes. For the analysis of the algorithms, we assume that the mesh has r rows and

¢ columns. Hence, P =1 x c.

4.3.1 Pairwise Exchange for Power-Of-Two Mesh (PEX)

The Pairwise Exchange algorithm described earlier for the CM-5 can also be used on
the Delta without any modification, as long as the number of processors is a power
of two. However, since the mesh architecture is different from a fat tree architecture,
the link contention caused by this algorithm on the Delta is different from that on a
fat tree. Figure 4.9 shows the communication pattern of PEX on a 2 x 4 mesh. The
complete exchange requires seven steps. In steps 1, 4 and 5 there is no contention.
In steps 2, 3, 6 and 7, the maximum number of messages contending for a link is 2.
Messages traveling in opposite directions on a link do not contend, because the links

on the Delta are bidirectional.

Since each step of the algorithm involves an exchange between pairs of processors,
the maximum number of messages contending for a link at any step is limited by
max(r,c)/2. An exact expression for the maximum number of messages contending

for a link at step ¢ is

£(3) = 2Uslmas(MOD(0).i/e)}]

This expression was obtained empirically. We studied the communication pattern of

PEX for a large number of processors and mesh configurations. We found that there
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Figure 4.9: PEX on 2 x 4 mesh

is a relation between the step number i, the shape of the mesh and the maximum link
contention in that step. That relation is given by the above expression for f(i).

The time taken for step ¢ is

T(i) = a+ Lmaz(Bex, (1) Beat)

The cost of PEX can be determined by summing over all steps of the algorithm :

P-1 P-1
TrEx = Z[oz + Lmax(Bey, [(1)Psat)] = (P — a4+ L Z max(Pez, f(2)Bsat)

If the number of processors is not a power-of-two, the exclusive-or function does
not create all the processor pairs in P — 1 steps, so the algorithm is not directly

applicable.
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g = 20l
doj=1,¢—1
destination = xor(mynumber, j)
if (destination < P) then
Exchange with destination
end if
end do

Figure 4.10: Pairwise Exchange for General Mesh (PEX-GEN)

4.3.2 Pairwise Exchange for General Mesh (PEX-GEN)

We have extended the basic pairwise exchange algorithm, so that it works even when
the number of processors is not a power-of-two. We call this algorithm Pairwise Ex-
change for General Mesh (PEX-GEN) and is described in Figure 4.10. The algorithm
first finds the smallest power-of-two (say ¢) greater than the number of processors
and uses this number to schedule ¢ — 1 steps of the pairwise exchange. In each step,
every processor checks to see if the calculated destination processor number is less
than the actual number of processors. If so, it exchanges data with the processor,
else it goes ahead to the next step. Thus, the algorithm requires ¢ — 1 steps where
q is the nearest power-of-two larger than the number of processors. Clearly, the al-
gorithm takes more steps than necessary and many processors remain idle in several
of the steps. However, this reduces the link contention in each step. The maximum

contention in each step is upper bounded by that in the PEX algorithm.

4.3.3 PEX-GEN with Shift (PEX-GEN-SHIFT)

The motivation for the Pairwise Exchange for General Mesh with Shift (PEX-GEN-
SHIFT) algorithm can be explained with the help of Figure 4.11(a). Assume that the

user has allocated a mesh of 20 processors which may be organized in any way (ie 4 x5,
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0 15 19 31

<=— 20 processors

() 20 processors allocated

0 6 15 25 31

<=— 20 processors

(b) Processor numbers shifted

Figure 4.11: Processor Shift

or 2x 10 etc.). The processor numbers will be 0 to 19. The nearest power of two larger
than 20 is 32. The PEX-GEN algorithm will require 31 steps. The processor pairs
created by the exclusive-or function are such that in steps 1 through 15, processors
0 to 15 exchange completely among themselves and do not communicate with any
processor in the range 16 to 31. Similarly, processors 16 to 19 exchange completely
among themselves and do not communicate with any processor in the range 0 to 15.
In steps 16 through 31, the processors in one half (0 — 15) exchange with processors
in the second half (16 — 31). Since there are only 4 processors in the second half,
several of the processors in the first half do not do any communication. Thus the
communication pattern is such that in the first 15 steps, all the processors in the first
half are active and in the next 16 steps, several of them are inactive. Since each step
involves communication with link contention, there is high link contention in steps 1
— 15 and very little or no link contention in steps 16 — 31. In general, if there are
P processors where P is not a power of two, PEX-GEN will require ¢ — 1 steps where
q = 208 P1 In the first |(q —1)/2] steps, the first ¢/2 processors are active and in the
remaining steps, several of them are inactive.

A better algorithm is one which balances the contention such that all steps have

more or less equal contention and equal number of inactive processors. This can be
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g =20l
shift = (¢ — P)/2
myvirtual = MOD(mynumber + shift, P)
do j=1,¢—1
virtual_destination = xor(myvirtual, j)
destination = virtual_destination — shift
if (destination < 0) then
destination = destination + ¢
end if
if (destination < P) then
Exchange with destination
end if
end do

Figure 4.12: Pairwise Exchange for General Mesh with Shift (PEX-GEN-SHIFT)

achieved by defining virtual processor numbers such that the real processors 0 —
19 are numbered 6 — 25 as shown in Figure 4.11(b). The processor numbers are
shifted by an amount equal to half the absolute difference between the number of
processors and the nearest power of two. In other words, in the range 0 — 31, the
actual processors are numbered 6 — 25, and there are no processors numbered 0
— 5 and 26 — 31. Thus the empty space which earlier existed only in the half 16
— 31 is now equally divided among the two halves. So, even in the first 15 steps
of the algorithm, there are equal number of idle processors in both halves, which
balances the contention among all the steps of the algorithm. We call this algorithm
Pairwise Exchange for General Mesh with Shift (PEX-GEN-SHIFT) and is described
in Figure 4.12. This algorithm also takes ¢ — 1 steps where ¢ is the smallest power-
of-two larger than the number of processors. The maximum contention at each step

is upper bounded by that for the PEX algorithm.
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do j=1, P -1
destination = MOD(mynumber + j, P)
source = MOD(mynumber —j + P, P)
send to destination
receive from source

end do

Figure 4.13: General Algorithm for any Mesh (GEN)

4.3.4 General Algorithm for any Mesh (GEN)

The above algorithms require one less than a power of two number of steps, because
they use the exclusive-or function to obtain processor pairs which exchange with each
other. For non power-of-two meshes, it would be advantageous to have an algorithm
which requires only P — 1 steps. Figure 4.13 describes such an algorithm, which we
call the General Algorithm for any Mesh (GEN), because it works for any number of
processors. In the GEN algorithm, processor pairs do not exchange with each other.
Instead, at step 7, a processor j sends data to processor MOD(j + ¢, P) and receives
data from processor MOD(j — i + P, P). This algorithm requires only P — 1 steps,
for any value of P.

The maximum contention at step ¢ is obtained empirically as
f(&) = min[MOD(¢,¢),c — MOD(2,¢)] + min[e/e, (P —1)/¢]
The total time for all steps is given by :

P-1 P-1

Topn = Y _la+ Lmax(Be, f(i)Bsu)] = (P —1L)a+ L Z: max(Bsr, f(2)Bsat)

=1
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4.3.5 Indirect Pairwise Exchange (IPEX)

The Indirect Pairwise Exchange (IPEX) algorithm aims at reducing link contention
in the direct Pairwise Exchange (PEX) algorithm. In IPEX, each processor commu-
nicates only with the processors in its row and column. The algorithm is described
in Figure 4.14. Each exchange along a row is followed by a complete exchange along
a column. During the row exchange, each processor sends L r bytes of data to the
destination processor, out of which L(r — 1) bytes are intended for other processors
in the same column as the destination processor. This is followed by a complete ex-
change along the columns (involving messages of L bytes), in which the data received
during the row exchange is sent to the appropriate processors in the same column.
This entire operation requires r(¢ — 1) communication steps. Finally, an additional
complete exchange is required along the columns for processors to exchange their own
data directly with processors in the same column. In this phase, data is sent directly
from source to destination, requiring r — 1 exchange steps. Hence, the total number
of steps required is r(c— 1)+ (r—1)=rc—1=P — 1.

The maximum link contention at any step is the same as for pairwise exchange
along a row or column which is 2U#4_ where 7 is the step number along the row or

column. Hence, the total time required for IPEX is given by :

c—1 r—1
Tippx = Y la+ Lrmaz(Be, 29 8,0,) + Y {a + Lmaz(B.,, 28 8,,)}]
=1 7=1
r—1

4 Z[a + Lmax(Bes, pl Bsat)]

=1

4.3.6 Recursive Exchange (REX)

The Recursive Exchange algorithm is described in Figure 4.15. It is similar to that
for the CM-5, except it is recursively applied to both dimensions of the mesh. The

mesh is first recursively halved in the z direction and messages are exchanged over
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x = my x-coordinate
y = my y-coordinate
doi=1,c—1
destx = xor(x, i)
dest = y x ¢ 4+ destx
exchange L r bytes with dest
doj=1,r—1
desty = xor(y, i)
dest = destyxe + x
exchange L bytes with dest

end do
end do
doj=1,r—1

desty = xor(y, i)

dest = desty xc+ =«

exchange L bytes with dest
end do

Figure 4.14: Indirect Pairwise Exchange (IPEX)

each cut. This takes lg ¢ steps. The mesh is then recursively halved in the y direction
and messages are exchanged over each cut, which takes lgr steps. Thus, the total
number of steps is lge+1gr = lg P and the message size in each step is L x P/2. This
algorithm also works only for power-of-two meshes, since the mesh is divided by two
in each step. REX has an indirect form of communication, in the sense that data is

sent from source processor to destination processor through one or more intermediate

processors.
Since the mesh is recursively divided by two and each processor in one partition
communicates with its mirror image in the other partition, the maximum number of

messages contending for a link at step ¢ is

o [e/2t for1<i<lge
f(l)_{ forlge <1 <lgP

_r
2i—lgc
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size = ¢
pos =0
x = my x-coordinate
y = my y-coordinate
bytes = L x P/2
doi=1, lge
size = size/2
if (x < (size 4+ pos)) then
destx = x + size
else
destx = = — size
pos = pos + size
end if
dest = y X ¢ + destx
exchange message of size “bytes” with dest

end do

size = r
pos =0
doi=1, lgr

size = size/2
if (y < (size + pos)) then
desty = y + size
else
desty = y — size
pos = pos + size
end if
dest = destyxc+ x
exchange message of size “bytes” with dest

end do

Figure 4.15: Recursive Exchange (REX) on Delta
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Table 4.4: Performance of PEX (time in sec.)

Message Size Mesh Configuration
(bytes) 4 x4 [8x8[16x8|8x16]16x16 |16 x 32
256 0.004 | 0.022 | 0.045 | 0.045 | 0.094 0.203
1K 0.008 | 0.064 | 0.120 | 0.115 | 0.290 0.860
4K 0.023 | 0.114 | 0.355 | 0.367 | 0.999 3.218
8K 0.034 | 0.228 | 0.692 | 0.773 | 2.068 6.794
16K 0.064 | 0.441 | 1.413 | 1.565 | 4.145 13.61

The cost of REX can be obtained by summing over all steps of the algorithm :
lgP L P
Trox = ) o+ ——maz(Bee, f(i)Boar)]

=1

which can be expanded to

L P& : P & r
TREX = Oélg P —I' T Z max(ﬂexa 0/22650,15) —I' T Z max(ﬂexa mﬂsat)
=1 i=lgct+1

4.3.7 Performance of Algorithms on the Delta

We implemented all the algorithms on the Intel Touchstone Delta and studied their
performance for different mesh configurations and message sizes. As suggested in [30],
we use forced messages (which provide higher bandwidth but also higher startup cost)
if the message size is greater than or equal to 1.5 Kbytes and unforced messages if
the message size is less than 1.5 Kbytes.

