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The developement of the conductivity coefficients is

reviewed for both highly degenerate metals, having an energy

dependent relaxation time, and semiconductors, obeying

Boltzmann statistics and having a relaxation time varying as

the energy to the X power. In each case the energy bands

are assumed to be spherical and parabolic. Examination of

the Hall conductivity axy(H) reveals a similarity of form

between the metal and semiconductor situations which allows

one to determine the number density n and zero-field conduc-

tivity mobility p0 for a single band semiconductor, by use

of the maximum absolute value of axy(H) and the corresponding

magnetic field HM, as for metals. Constants which relate p0

and n to N xy(HM)I and HM are tabled for the following scat-

tering mechanisms: acoustic phonon scattering, X=-1/2;

neutral impurity scattering, X=0; piezoelectric scattering,

X=1/2; and ionized impurity scattering, X=3/2.

A function S(X;y), where Y varies as H2, which is pro-

portional to Cy (H), is defined. Evaluation of S(X;y) is

necessary since least-squares analysis is required in order

to determine n and p0 for individual bands of a semiconductor



having multiband conduction. By approximating S(X;Y) by

rational-type functions which are chosen to be best in a

Chebyshev sense, a means of computing xy (H) is developed

which does not rely on tables, numerical integration, or

otherwise tedious calculation. Thus a means to acquire n

and p0 rapidly with the aid of a relatively small computer

is presented.

These two developements allow for band parameters to be

determined even in the absence of magnetic fields suffi-

ciently large as to have saturation of the Hall constant.

Regarding the application of the theory which this

work makes convenient to apply, one must consider the nature

of real semiconducting materials. They rarely have com-

pletely quadratic or spherical energy bands, and over many

temperature ranges they do not have power-law dependent

relaxation times. These real situations require much more

complicated and time consuming calculations, so much that

one is usually forced to use simplifications. When applied

in a considered manner, the simple model of xy (H) will

provide n and pv0 adequate for the experimenter's purpose.
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CHAPTER I

INTRODUCTION

Historically the simple theory describing magnetocon-

ductivity and Hall conductivity for spherical, quadratic

energy bands with highly degenerate Fermi-Dirac statistics

has been invaluable in the analysis of metallic conduction.1

Although obviously not appropriate for detailed analysis in

the usual case where the Fermi surface is decidely nonspher-

ical, the model still provides a simple setting for the

definition of various quantities such as density of states

effective mass, number density, and mobility. Because this

model has been extended to the slightly more sophisticated

case of ellipsoidal Fermi surfaces, it has remained useful

in the analysis of multiband metals.2 ,3

The primary reason for the utility of this model is

that for the case in which relaxation time is dependent only

on energy, the integrals defining c x(H) and ay (H) can be

written in closed form, such that one may directly compare

data to theory by graphical or perhaps least-squares tech-

niques. Extension to the case of nonellipsoidal surfaces,

such as that given by McClure,4 are again easy to interpret

in terms of a weighted aggregate of spherical surfaces.

It is the purpose of this work to emphasize that a

1
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similar situation exists in the case of semiconductors under

highly nondegenerate statistics subject to a power law depen-

dence of relaxation time on energy, with bands described by

a spherical, quadratic dispersion law. Here the integrals

defining cY (H) and c (H) are not reducible to simple closed

forms. In fact, historically the dimensionless integrals

which appear have only been tabulated to various degrees of

accuracy.5-9

In this work a study is made of these integrals showing

that there is an underlying simplicity of form which lends

itself to graphical and curve fitting techniques. A surpris-

ing similarity to the metals case is demonstrated, and a simple

function approximation to the integrals is obtained which

minimizes the maximum error in the sense of Chebyshev.10

These simple approximating functions may be calculated with

the use of a desk calculator, removing the need for the exist-

ing tables. A recipe is developed to allow estimation of

number density and mobility in the case of multiband conduction.

One must realize that for real semiconductors the energy

bands are usually nonspherical and nonparabolic; and the

scattering process may often be due to either several scat-

tering mechanisms or to one which does not have a power-law

dependence. However, more realsitic models require more com-

putation to realize the conduction parameters. For this rea-

son the experimenter is often forced to use the simpler models

discussed in this work. Fortunately the simple models do
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provide acceptable answers when used with some knowledge of

the energy dispersion relationship and scattering mechanisms

for the examined conductor. The choice of the order of the

approximation used should depend upon the agreement of the

model with the actual case examined by the experimenter.



CHAPTER II

ELECTRICAL CONDUCTIVITY

General Statistics

Following the work of Beer11 consider a conductor de-

scribed by a single spherical, parabolic energy band, i.e.

the energy relative to the band edge is given by

E =(h 2 /2m*)(k 2 +k2 k2 )~''x y z

=-h 2 k2/2m* , (2.1)

with m* the effective mass and k=(k,ky,kz ) the wave vector.

Furthermore, the relaxation time is dependent only on energy:

7Y=T (E) (2.2)

Defining the reduced energy and reduced Fermi energy, respec-

tively, as x E/kBT and r EF/kBT (where kB is the Boltzmann

constant and T, the absolute temperature), then the Fermi-Dirac

distribution function is f0=(eX~ Q +1)~1, and the Fermi-Dirac

function of order 2 is

F1 ( )=Xx f0dx . (2.3)

The number density (also known as carrier concentration) may

be written as12

n= 2 Ofdak

(21r)3 f0

=(2-2) -1(2m*kBT/h2) 3/2F2( )) . (2.4)
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Suppose uniform electric and magnetic fields are applied

to the conductor. The current density may be written as

j =- 2e 3ff d3 k
(2,r)

=G E ,(2.5)

where the charge e is greater than zero for electrons, 0 is

the conductivity tensor, and

~i V kE

=hk/m* (2.6)

is the group velocity. In Appendix F Eqs. (2.1), (2.2), and

(2.6) together with the assumption of ohmic conduction (which

may be obtained by use of sufficently small E) are employed

to solve the Boltzmann equation for the distribution function

f.

If the z axis is chosen so that H=(O,O,H) then the

transverse magnetoconductivity (throughout this work refered

to as the magnetoconductivity) is

( 2 2m*kB T 3 / 2  f0  3/2
xx (H)= m ( Bx dx(WT) 2 , (2.7)
xx(H 31r2m 2 ) 0r( ax 1+( W T )2'

the longitudinal magnetoconductivity is

Gz z(H)=Gx (0 ) ,(2. 8)

and the Hall conductivity is

e2x2m*kBT3 W 2 f 3/2dx
xy3(H)_) e 2 B 0 2 x) 1+(uir)2 ,(2.9)

where =eH/m*c is the cyclotron frequence. By defining the

averge of a function G over the Fermi-Dirac distribution as
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<G>E F()G(x)x3/2(- -f0) dx , (2.10)

Eqs. (2.7) and (2.9) become, respectively,

x (H)= -m <'/(1+w2 r2)> (2.11)

and

2
Sy(H)=-m* < ,2/(1+J2 y2)> . (2.12)

If one introduces the common convention of considering e as

being the absolute magnitude of the electronic charge and

requires that tJ >0, then the (zero-field) conductivity mobil-

ity p 0 defined by

x(0) nep 0 (2.13)

becomes

40=e< >/m* (2.14)

and is greater than zero for both electrons and holes. Eqs.

(2.11) and (2.12) may be rewritten as

Gxx(H)=nep 0 <7>~W</'r(1+w 2'r 2 )> (2.15)

and

S(H)= nep0 2/(1+ w27,2)> (2.16)

where the upper sign is for holes and the lower sign for

electrons.

A calculation of Gxx(H) and a (H) for arbitrary H

usually requires numerical integration. However using Eq.

(2.13) and the relationship
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lim Ha (H)= nec (2.17)
H-oo X

one may calculate n and p0 if the Hall saturation field is

available and conduction is due to only one band of carriers;

otherwise examination of conductivity data over a range of

magnetic field is necessary. The calculation of ax (H) and

xy (H) for arbitrary H simplifies in two cases: 1) highly

degenerate metals (EF>>kBT), and 2) nondegenerate semicon-

ductors (EF«0), having 1" proportional to a power of energy.

Highly Degenerate Metals

Since for a metal

- af ~ 6(x-g ) , (2.18)

Eqs. (2.15) and (2.16) become

Gx (H)= nep 0 /(1+Y) (2.19)

and

cy (H)= +nep 0Y2/(1+Y) , (2.20)

where by use of Eq. (2.14)

Y= W 2 Td2 (

=(40/c)2H2 .(2.21)

Defining the function

S (y) =y2/(1+y) (2.22)

one observes

y2axx(H)=nep 0 S(Y) (2.23)
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and

a (H)= nep0 S(Y) . (2.24)

Noticing the property

S(Y~ )-Y~2/(1+Y-1)

=S(Y) , (2.25)

one perceives that a plot of S(Y) vs log(y) is even about

the point corresponding to Y=1. Observe S(y) to assume the

maximum value of 2 at y=1. Since the Hall conductivity is

proportional to S(y), then knowledge of 1x(HM), the maximum

absolute value of a (H), and the corresponding field HM

allows one to calculate, using Eqs. (2.21) and (2.24),

p0=c/HM (2. 26)

and

n=2ic xy(HM)I/(e0) . (2.27)

If M bands contribute to conduction, the Hall conducti-

vity becomes

M
cx (H)= Z n ep 0jj(y) , (2.28)

xy j=1

where y.=(p0 jH/c)2 . A least-squares fit of xy (H) will be

required to determine the n and pOj'13

Nondegenerate Semiconductors

Often for a semiconductor one may assume both Boltzmann

statistics (EF«0) and the relaxation time varies as the

energy to the X power, i.e.
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f ~e -x (2.29)

and

T (x)= 'ox . (2.30)

From Eq. (2.14) the conductivity mobility is determined as

p0=e 10 r(X+5/2)/(m* [(5/2)) ; (2.31)

and from Eqs. (2.15) and (2.16) the conductivity coefficients

are given by

nep__ 00_xX+3/2e-xdx

xx(H)= r (e+5 0 1+yx2X (2.32)

and

nep,0  x2X+3/2 -xdx

xy(H) '(X+5/2) i +0x2X '3)

where

S22

=[Hpt 0 r(5/2) /(c P(x+5/2))] 2  . (2.34)

Defining the function

-(1X2 x3/2e-xdx
s ( X ; ) (x+5/2) +-2Y , (2.35)

x +Y

then the Hall conductivity is given by

Gxy(H)= nep0 S(X;y) . (2.36)

The S(X;y), for X corresponding to various common pure

power-law scattering mechanisms developed in Nag's book,1 are

shown in Fig. 1 normalized to unity and plotted against the
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common logarithm of Y'=y/Y'M. These X and their corresponding

scattering mechanisms are: 1) X=-1/2, acoustical phonon

scattering; 2) X=0, neutral impurity scattering; 3) X=1/2,

piezoelectric scattering; and 4) X=3/2, ionized impurity

scattering. Early attention was devoted to evaluating the

integrals in Eqs. (2.32) and (2.33) for the case of acoustical

phonon scattering15,16 and constructing a table of values.5

These tables have been extended and improved6 '8,9 and other

tables corresponding to X=3/2 have been published.7 '9  In

Appendix C these integrals are evaluated in terms of commonly

tabulated functions. As knowledge of y (H) is sufficient

to allow for calculation of n and p0 in a conductor having

spherical, parabolic energy contours, only the S(X;y) are

evaluated below. The S(X;Y) including their asymptotic

expansions, where appropriate, are: for X=0,

S(0;y)=y2/(1+Y)

=S(Y) ; (2.37)

for x=-1/2,

1 00 2
2(- + ((y)]

=2k+--2y22Y +TrY e(2.38)
k=02k1.

and

(-1)k(2)
S(-;) 2 k k(2.39)

k=2t

where lf (x) is the probability function and (x) k= p(x+k)/ r (x) ;
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for k=1/2,

S(2y)m=[r2 3/4Y -(2Y 2 ) -1+Y~l +2/2 r ;e y /2 - ~e /2
k=0

(2.40)

and

(2.41)(Tr/2)-5/2 E 1(2)k
k=3

and for X=3/2,

S (3/2;y )=qr[4 +2a 6  2+-3/2/6 -
k=0

ra4[ea- 2e-a/2cos( + I)]/6

and

(1)k~i

s(3/2;Y) k(a/6)a3k +2
k=1 ak

(2.42

(2.43)

where a=Y- .

As in the case of a metal, p0 and n may be determined

for a single band nondegenerate semiconductor having power-

law scattering by knowledge of IcyjH) and HM. The con-

ductivity mobility is given by

pm= P(X+5/2)cy /(HM r(5/2)) (2.44)

and the number density by

n= I Cr (HM)yM)) ,(2.45)

where YM corresponds to the maximum value S(X;YM) of S(X;y).

Eqs. (2.44) and (2.45) may be rewritten, respectively, as
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40=C/HILM (2.46)

and

n=C 2jxy(HM) /o . (2.47)

Values of C 1 and C2 for the X examined in this work are

found in Table I which, if H is measured in gauss and G (H)

in (ohm-cmY, will allow calculation of p0 in cm2/V-sec and

n in carriers per cm3.

Again, if M bands contribute to conduction then the

Hall conductivity may be written as

MS(H)= ZEn .e p.S(.; Y.) . (2.48)

The determination of n and p0j is facilitated by a calcu-

lation of S(X;Y) which does not rely upon numerical integra-

tion or published tables. In Chapter III approximations of

S(X;Y) are developed which may be calculated quickly and

easily with a computer or even a desk calculator. These

approximations are of sufficent accuracy to allow precise

evaluation of the n. and p0j by least-squares analysis, an

example of which is provided in Chapter IV.
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CHAPTER III

APPROXIMATION OF S(X;Y)

Consideration of the similarity between

S(O;y)=y2/(1+y) (3.1)

and the other S(X;y) displayed in Fig. 1 and the observation

that

im S(X;y)y~ 2 = P(2X+5/2)/ P (X+5/2) (3.2)

and

im S(X;y)y2 = P(5/2)/p(X+5/2) (3.3)

suggests the S(X;y) may be approximated by

.1 _ N.
S*(X;Y) - Y'" Z a.Y'a/(+ Z b.Y'a) (3.4)

j=1 j=1

having order N with aN and bN unequal to zero, Y'=Y/YM, and

also the requirement that the denominator and numerator have

no common zeros. The a. and b. are selected so as to mini-

mize the maximum absolute value of the remainder function

R(Y)=S*(X;Y)-S(X;Y) (3.5)

for 0<Y<o. In other words, by minimizing

a=maxlR(y) (3.6)

over the interval [,oo), one has found the best approxima-

tion of S(X;Y) having the form displayed in Eq. (3.4).

15



Characterization of Best Approximation

The problem of determining the best rational-function

approximation of any function f(x) continuous on the closed

interval [a,b] is examined by Ralston. 17If a rational func-

tion

Rmn (x)=Pm(x)/Qn(x)(3.7)

where Pm(x) is a polynominal of degree m and Qn(x) is a poly-

of degree n, is proposed as an approximation of f(x), then

it is the best approximation if and only if

rmn= max w(x)[Rmn(x)-f(x)]1 (3.8)
[a,b]

is minimized over all Pm and Qn for any weight function w(x)

positive over the open interval (a,b). Ralston'7 proves that

if the weighted curve

E(x)=w(x)[Rmn(x)-f(x)] (3.9)

oscillates about zero m+n+2 times with equal amplitude and

adjacent extrema have opposite signs, i.e. if there exists

x ,x2'''''xm+n+2 contained in [a,b] such that for i=1,2,...,

m+n+2

-E(x)j=0 (3.10)

and for i=1,2,...,m+n+1

xigl>xi (3.11)

and

(3.12)

16
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then Rmn(x) is the best approximation of f(x) for the chosen

w(x). Thus for i=1,2,...,m+n+2 one has

rmn= IE(x)I . (3.13)

Clearly one can imagine g(x)=w(x)f(x) as the function

to be approximated by w(x)Rmn(x) and, consequently, apply

the above theory to the approximation of S(X;y) by S*(X;y).

From Eqs. (3.2), (3.3), and (3.4) one obtains: 1) for small

R(y)~Y2 [a1YM2 - F(2x+5/2)/ r(x+5/2)] (3.14)

and 2) for large Y,

R(X)~y~2[YaN/bN - P(5/2)/ P(x+5/2)] . (3.15)

Eq. (3.14) implies that if Y<a«YM then

max jR(Y)< max \R(Y) , (3.16)
[0,a] [a,b]

and Eq. (3.15) implies that if Y>b YM then

max R(Y)< maxlR(Y) . (3.17)
[b,o) ~[alb]

Therefore for the proper [a,b] one has

maxlR(Y)I=6 , (3.18)
[a, b)

which is the maximum absolute value of R(Y) over [0,o).

Determination of Best Approximation

Suppose S*(X;Y) is the best approximation of S(X;y) over

[a,b] with a and b chosen to satisfy Eqs. (3.16) and (3.17)

and, furthermore, suppose there are only 2N+1 y,
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where IR(Yi)I=5 for a< 1 <...<y1<... y 2 N+1<b. Eq. (3.10)

implies

1 -R (y) K= .(3.19)

If R( y1 )=-6, then Eq. (3.12) implies

R (Y )=(-1) .(3.20)

Rearranging Eq. (3.20) one obtains

(a1+y'a2+...+y N-1aN)-d(yb1+...+yNbN)=d , (3.21)

where d=[S(X;yi)+(-1)ib]y-2. After simultaneously solving

Eqs. (3.19) and (3.21) for Y , i=1,...,2N+1; g; and a. and

b., j=1,...,N, one may then examine the resulting R(y) to

determine if max R(Y)l=o. Theoretically these equations
[a,b]

offer a means of acquiring S*(X;Y); however, as they are

nonlinear in nature an iteration procedure, which is similar

to a simpler process employed to approximate with polyno-

minals,18 is adopted to expedite their solution.

An IBM 360/50 computer, using programs detailed in

Appendix D, first calculates, for a given X, S(X;y) at 400

points between a=10-10YM and b~1010YM. For N=1, initial

guesses of the zeros of R(y) are provided to the computer.

The R(Y) is then computed for the 400 stored data points and

the extrema are found. Next the N largest maxima, N most

negative minima, and the largest remaining extremum are found,

which are solutions of Eq. (3.19), and their absolute values

are averaged to form 6'. Discarding the Y corresponding to
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the last data point used to determine 6', the computer uti-

lizes 6', as an estimate of 6, and the other 2N values of

to solve Eq. (3.21) for the a. and b.. This is now routine

since Eq. (3.21) has become a set of 2N linear simultaneous

equations. The iterative solution of Eqs. (3.19) and (3.21)

is continued until convergence occurs or a counter indicates

the program has failed. After determining the S*(X;Y) of

order N, the computer is directed to automatically use the

R(Y) to estimate the S*(X;y) of order N+1.

In Figs. 2-6 is displayed a series of R(Y) for X=3/2

and N=6 which converges to the R(y) indicated by the dashed

curve. Iteration number six produces a R(y) which is virtu-

ally identical to the final fit.