The performance of PEX is shown in Table 4.4. The number of processors is
varied from 16 to 512 with message size varied from 256 bytes to 16 Kbytes. Message
size refers to the amount of data communicated in each send and receive operation,
so the total amount of data communicated increases as the number of processors

is increased. Hence, the time taken increases almost linearly with the number of
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Table 4.5: Performance of PEX-GEN (time in sec.)

Message Size Mesh Configuration
(bytes) 4x5[6x8[116x9|8x18]16x14 |16 x 30
256 0.008 | 0.019 | 0.085 | 0.090 | 0.092 0.211
1K 0.017 | 0.038 | 0.191 | 0.230 | 0.270 0.899
4K 0.037 | 0.091 | 0.576 | 0.830 | 0.977 3.588
8K 0.073 | 0.174 | 1.188 | 1.743 | 2.007 7.616
16K 0.138 | 0.333 | 2.403 | 3.480 | 4.056 15.82

processors. In a mesh, the time taken depends not only on the number of processors,
but also on the mesh configuration. The maximum contention in PEX is max(r,¢)/2.
Thus, for a fixed number of processors, the time taken will be minimum for a square
mesh and maximum for a mesh which is a linear array.

The performance of PEX-GEN is given in Table 4.5. We have chosen some mesh
sizes which are non power-of-two. We observe that for mesh sizes which are only
slightly less than the nearest higher power-of-two, the performance is close to that
of PEX for that power-of-two. But, if the mesh size is only slightly higher than the
nearest smaller power-of-two, the time taken is almost twice the time taken by PEX
for that power-of-two. For example, the time taken by PEX-GEN on a 16 x 9 mesh
is much higher than the time taken by PEX on a 16 x 8 mesh, but the time taken by
PEX-GEN on a 16 x 14 mesh is very close to the time taken by PEX on a 16 x 16
mesh. This is because of the difference in the number of steps required. Another
interesting observation is that the time taken by PEX-GEN on a 16 x 30 mesh is in
fact higher than the time taken by PEX on a 16 x 32 mesh. This is because since
the processors are numbered in row major order, a change in the number of columns
from a power-of-two to a non power-of-two, changes the communication pattern in the
mesh completely for an algorithm which uses the exclusive-or function to determine

processor pairs. Hence, there is more contention in the 16 x 30 case than in the 16 x 32

case.

Table 4.6 shows the performance of PEX-GEN-SHIFT. In all cases it performs
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Table 4.6: Performance of PEX-GEN-SHIFT (time in sec.)

Message Size Mesh Configuration
(bytes) 4x5[6x8[116x9|8x18]16x14 |16 x 30
256 0.008 | 0.019 | 0.085 | 0.089 | 0.092 0.211
1K 0.017 | 0.038 | 0.188 | 0.219 | 0.263 0.894
4K 0.036 | 0.091 | 0.543 | 0.782 | 0.933 3.526
8K 0.071 | 0.170 | 1.111 | 1.626 | 1.948 7.515
16K 0.129 | 0.333 | 2.242 | 3.282 | 3.844 15.74

no worse than PEX-GEN. In most cases, the improvement in performance is not
significant.

Table 4.7 gives the performance of GEN on a power-of-two mesh. GEN performs
better than PEX for small message sizes and small number of processors. However,
for large number of processors (> 64) and large message sizes (> 1 Kbytes) PEX
performs better. The GEN algorithm has a certain amount of asymmetry in the
communication in the sense that each communication operation consists of a send
to one processor and a receive from some other processor. Thus, the incoming and
outgoing messages may traverse a different number of links with different amounts
of contention, and the path which has the highest amount of contention adversely
affects the communication time. On the other hand, in the PEX algorithm, processor
pairs exchange with each other at every step, so the incoming and outgoing messages

travel the same number of links with the same amount of contention.

The performance of GEN on non power-of-two meshes is given in Table 4.8. GEN
reduces the number of steps from ¢ — 1 in PEX-GEN and PEX-GEN-SHIFT, where

q = 208”1 to P — 1. For small number of processors, PEX-GEN performs the best
and the improvement in performance is higher when ¢ — P is large. However, if
g — P is small and the number of processors is large, the performance of PEX-GEN-
SHIFT tends to that of PEX and and the performance of GEN tends to that for a
power-of-two mesh. So in this case, PEX-GEN-SHIFT performs better than GEN.
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Table 4.7: Performance of GEN on power-of-two mesh (time in sec.)

Message Size Mesh Configuration
(bytes) 4 x4 [8x8[16x8|8x16]16x16 |16 x 32
256 0.004 | 0.016 | 0.042 | 0.042 | 0.089 0.283
1K 0.008 | 0.042 | 0.123 | 0.132 | 0.346 1.217
4K 0.018 | 0.145 | 0.461 | 0.464 | 1.220 3.944
8K 0.037 | 0.290 | 0.933 | 0.927 | 2.511 8.007
16K 0.069 | 0.576 | 1.947 | 1.884 | 5.052 16.15

Table 4.8: Performance of GEN on non power-of-two mesh (time in sec.)

Message Size Mesh Configuration
(bytes) 4x5[6x8[116x9|8x18]16x14 |16 x 30
256 0.004 | 0.015 | 0.046 | 0.048 | 0.074 0.246
1K 0.009 | 0.027 | 0.146 | 0.171 | 0.285 1.069
4K 0.025 | 0.083 | 0.527 | 0.566 | 0.998 3.706
8K 0.052 | 0.186 | 1.071 | 1.154 | 2.011 7.752
16K 0.098 | 0.369 | 2.182 | 2.360 | 4.005 15.94

We observe from Table 4.9 that REX does not perform well for any mesh config-
uration and message size even though it requires only lg P steps. There are several
reasons for this. First, there is a lot of link contention in each step. Second, the mes-
sage size per step is increased to L P/2 instead of L in the other algorithms. Third,
the indirect form of communication requires a lot of data buffering and shuffling in
order to send the appropriate data to the appropriate node. Also, this algorithm has
high memory requirements because the large message size requires more memory per
node. For example, with the other algorithms we could run tests with message sizes
up to 2M bytes, but with REX we could only go up to 16 Kbytes on 512 processors.

Table 4.10 gives the performance of IPEX. For large meshes and large message
sizes, IPEX performs better than any of the direct algorithms. This is because in
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Table 4.9: Performance of REX on Delta (time in sec.)

Message Size Mesh Configuration
(bytes) 4 x4 [8x8[16x8|8x16]16x16 |16 x 32
256 0.004 | 0.022 | 0.056 | 0.056 | 0.140 0.393
1K 0.011 | 0.082 | 0.222 | 0.221 | 0.552 1.581
4K 0.029 | 0.212 | 0.615 | 0.600 | 1.566 4.739
8K 0.059 | 0.415 | 1.216 | 1.203 | 3.151 9.390
16K 0.114 | 0.950 | 2.512 | 2.381 | 6.279 18.75

Table 4.10: Performance of IPEX (time in sec.)

Message Size Mesh Configuration
(bytes) 4 x4 [8x8[16x8|8x16]16x16 |16 x 32
256 0.005 | 0.023 | 0.050 | 0.055 | 0.115 0.256
1K 0.010 | 0.059 | 0.144 | 0.145 | 0.334 0.829
4K 0.026 | 0.156 | 0.430 | 0.397 | 0.974 2.746
8K 0.049 | 0.294 | 0.823 | 0.755 | 3.151 5.499
16K 0.089 | 0.573 | 1.642 | 1.756 | 3.877 10.89

large meshes, direct algorithms result in a lot of link contention. The reduction in
contention by IPEX is larger than the cost of sending messages indirectly, hence
IPEX performs better. The message size and contention in each step in IPEX is
much smaller than in REX. The additional memory required per node in IPEX is L,
compared to L x P/2 in REX. In small meshes, the cost of communicating indirectly
is higher than the saving in contention, so direct algorithms perform better.

A comparison of the power-of-two algorithms on a 16 x 32 mesh for different
message sizes is shown in Figure 4.16. We can see that for this mesh size [PEX
performs the best, for reasons explained above. This is followed by PEX and GEN.
REX always performs the worst in spite of its lg P steps. The relative performance

of non power-of-two algorithms on a 16 x 9 mesh is shown in Figure 4.17. For this
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Figure 4.16: Performance of algorithms on a 16 x 32 mesh

mesh size, GEN clearly performs the best. For messages up to 2 Kbytes, the per-
formance of PEX-GEN and PEX-GEN-SHIFT is almost indistinguishable. But for
larger messages, PEX-GEN-SHIFT performs better than PEX-GEN.

The performance of the power-of-two algorithms for different mesh sizes keeping
the message size constant at 16 Kbytes is shown in Figure 4.18. The corresponding
graph for a message size of 1 Kbytes is shown in Figure 4.19. We observe that for
a large message size of 16 Kbytes, PEX performs the best for meshes with up to
200 processors. For larger meshes, IPEX performs the best. For a message size of
1 Kbytes, we see that GEN performs the best on meshes with up to 125 processors.
When the number of processors is between 125 and 420, PEX performs the best and
for larger systems, IPEX performs the best.

4.3.8 Model Validation

We have validated the models developed to predict the performance of the algorithms

by comparing the predicted times with the actual times observed on the Delta. For
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Figure 4.17: Performance of algorithms on a 16 x 9 mesh

20 |
18
16
14 -
12 -
Time (s)10

V 50 100 150 200 250 300 350 400 450 500 550

Number of Processors

O N = Oy
T

Figure 4.18: Performance of power-of-two algorithms for message size 16 Kbytes
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Figure 4.19: Performance of power-of-two algorithms for message size 1 Kbytes

this purpose, we use typical values for the communication costs on the Delta [80, 3],
namely for unforced messages o = Thus, B = 0.35us and for forced messages
a = 150us, fep = 0.2us. We assume that f,, ~ (., and 205 = B, as done
in [3], ie. two messages can travel on a link in the same direction without conflict.
Figures 4.20 and 4.21 show that the observed and predicted times agree very closely.

We were not able to validate the models on the CM-5 because accurate values for

Bsar Telative to G., or B, for the CM-5 are not available in the literature.
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Chapter 5

Runtime Support for Out-of-Core
Programs: (I) Models and Local
Optimizations

5.1 Introduction

There are a number of applications which deal with very large quantities of data.
These applications exist in diverse areas such as large scale scientific computations,
database applications, hypertext and multimedia systems, information retrieval, vi-
sualization etc. The number of such applications and their data requirements keep
increasing day by day. Although supercomputers have very large main memories, the
memory is not large enough to hold all the data required by these applications. For
example, a typical Grand Challenge Application at present could require 1Gbyte to
4Thytes of data per run [38]. These figures are expected to increase by orders of mag-
nitude as teraflop machines make their appearance. Hence, data needs to be stored on
disk and the performance of the program depends on how fast processors can access
data from disks. A poor I/O capability can severely degrade the performance of the
entire program.

Almost all present generation parallel computers provide some kind of hardware
and system software support for parallel I/O [29, 92,9, 36]. But, the [/O performance

observed at the application level is usually much lower than what the hardware can
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support. There are several reasons for this. First, the data access patterns of many
parallel programs are such that they result in a large number of small requests to the
file system [74]. Since the 1/0 latency is very high, this results is poor performance.
Second, the interface to any parallel file system does not currently allow a programmer
to specify strided accesses using a single read or write call; though there are some
recent proposals to rectify this [28, 88]. Third, the interface does not provide support
for processors to make a collective 1/O request. So file systems cannot perform
any optimizations based on the knowledge of the access requests of all processors.
Finally, the programmer cannot specity access requests using a high level description,
but instead has to explicitly manipulate file pointers. This makes it difficult for the
programmer to perform optimizations at the application level, for example prefetching
to overlap I/O with computation, because of the complexities involved in managing
buffers and file pointers.