Table II contains the a. and b. for the final approxi-

mations of the S(X;y) for X=-1/2, X=1/2, and X=3/2. The

estimates of the maximum relative error I(S*-S)/SMlmax are

found by fitting R(Y) at the three points nearest each extreme

value by a parabola. Calculation reveals the approximations

are accurate to within the stated error over the extended

range [,o). In Figs. 7-23 R(Y)/SM is plotted for each

approximation calculated in this work.

The approximation of the S(X;y) is terminated for each

X whenever an S*(X;Y) is found such that (S*-S)/SMl is

less than 10-5. This level of accuracy should by appropriate

for their proposed application.
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CHAPTER IV

EXAMPLE APPLICATION OF S*(X;Y)

As an example for the use of the approximations of

S(X;y), consider an ideal case of conduction by two hole

bands having pure acoustical phonon scattering and EF<<.

Using parameters similar to those observed by the author in a

sample of p-type InSb at T=77 K, let the heavy hole band have

n=101 5 carriers per cm3 and p0=0. 9 5 3 x 104 cm2 /V-sec corre-

sponding to HM=10 kG; and the light holes, n=10O carriers per

cm3 and po=0.953 x 105 cm2 /V-sec corresponding to HM=1 kG.

Choosing the upper sign for holes in Eq. (2.48), the

Hall conductivity becomes

2
G (H)= E njep .S(- ;Y.) , (4.1)

where Y.=(9Tr/16)(Hpu./c)2. By inserting e in units of cou-

lombs and p0 and n as indicated above, the units of cy (H)

are (ohm-cm)-.

Consider least-squares fitting of the imaginary data,

indicated in Fig. 24 by squares, with o y(H) predicted for

two hole bands having other power-law scattering mechanisms.

Approximation of S(X;Y) by

S*(X;Y)=Y'2A1 (X;Y)/A 2 (X;Y) (4.2)

with

45
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N
A ( ;a)=E a.Y'i , (4.3)

j=1

N
A2(X;y)=1+ E b.y'a , (4.4)

j=1 J

and

=H2/Ta2m(4.5)

(where the a. and b. are found in Table II with X correspond-

ing to: x=-1/2, acoustic phonon scattering; X=1/2, piezo-

electric scattering; and X=3/2, ionized inpurity scattering)

provides a convenient expression of the proposed Hall conduc-

tivity. Thus assume the data can be fitted by

2 1

Cxy(H)= i(p2j-1 2 a i

2
=E (p2j-1/p2j)HA 1(Xi;Y)/A 2 (Xi;Yj) , (4.6)

=1

where, in Eq. (4.5), one requires HMp2j and p1,...,p4 are

adjustable parameters to be determined by a computer using a

program such as the one listed in Appendix E.

Three fits of the data are made and are represented in

Figs. 25-27. The Xi and N chosen are: X1 =0 with N=1

(S(0;y)=S*(0,y) of order N=1); X2 =1/2 with N=4; and X =3/2

with N=6. For a given Xi, from Eq. (2.46), the conductivity

mobility is

L0 j=C1/p ,(4.7)
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where the C are found in Table I, and the number density,

from Eq. (4.1), is

n(=p2j-1/eC1 .4.8)

These p. and n. are found in Table III.

The standard error of estimate is defined by

ND

s 3 (ND-NP) (y- )2(4.9)
1=1

where ND is the number of data points; NP, the number of

parameters; yi, the data; and y, the modeled value of the

data. Examination of the final fits shown in Figs. 25-27

indicate a correspondence between sE and the accuracy of the

determined constants. Note that although the data is gener-

ated using X=-1/2 (sE=0), a visually excellent fit is obtained

by using the X=1/2 model (sE=0.25 2 x 10-2 (ohm-cm)Y1). How-

ever it is seen that the light hole band number density so

obtained is in error by approximately a factor of 1.5. Such

behavior is to be expected since the S(X;y) corresponding to

X=1/2 and X=-1/2 can be made to essentially coincide by

translation and scaling (see Fig. 1). Therefore one must be

cautious in applying these techniques when the dominant scat-

tering mechanism may be either acoustic phonon or piezoelec-

tric in nature. However, by using this method in conjunction

with a study of the temperature dependence of the mobilities,

the proper choice should be made.
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CHAPTER V

CONCLUSION

In this dissertation two new means of determining con-

ductivity mobility and number density for nondegenerate

semiconductors having spherical, parabolic energy bands and

a relaxation time varying as a power of the energy are devel-

oped. First, assuming the proper choice of scattering

mechanism, then one may for a single band semiconductor

determine n and po from the maximum absolute value of the

Hall conductivity. This maximum value occurs at magnetic

fields much less than the Hall saturation fields necessary

to determine n by use of the high field limit of Ha (H).

Finally, by approximating S(X;y) by a rational type function,

one is able to extract information from multiband semiconduc-

tors by least-squares analysis of data taken over a wide

range of magnetic fields. Clearly this is superior to the

use of a low magnetic field expansion 9 of S(X;y) which not

only covers a range of field where the per cent accuracy of

the measured magnetic field strength and a (H) is least,

but is itself inadequate.

Consider the other means of determining S(X;y). They

are 1) tables, which require either storage of a large number

of functional values or entail a loss of accuracy, 2) numerical
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integration, which requires a relatively large number of

calculations, 3) precise expansions, which require the carry-

ing of a larger number of decimal places as Y becomes larger

due to the mixture of positive and negative terms, and 4)

asymptotic expansions, which are inadequate over much of the

range of Y. By replacing these methods of calculating S(X;Y)

with accurate approximations which may be computed relatively

quickly and often require no more decimal places be carried

than that commonly used by the BASIC computer language, one

has extended the usefulness and convenience of application

of a part of semiconductor theory.

For future research, one may create similar approxima-

tions of the magnetoconductivity integral. Knowledge of

this integral and of S(X;y) allow the constraints for the

application of the theory presented in this work to be relaxed

to include semiconductors with ellipsoidal energy surfaces.



APPENDIX A

EXPANSION OF FUNCTIONS WITHOUT

ESSENTIAL SINGULARITIES

Many functions f(z) may be expanded as a series in

terms of the poles in the complex plane.

Mittag-Leffler Expansion Theorem

In particular f(z) may be expanded if the following

conditions exist: 1) suppose f(z) has only simple poles lo-

cated in the finite z plane at a1 ,a2 ,... arranged in order

of increasing absolute magnitude with residues b1 ,b2'

and 2) there exist circles CN of radius RN which do not pass

through any poles and on which Jf(z)) <M, where M is indepen-

dent of N and RN -3 as N-+oo. The Mittag-Leffler expansion

theorem then states that

f(z)=f(O)+ Z bnL(z-an)-1+a 1 ] .(Al)

n=1

A proof of the theorem is provided by Spiegel.20 Let f(z)

have poles at z=an, n=1,2,... and suppose that z= ! is not a

pole of f(z). Then the function f(z)/(z- 3 ) has poles at

z=an where n=1, 2, ... and at z=S. The residue of f (z)/(z- 3 )

at z=an is

lim (z-an)f(z)/(z-5 )=bn/(an- ), (A2)
z - an
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where bn is the residue of f(z) at z=an, and the residue at

z= is

lim (z- 9 )f (z)/(z- $ )=f ( $) . (A3)

z+

Then by the residue theorem, one finds

b

1 C f(z)dz/(z - )=f( )+E a -n (A4)
N n n

where the last summation is taken over all poles inside

circle CN, centered at the origin, of radius RN.

Suppose f(z) is analytic at z=0. Then putting 3 =0 in

Eq. (A4), one has

b

c f (z )dz/z=f (0)+Eb .a(A5)
N n n

Substraction of Eq. (A5) from Eq. (Ak) then yields

f ( ) -f (0)+Ebn[ (an-)-an1
n

=-- -i f ( z ) [ z1- ]dz

=-_f(z)dz .(A6)
2i CNZ (z- (A)

Now since Iz-j >Iz) -I) =RN-Jfl for z on CN, one has if

Jf(z)/ <M

f( z )dz M2 RN
I JCNz(z - ) <RN(RN ~ '

As N +oo and thus RN->oo, the integral on the right side of Eq.

(A6) approaches zero. Hence by replacing , by z in Eq. (A6),

Eq. (Al) results.
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Generalized Theorem

This expansion theorem may be easily extended to include

functions f(z) having poles of order k. By using Leibnitz's

rule for higher derivatives of products,

dkk k k-m m

kf(z)g(z)]= E ( )(d k-mf (z)][ g(z)] , (A8)
dz m=O dz dz

and

dk (z-_-1=_(1)kk

(z- )~ ~ k(A9)

dz (z- S )k+1

observe that if f(z)/(z- 3 ) has a kth order pole at z=a
n

then its residue is

lim 1 dk-1 (z-an) kf(z)
z -an (k-1! dzk-1 z- ]

1 lim k-1(k-1dk-1-m k dm 1
(k-1)!z an m dzdk-1-m[(-n) f ) )] (z-S

1 k-1 (k-1) (-1 )m m! lim dk1-m k1
(k-1)!m0 m (a -_ )m+1 z an dzk-1-m[(z-an) f(z)]J

n

1 k-1 1

(k-1-m)!i 1 {m+1 1 (A10)m=O ( -a )mi i

Since the remainder of the proof is identical to that of the

previous theorem, the result may now be stated as

k-1 m
f(z)=f(0)+E E nCk 1 + ~if ] , (A11)

n m=0 m (z-a )m+1 a+1
n n

where



ncm k--m -- dk-1-mI(z-an) f (z)](ki-n) z~a{d1
(A12)

Expansion of f(z)=(zn+an-1

For a positive integer n and a positive real number a

let g(z)=(zn+an)-1 -a-n The poles of g(z) are simple and

occur at

for k=0,1, ...,n-1.

zk= a exp[iir(1+2k)/n]

At zk the residue is

lim (z-zk)g(z)=i ( k z -+a
lim (z-zk)

z-zk an

which by L'Hospital's rule becomes (nz-1)1

Zk

nan

By use of Eq. (Al), g(z) may now be written as

n-i 1 1g(z )= - n -Zkz-z +
a n k=0 kzk

=a-n(nan n-izk/(z-z
k=0

(A15)

With the use of Eq. (A13), f(z)=(zn+an )-1 becomes

n-i n-i
f(z)=- (nan-1 -V e xp[il(1+2k)/n]/[z-a exp[ilr(1+2k)/n]]

k=0

=(nan-1) -1
n-1

E exp[ii-(1+2k-n)/n]/[z+a exp[ir(1+2k-n)/n]]
k=0

i-1 -1 n-1
=(nan-1) -1 E expLi'r(n-1-2j)/n]/[z+a exp[inr(n-1-2j)/n]] ,

j=O (A16)
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where j=n-1-k. If n is even, Eq. (A16) may be compacted to

(zn~an n-(nan--1 Z uE/(z+au) + c.0. , (A17a)
j=0

where u=exp[iir(n-1-2j)/n] and [(n-1)/2] is the largest inte-

ger less than or equal to (n-1)/2. If n is odd then f(z) is

equal to the right side of Eq. (A17a) plus

Lnan-1(z+a)]~ . (A17b)



APPENDIX B

GAMMA FUNCTION AND RELATED FUNCTIONS

Several relationships among known and tabulated func-

tions are necessary in order to evaluate the integrals in

Eqs. (2.32) and (2.33). While these relationships appear in

the literature, the proofs are included in order to establish

an unbroken link between the introduction of the integrals

and their evaluation in terms of these well-known functions.

Gamma Function

The gamma function is defined, for (z)>O, as

'(z) J tz-le -tdt . (B1)

Clearly, by integration by parts, one finds the recursion

F(z+1)= tze-tdt

=-tze-tf +Ztz-le-tdt

=zF'(z) . (B2)

The product

(Z ) (1-z )= t-/(1+t ) dt (B3)

follows from the manipulation

F(z) r(1-z)=tzetdt f x-ze-xdx
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2 u 2z-1 -u 2 du 210V-2z+1e-v 2 d

-(u2+v2()-2z+du dv

TT/2 -r2tan-2z+1(e)dr d8

-2X72-r 2 Otan- 2z+1 (e) do

=2S,2tan -2z+(o)a

=2f u-2z+1/(1+u2) du

= t-zdt/(1+t) , (B4)

where the transformations successively used are: t=u2 and

x=v2; v=r sin( 0) and u=r cos(O) ; u=tan( 0) , which implies

du=(1+u2)d 0; and t=u2. Convergence of the right side of

Eq. (B3) occurs only in 0<4(z)<1. Since

'[(z+n)=z (z+1) ... (z+n-1) P(z)

=(z)n (z) (B5)

follows from Eq. (B2) and thus

(1-z-n)nr (1-z-n)= '(1-z) , (B6)

one has

(z)n I (z) r (1-z)
(z+n) r(i-z-n)= (1-z-n)

n

(zWn _So t-zdt

(1-z-n) 0 1+t (B7)
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for O<6 (z)<1, which in effect extends the range of conver-

gence of Eq. (B3) to all noninteger z.

Another definition of the gamma function is

C (z) E lim 1-2-'3- ... n nz . (B8)
n)oz(z+1)(z+2)...(z+n)

A proof provided by Arfkin 2 1 follows. Let

F(z,n)=fn(1- )ntz-1dt ,(B9)

where 6R(z)>O. Since

e-t=lim (1-t)n (B10)

n4oo

then from Eq. (B1) one acquires

lim F(z,n)=F(z,oo)
n~oo

= F(z) . (B11)

Integrating F(z,n) by parts where u=t/n, one has

F(z,n)/nz= (1-u)nuz-ldu

z
(1- n +(1-u)n-lzdu

_ n _n-1 . .. 1 1 z+n-1
z z+1 z+n-1X0u du

1-2-""n 1 z+nj1 (B12)
z(z+1)-""(z+n-1) z+nu I0

i.e.

F(z,n)= zz -l)...(z+n nz. (313)

Thus by use of Eq. (B11) one observes the definitions of

r(z) in Eqs. (B1) and (B8) to be equivalent.
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For several z, F(z) must be evaluated. If z is equal

to n, a positive integer, Eqs. (B1) and (B8) imply

P(n)=(n-1)!. (B14)

For z equal to one half, first make the substitution t=u2 in

Eq. (B1), which provides

2
(2)=2f e-u du

Then by forming the square of P() one obtains

p2 m -(0' u2+v2)du dv

4fOfr/2re-r 2 d 8dr

2
=4(/2(--Le~ )00

= f (B16)

(a15)

i.e.
( )= 1

Incomplete Gamma Function

The incomplete gamma function is defined as

r(a,x) f e~ t ~ dt .

Clearly one has

A recurrence relation is

F(a+1, x) =Jtae~tdt

x tx

(B17)

(318)

(319)



64

=a r(a,x)+xae~x , (B20)

which generalizes to

n k-1
r (a+n,x)=(a)n[ ['(a,x)+xae~2 E -7 ] (B21)

k=1 k

by use of induction. In order to prove this, assume Eq.

(B21) is valid and observe, by utilization of Eq. (B20) that

(a+n+1,x)=(a+n) r(a+n,x)+xa+ne-x

n k-1

=(a)n+1[ (a,x)+xe-x k-i]+xa+ne-x
k=1 k

n+1 k-1

=(a)n+1 V(a,x)+xce~ y] . (B22)
k=1 k

Hence Eq. (B21) follows..

If a=-n then one acquires from Eq. (B21)

P(nx=P(O,x)-x -n -x xk-i/(-n)k
n k=1

S-1 P(o,x)-x-ne-x (n-k)!k-1(_1) k
n. k=1 n.

(i)n e(0,x)+ X~(-1)n-(B23)
n. n. 7

where j=n-k+1. For the case of a=L-n, first examine

(2-n)k=(L-n)(2-n+1)... (2-n+k-1)

1-2n)( -2n)..,.(2k-2n-1)

(ik
S-k-(2n-1)(2n-3)-. -- (2n-2k+1)

2
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_(-1)k 2n-1) !! (B 24)

2k 2n-2k-1 !! '

which is valid for n=1,2,... , and where (-1)!!- 1. From

Eq. (B21), one then derives

r (1-n,(x)_(,x)(-x2e x xk-1/(n)k
2 -n nek=1

-1nn2nr1 2-n-x nk k-n
2-1 2 Lix-x e zx (-1) -(2n-2k-1)!!]

k=1

- n[1 !L(, x)+x~2e 1,(2)(B25)

where j=n-k+1.

A differential equation of which r(a,x) is the solution

may be created by differentiating Eq. (B18)

d r (a, x) =__a-1e-x (B26)
dx

and requiring that r(a,0)= P(a). The solution is

r (a, x)= (a)-Sxta- E(-t k/k! dt

k=0

= P(a)- k k0 -dt
k=O k'0

00 (-1 kxa+k

k () cak k! (B27)
r()k=0

Clearly Eq. (B26) may be extended to complex numbers as

dz' (az)=-z a-e-z , (B28)

which together with the same boundary condition provides
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the solution Eq. (B27) with x replaced by z. Thus F (a,z)

is an analytic continuation of P (a,x) onto the z plane.

Consider the function

f(x)- e- JoeX -dt (B29)

with x>O. One has

df e-x ext t-
dx r )O 1+t(1+t)dt

e -x i-u-aa du
~ (1-a) Xe u xx

e -x-
1-( x a- '(i1-a)

-e~x- (B30)

which requires the aid of the transformation u=xt. Also by

Eq. (B3)

f() (1-c)tdt/(1+t )

M1(-c)r(a) F(1-c)

= F(cc) (B31)

results, which together with Eqs. (B30) and (B26) imply

(ax)= x -xt tdt (B32)

for x>O. 2 2

Psi Function

The psi function is defined as

V (z)= ln[ P (z)]
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(B33)

From Eq. (B8) one acquires

lim n! nz
in P(z) =n-4lnoo z(z+1) --- (z+n)

[ln(n!)+z in(n) - E ln(z+k)] (B34)
k=0

which implies

(z)=urn [ln(n)- Z (z+k)-1]
k=0

0
_urn n 1 urn ,- 00i

[ln(n)-k k~ ]- t - >[(z+k)~-(k+1)- ]
k=1 k=0

00

-C- Z [(z+k)~1-(1+k)-] , (B35)
k=0

where

C=llm[.nEk~ -in(n)]
k=1

=0.577215664901... (B36)

is Euler's constant. Also, by use of Eq. (Bi), one determines

(zz)= otz-l1-tdt

1z d 0o(z-1)ln(t)e-tdt

-'. 1zeln(t)tz-le-tdt . (B37)

Thus from Eqs. (B37) and (B35) one finds

((1)=fBln(t)e~dt

= -C - (B38 )
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Since the natural logarithm of x may be defined as

ln(x)= f dt/t , (B39)

then the relationship

-C=lim Rln(t)e~tdt

E++

=liR R(-1)[ln(t)e~ fe~dt/t]
E-+0+

Eli -- 1-t0+-=lme (~) -Rln(R) -e-E f dt/t - f etdt/t1

E-0+

E 0+[-Ef4dt/t + fJe-tdt/t + f1 e dt/t]

- 0 + -(et_-E)dt/t + fj 1 e dt/t (B4o)

which becomes

-C=J'(e~t-1)dt/t + f1e~ dt/t (B41)

is valid.2 3

Exponential-Integral Function

The exponential-integral function is defined for x>0 as

Ei(-x)_= - fxe-tdt/t .(B43)

From Eq. (B18) one has

F'(O,x)=-Ei(-x) . (B43)

By use of Eq. (B41), Ei(-x) may be evaluated as

Ei(-x)=-fXe~ t dt/t - fXe~tdt/t
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=C + f (e-1)dt/t + fXet dt/t

=C + f4(et-1)dt/t + f dt/t + fX(e--1)dt/t

=C + f dt/t + fJx(e-1)dt/t

=C + ln(x) - . J (-t)k-1dt/k!
k=1

=C + ln(x) + 7 (-x)k/(k k!) , (B44)
k=1

Selecting a branch cut along the negative x axis, one may

extend Eq. (B44) to the z plane as

Ei(-z)=C+ln(z)+ (-z)k/(kk!) . (B45)

k=1

For large x, Eq. (B44) converges so slowly as to warrant

the developement of an asymptotic series which may be used

to calculate Ei(-x) to sufficient accuracy. By integration

by parts of the right side of Eq. (B42), as indicated by

Arfkin, 2L one obtains

-x -
Ei(-x)=- e + f 2 dt

t

- exn-1 _kk!+ (-1)n+1n! etdt (B46)
xk=O x xt+

Thus is found

E i ( -x -x n ( -)kk -n-1
(-x)x k <nlf00t dt

xk=G xk
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=(n-1)!/xn . (B47)

Hence by a judicious choice of n, for a given x, the error

of approximation indicated by Eq. (B47) may be minimized.