We have developed a runtime system called PASSION (Parallel and Scalable Soft-
ware for Input-Output) [116, 25] which aims to alleviate many of these problems and
provide better software support for out-of-core programs. We believe that high-level
interfaces that facilitate the use of semantic knowledge about the accesses from par-
allel programs are necessary for simple and portable application programming. A
high-level interface can at the same time provide enough information so that I/O can
be done in an efficient manner. The PASSION Runtime Library accepts high-level
requests from the application program, translates them to the low-level intertace sup-
ported by the parallel file system, and performs optimizations for efficient 1/O. This
chapter discusses the basic design of PASSION and the various models, techniques

and optimizations used in it.

5.2 PASSION Runtime Library

The PASSION Runtime Library provides routines to efficiently perform the 1/0 re-
quired in programs involving out-of-core multidimensional arrays. It provides support

for loosely synchronous [46] out-of-core computations which use a Single Program
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Multiple Data (SPMD) Model. The library can either be directly used by application
programmers, or a compiler can translate out-of-core programs written in a high-
level data-parallel language like HPF to node programs with calls to the library for
[/O. PASSION provides the user with a simple high-level interface, which is a level
higher than any of the existing parallel file system interfaces, as shown in Figure 5.1.
For example, the user only needs to specify what section of the array needs to be
read /written in terms of its lower-bound, upper-bound and stride in each dimension,
and the PASSION Runtime Library will fetch it in an efficient manner. A number of
optimizations such as Data Sieving, Data Prefetching, Data Reuse, and the Extended
Two-Phase Method have been incorporated in the library [116, 115, 118].
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5.3 Models

This section discusses the architectural model and the data storage and access models

used by the PASSION Runtime Library.

5.3.1 Architectural Model

An important goal in the design of PASSION has been to make it architecture in-
dependent as far as possible. The architectural model assumed by PASSION is that
of any general distributed memory computer in which the processors are connected
together in some fashion. The system is assumed to be provided with a set of disks
and 1/0 nodes. The I/O nodes can either be dedicated processors or some of the
compute nodes may also serve as 1/O nodes [72]. Each processor may either have
its own local disk or all processors may share the set of disks. We prefer if the file
system allows us to control the way files are stored on disks, particularly the number
of I/O nodes (or disks) across which the file is striped and the stripe size. The I/O
subsystem may have a separate interconnection network or it can share the same
network which connects the processors together.

PASSION has been implemented on the Intel Touchstone Delta using the native
Concurrent File System (CFS) and the NX message passing library. Hence it can run
without modification on other Intel machines such as the Paragon and iPSC/860. All
the performance results in this chapter as well as in Chapter 6 have been taken on the
Touchstone Delta. The computation and communication hardware on the Delta is
described in Section 4.1.2. The /O system on the Delta consists of 32 dedicated I/O
nodes, each an Intel 80386 microprocessor. Each 1/0 node is connected to two disks,
resulting in a total of 64 disks. A Concurrent File System (CFS) [92] is provided for
parallel access to files. By default, a file is striped across all 64 disks in a round-robin
fashion in blocks of size 4 Kbytes. It is possible for the user to specify the disks on
which a file is to be stored, but the stripe size is fixed. The CFS provides the user with
a Unix-like interface and the parallel reads and writes are handled transparently. The

performance of the CFS on the Touchstone Delta has been studied in detail in [9]. The
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CFS supports four modes of file access. In Mode 0, each processor has an independent
file pointer. In Modes 1 — 3, processors have a common file pointer. All PASSION

routines have been implemented using Mode 0.

5.3.2 Data Storage and Access Models

Since PASSION is used in programs having large arrays which do not fit in main
memory, the arrays have to stored on disks in some fashion. PASSION supports three
basic models of storing and accessing arrays, called the Local Placement Model (LPM),
the Global Placement Model (GPM) and the Partitioned In-Core Model (PIM).

Local Placement Model (LPM)

In this model, the global array is divided into local arrays belonging to each processor.
Since the local arrays are out-of-core, they have to be stored in files on disks. The
local array of each processor is stored in a separate file called the Local Array File
(LAF) of that processor as shown in Figure 5.2(1). The node program explicitly reads
from and writes into the file when required. The simplest way to view this model is
to think of each processor as having another level of memory which is much slower
than main memory. If the I/O architecture of the system is such that each processor
has its own disk, the LAF of each processor will be stored on the disk attached to
that processor. If there is a common set of disks for all processors, the LAF will be
distributed across one or more of these disks. In other words, we assume that each
processor has its own logical disk with the LAF stored on that disk. The mapping of
logical disks to physical disks depends on how much control the parallel file system
provides the user. At any time, only a portion of the local array is fetched and stored
in main memory. The size of this portion depends on the amount of memory available.
The portion of the local array which is in main memory is called the In-Core Local
Array (ICLA). All computations are performed on the data in the ICLA. Thus,
during the course of the program, parts of the LAF are fetched into the ICLA, the

new values are computed and the ICLA is stored back into appropriate locations in
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the LAF.

Global Placement Model (GPM)

In this model, the global array is stored in a single file called the Global Array
File (GAF) as shown in Figure 5.2(Il) and no local array files are created. The
global array is only logically divided into local arrays in keeping with the SPMD
programming model. But, there is a single global array on disk. The PASSION
runtime system fetches the appropriate portion of each processor’s local array from
the global array file, as requested by the user, in an efficient manner. The advantage
of the Global Placement Model is that it does not require the initial local array
file creation phase in the Local Placement Model. The disadvantage is that each
processor’s data may not be stored contiguously in the GAF, resulting in higher 1/0
latency time. Also, explicit synchronization is required when a processor needs to
access data belonging to another processor. Hence an optimized method, such as
the Extended Two-Phase Method proposed in Chapter 6, is needed to perform 1/0
efficiently.

Partitioned In-Core Model (PIM)

The Partitioned In-Core Model, illustrated in Figure 5.2(III), is a variation of the
Global Placement Model. The array is stored in a single global array file as in the
Global Placement Model, but there is a difference in the way data is accessed. In
the Partitioned In-Core Model, the global array is logically divided into a number
of partitions, each of which can fit in the main memory of all processors combined.
Thus the computation on each partition is essentially an in-core problem and no I/0O
is required during the computation on the partition. Hence the name Partitioned In-
Core Model. This model is useful when the data access pattern in the program has
good locality. Otherwise, creating in-core partitions itself is difficult. The Extended
Two-Phase Method is used for I/O in this model.
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5.4 Runtime Support for the Local Placement
Model

Let us first consider runtime support for the Local Placement Model. Consider the
HPF program fragment shown in Figure 5.3, which solves Laplace’s equation by
Jacobi iteration method. Let us assume that arrays A and B are very large and hence
out-of-core. We note that this may not be the best algorithm for solving Laplace’s
equation with an out-of-core data set as discussed in [41], but we only use it for the
purpose of explanation.

The arrays A and B are distributed as (block,block) on a 4 x 4 grid of processors
as shown in Figure 5.4. In the Local Placement Model, the out-of-core local array
of each processor is stored in a separate local array file. Consider the out-of-core
local array (OCLA) on processor P35, shown in Figure 5.4(B). This is stored in the
local array file (LAF) shown in Figure 5.4(D). Depending on the amount of memory
available, the OCLA is divided into slabs each of which can fit in the in-core local
array (ICLA). Program execution proceeds by fetching a slab from the LAF to the
ICLA, doing the computation on that slab, storing the results back to the file, and
so on for the remaining slabs.

The computation in this example is a stencil computation in which the value of
each element (7,7) is calculated using the values of its corresponding four neighbors,
namely (¢—1,7), (¢+1,7), (1,7—1) and (¢, j+1). Also, the computation in the current
iteration uses values computed in the previous iteration. Thus to calculate the values
at the four boundaries of the local array, P5 needs the last row of the local array of
P1, the last column of the local array of P4, the first row of the local array of P9
and the first column of of the local array of P6. Before each iteration of the program,
P5 needs to get these rows and columns from its neighboring processors. If the local
array was in-core, these rows and columns would have been placed in the overlap areas
shown in Figure 5.4(B). This is done so as to obtain better performance by retaining
the DO loop even at the boundary. Since the local array is out-of-core, these overlap

areas are provided in the local array file. The local array file basically consists of
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parameter (n=1024)
real A(n,n), B(n,n)

'HPF$ PROCESSORS P(4,4)

'HPF$ TEMPLATE T(n,n)

'HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P
'HPF$ ALIGN with T :: A, B

FORALL (i=2:n-1, j=2:n-1)
A(i,j) = (B(i,j-1) + B(i,j+1) + B(i+1,j)
+ B(i-1,3))/4
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Figure 5.3: HPF Program Fragment: Solving Laplace’s Equation by Jacobi Iteration
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Table 5.1: Some of the PASSION Routines

PASSION Routine Function
1 | PASSION read Read entire LAF into ICLA
2 | PASSION write Write entire ICLA to LAF
3 | PASSION_read_section | Read a regular section (with stride) from LAF to ICLA
4 | PASSION write_section | Write a regular section (with stride) from ICLA to LAF
5 | PASSION read_prefetch | Prefetch a regular section
6 | PASSION prefetch wait | Wait for a prefetch to complete
7 | PASSION read reuse read _section with data reuse
8 | PASSION_global read Read a regular section (with stride) from global array file
9 | PASSION_global write | Write a regular section (with stride) to global array file
10 | PASSION oc_shift Shift type collective communication on out-of-core data
11 | PASSION oc multicast | Multicast communication on out-of-core data

the local array stored in either row-major or column-major order. In either case, the
local array file will consist of the local array elements interspersed with overlap area
as shown in Figure 5.4(D). The in-core local array also needs overlap area for the
same reason as for the out-of-core local array.

At the end of each iteration, processors need to exchange boundary data with
neighboring processors. In the in-core case, this would be done using a shift type col-
lective communication routine to directly communicate data from the local memory
of the processors. In the out-of-core case, this communication also requires I/0. In
an out-of-core shift type collective communication, each processor reads the bound-
ary data from its local array file and communicates it to the neighboring processor.
The processor also receives the data sent by neighboring processors and stores it in
appropriate locations in the local array file.

We have developed a library of routines to do the I/O as well as the out-of-
core communication required in programs such as the example described above. The
routines use a number of optimizations which are described in Section 5.5. Table 5.1

lists some of the PASSION routines and their function.
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5.4.1 Out-of-Core Array Descriptor (OCAD)

The runtime routines require information about the array such as its size, distribution
among the nodes of the distributed memory machine, storage pattern etc. All this
information is stored in a data structure called the Out-of-Core Array Descriptor
(OCAD) and passed as a parameter to the runtime routines. Before any of the
runtime routines are called, the compiler or user must fill the necessary information
in the OCAD. The structure of the OCAD is given in Figure 5.5. Rows 1 and 2 contain
the lower and upper bounds of the in-core local array (excluding overlap area) in each
dimension. The lower and upper bounds of the in-core local array in each dimension
including overlap area are stored in rows 3 and 4. The size of the global array in each
dimension is given in row 5. Row 6 contains the size of the out-of-core local array.
Row T specifies the number of processors assigned to each dimension of the global
array. The format in which the out-of-core local array is stored in the local array file is
given in Row 8. The array is stored in the order in which array elements are accessed
in the program, so as to reduce the 1/O cost. The entry for the dimension which is
stored first is set to 1, the entry for the dimension which is stored second is set to 2
and so on. For example, for a two-dimensional array, x,y = 1,2 means that the array
is stored on disk in column major order and x,y = 2,1 means that the array is stored
in row major order. This information enables the runtime system to determine the
location of any array element (i,j) on the disk. Row 9 contains information about the
distribution of the global array. Since the array can be distributed as BLOCK(m)
or CYCLIC(m), where m is the block-size, the value of m is stored in Row 10 of the
OCAD.

5.5 Optimizations

A number of optimizations, such as data sieving, data prefetching and data reuse,

have been incorporated in the PASSION Runtime Library.
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Figure 5.5: Out-of-Core Array Descriptor (OCAD)

5.5.1 Data Sieving

Studies of file access characteristics by Kotz and Nieuwejaar [74] have shown that
many scientific applications actually make strided accesses to the file. Hence, all
the PASSION runtime routines for reading or writing data from/to files support
the reading/writing of regular sections of arrays with strides. We define a regular
section of an array as any portion of an array which can be specified in terms of its
lower bound, upper bound and stride in each dimension. The need for reading array
sections from disks may arise due to a number of reasons, for example FORALL or
array assignment statements involving sections of out-of-core arrays.

Consider the array of size (11,11) shown in Figure 5.6, which is stored in a file.
Suppose it is required to read the section (2:10:2,3:9:2) of this array. The elements
to be read are circled in the figure. The interface to any parallel file system does not
currently allow a programmer to read or write strided data using a single call. Hence
the only direct way of reading the required data is to explicitly move the file pointer
to each element and read it individually, which requires as many reads as the number

of elements. We call this the Direct Read Method. A major disadvantage of this
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Figure 5.6: Accessing Sections of the OCLA

method is the large number of 1/O calls and low granularity of data transfer. Since
the I/0 latency is very high, this method proves to be very expensive. For example,
on the Intel Touchstone Delta using one processor and one disk, it takes 16.06 ms. to
read 1024 integers from a file as one block, whereas it takes 1948 ms. to read all of
them individually.

Suppose it is required to read a section of a two-dimensional array specified by
(lh : wy @ s1,le  uy @ s2). The number of array elements in this section is
([(ur —l1)/s1] + 1) x ([(ug — l3)/s2] + 1). Therefore, in the direct read method,

No. of I/O requests = (|(u1 — l1)/s1] + 1) X ([(ug — l3)/s2] + 1)

No. of array elements read per access = 1
Thus in this method, the number of I/O requests is very high and the number of
elements accessed per request is very low, which is undesirable.

We propose a much more efficient method called Data Sieving to read or write
out-of-core array sections having strides in one or more dimensions. Data sieving can
be explained with the help of Figure 5.7. As explained earlier, each processor has an
out-of-core local array (OCLA) associated with it. The OCLA is (logically) divided
into slabs, each of which can fit in main memory (ICLA). The OCLA shown in the

figure has four slabs. Let us assume that it is necessary to read the array section
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Figure 5.7: Data Sieving

shown in Figure 5.7, specified by (l1 : uy : s1,1ls : ug : s2), into the ICLA. Although
this section spans three slabs of the OCLA, because of the stride all the data elements
can fit in the ICLA.

In data sieving, the entire block of data from column /; to wuy if the storage is col-
umn major, or the entire block from row /; to wu; if the storage is row major, is read
into a temporary buffer in main memory using one read call. The required data is
then extracted from this buffer and placed in the ICLA. Hence the name data sieving.
A major advantage of this method is that it requires only one I/O call and the rest
is data transfer within main memory. The main disadvantage is the high memory
requirement. Another disadvantage is the extra amount of data that is read from
disk. However, we have found that the savings in the number of I/O calls increases
performance considerably. For this method, assuming column major storage,

No. of I/O requests = 1

No. of array elements read per access = (ug — Iy + 1) X nrows

Data sieving is a way of combining multiple I/O requests into one request so as to
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reduce the effect of high 1/0 latency time. A similar method called message coalescing
is used in interprocessor communication, where small messages are combined into a
single large message in order to reduce the effect of communication latency. However,
data sieving is different because instead of coalescing the required data elements
together, it actually reads even unwanted data elements so that large contiguous
blocks are read. The useful data is then filtered out by the runtime system in an
intermediate step and passed on to the program. The unwanted data read into main
memory is dynamically discarded.

Data sieving can also be considered from the following perspective. In the direct
method, even though a separate read call is required for each individual element, it
may not result in a disk access each time. There is usually some form of caching done
at the /0 nodes and if the requested data lies in the cache, it can be read from the
cache itself. In spite of this, we find that reading individual elements is a lot more
expensive than reading one large chunk. This is probably because of the overhead
of making several requests to the I/O nodes and looking up the software cache at
the I/O node each time. Data sieving can be considered as a way of doing software
caching in user space at the compute node itself. An entire chunk of data starting
from the first element in the section is effectively cached at the compute node and all
the required elements are supplied from this cache. The file system sees only a single
request or at most a few requests, depending on the amount of memory available for

this cache.

In the future when file systems support a strided interface, data sieving can also
be implemented at the file system level. The 1/O processors can read large chunks of

data from the file, perform sieving, and send only the required data to the compute

Processors.

Reducing the Memory Requirement

It the stride in the array section is large or the number of rows in the section is
small compared to the total number of rows in the out-of-core array, the amount of

memory required to read the entire block from column [, to us may be quite large.
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There may not be enough main memory available to store this entire block. Hence
instead of reading the entire section in a single call, a smaller subsection is fetched
from the file, depending on the amount of memory available. Sieving is performed on
this subsection, then the next subsection is read, sieving is performed on it, and so
on. This reduces the memory requirements of the program considerably and increases
the number of 1/0 requests only slightly. Let us assume that the array is stored in
column major order and n columns of the OCLA can fit in main memory. Then for
this case
No. of I/O requests = [(uy — I+ 1)/n]

No. of array elements read per access = n X nrows

Writing Array Sections

Suppose it is required to write an array section (Iy : ug : $1,0 1 ug @ s2) from the ICLA
to the LAF. The issues involved here are similar to those described above for reading
array sections. A Direct Write Method can be used to write each element individu-
ally, but it suffers from the same problems of large number of 1/O requests and low
granularity of data transfer. To reduce the number of 1/0 requests, a method similar
to the data sieving method described above needs to be used. If we directly use data
sieving in the reverse direction, i.e. elements from the ICLA are placed at appropriate
locations in a temporary buffer with stride, and the buffer is written to disk, the
data in the buffer between the strided elements will overwrite the corresponding data
elements on disk. In order to maintain data consistency, it is necessary to first read
the entire subsection from the LAF into the temporary buffer. Then, data elements
from the ICLA can be stored at appropriate locations in the buffer and the entire
buffer can be written back to disk. This is similar to what happens in cache memories
when there is a write miss. In that case, a whole line or block of data is fetched from
main memory into the cache and then the processor writes data into the cache. Thus,
writing sections using sieving requires twice the amount of 1/O compared to reading
sections, because for each write to disk the corresponding block has to first be fetched

into memory. Therefore, for writing array sections
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No. of I/O requests = 2[(uy — 5+ 1)/n]

No. of array elements transferred per access = n x nrows

Performance

Table 5.2 gives the performance of data sieving versus the direct method for reading
and writing array sections. An array of size 2K x 2K is distributed among 64 pro-
cessors in one dimension along columns. So each processor’s local array file consists
of an array of size 2K x 32 stored in column major order. Fach processor needs to
read/write a section from/to its local array file. We measured the time taken by the
PASSION read section() and PASSION write_section() routines for reading and
writing sections of the out-of-core local array on each processor. We observe that
data sieving provides tremendous improvement over the direct method in all cases.
The reason for this is large number of 1/O requests in the direct method, even though
the total amount of data accessed is higher in data sieving.

Table 5.3 gives the number of I/O requests and the total amount of data trans-
ferred for each of the array sections considered in Table 5.2. We observe that in the
data sieving method, the number of data elements transferred is more or less the same
for all cases. This is because the total amount of data transferred depends only on
the lower and upper bounds of the section and is independent of the stride. Hence
the time taken using data sieving does not vary much for all the sections we have
considered. However, there is a wide variation in time for the direct method, because
only those elements belonging to the section are read. The time is lower for small
sections and higher for large sections.

We observe that even for writing array sections, data sieving performs better than
direct write even though it requires reading the section before writing. As expected,
PASSION write section() takes about twice the time as PASSION read section()
when using data sieving. All PASSION routines involving array sections use data

sieving for greater efficiency.
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Table 5.2: Performance of Direct Read/Write versus Data Sieving (time in sec.)

Global array size 2K x 2K real nos. (single precision), 64 processors,

OCLA size 2K x 32, slab size = 16 columns

PASSION.read_section || PASSION write_section
Array Section Direct Read | Sieving || Direct Write | Sieving
(1:2048:2, 1:32:2) 52.95 1.970 49.96 5.114
(1:2048:4, 1:32:4) 14.03 1.925 13.71 5.033
(10:1024:3, 3:22:3) 8.070 1.352 7.551 4.825
(100:2048:6, 5:32:4) 7.881 1.606 7.293 4.756
(1024:2048:2, 1:32:3) 18.43 1.745 17.98 5.290

Table 5.3: 1/O requirements of Direct Read and Data Sieving Methods

Global array size 2K x 2K real nos. (single precision), 64 processors,

OCLA size 2K x 32, slab size = 16 columns

No. of 1/O requests || No. of array elements read
Array Section Direct Read | Sieving || Direct Read Sieving
(1:2048:2, 1:32:2) 16384 2 16384 65536
(1:2048:4, 1:32:4) 4096 2 4096 65536
(10:1024:3, 3:22:3) 2373 2 2373 40960
(100:2048:6, 5:32:4) 2275 2 2275 57344
(1024:2048:2, 1:32:3) 5643 2 5643 65536
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Figure 5.8: Data Prefetching

5.5.2 Data Prefetching

In the model of computation and 1/O described earlier, the OCLA is divided into
a number of slabs, each of which can fit in the ICLA. Program execution proceeds
as follows:- a slab of data is fetched from the LAF to the ICLA; the computation
is performed on this slab and the slab is written back to the LAF. This is repeated
on other slabs till the end of the program. Thus I/O and computation form distinct
phases in the program. A processor has to wait while each slab is being read or
written as there is no overlap between computation and 1/0. This is illustrated in
Figure 5.8(A) which shows the time taken for computation and 1/0O on 3 slabs. For
simplicity, reading, writing and computation are shown to take the same amount of
time, which may not be true in certain cases.

The time taken by the program can be reduced if it is possible to overlap com-
putation with I/O in some fashion. A simple way of achieving this is to issue a
non-blocking 1/O read request for the next slab immediately after the current slab
has been read. This is called Data Prefetching. Kotz and Ellis [73] discuss in detail the
effects of prefetching in parallel file systems. Since the read request is non-blocking,
the reading of the next slab can be overlapped with the computation being performed

on the current slab. If the computation time is comparable to the I/O time, this can
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result in significant performance improvement. Figure 5.8(B) shows how prefetching
can reduce the time taken for the example in Figure 5.8(A). Since the computation
time is assumed to be the same as the read time, all reads other than the first one
get overlapped with computation. The total reduction in program time is equal to
the time for reading two slabs, as only two of the three reads can be overlapped in
this example.