Extension of the asymptotic series in Eq. (BL47) to the z

plane may be made with the understanding that the error will

vary as jz|-n times a function of the argument of z.

Probability Integral

The probability integral (x), also known as the error

function erf(x), is defined as

(x2)t
2

(xE fe~ dt .(B48)

2T
Let u=t2, then from application of Eqs. (B1), (B18), and

(B17), Eq. (B48) becomes

(x)=- fo 2u~2e-udu

=n~ [ C( )- C(2,x2)1

=1-n~ r'(2,x2) .(B49)

Thus one obtains

(,x2)~ -(x)] .(B5o)

By application of Eqs. (B27) and (B49) one derives

(x)=2 (-1)kx2k+1
2k+1 k! (B51)

k=0

Also, by integration by parts of Eq. (B48), one acquires the

alternate form
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2 2
(x=2~[x~ +2J Xt2 -tdt

2 ~ {xe x2+ [x3e x2+ 2 f t e ~ 12
3x0

e 2x2o 2kx2k+1

k= ~(2k+1) . (B52)

To make an asymptotic expansion of (x), first write

(,x2)=S 2t2e~
t dt

x

2
=ex /x - 2 2t3/2 e-tdt

x

-x2 n-1 (-1 )k(*)k-t
2kekk+ (- 1 )n n2t)n nd (B53)

x k=0 x 2 -1 2nx t

Hence observe that

-x2 n-1 (-1 )k) (2)
r(, x2 )_ex 2k k 2n+ 1 . (B54)

k=0 x x

Thus from Eq. (B49) one developes

e-x2 n-1 (-1)k(2k ()
(x) .1- --- 2k + 0 ( 2n1) (B55)

x k=0 x x

which together with the other expansions of (x) may be

extended to the complex plane by means of analytic contin-

uation.



APPENDIX C

CONDUCTIVITY INTEGRALS

The conductivity integrals in Eqs. (2.32) and (2.33)

are proportional to

v-i -td
I= f o0 v s e -. t(C l)

1 ~ot t ed+(i

If s is an integer then Eq. (A17) may be employed to expand

Eq. (Ci) in terms of

tv-ie-tdt

If0 t+a , (C2)
where a may be a complex number but not a negative real num-

ber. In order to evaluate I , suppose a is a positive real

number and v>0. Let ax=t, then Eq. (C2) becomes

V-ix v-i exxdx
v-0 a(x+1)

v-10 x e-cxdxa s x+1

=av-1er(v) e x v- e-axdx

=av-1ea Ev) E(1-via) (C3)
through use of Eq. (B32). Since both the left and right

sides of Eq. (C3) are analytic over the indicated region

then by analytic continuation the relationship
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(c4)
V-1 -t

0 t teadt _ v-1ea r(v) P(1-v,a)

follows for a=re a with r>0 and 9 <q.25

Hall Conductivity

The contribution of a single band of carriers to the

Hall conductivity, as indicated in Eq. (2.33), is propro-

tional to

3/2e -Xdx

I- 0 X-2k +x. (c5)

For several k corresponding to distinct scattering mechanisms
the I are expanded below in order of complexity.

k=0
In this case one has simply

00x3/2e-xdx
d0 1+Y

= P(5/2)/(1+Y) . (06)

k=-1/2
Here one finds

x3/2e-xdx

-0 x+ Y

=y3/2eYfl(5/2) f(1-2,y)

by Eq. (C4). Through application of Eqs. (B5),

and (B50), one obtains

(07)

(B17), (B25),

3/2Yr(l/2) ~ 22 2 ~ (~1)(2k- )
=2*2-1 L 2 k=1 (2y) k1
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==y 3/2e i[(1 Y))+Y~A e~ (-1+ )]

1 3/2
=IT(i-Y)+Y /e 2[g 2(t1- #(Y2) )(C8)

which, with the aid of Eq. (B52), becomes

I=1 -- 22 2 ]ey3/2 . (C9)
k=0

For large y, where an asymptotic expansion is more appro-

preate, I is expanded with aid of Eq. (B55) as

1 (-1)k ()k
I,. y Z k.(C10)

k=2 (

X=1/2

As the developement of

O x3/2e-xdx
I=f 0(-1

x +y

requires use of the same equations needed for X=-1/2, the

derivation is indicated with less detail. Let a=y~ , then

one acquires

Iax5/2e-xdx
-a 0  x+a

=a7/2ea r(7/2) ' (2-3, a)

=a7/2 a 1) (1-<(a2))+a~2e-a(-1+1- 3-)
2a (2a)2

=IT ( a- a2+a3) -a7/2ea (1Tr2 - ((a2))

=-ie aa7/2+ 2 - +a3+2a40 (2ak . (C12)
k=0
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For large a I is approximated by

23 (-1)k-1
aa E k k.(C13)

k=3 a

%=3/2

Here

x3/2-xdx(C14)

x +y

becomes, through use of Eq. (A17), if a=y-1/3

3 ox9/2e-xdx
x3+a

a - x9/2e-xdx i2/3 o0 x9/2-xdx
~I0 x+a + (e f0Tr'3 i2 /3 + c.c.)]

x+ae

a[a9/2e a p(11).;1(-2 ) -

(ei2n/3a9/ 2ea exp(i 2 n/ 3 ).r(;) F(2,aei2qT/3) + c.c.)]

(C15)

Considering the recursion

I- ( -9/2, a)= P (2-5, a)

=- [ X2-(1- (a2) )+a~ e-a 5 (1)k( 2k 3 ),,
k=1 (2a)

(C16)

then through the tedious developement

I= -a9/2ea7+2171 a5 0 2a k
k=O 2k+1 !

,2a4(-1+ - 327+ ' -7.3 )-
2a (2a)2 (2a)3 (2a)
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ei2T/3(-a9/2ea exp(i2ir/3) i /3a5 2  2a k ei2Trk/3 _

Le[( aak=0 2k+1

e - i/32a 4 (-1+ e -i2n/3_ 3 e i2/3+ 5 -3
2a (2a)2  (2a)3

7Zi' e-2Tr/3))+ c.c.]
(2a)

2a k
a {-a9/2ear+2l1a5 E (2++1 +

3 k=O .

1 a (1- + -+ - - _
2a (2a)2 (2a)3  (2a)4

2[-a9/2ea cos(2r/3) cos (a sin(21r/3) +2rr/3) +

2'2 coor) 3k(a) 00 3k
21ff Cos (T) ( k (6 2a1 ) + cos (-Tr/3) (2ak=(6 3k})+

cos(Tr/3)((2a)2  ( 2a 3k)]a5+
k=0

g a [cos(/3) (1--5 ) + cos (-F/3) (- f+ 7- 5 j) +
(2a)3  2a (2a)

cos (Tr) (- 3 2)]] ,
(2a)

the expansion

I=-a11/2 ea-2e -a/2cos ( a32/2+ 2/3) ]+3(1 a3/4 + 2nra6

k=Ok+1 !!

is acquired. For large a one has (C17)

___ (1 k~i)(
1 2 -1k2_k iTr/3 (-1)k -k

I ak [-a k +e ke-i2 k/3+ c.c.)a4]
k=5 a k=5 a

5a5 k ui(-1)()+iTr/3 (__

k=5 a k=2 a3k
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-1)k 1 )k()
e ak=2 a3k k=1 a3 k+2

or

k-i
(-1)k ({) k+2

IIra 3k+2(C18)
k=1 a3k

Magneto conductivity

The expansion of the integral

,=-So x3/2-Xe-xdx
f 0 -2X

x +Y

found in Eq. (2.32) is similar to that of the above integrals.

These integrals are included for several reasons: 1) magneto-

conductivity data offers as much information to the experi-

menter as does Hall conductivity data and thus presents an

alternate means to determine number densities and mobilities,

2) the integrals are closely related to the Hall conductivity

integrals and require little additional development, and 3)

a future extension to these integrals of approximations

similar to those in Chapter III may create a convenient means

of studying semiconductors having ellipsoidal energy surfaces.