Note that the parallel file system may do some prefetching on its own. For exam-
ple, for each read request on the Delta, the CFS automatically prefetches the next
seven blocks of the file into the I/O node, resulting in a total of at least eight blocks
being read. For many applications, the prefetching done at the file system level may
not be sufficient and could even degrade performance, unless the user can control the
prefetching policy. This is because different applications have different access pat-
terns which may not match well with the prefetching policy of the file system. Most
of the parallel file systems at present do not allow the user to control prefetching. On
the other hand, the prefetching done by PASSION is controlled by the user. Since the
user knows what data is needed next, it can be prefetched correctly. Prefetching can
be done in PASSION using the routine PASSION read prefetch() and the routine
PASSION prefetch wait() can be used to wait for the prefetch to complete.

Performance

We use an out-of-core median filtering program to illustrate the performance of data
prefetching. Median filtering is frequently used in computer vision and image pro-
cessing applications to smooth the input image. Each pixel is assigned the median
of the values of its neighbors within a window of a particular size, say 3 x 3 or 5 x 5
or larger. We have implemented a parallel out-of-core median filtering program using
PASSION runtime routines for I/O and communication. The image is distributed
among processors in one dimension along columns and stored in local array files. De-
pending on the window size, each processor needs a few columns from its right and
left neighbors. This requires a shift type communication which is implemented using

the routine PASSION oc_shift ().
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Table 5.4: Performance of Median Filtering using 3 x 3 window (time in sec.)

4 slabs 8 slabs 16 slabs
Procs || Prefetch | No Prefetch || Prefetch | No Prefetch || Prefetch | No Prefetch
4 36.37 46.56 33.63 46.75 30.65 47.21
3 18.32 23.37 16.72 24.41 16.36 24.86
16 9.180 12.33 8.730 12.60 8.580 13.35
32 5.340 6.830 5.260 7.000 5.080 7.160
64 5.650 5.850 4.970 5.970 5.410 6.230

Table 5.5: Performance of Median Filtering using 5 x 5 window (time in sec.)

4 slabs 8 slabs 16 slabs
Procs || Prefetch | No Prefetch || Prefetch | No Prefetch || Prefetch | No Prefetch
4 81.47 94.09 79.25 95.63 78.58 96.88
3 41.81 47.76 41.35 49.32 41.01 50.59
16 21.57 25.41 21.40 27.28 21.74 27.81
32 11.36 12.83 11.40 13.64 11.43 14.81
64 7.110 9.010 6.810 9.110 8.090 9.197

Tables 5.4 and 5.5 show the performance of median filtering on the Intel Touch-
stone Delta for windows of size 3 x 3 and 5 x 5 respectively. The image is of size 2K X
2K pixels. We assume this to be out-of-core for the purpose of experimentation. The
number of processors is varied from 4 to 64 and the size of the ICLA is varied in each
case in such a way that the number of slabs varies from 4 to 16. Since the Touchstone
Delta has 64 disks, each processor’s LAF can be stored on a separate disk.

The following observations can be made from these tables:-

1. In all cases, prefetching improves performance considerably. In some cases, the
improvement is close to 40%. Figures 5.9 and 5.10 show the relative performance

with and without prefetching when the number of slabs is 8.
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2. Without prefetching, as the number of slabs is increased, the time taken in-
creases. This is because a larger number of slabs means a smaller slab size

which results in a larger number of I/O requests.

3. With prefetching, as the number of slabs in increased, the time taken decreases
in most cases. Since the first slab can never be prefetched, all processors have
to wait for the first slab to be read. As the slab size is reduced, the wait time for
the first slab is also reduced and there is more overlap of computation and 1/0.
However, the number of 1/O requests increases. When the slab size is large, a
reduction in the slab size by half improves performance because the saving in
the wait time for the first slab is higher than the increase in time due to the
larger number of I/O requests. But when the slab size is small (64 processor
case with 8 or 16 slabs), the higher number of I/O requests costs more than
the decrease in wait time for the first slab. Hence the performance actually

degrades in this case.

5.5.3 Data Reuse

In out-of-core programs, data is fetched from files many times. If a portion of the data
currently fetched into memory is also needed for the computation on the next data set,
then that portion already in memory can be reused instead of reading it again with
the next data set. For example, consider the Laplace equation solver discussed earlier
(Figure 5.3). Suppose the array is distributed along columns. Then the computation
of each column requires one column from the left and one column from the right. The
computation of the last column requires one column from the overlap area and the
computation of the column in the overlap area cannot be performed without reading
the next column from the disk. Hence, instead of reading the column in the overlap
area again with the next set of columns, it can be reused by moving it to the first
column of the array and the last column can be moved to the overlap area before the
first column (Figure 5.11). If this move is not done, it would be necessary to read the

two columns again from the disk along with data for the next slab. The reuse thus
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eliminates the reading of two columns in this example. In general, the amount of data
reuse would depend on the intersection of the sets of data needed for computations
involving two consecutive slabs. The PASSION routine PASSION read reuse() can

be used to perform data reuse.

Move columns

=

Overlap Areas

Figure 5.11: Data Reuse

Table 5.6: Performance of Data Reuse

Laplace Equation solver, 64 processors

Array size Time in sec.
Without Reuse || With Reuse

2K x 2K 75.12 71.71

1K x 4K 274.7 269.1

Table 5.6 shows the performance improvement obtained by using data reuse for the
Laplace Equation Solver program on the Intel Touchstone Delta using 64 processors.
Two different global array sizes are used — 2K x 2K and 4K x 4K. Reuse provides
good performance improvement even in this case where only two columns can be

reused.



Chapter 6

Runtime Support for Out-of-Core
Programs: (II) Collective I/0

6.1 Introduction

Chapter 5 discusses runtime support for the Local Placement Model where there is a
separate local array file for each processor. Each processor can directly access only its
own local array file. However, the situation is quite different in the Global Placement
and Partitioned In-Core Models. In these two models, there is a single global array
file containing the entire out-of-core array. Each processor accesses the data it needs
from this common file. A processor may, in general, need to access any arbitrary
section of the global array, with or without stride. The global array may be stored
in the global array file in either row-major or column-major order. As a result, the
data required by each processor may not be located contiguously in the file. Also,
the requests of some processors may overlap. In the extreme case, all processors may
want to access the same section of the array. If each processor directly tries to read
the data it needs, it may result in a large number of low granularity requests and
multiple requests for the same data.

In loosely synchronous SPMD programs, all processors perform similar operations
but on different data sets [46]. Hence, if one processor needs to read data from
disks, it is very likely that a group of processors or maybe all processors need to read

data from disks at about the same time. This makes it possible for the requesting
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processors to cooperate in reading or writing out-of-core data in an efficient man-
ner, which is known as collective 1/0. This chapter proposes a method, called the
Extended Two-Phase Method, which uses collective I/O for accessing sections of out-
of-core arrays efficiently. PASSION provides two routines, PASSION global read()
and PASSION global write(), to read/write arbitrary array sections with strides
from/to a global array file, using the Extended Two-Phase Method.

6.2 Need for Collective I/0

The need for collective I/O can be explained using the following example. Consider
the large out-of-core array shown in Figure 6.1 and assume that it is stored in a file
in column-major order. Four processors (0 — 3) need to access a block of rows each
as shown. Since the access requests are orthogonal to the file storage order, the data
requested by each processor is located non-contiguously in the file. Also, the requests
of different processors lie interleaved in the file. A portion of 0’s request lies at the
start of the file, followed by some unwanted data (gap), then a portion of 1’s request
followed by a gap, then a portion of 2’s request followed by a gap, then a portion of
3’s request followed by a gap, then again a portion of 0’s request, and so on. To read
the data using the interface provided by most of the existing parallel file systems,
each processor has to explicitly seek to the appropriate location in the file, read the
small chunk of data, then seek to the next location, and so on. We call this the
Direct Method. The Vesta file system [29] and the nCUBE file system [36] do provide
support for the user to specify a logical view of the data to be read, and use a single
call to read data. But each processor’s request is serviced independently and there is
no collective optimization based on the requests of all processors.

The drawback of the Direct Method is a large number of low granularity requests
which may arrive from different processors in any order. Since 1/O latency is very
high, this usually results in poor performance. The basic premise behind collective

[/O is that if a group of processors need to read/write data at the same time, they
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Figure 6.1: Accessing row blocks of a file stored in column-major order

can cooperate among themselves to perform I/O efficiently in large chunks and in
the right order. This is usually possible in loosely synchronous SPMD programs in
which all processors perform similar operations on different data sets. Hence, a group
of processors may need to perform [/O at the same time. An appropriate interface
needs to be provided for the user to specify a collective I/O request. The PASSION
Runtime Library provides such an interface [26].

Given an appropriate collective I/O interface, the collective I/O operation can
be implemented either as a library on top of the file system, or at the file system
level itself. A technique called Two-Phase 1/0 [37, 12] has been proposed for doing
collective 1/0O at the library level. In this method, I/O is done in two phases. In the
first phase, processors cooperate to read data in large chunks, and in the second phase
they do an in-core redistribution of the data. Disk-directed 1/O [69] is a technique
which proposes to do collective I/O at the file system level. In disk-directed /0O, a
collective I/O request is sent to all [/O nodes which determine the order and timing

of the flow of data.



CHAPTER 6. RUNTIME SUPPORT FOR OUT-OF-CORE PROGRAMS (1) 117

6.3 Extended Two-Phase Method for Collective
I/0

The Two-Phase Method [37, 12] is a collective 1/O technique for reading an entire
in-core array from a file into a distributed array in main memory, and conversely
to write a distributed in-core array to a file. I/O is done in two phases. In the first
phase, processors always read data assuming a conforming distribution. A conforming
distribution is defined as a distribution of an array among processors such that each
processor’s local array lies contiguously in the file. This results in each processor
reading a single large chunk of data. For an array stored in a file in column-major
order, a column-block distribution is the conforming distribution. In the second phase,
data is redistributed among processors to whatever is the desired distribution. Since
[/O cost is orders of magnitude more than communication cost, the cost incurred by
the second phase is negligible. This Two-Phase approach is found to give consistently
good performance for all distributions [37, 12].

We have extended the basic Two-Phase Method to access arbitrary sections of
out-of-core arrays. This Extended Two-Phase Method performs I/O for out-of-core
arrays efficiently by

e partitioning the [/O workload among processors dynamically, depending on the

access requests,
e combining several [/O requests into fewer larger granularity requests,
e reordering requests so that data is accessed in proper sequence,
o eliminating multiple disk accesses for the same data, and

e reducing contention for disks.

6.3.1 Reading Sections of Out-of-Core Arrays

We first describe the Extended Two-Phase Method for reading regular sections of

out-of-core arrays. We define a regular section of an array as a section which can
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be specified by a lower-bound, upper-bound and stride in each dimension. For the
purpose of explanation, we consider the case where each processor needs to read some
regular section of a two-dimensional array stored in the file in column-major order.
The Extended Two-Phase Method can actually be used for arrays with any number of
dimensions, stored in any order in the file and accessed by any number of processors.
Section 6.6 discusses how the general case can be implemented.

In the Extended Two-Phase Method, the /O workload is divided among proces-
sors. For this, we assign ownership to portions of the file such that a processor can
directly access only the portion of the file it owns. The file is effectively logically
divided into domains. The portion of the file which a processor can directly access is
called its File Domain (FD). For a file stored in column-major order, the file domain
of each processor is some set of columns of the array. The issue of how to select
file domains is important because it determines how the 1/O workload gets divided
among processors. This is discussed in detail in Section 6.4.

Let us assume that each processor needs to read some regular section
(lh @ up @ 81,02+ ug @ s2) of the array in global coordinates. In the first step of
the Extended Two-Phase Method, processors exchange their own access information
(the indices 1, uq, $1,l2, uz, s3) with other processors, so that each processor knows
the access requests of other processors. This information is stored in a data structure
called the File Access Descriptor (FAD). The FAD contains exactly the same infor-
mation on all processors. This exchange phase is not required if the collective 1/0
interface itself provides information about other processors’ access requests.

Since each processor knows its own file domain and the access requests of other
processors, it can determine what portion of the data in its file domain is needed
by other processors. This is done by computing the intersection of the requests of
other processors from the FAD and its own file domain. This information is stored
in a data structure called the File Domain Access Table (FDAT). Thus the FDAT of
a processor contains information about which portions of its file domain have been
requested by other processors.

Each processor now has to read data from its file domain, as determined by the
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Figure 6.2: The requests in processor 0’s file domain

FDAT. For example, Figure 6.2 shows the file domain of processor 0 and, for some
access pattern, the portions of this file domain which have been requested by other
processors. A simple way of reading would be to read all the data needed by processor
0, followed by that needed by processor 1 and so on in order of processor number.
But, as in the case of Figure 6.2, this may result in too many small accesses which are
not in sequence. For the read to be done efficiently, it is important that the FDAT be
analyzed so that the file is accessed in sequence and contiguously, as far as possible.

We have devised a very general method for analyzing the information in the FDAT,
which ensures that the file is read contiguously and in sequence. FEach processor
calculates the minimum of the lower-bounds and the maximum of the upper-bounds
of all sections in its FDAT. This effectively determines the smallest section which
contains all the data that needs to be read from the file domain (for example, section
ABCD in Figure 6.2). This section may also contain some data which is not required
by any processor. If the processor tries to read only the useful data, it may result
in a number of small strided accesses. To avoid this, it uses the optimization data
steving described in Chapter 5. The processor reads a column of the section at a time
in a single operation into a temporary buffer. This may include some unwanted data.

The useful data is extracted from the temporary buffer and placed in communication
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buffers depending on which processors need the data. The entire section is read from
the file domain in this fashion. It is possible to read more than one column at a time
if there is enough temporary memory available to do sieving on the set of columns.
This forms the first phase of the Extended Two-Phase Method.

The second phase of the Extended Two-Phase Method consists of communicating
the data read in the first phase to the respective processors. The information in the
FDAT is sufficient for each processor to determine what data has to be sent to which
processor. Since each processor knows the file domains of other processors and its
own access request, it can calculate how much data it needs to receive from other
processors, as well as the locations in main memory where the received data needs to
be placed.

The two phases of the Extended Two-Phase Method can either be done distinctly
by performing all the I/O first and then the communication, or they can be overlapped

(pipelined) by reading smaller portions of data and communicating it.

6.3.2 Writing Sections of Out-of-Core Arrays

The algorithm for writing sections is essentially the reverse of the algorithm for reading
sections. From the information in the File Access Descriptor (FAD), each processor
can determine what portion of the section it needs to write lies in the file domains
of other processors. Each processor also computes its own File Domain Access Table
(FDAT), which indicates how much data it needs to receive from other processors, to
be written to its file domain. The first phase of the Extended Two-Phase Method for
writing is to perform communication to get this data from other processors.

The second phase is to write the data to the file in sequence and contiguously.
The FDAT is analyzed in the same way as in the read algorithm. Fach processor
determines the minimum and maximum of all indices in its FDAT. This effectively

determines the smallest section which includes all the data that needs to be written

to the file domain. It may also include some data which is not being written by any
processor. The processor writes the useful data in this section one column at a time

using data sieving. However, for writing using data sieving, we cannot directly use
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the reverse of the method used for reading. If the useful data is placed at appropriate
locations (possibly with stride) in a temporary buffer and the buffer is written to the
file, the contents of the buffer between the useful data elements will overwrite the data
in the file. To maintain data consistency, it is necessary to first read the entire column
from the file into the temporary buffer. Then, the data elements to be written in that
column can be stored at appropriate locations in the buffer and the entire column
can be written back to disk. Thus, writing sections requires twice the amount of
[/O compared to reading sections, because to write each column, the corresponding
column has to first be read into memory. It is possible to avoid this extra reading in
cases where the entire column contains useful data to be written. This requires each
processor to do a more extensive analysis of the FDAT, to make sure that there are
no “holes” between the data sets being written by different processors in the same
column, and also no strides in the section being written by each processor. As in the
case of reading sections, it is possible to do sieving with more than one column at a
time if there is enough temporary memory available.

If the sections requested to be written by different processors have some elements
in common, there is a data consistency problem. The result depends on how the
Extended Two-Phase Method has been implemented. In our implementation, if there
are write requests from multiple processors to the same location, the data from the

highest numbered processor is written to the file.

6.4 Partitioning I/O Among Processors

In the Extended Two-Phase Method, processors cooperate to perform 1/0. The exact
partitioning of the I/O workload among processors depends on how file domains
are defined. In general, the partitioning of I/O can be done either statically or

dynamically.
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6.4.1 Static Partitioning

One way of partitioning /O is to assign a block of columns of the entire out-of-core
array to each processor, as if the array were distributed among processors in a column
block fashion. Thus the file domain of each processor is a block of columns of the
array, which is stored contiguously in the file. The file domains are predefined and
fixed. The size of each domain can be determined from the size of the array and the
number of processors, and is independent of the access requests. This is called a static
partitioning of I/O among processors. Note that this is just a logical partitioning of
the file among processors, so that each processor directly accesses only a particular
portion of the file (its file domain). Figure 6.3(A) shows the file domains with static

partitioning when there are four processors.

6.4.2 Dynamic Partitioning

The main drawback of static partitioning is that the partitioning is independent of
the type of access requests. For many types of access patterns, this may result in an
imbalance of 1/O among processors. Some processors may perform more 1/O than
others and some may not perform any [/0O at all. For example, consider the access
pattern in Figure 6.3. If the partitioning is done statically, the access requests span
the file domains of only two processors. Thus only two processors (1 and 2) perform
all the I/O; the remaining two processors (0 and 3) only wait to receive data sent by
1 and 2. Another drawback of static partitioning is that as the size of the out-of-core
array 1s increased keeping the number of processors fixed, the size of each file domain
also increases. Hence, for the same access pattern, as the size of the out-of-core array
is increased, the access requests span the file domains of fewer processors resulting in
greater imbalance of /O and lower performance.

The I/0 throughput can potentially be improved by partitioning the I/O workload
among processors dynamically, depending on the array sections requested. This is
illustrated in Figure 6.3(B). For a file stored in column-major order, each processor

calculates the lowest and highest among the columns of the sections requested by
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Figure 6.3: Static versus Dynamic Partitioning

all processors. The section formed by these columns and all the rows of the out-of-
core array is called the bounding section. The bounding section includes the sections
requested by all processors and it lies contiguously in the file. Figure 6.3(B) shows
the bounding section for the given access requests. File domains are determined by
dividing the bounding section among the processors in a column-block fashion. Thus
the file domain of each processor is a contiguous chunk of the bounding section.

If the requested sections span all the columns of the out-of-core array, the dy-
namically selected file domains are exactly the same as those determined statically.
But if the sections span only a few columns, as in Figure 6.3, dynamic partitioning
provides a much better balance of /O among processors. The memory requirements
of the Extended Two-Phase Method are also reduced, because the file domain of each
processor is smaller. In the static case, if all requested sections lie in a single proces-
sor’s file domain, all the requested data may not fit in the memory of that processor.
Hence I/O and communication may need to be done in stages several times. This is
less likely to occur in the case of dynamic partitioning, because the requested data is

more evenly divided among processors.
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1. Exchange access information with other processors and fill in the File Access

Descriptor (FAD).

2. Determine the smallest section which includes the sections requested by all

processors, called the bounding section.

3. The file domain of each processor is determined by dividing this
bounding section among the processors in a column-block manner

for arrays stored in column-major order.

4. Compute the intersection of the FAD and this processor’s file domain,

and fill in the File Domain Access Table (FDAT).

5. Calculate the minimum of the lower-bounds and the maximum of the

upper-bounds of all sections in the FDAT to determine the smallest section

containing all the data needed from the file domain.

6. Read this section using data sieving and communicate the data

to the requesting processors.

Figure 6.4: Extended Two-Phase Method for Reading Sections of Out-of-Core Arrays

The algorithm for reading sections of out-of-core arrays using the Extended Two-

Phase Method with dynamic partitioning is given in Figure 6.4. If the array is stored

in the file in row-major order instead of column-major order, the only difference would

be that the file domains would be defined in terms of row-blocks and data sieving

would be done along rows.

6.5 Performance

We extensively tested the performance of the Extended Two-Phase Method versus

the Direct Method on the Intel Touchstone Delta, for many different access patterns,
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using both static and dynamic partitioning. The access patterns can be classified into

three basic types:-

1. Common Sections: All processors need to access exactly the same section of the

array.

2. Owverlapping Sections: Parts of the section requested by a processor may overlap

with parts of the sections requested by other processors.

3. Distinct Sections: The section requested by each processor does not have any

data in common with the section requested by any other processor.

6.5.1 Reading Common Sections

Table 6.1 compares the performance of the Extended Two-Phase Method and the
Direct Method for reading common sections. The array size is 4K x 4K and the
number of processors is 16. Figure 6.5 shows approximately where each of these
sections is located in the array. The performance of the Extended Two-Phase Method
was measured using both static and dynamic partitioning. We observe that in all
cases, the Extended Two-Phase Method performs considerably better than the Direct
Method. This is primarily because, in the Extended Two-Phase Method, the common
section is read only once and then broadcast to other processors, whereas in the
Direct Method, all processors simultaneously try to read the same section from the
file, resulting in extra I/O overhead.

In all cases, the Extended Two-Phase Method takes a lot less time with dynamic
partitioning than with static partitioning. In the case of static partitioning, for a
4K x 4K array with 16 processors, each processor’s file domain is of size 4K x 256.
Thus all sections except V lie in the file domains of only a few processors. But with
dynamic partitioning, each section is evenly divided among all available processors,
resulting in higher 1/O throughput. Since Section V spans all 4096 columns, the
statically and dynamically selected file domains are identical, resulting in identical

performance.
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Table 6.1: Time (sec.) for Reading Common Sections

Array size 4K x 4K real nos. (single precision), 16 processors

No. Array Section Direct || Extended Two-Phase
Read || Static Dynamic
I (1:100:1, 1:100:1) 1.632 || 1.027 0.431
IT || (200:300:1, 200:300:1) || 1.867 || 0.883 0.363
IIT || (400:800:1, 400:800:1) || 6.265 || 3.692 1.056
IV || (32:64:1, 128:1024:1) || 9.995 | 2.780 1.318
\Y (1:16:1, 1:4096:1) 52.06 || 3.241 3.241
VI (1:4096:1, 1:16:1) 1.216 || 2.024 0.420
M (m an;
]
(V) V) D)

Figure 6.5: The common sections listed in Table 6.1 (not to scale)
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In cases where the sections span a large number of columns (e.g. Section V),
the Extended Two-Phase Method provides a significant improvement over the Direct
Method. This is because for such cases, the Direct Method results in a large number
of small requests spread across the entire file. In the Extended Two-Phase Method,
the /0 gets evenly divided among all processors, the requests are reordered and data

is read in large chunks.