A=0

Eq. (C6) is identical to

O x3/2e-xdx

20 1+y

= P (5/2)/(1+Y) .(C20)



78

By use of Eqs. (C19), (C3), (B8), (B2), (B23), (B43),

and (B44), one acquires

x2 -xdx

0x+'

xY y dx(-2,y)

2
=y e [(-1)2 (0,y)+e~ y (k-i)!( 12-k

k=1 k

=y 2 y[-Ei(-y)+-y~2- 1]

=-y2eYEi[(-y) + 1 - y

=1-Y-Y-yC+kn(k)+] , (C21)
[ ~ k=1kk'

where C is Euler's constant. For large Y an asymptotic

expansion is obtained with aid of Eq. (B46)

I e E (-,) k! . (C22)
k=2 yk-1

-=1/2

Let a=y , then use Eq. (021) to acquire

I=foxe xdx

x'+y

oax2 -xdx
=aJ0 x+a

2a00 
k

=a[1-a-a 2ea(C+ln(a)+ E ;)]. (C23)
k=1
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For large a, Eq. (C22) provides

I E )k (C24)
k=2 a

k='3/2

Let a=Y 1/3, then develop the lengthy expression

S Oxe~dx
o x-3x +Y'

3 oo xe~ dx
x3+a

a oo x3 e-xdx +(e 2 /3 oox3e -dx +..]
SOx+a + IT/3ooxe 3 ~c

x+aei2<

=L[a 3eaf() P(-3,a)+

(ei2 r/3a3ea exp(i271/3)(4) r(3ae i2V/3)+ c.c.)]

=ateaLEi(-a)+e-a (k-)!1_ 3-k
k=1 a

[ei2Tr/3ea exp (i2Tr/3) (Ei (-ai2T/3)

e -a e xp (i2Tr/3) k=1(k 1) !( _1)3-ke i2T/) .c.]

00 k

S j{a3ea[C+n(a)+ ]+a2-a+2+
k=1

Le i2n/3(a3ea exp (i2a/3) (C+ln(a)+ i2 + e i2Tk/3
3ak-i k=-1k!e

a2e-i2ir/3_ ei2T/3+2)+ c . c . ]1
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4 00 ( k
=a3+- eaC+ln(a)+ ]+

k=1

2e-a/2[(C+ln(a)+ Z (k )cos( + )

00k=1

(-1)k3k-1s
1(3k-1 3k-1) s2k1

(k - a -2) s( )- sin(& + ) .(C25)
k=1 3k-2(3k-2 )o( 2 3 3 23)

For large a one may write

3 (-1)k k-1) i2/3 (-1)k k-1)! -i2qrk/3+c.c.]}
k=4 a k=4 a

3 E k ~4k -1)]+2[ (-1) (3k)! +
3 k=4 ak k=1 ak+

Cos(-2r/3)( (-1) 3k 1 )+cos(2/3)(k k-)!
k=1 a k=2 a3

or

I a_,k-1(3k)! .(C )(026)
k=1 ak



APPENDIX D

PROGRAMS TO DETERMINE APPROXIMATIONS OF S

The process of determining approximations of

" _ 1 2 x3/2-xdxS(X;y)= rjx5/2+X) 0 e dx(D1)
x +y

is described in Chapter III. These approximations were

determined with the aid of an IBM 360/50 computer using a

program written in FORTRAN IV.

Calculation of SM

Before initiating the approximation process one must

calculate S over an appropriate range of y including 'M, cor-

responding to SM the maximum value of S. The Newton-Raphson

method is employed to determine y such that d =0.26

Main

DOUBLE PRECISION X(125),Y(125),B(10),T

DIMENSION X1(125),Y1(125)

DO 2 I=2,10

2 B(I)=0.DO

X(1)=1.D0

C PROGRAM FINDS MAXIMUM VALUE OF S BY ITERATION IN LOOP

C BELOW. FIRST DERIVATIVE OF S, Y(1), AT X(1) DIVIDED BY

C SECOND DERIVATIVE OF S, Y(2), AT X(1). THIS IS THEN

81
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C SUBSTRACTED FROM X(1) TO FORM NEW X(1). IF DIFFERENCE

C SMALL THEN ITERATION HALTED.

10 K=1

B(1)=DSQRT(X(1))

CALL DGL32(K,X(1),B,T)

Y(1)=.5Do*T/B(1)

Y(2)=-.25DO*T/(B(1)*X(1))

K=2

CALL DGL32(K,X(1),B,T)

Y(1)=Y(1)-T*B(1)

Y(2)=Y(2)-T/B(1)

K=3

CALL DGL32(K,X(1),B,T)

Y(2)=Y(2)+2.DO*B(1)*T

T=Y(1)/Y(2)

WRITE (6,102) X(1),Y(1),Y(2),T

102 FORMAT(4D20.9)

X(1)=X(1)-T

IF(DABS(T).GT.1.D-06)GO TO 10

K=1

CALL DGL32(K,X(1),B,T)

WRITE (6,101) X(1),T

101 FORMAT (2D20.7)

B(1)=DLOG10(X(1))-2.o4DO

C S IS CALCULATED FOR A RANGE OF VALUES ABOUT THE MAXIMUM

C OF S AND PLOTTED.
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DO 1 I=1,125

T=B(1)+.04DO*DFLOAT(I)

X1(I)=T

X(I)=10.DO**T

CALL DGL32(K,X(I),B,T)

Y(I)=T*DSQRT(X(I))

WRITE (6,101) X(I),Y(I)

1 Y1(I)=Y(I)

CALL PPLOT(X1,Y1,1,125,0,6)

STOP

END

DGL32

This subroutine from the IBM Scientific Subroutine Pack-

age27 uses Laguerre-Gauss quadrature to calculate

0f (x)x~2e~Xdx= E2wif(x1)+(32)! r(32.5)f(64 )( )/(64)! , (D2)
i=1

whereO<O<l<o,x is the ith zero of L~2 (x), one of the gener-

alized Laguerre polynominals, and

wv=(32)! 3(32.5) xi/[L~2(xi)]2 28 (D3)

SUBROUTINE DGL32(K,A,B,Y)

C SUB. COMPUTES INTEGRAL (EXP(-X)*FNC(X)/SQRT(X)),

C SUMMED OVER X FROM 0 TO INFINITY

DOUBLE PRECISION X,Y,FNC,B(10)

X=. 11079926894708D3
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Y=. 11071413071714D-47*FNC(K,A,B,X)

X=. 97916716426063D2

Y=Y+.-33594959802163D-42*FNC(K,A,B,X)

X=. 87856119943134D2

Y=Y+. 68422760225115D-38*FNC(K,A,B,X)

X=.79339086528823D2

Y=Y+. 31147812492595D-34*FNC(K,A,B,X)

X=. 71868499359551D2

Y=Y+.50993217982260D-31*FNC(K,A,B,X)

X=. 65184426376136D2

Y=Y+. 38582071909299D-28*FNC(K,A,B,X)

X=. 59129027934392D2

Y=Y+. 15723595577852D-25*FNC (K, A, B, X)

X=. 53597231826149D2

Y=Y+. 38234137666013D-23*FNC(K,A,B,X)

x=. 48514583867416D2

Y=Y+.59657255685597D-21*FNC(K,A,B,X)

X=. 438258863699o4D2

Y=Y+. 63o4509133oo76D-19*FNC(K,A,B,X)

X=. 39488797123368D2

Y=Y+.47037694213516D-17*FNC(K,A,B,X)

X=. 35469961396173D2

Y=Y+. 25601867826449D-15*FNC(K,A,B,X)

X=. 31742543790617D2

Y=Y+. 10437247453182D-13*FNC(K,A,B,X)

X=. 28284583194971D2
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Y=Y+.32566814614194D-12*FNC(K,A,B,X)

X=. 25077856544198D2

Y=Y+. 97183555338954D-11*FNC (K, A, B, X)

X=. 22107070382206D2

Y=Y+. 15230434500291D-9*FNC(K,A,B,X)

X=. 19359271087269D2

Y=Y+. 23472334846431D-8*FNC(K,A,B,X)

X=. 16823405362954D2

Y=Y+.29302506329522D-7*FNC(K,A,B,X)

X=. 14489986690780D2

Y=Y+. 29910658734545D-6*FNC(K,A,B,X)

X=. 12350838217715D2

Y=Y+. 25166805020624D-5*FNC(K,A,B,X)

X=. 10398891905553D2

Y=Y+. 17576998461701D-4*FNC(K,A,B,X)

X=. 86280298574059D1

Y=Y+. 10251858271573D-3*FNC(K,A,B,X)

X=. 70329577982839D1

Y=Y+. 50196739702612D-3*FNC(K,A,B,X)

X=. 56091034574962D1

Y=Y+. 20726581990152D-2*FNC (K,A,B, X)

X=. 43525345293301D1

Y=Y+. 72451739570689D-2*FNC(K,A,B,X)

X=. 32598922564569D1

Y=Y+. 21512081019758D-1*FNC(K,A,B,X)

X=. 23283376682104D1
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Y=Y+. 54406257907378D-1*FNC(K,A,B,X)

X=. 15555082314789D1

Y=Y+. 11747996392820D0*FNC (K, A, B, X)

X=. 9394832145007 3DO

Y=Y+. 21699669861237DO*FNC(K,A,B,X)

x=. 47875647727749D0

Y=Y+. 34337168469817DO*FNC(K,A,B,X)

X=. 17221572414540D0

Y=Y+. 46598957212536DO*FNC(K,A,B,X)

X=.19127510968447D-1

Y=Y+. 54275484988261Do*FNC (K, A, B, x)

RETURN

END

FNC

Here the integrand in Eq. (D1) for X=-2 is calculated

along with functions necessary to form the first and second

derivatives of S(-2;y) with respect to y.