6.5.2 Reading Overlapping Sections

Table 6.2 compares the performance of the Extended Two-Phase Method and the
Direct Method for reading overlapping sections. Figure 6.6 shows approximately
where these sections are located in the array. To represent these overlapping sections
for all processors concisely, we use the following notation. Each processor’s request
is denoted by (I + ovl X p : uy + ovl X p : s1,ls + 002 X p : ug + 002 X p @ 89),
where p is the processor number and ovl, ov2 are some constants. The amount of
overlap can be changed by varying ovl and ov2. For example, the notation (1:100:1,
1410p:100+10p:1) in row I of Table 6.2 represents a group of overlapping sections
with processor 0 requesting section (1:100:1, 1:100:1), processor 1 requesting section
(1:100:1, 11:110:1), processor 2 requesting section (1:100:1, 21:120:1) and so on. The
sections in cases | — IV overlap along columns, the sections in cases V — VII overlap
along rows and the sections in case VIII overlap in both dimensions.

We observe that the Extended Two-Phase Method with dynamic partitioning
performs the best in all cases. The sections in cases I and II are of the same size, but
they differ in the amount of overlap. The sections in case I have more overlap than
those in case II. Since the total number of columns of the out-of-core array spanned
by the sections in case 1 is less than that by the sections in case II, it takes less
time to read the sections in case 1. Sections in cases IV, V and VI span only a few
columns. For these cases, the Direct Method performs better than the Extended Two-
Phase Method with static partitioning. This is because static partitioning results in

only a few processors performing 1/O. But the Extended Two-Phase Method with
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Table 6.2: Time (sec.) for Reading Overlapping Sections

Array size 4K x 4K real nos. (single precision), 16 processors

overlap

No. Array Section Direct || Extended Two-Phase
(p = processor number) Read || Static Dynamic
1 (1:100:1, 1+10p:100+10p:1) 2.000 || 1.830 0.693
11 (1:100:1, 14-50p:100+50p:1) 4.627 || 1.859 0.875
11 (400:800:1, 400+100p:8004100p:1) 8.097 || 3.348 2.477
v (1:4096:1, 14-8p:16+8p:1) 1.152 || 3.374 0.826
A% (1450p:100+50p:1, 1:100:1) 1.579 || 1.994 0.524
VI (400+100p:8004100p:1, 400:800:1) 7.442 | 11.84 1.361
VII (148p:16+8p:1, 1:4096:1) 50.32 || 2.992 2.992
VIII || (2004+100p:4004+100p:1, 200+100p:400+100p:1) || 3.104 2.986 1.739
overlap overlap [*] -----------
overlap
overlap
m (D) (D) 1v)
overlap
Eeoverlap %
overlap ' ..

V)

(v

v

(Vi)

Figure 6.6: The overlapping sections listed in Table 6.2 (not to scale)
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dynamic partitioning performs better than the Direct Method, since there is a better
distribution of 1/O among processors. The sections in case VII span all columns of
the array, which is the worst case for the Direct Method. Finally, in case VIII, the
sections have overlap in both dimensions and again the Extended Two-Phase Method

with dynamic partitioning takes the least time.

6.5.3 Reading Distinct Sections

Table 6.3 compares the performance of the Extended Two-Phase Method and the
Direct Method for reading distinct sections. Figure 6.7 shows approximately where
these sections are located in the array. We use the same notation as above, (/1 +ovl x
prurtovl Xp:sy,la+0v2 X p:uy+ov2 X p:sy), for representing distinct sections.
The overlap factors ovl and ov2 need to be large enough to ensure that the sections

are distinct.

In all cases, the Extended Two-Phase Method with dynamic partitioning per-
forms the best. The relative performance of the three methods is similar to that for
overlapping sections in Table 6.2. The sections in case I are located along rows, so
the requests of different processors lie in separate locations in the file. Hence the
Extended Two-Phase Method performs only slightly better. The sections in cases II
— IV are located along columns and so the requests of different processors lie in-
terleaved in the file. Hence the Extended Two-Phase Method performs considerably
better. Static partitioning does not give good performance for the sections in case 11
because they span only a few columns. The best case for the Extended Two-Phase
Method is case IV since the sections span all the columns. The sections in cases V and
VT lie partly interleaved in the file. Even for these cases, the Extended Two-Phase
Method performs the best.
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Table 6.3: Time (sec.) for Reading Distinct Sections

Array size 4K x 4K real nos. (single precision), 16 processors

Figure 6.7: The distinct sections listed in Table 6.3 (not to scale)

No. Array Section Direct || Extended Two-Phase
(p = processor number) Read || Static Dynamic
1 (1:100:1, 14+100p:100+100p:1) 1.976 || 1.954 1.304
I (14+100p:100+100p:1, 1:100:1) 1.633 || 2.182 0.548
III || (2004200p:4004+200p:1, 512:1024:1) || 8.016 || 5.680 1.725
v (1432p:16+32p:1, 1:4096:1) 51.63 || 4.823 4.823
Vv (2004-200p:4004-200p:1, 14-200p:5124-200p:1) 5.466 4.524 3.912
VI (14-32p:32432p:1, 14+100p:10244100p:1) 12.02 2.991 2.371
T ]

") (I (1)

] |

(V) V) 9
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Table 6.4: Time (sec.) for Writing Distinct Sections

Array size 4K x 4K real nos. (single precision), 16 processors

No. Array Section Direct || Extended Two-Phase
(p = processor number) Write || Static Dynamic
1 (1:100:1, 14+100p:100+100p:1) 1.944 || 3.250 2.801
I (14+100p:100+100p:1, 1:100:1) 1.182 || 2.901 0.854
III || (2004200p:4004+200p:1, 512:1024:1) || 4.202 || 8.715 3.569
v (1432p:16+32p:1, 1:4096:1) 24.85 || 10.25 10.25
Vv (2004-200p:4004-200p:1, 14-200p:5124-200p:1) 5.155 5.461 4.401
VI (14-32p:32432p:1, 14+100p:10244100p:1) 8.233 4.994 4.274

6.5.4 Writing Distinct Sections

We only consider the case where each processor writes a distinct section to the file,
because it is unlikely that processors will want to write overlapping or common sec-
tions. Table 6.4 compares the performance of the Extended Two-Phase Method and
the Direct Method for writing distinct sections. The sections chosen are the same as
those for reading in Table 6.3 (Figure 6.7).

We use the most general algorithm for writing in the Extended Two-Phase Method,
which requires an extra read for each write. Hence for the sections in case I, the Di-
rect Method performs better because it does not require the extra read and also these

sections are small with few columns. The sections in cases Il — IV lie interleaved

in the file, so the Extended Two-Phase Method with dynamic partitioning performs
much better than the Direct Method. The sections in cases V and VI lie partly inter-
leaved in the file and even for these cases, the Extended Two-Phase Method performs
considerably better.

6.5.5 Accessing Sections with Non-Unit Strides

We have also tested the performance for accessing sections with non-unit strides.

When an array section has a non-unit stride, each element of the array lies strided
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Table 6.5: Time (sec.) for Reading Sections with Non-unit Strides

Array size 4K x 4K real nos. (single precision), 16 processors

No. Array Section Direct || Extended Two-Phase
(p = processor number) Read || Static Dynamic
1 (p+1:4096:nprocs, p+1:4096:nprocs) || 210.8 || 9.330 9.330
1I (14-250p:2504250p:2, 14+-250p:250+250p:2) 53.13 3.610 2.842
11T (14-200p:500+4200p:3, 14-200p:500+200p:3) 87.19 4.394 4.387
v (1464p:64+64p:2, 500:2500:3) 96.20 || 4.759 3.848
A% (500:2500:3, 14+64p:64+64p:2) 130.7 || 4.574 2.340

in the file. The only way of reading such array sections using a direct method is to
explicitly seek to each individual element and read only that element. This results in
very low granularity of data transfer, which is very expensive. The Extended Two-
Phase Method overcomes this drawback of the Direct Method by reordering requests
and using data sieving for larger granularity reads.

Table 6.5 shows the performance of the Extended Two-Phase Method for reading
sections with non-unit strides. The sections in case I span almost the entire array,
with stride equal to the number of processors. Hence static and dynamic partitioning
take exactly the same time. The sections in cases Il and III are located diagonally
across the out-of-core array. The sections in case IV are located along columns and
the sections in case V are located along rows. In all cases, the Extended Two-Phase

Method is more than 20 times faster than the Direct Method. Table 6.6 shows the

performance of the Extended Two-Phase Method for writing sections with non-unit
strides. The sections chosen are the same as in Table 6.5. Even for writing sections,

the Extended Two-Phase Method provides considerable performance improvement.

6.5.6 Scalability

We have also studied the scalability of the Extended Two-Phase Method for large

number of processors, large array sections and large out-of-core arrays. Since dynamic
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Table 6.6: Time (sec.) for Writing Sections with Non-unit Strides

Array size 4K x 4K real nos. (single precision), 16 processors

No. Array Section Direct || Extended Two-Phase
(p = processor number) Write || Static Dynamic
1 (p+1:4096:nprocs, p+1:4096:nprocs) || 53.28 || 22.77 22.77
1I (14-250p:2504250p:2, 14+-250p:250+250p:2) 25.22 6.438 3.775
11T (14-200p:500+4200p:3, 14-200p:500+200p:3) 44.64 8.696 7.516
v (1464p:64+64p:2, 500:2500:3) 71.35 || 8.858 7.279
A% (500:2500:3, 14+64p:64+64p:2) 79.24 || 7.724 4.405

partitioning always performs better or at least as good as static partitioning, we only
consider dynamic partitioning for the scalability experiments. Table 6.7 shows the
timings obtained by varying the number of processors requesting array sections from
4 to 128, for both reading and writing. We have selected a few sections in each
category, i.e. common, overlapping, distinct, and also sections with non-unit strides.
Note that each processor is requesting a section, so as the number of processors is
increased, the amount of I/0 required increases.

The main observation is that the Extended Two-Phase Method scales well with

the number of processors. In many cases, the time taken increases only slightly as the
number of processors is increased, which indicates that we are able to get higher 1/0
throughput by increasing the number of processors. For example, for the sections in
case [, the time taken increases from 1.282 sec. to only 2.130 sec. when the number of
processors is increased from 4 to 128. In some cases, such as case 11, the time taken
even decreases. The Direct Method performs quite poorly as the number of processors
is increased, especially for sections in cases I, [V and VIII. The Extended Two-Phase
Method also scales well for writing sections. For small number of processors, the
Direct Method takes less time for writing than the Extended Two-Phase Method.
This is because of the extra read required for every write in the Extended Two-Phase
Method. However, for large number of processors (> 16), the Extended Two-Phase

Method performs better. For sections with non-unit strides, the Extended Two-Phase
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Table 6.7: Performance for different number of processors

I = (400:800:1, 400:800:1), Figure 6.5(11I)

IT = (1:16:1, 1:4096:1), Figure 6.5(V)

III = (400:800:1, 400+25p:800+25p:1), Figure 6.6(I1I)

IV = (148p:16+8p:1, 1:4096:1), Figure 6.6( VII)

V = (1425p:16+25p:1, 1:4096:1), Figure 6.7(1V)

VI = (1432p:32+432p:1, 1424p:10244-24p:1), Figure 6.7(VI)
VII = (p+1:4096:nprocs, p+1:4096:nprocs)

VIII = (500:2500:3, 1+32p:32+32p:2)

Time in sec., 4K x 4K array, DR = Direct Read,
ETP = Extended Two-Phase (dynamic partitioning), DW = Direct Write

READING COMMON SECTIONS
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
1 2.620 1.282 3.184 1.040 4.421 1.056 8.734 1.169 16.28 1.436 32.64 2.130
11 12.16 4.315 13.95 3.099 19.65 3.241 32.96 2.647 60.11 3.432 116.7 | 3.219

READING OVERLAPPING SECTIONS
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128

tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
111 3.079 1.748 5.208 1.699 6.850 1.991 13.61 2.798 24.98 | 3.801 47.95 4.602
v 13.75 4.450 13.77 | 3.391 19.63 2.992 32.70 3.696 60.58 | 4.791 115.9 7.401

READING DISTINCT SECTIONS
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
\% 12.37 | 4.791 13.57 | 3.929 19.76 | 4.149 32.38 6.109 46.12 7.276 54.82 8.161
VI 3.704 1.893 2.396 1.585 4.125 1.638 7.806 2.418 19.77 | 2.970 26.23 | 4.110

WRITING DISTINCT SECTIONS
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128
tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP
\% 3.129 7.900 6.971 6.861 12.45 8.554 27.52 12.74 37.70 18.52 52.41 24.74
VI 0.982 1.937 1.803 2.218 3.954 | 3.058 6.436 5.028 7.139 | 6.234 21.20 | 9.403

READING SECTIONS WITH NON-UNIT STRIDES
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128

tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
VII 799.2 22.82 216.6 15.83 210.8 | 9.331 103.1 10.89 54.94 | 8.307 50.60 | 9.657
VIII 56.44 1.342 7778 1.440 83.87 | 1.870 163.1 3.123 331.5 5.062 867.4 7.711

WRITING SECTIONS WITH NON-UNIT STRIDES
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128

tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP
VII 668.7 | 42.75 147.3 | 39.11 84.54 | 31.40 64.53 26.42 35.35 28.40 51.38 | 31.16
VIII 9.041 1.612 18.83 1.603 35.17 | 2.972 75.95 4.812 163.6 7.915 341.8 21.75
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Method performs considerably better than the Direct Method. For the sections in
case VIII, the stride depends on the number of processors, and so the total amount
of I/O decreases as the number of processors is increased.

Table 6.8 shows the performance for accessing large sections of a large out-of-core
array of size 16K x 16K single precision real numbers (file size 1Gbyte). Figure 6.8
shows approximately where these sections are located in the array. We consider com-
mon, overlapping and distinct sections for reading, and distinct sections for writing.
The trend in the results is the same as in Table 6.7 for a 4K x 4K array, which
confirms the scalability of the Extended Two-Phase Method and its superiority over
the Direct Method. We observe that the Direct Method performs a lot worse for
accessing large sections than for small sections, whereas the Extended Two-Phase
Method performs consistently well for sections of any size. The relative performance
of the two methods for reading and writing the sections in case VI of Table 6.8 is

illustrated in Figures 6.9 and 6.10 respectively.

6.6 Advantages of Extended Two-Phase Method

The Extended Two-Phase Method with dynamic partitioning provides a very general
way of accessing arbitrary sections of out-of-core arrays in an efficient manner. The
first phase performs I/O optimizations at the cost of interprocessor communication
in the second phase. Since communication cost is orders of magnitude lower than I/O
cost, the overhead of communication is negligible. In all our experiments, we found
the time spent on communication to be less than 5% of the total time. The Extended
Two-Phase Method combines many small requests of different processors into single
larger requests, thus providing larger granularity of data transfer and lower latency
time. Another advantage is that multiple accesses by different processors to the same
data in the file are eliminated. For example, if all processors need to read exactly the
same section of the array, it will be read only once from the file and then broadcast
to other processors over the interconnection network. Similarly, if the requests of two

or more processors are overlapping, the overlapping portion will only be read once
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Table 6.8: Performance for large sections of large arrays
I = (5000:6000:1,5000:6000:1)
II = (14100p:3004+100p:1,4000:8000:1)
III = (14100p:4004+100p:1,2000+20p:2800+20p:1)
IV = (4000:8000:1,14+4p:84+4p:1)
V = (14+100p:1004+-100p:1, 14100p:1024+100p:1)
VI = (1420p:16+20p:1,4000:12000:1)
Time in sec., 16K x 16K array, DR = Direct Read,
ETP = Extended Two-Phase (dynamic partitioning), DW = Direct Write
READING SECTIONS
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
T 23.65 | 7.880 || 43.43 | 7.795 || 78.99 | 7.935 || 151.3 | 9.085 || 302.7 | 9.368 || 605.1 | 11.86
I || 53.30 | 26.51 || 103.3 | 28.10 || 132.3 | 28.50 || 157.6 | 32.49 || 162.3 | 40.03 || 182.4 | 52.08
IT || 13.31 | 5.061 || 24.11 | 6.489 || 31.49 | 7.400 || 39.81 | 9.253 || 41.28 | 10.12 || 44.29 | 13.23
IV || 0.683 | 0.699 || 0.841 | 0.939 || 1.343 | 1.173 || 2.189 | 1.663 || 4.149 | 2.850 || 8.486 | 4.994
V || 10.97 | 5.380 || 19.31 | 8.475 || 26.52 | 10.58 || 35.06 | 12.69 || 52.81 | 14.10 || 124.2 | 22.06
VI || 57.29 | 21.94 || 74.05 | 23.05 || 127.3 | 32.88 || 240.8 | 51.26 || 500.2 | 112.2 || 799.7 | 98.68
WRITING SECTIONS
Sec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128
tion Dw ETP Dw ETP Dw ETP Dw ETP Dw ETP Dw ETP
V|| 7.108 | 12.01 || 15.21 | 18.98 || 32.20 | 23.37 || 35.99 | 30.17 || 53.10 | 35.76 || 98.90 | 32.54
VI || 48.35 | 44.18 || 71.85 | 52.07 || 151.4 | 73.34 || 272.8 | 122.3 || 548.1 | 174.1 || 746.6 | 164.2
!overlap Lﬁ*overlap
0 (m aD
]
]
overlap

Figure 6.8: The sections listed in Table 6.8 (not to scale)
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Figure 6.9: Scalability Results, reading sections in case VI of Table 6.8
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Figure 6.10: Scalability Results, writing sections in case VI of Table 6.8
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from the file.
The Extended Two-Phase Method also provides a great deal of flexibility in divid-

ing 1/O among processors. This can be done by defining the file domains appropri-
ately. We have described one way of doing this dynamically as a function of the access
requests. This performs better than a static assignment, but it may be possible to do
even better. For example, instead of dividing the bounding section in a column-block
manner among the processors, it could be divided in a block-cyclic fashion, so that if
the bounding section includes some unwanted columns, they get evenly distributed.
Another approach is to divide I/O among processors so that the /O requests of dif-
ferent processors go to different disks or 1/O nodes. For this, we need to know on
which disks the requested sections are located. This information is not provided by
any of the parallel file systems at present, but we expect it to be available in future
versions of the file systems. Furthermore, if the ratio of processors to disks on the
machine is very high, it is possible to have only a few processors perform 1/0, so as

to reduce contention for disks.

The Extended Two-Phase Method can be used for accessing arrays with any num-
ber of dimensions and any storage order. For the dynamic partitioning scheme we
have proposed, the file domains for an n-dimensional array can be obtained by first
calculating the n-dimensional bounding section of all requests. This section is divided

among processors such that the file domain of each processor is stored contiguously

in the file.

Array sections other than those which can be represented by a lower-bound, upper
bound and stride in each dimension, for example sections with non-uniform strides,
can also be accessed using the Extended Two-Phase Method. This requires a more
general notation for representing such sections. The data structures such as the File
Access Descriptor and the File Domain Access Table need to be modified to handle
this, but the basic idea remains the same.

[t is not necessary that all processors must call the Extended Two-Phase read /write
routine. It is possible to define a group of processors involving only those processors

that need to access data from the file. This is similar to process groups in MPI [83].
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Only the processors in the group need to call the Extended Two-Phase routine and
participate in the two-phase process. The I/O workload can be divided among the
processors in this group.

The Extended Two-Phase Method is not specific to any particular machine, file
system or architecture. It can be easily implemented on top of any of the existing file
system interfaces or portable interfaces such as the proposed MPI-10 interface [28],
resulting in portable implementations. It can also be easily modified and tuned for
any particular system. This only requires defining the file domains appropriately, and

possibly using a different algorithm for interprocessor communication.



Chapter 7

Conclusions

This thesis addresses several issues in providing runtime support for in-core as well as
out-of-core data-parallel programs. This runtime support can be used for performing
many of the commonly required operations in application programs written using
a distributed memory programming model. The use of runtime support makes it
easier to write application programs and provides greater efficiency and portability.
It can also be used together with a compiler to translate in-core as well as out-of-core
programs written in a high-level data-parallel language like HPF to node programs
for distributed memory parallel computers. Runtime support helps to separate the
machine dependent and machine independent aspects of the translation. The compiler
can do all the machine independent transformations and the runtime libraries can be
optimized for each different machine. Thus, a portable and efficient compiler can be
obtained by porting the runtime library to different machines.

This thesis proposes efficient algorithms for runtime array redistribution which is
frequently required in parallel programs. We have considered block(m) to cyclic, cyclic
to block(m) and the general cyclic(x) to cyclic(y) redistributions for one-dimensional
and multidimensional arrays. In all cases, the Asynchronous Method was found to
perform better than the Synchronous Method because it overlaps computation and
communication, and hence reduces processor idle time. For the general cyclic(x) to
cyclic(y) redistribution, the LCM Method performs the best. The thesis also shows

how circular redistributions can be performed efficiently by saving address information

140
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in the forward redistribution and reusing it in the backward redistribution.

This thesis presents several algorithms for all-to-all collective communication for
the fat tree and two-dimensional mesh network topologies. The performance of these
algorithms was studied on the CM-5 and Touchstone Delta. An analytical model
for estimating the time taken by these algorithms was developed and validated by
comparing with experimental results. The conclusion is that the choice of algorithm
depends on the message size and the number of processors. No one algorithm performs
the best for all message sizes and number of processors.

Due to the large memory requirements of many applications, it is becoming in-
creasingly important to provide support for out-of-core programs. This thesis also
describes the design and implementation of a runtime library for out-of-core compu-
tations. This library can either be directly used in out-of-core applications, or used
together with a compiler to translate out-of-core programs written in a language such
as HPF. The runtime library supports three different models for data storage and
access. Runtime routines have been developed for all these models. Several optimiza-
tions, such as data sieving, data prefetching and data reuse, have been incorporated
in the runtime library. The optimizations have provided significant performance im-
provement. The thesis also proposes the Extended Two Phase Method for reading
and writing sections of out-of-core arrays efficiently. This method uses collective I/O
in which processors cooperate to perform [/O in an efficient manner by combining
several 1/0 requests into fewer larger requests, eliminating multiple file accesses for
the same data and reducing contention for the /O subsystem. A dynamic scheme
is used for dividing I/O among processors, depending on the access requests. The
Extended Two Phase Method showed impressive performance benefits over a Direct
Method for many different access patterns.

There are a number of areas in which the research presented in this thesis can
be extended. The area of runtime support for parallel I/O is particularly promising.
A useful feature of the Extended Two-Phase Method is the flexibility it provides in
defining file domains. We have studied one way of selecting file domains. A good

research problem is to determine the best way to define file domains depending on
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the pattern of access requests as well as the distribution of the file on disks. Scientific
data is very often stored in standard data formats such as HDF [86] or NetCDF [123].
It would be useful to design and implement efficient runtime support for data stored
in files using these formats. The PASSION Runtime Library has currently been
implemented on the Intel Touchstone Delta, Paragon and iPSC/860 systems. It would
be an interesting project to port it to the IBM SP-2 using the PIOFS file system.
A unique feature of PIOFS (and its predecessor Vesta) is that it supports logical
partitioning of files [29]. It is not entirely clear how widely this logical partitioning
can be used. Implementing a general runtime system like PASSION using PIOFS can

provide some insight into the usefulness of logical partitioning.
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