FUNCTION FNC(K,A,B,X)

DOUBLE PRECISION A,B(10),X,FNC

GO TO (1,2,3),K

1 FNC=X*X/(X+A )

RETURN

2 FNC=X*X/(X+A)**2

RETURN

3 FNC=X*X/(X+A)**3
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RETURN

END

Calculation of S

Four hundred values of S were calculated and stored on

cards by a simple program, not listed here, which used the

subroutine DGL32 and FNC. These S correspond to y equally

spaced with twenty points per decade in log space from

y=10-10 M to approximately y=1010yM. As a check, for A=-A,

the S were recalculated at selected points by use of Eqs.

(2.38) and (2.39). In the range of y, for which the asympto-

tic expression is appropreate, errors of one part in 107 or

less were found which is negligible for the intended use;

however, for small y the errors became substantially larger

than one part in 105. Over this latter range of y the S were

recomputed using Eq. (2.38) and a set of corrected cards were

punched with errors no larger than one part in 107. This

procedure was repeated for each X.

Calculation of S*

Main

This program is used to approximate S(X;y) for several

X. By modifying the initial guesses of the zeros of S*-S,

allowance may be made for various X. As listed the program

calculates S*(3/2;y) to order N=6 before failing; however,

by removing the statement labeled 85 and inserting
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J=210+N

85 IZ(I)=J+((60+N)*(IZ(I)-J))/80

S*(3/2;y) is determined to order N=8. Additional information

is provided by COMMENT statements.

DOUBLE PRECISION X(400),Y(400),E(400),EM(400)),EX,SUM

1ER,EPI,A(10),B(10),XS(20),YS(20),YH,YH1

DIMENSION XP(125),YP(125),IZ(400)

READ(5,102)(Y(I),I=1,400)

102 FORMAT(5D16.7)

DO 1 I=1,400

1 X(I)=10.DO**(.05DO*DFLOAT(I-1)-10.DO)

DO 11 I=1,125

11 XP(I)=.05*FLOAT(I)-3.15

EPI=1.D-7

KP=O

NP=2

NP1=3

N=1

N1=2

ER=0.DO

C INITIAL GUESSES FOR ZEROS OF YH-Y(I) OF ORDER N=1

XS(1)=X(191)

YS(1)=Y(191)

XS(2)=X(211)

YS (2) =Y (211)

C ITERATION LOOP TO CALCULATE A AND B BEGINS HERE
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4 CALL CONST(NP,XS,YS,A,B)

DO 5 I=1,400

YH=A(N)

IF(N.EQ.1) GO TO 51

DO 52 J=2,N

52 YH=YH*X(I)+A(N1-J)

51 YH=YH*DSQRT(X(I))

YH1=B(N)

IF(N.EQ.1) GO TO 53

DO 54 J=2,N

54 YH1=YH1*X(I)+B(N1-J)

53 YH1=YH1*X(I)+1.DO

YH=YH/YH1

5 E(I)=YH-Y(I)

DO 55 I=139,263

I1=I-138

55 YP(I1)=E(I)

KP=KP+1

IF(KP.GT.50) STOP

C MAKE PRINTER PLOT OF FIRST FIVE APPROXIMATIONS TO YH-Y(I)

C OF ORDER N

IF(KP.GT.5) GO TO 56

CALL PPLOT(XP,YP,1,125,0,6)

56 WRITE(6,101)((A(I),B(I)),I=1,N)

101 FORMAT(2D25.16)

C PRINT ER, THE AVERAGE OF THE 2*N+1 SELECTED EXTREMA OF
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C YH-Y(I) (ER SET EQUAL TO ZERO BEFORE FIRST ITERATION)

WRITE(6,102) ER

C LOOP DETERMINES ALL EXTREMA OF E(I)=YH-Y(I)

J=0

DO 61 I=1,398

IF((E(I+1)-E(I))*(E(I+2)-E(I+1)).GT.O.DO) GO TO 61

J=J+1

IZ (J)=I+1

61 CONTINUE

DO 62 I=1,J

I1=IZ (I)

62 EM(I)=E(I1)

C N LARGEST MAXIMA LOADED INTO EM(1) - EM(N)

DO 91 K=1,N

DO 91 I=K,J

IF(EM(I).LT.EM(K)) GO TO 91

EX=EM(I)

EM(I)=EM(K)

EM(K)=EX

I1=IZ(I)

IZ (I)=IZ (K)

IZ (K)=I1

91 CONTINUE

C N LARGEST MINIMA LOADED INTO EM(N+1) - EM(2*N)

DO 92 K=N1,NP

DO 92 I=K, J
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IF(EM(I).GT.EM(K)) GO TO 92

EX=EM(I)

EM(I)=EM(K)

EM(K)=EX

I1=IZ (I)

IZ (I)=IZ (K)

IZ (K)=I1

92 CONTINUE

C LARGEST REMAINING EXTREMUM LOADED INTO EM(2N+1)

K=NP1

DO 93 I=K, J

IF(DABS(EM(I)).LT.DABS(EM(K))) GO TO 93

EX=EM(I)

EM(I)=EM(K)

EM(K)=EX

I1=IZ(I)

IZ (I)=IZ (K)

IZ (K)=I1

93 CONTINUE

SUM=O.DO

DO 7 K=1,NP1

7 SUM=SUM+DABS(EM(K))

ER=SUM/DFLOAT (NP1)

DO 8 K=1,NP1

IF(DABS(DABS(EM(K))-ER).GT.EPI) GO TO 81

8 CONTINUE
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C AFTER DETERMINING THE BEST YH OF ORDER N, THE COMPUTER

C FINDS THE 2*N ZEROS OF YH-Y(I)

J=0

EX=E(1)

DO 82 I=2,399

IF(EX*E(I).GT.O.DO) GO TO 82

IF(E(I).EQ.O.DO) GO TO 82

J=J+1

IZ (J)=I

82 EX=E(I)

I1=IZ(J)-IZ(J-1)

IZ(J+2)=IZ(J)+I1

DO 83 I=1,J

I1=J+2-I

83 IZ(I1)=IZ(I1-1)

I1=IZ(3)-IZ(2)

IZ(1)=IZ(2)-I1

NP=NP+2

CALL PPLOT(XP,YP,1,125,0,6)

IF(NP.GT.14) STOP

NP1=NP+1

N=NP/2

N1=N+1

ER=O..DO

KP=O

C THE ZEROS OF YH-Y(I) OF ORDER N+1 ARE ESTIMATED
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DO 85 I=1,NP

85 IZ (I)=211+(3*(IZ (I) -211))/4

DO 84 K=1,NP

I=IZ (K)

XS (K)=X(I)

84 YS(K)=Y(I)

GO TO 4

81 DO 9 K=1,NP

I=IZ (K)

XS(K)=X(I)

9 YS(K)=Y(I)+DSIGN(ER,EM(K))

GO TO 4

END

CONST

After CONST calculates the coefficients of Eq. (3.21),

DPG solves for the a. and b..

SUBROUTINE CONST(NP,X,Y,A,B)

DOUBLE PRECISION X(20),Y(20),A(10),B(10),C(20,21),T,P(20)

C NP IS THE NUMBER OF PARAMETERS

C X,Y ARE NP PAIRS OF DATA POINTS

C A,B ARE NP CONSTANTS DETERMINED FROM NP LINEAR EQUATIONS

C CONTAINING THE X,Y

N=NP/2

N1=N+1

NP1=NP+1
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DO 1 I=1,NP

T=Y(I)/DSQRT(X(I))

C(I,1)=1.D0

C(I,NP1)=T

C(I,N1)=-T*X(I)

IF(N.LT.2) GO TO 1

DO 4 J=2,N

0(1, J)=X(I)*C(I, J-1)

NJ=N+J

4 C(I,NJ)=X(I)*C(I,NJ-1)

1 CONTINUE

CALL DPG(NP,C,P)

DO 2 I=1,N

A(I)=P(I)

2 B(I)=P(I+N)

RETURN

END

DPG

This subroutine solves a set of NP linear equations by

means of double pivoting and Gaussian eliminiation. The

process is described by Isaacson and Keller.2 9

SUBROUTINE DPG(NP,T,DP)

DIMENSION KEEP(20)

DOUBLE PRECISION C(20,21),A,B,DP(20),T(20,21)

NP1=NP+1
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DO 2 I=1,NP

KEEP(I)=I

DO 2 J=1,NP1

2 C(I, J)=T(I, J)

L=NP-1

DO 3 I=1,L

A=0.DO

DO 1 II=I, NP

DO 1 JJ=I,NP

IF(DABS(C(II,JJ)).LT.A) GO TO 1

A=DABS(C(II,JJ))

III=II

JJJ=JJ

1 CONTINUE

DO 4 K=I,NP1

B=C (I, K)

C(I,K)=C(III,K)

4 C(III,K)=B

KP=KEEP(I)

KEEP(I)=KEEP(JJJ)

KEEP(JJJ)=KP

DO 5 K=1,NP

B=C (K, I)

C (K, I)=C (K, JJJ)

5 C(K,JJJ)=B

A=C(I, I)
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DO 10 II=I,NP1

10 C(I,II)=C(I,II)/A

I1=I+1

DO 3 II=1, NP

A=C(II, I)

DO 3 JJ=I1,NP1

3 C(II,JJ)=C(II,JJ)-A*C(I,JJ)

C(NP,NP1)=C(NP,NP1)/C(NP,NP)

DO 7 I=1,NP

7 DP(I)=C(I,NP1)

DO 6 I=2,NP

II=NP1-I

JJ=NP-1

DO 6 J=II,JJ

6 DP(II)=DP(II)-DP(J+1)*C(II,J+1)

DO 8 I=1,NP

8 C(1,I)=DP(I)

DO 9 I=1,NP

K=KEEP(I)

9 DP(K)=C(1,I)

RETURN

END



APPENDIX E

LEAST-SQUARES DETERMINATION OF PARAMETERS

Theory of Least-Squares

By comparing observed values yi for i=1,2,...,ND of a

physically neasurable variable with the theoretically expected

values y=y(p;x), where p=(p ,...,p ,..., NP) represents

adjustable parameters p. and x is an independent variable,

one may extract physically meaningful information in terms

of p. A common method is to minimize the sum of the squares

of the deviations

ND
s= E (y-y1)2  . (El)

i=1

In practice this may be accomplished by solving

ND

a=2 E (y-y )P
Bk i=1 0k

=0 (E2)

for k=1,2,...,NP and by rejecting those solutions which are

unphysical or do not provide an absolute minimum s. Through

expanding y as a Taylor series

NP
y(p;x)=y(p*;x)+ E ,(p.-p )+... (E3)

and supposing p is near a solution p of Eq. (E2) so that

quadratic and higher terms may be ignored, one obtains

97
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ND NP
=2 E [y(>*;x.)+ E (p .- p )-y

1p k i = 1 1 j = 1 a pj J k

-o (E4)

or, equivalently,

NP ND y.ay. ND ay
E Q P. E ~ p=- Z A y -- ,(E5)

j=1 i=1 jsk i=1 k

where 6p=p -p3 , yi=y(*;xi)-91 , and k=I,2, ...,NP. Thus

Eq. (E5) is a set of NP linear equations which may be solved

by Gaussian elimination with the aid of a digital computer.

Least-Squares Program

The program below, written in FORTRAN IV for an IBM

360/50 computer, extracts parameters by means of iteration.

After accepting the data and initialization information, a

cycle of solving Eq. (E5) for At> and then calculating a new

estimate of > is begun. This process continues until conver-

gence occurs or the number of iterations exceeds a test, in

which case the program terminates.

Several subroutines are used. These are: the major

subroutine LSQ, which contains the iteration process; DPG, a

program, listed in Appendix D, to solve linear equations;

and FNDIR, which calculates y and . COMMENT statements
opk

are included to provide additional information. Since LSQ

directs the least-squares calculation, a short program neces-

sary in order to load the initial data into storage is not

included.
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LS

SUBROUTINE LSQ(ND,X,Y,NP,FAC,P,IC,BA,BHW)

DOUBLE PRECISION CF(20,21),ER,F,P(20),PF(20),SE,DP(20),

1FAC(20),BA(20),BHW(20),ERP,SQ

DIMENSION X(100),Y(100)

C ND -- NUMBER OF DATA POINTS

C NP -- NUMBER OF PARAMETERS

C X,Y -- DATA

C P -- PARAMETERS

C BA -- CENTER OF ALLOWED RANGE OF P

C BHW -- HALF-WIDTH OF RANGE OF P

C FAC -- USED TO VARY STEP SIZE OF P

C IC -- COUNTER

C F -- CALCULATED VALUE OF Y

C PF -- PARTIAL DERIVATIVES OF F WITH RESPECT TO P

C ER -- DEVIATION, F-Y

C ERP -- PER CENT DEVIATION, 100*ER/Y

C SQ -- SUM OF ER*ER

C SE -- STANDARD ERROR OF ESTIMATE

C CF -- STORES COEFFICIENTS OF LINEAR EQUATIONS

C DP -- SOLUTION OF LINEAR EQUATIONS

NDP=ND-NP

NP1=NP+1

IC=O

KNT=-1

WRITE(6,103)
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103 FORMAT(//,10X,'X',19X,'Y',19X,'F',18X,'F-Y',16X,

C'% DIF',//)

C ITERATION LOOP BEGINS HERE

1000 IC=IC+1

IF(IC.LT.100) GO TO 51

WRITE(6,100)

100 FORMAT(' LSQ UNABLE TO FIT FUNCTION TO DATA')

GO TO 700

51 SQ=0.D0

KNT=KNT+1

IF(KNT.EQ.5) KNT=O

IFD=1

DO 11 L=1,ND

CALL FNDIR(IFD,L,X,NP,P,PF,F)

ER=F-DBLE(Y(L))

SQ=SQ+ER*ER

ERP=ER*1.D+2/DBLE(Y(L))

C X, Y, F, ER, ERP PRINTED EVERY FIFTH ITERATION

IF(KNT.NE.O) GO TO 11

WRITE(6,101)X(L),Y(L),F,ER,ERP

11 CONTINUE

SE=DSQRT(SQ/DFLOAT(NDP))

WRITE(6,101)SQ,SE

DO 1 I=1,NP

DO 1 J=1,NP1

1 CF(I,J)=O.DO
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SQ=O.DO

IFD=2

DO 2 K=1,ND

CALL FNDIR(IFD,K,X,NP,P,PF,F)

ER=F-DBLE(Y(K))

SQ=SQ+ER4*ER

DO 2 I=1,NP

CF(I,NP1)=CF(I,NP1)-ER*PF(I)

DO 2 J=1,NP

2 CF(I,J)=CF(I,J)+PF(J)*PF(I)

DO 4 I=2,NP

4 CF(I,J)=CF(J,I)

SE=DSQRT(SQ/DFLOAT(NDP))

CALL DPG(NP,CF,DP)

WRITE(6,908)(P(J),J=1,NP)

WRITE(6,909)(DP(J),J=1,NP)

909 FORMAT( 12H DEL. PARM. 6D18.8/(12X,6D18.8) )

C NEW ESTIMATES OF P MADE, P=P+FAC*DP

DO 5 I=1,NP

P(I)=P(I)+DP(I)*FAC(I)

IF(DABS(P(I)-BA(I))-BHW(I).GT.O.DO) GO TO 800

GO TO 5

800 IF(P(I)-BA(I).GE.O.DO) GO TO 801

P(I)=BA(I)-BHW(I)

GO TO 5

801 P(I)=BA(I)+BHW(I)
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5 CONTINUE

C CHECK FOR CONVERGENCE

DO 6 I=1,NP

IF(DABS(DP(I))/(DABS(P(I))+1.D-8).GE.1.D-6) GO TO 1000

6 CONTINUE

WRITE(6,908)(P(J),J=1,NP)

908 FORMAT(/12H PARAMETERS 6D18.8/(12X,6D18.8) )

WRITE(6, 102)SE

102 FORMAT(/,' THE STANDARD ERROR OF ESTIMATE IS',D18.8,/)

700 IFD=1

WRITE(6, 103)

DO 7 K=1,ND

CALL FNDIR(IFD,K,X,NP,P,PF,F)

ER=F-DBLE(Y(K))

ERP=ER*100.DO/DBLE(Y(K))

7 WRITE(6,101)X(K),Y(K),F,ER,ERP

101 FORMAT(5D20.7)

RETURN

END

FNDIR

This subroutine varies depending upon the functional

form of y. Here the program is specifically designed to cal-

culate using the y of the example in Chapter IV. The use of

subroutine SP indicates the application of piezoelectric

scattering. SP and subroutines for other scattering mecha-

nisms are listed in the next section.
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SUBROUTINE FNDIR(IFD,K,X,NP,P,PF,F)

DOUBLE PRECISION P(20),PF(20),F,XX,G,A(4),Y,F1

DIMENSION X(100)

XX=DBLE(X(K)*X(K))

N=NP/2

F=O.DO

DO 1 I=1,N

12=2*I

121=I2-1

G=XX/P(I2)

CALL SP(IFD,G,A,Y)

F1=DBLE(X(K))*A(1)/(P(I2)*A(2))

GO TO (1,2),IFD

2 PF(I21)=F1

PF(I2)=-P(I21)*(F1+XX*DBLE(X(K))*(A(3)-A(1)*A(4)/A(2))

C/(A(2)*P(12)*P(I2)))/P(I2)

1 F=F+P(121)*F1

RETURN

END

SA, SP, SI, and SN

Subroutines needed by FNDIR to calculate Hall conduc-

tivity for the scattering mechanisms listed in Table I are

listed below. Use SA for X=-1/2, SP for X=1/2, SI for X=3/2,

and SN for X=O. Coefficients used to create the first three

subroutines are found in Table II. SN applies Eq. (2.37).
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SUBROUTINE SA(IFD,G,A,Y)

DOUBLE PRECISION G,A(4),Y

A(1)=(((190.90399D0*G+692.60155DO)*G+479.81762D0)*G+

C63.136891D0)*G+1.1224298DO

A(2)=((((181.9301DO*G+942.89358D0)*G+1317.3871D0)*G+

C553.54454D0)*G+59.13848D0)*G+1.DO

IF(IFD.EQ.1)RETURN

A(3)=((763.61596D0*G+2077.8047D0)*G+959.63524D0)*G+

C63.136891DO

A(4)=(((909.6505DO*G+3771.5743D0)*G+3952.1613DO)*G+

C1107.0891DO)*G+59.138L8D0

IF(IFD.EQ.2) RETURN

Y=DSQRT(G)*A(1)/A(2)

RETURN

END

SUBROUTINE SP(IFD,G,A,Y)

DOUBLE PRECISION G,A(4),Y

A(1)=((.12192377DO*G+1.4099598DO)*G+2.7765076D0)*G+

C1.0355748DO

A(2)=(((.11433758DO*G+1.5157628D0)*G+4.504886Do)*G+

C4.038167D0)*G+1.DO

IF(IFD.EQ.1)RETURN

A(3)=(.36577131DO*G+2.8199196D0)*G+2.7765076D0

A(4)=((.45735032DO*G+4.5472884D0)*G+9.009772DO)*G+

C4.038167DO
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IF(IFD.EQ. 2)RETURN

Y=DSQRT(G)*A(1)/A(2)

RETURN

END

SUBROUTINE SI(IFD,G,A,Y)

DOUBLE PRECISION G,A(4),Y

A(1)=(((((.604188D-3*G+.2876591D0)*G+9.97617D0)*G+

C39. 1796DO) *G+19.91651D0) *G+1.2259D0

A(2)=(((((.386O73D-3*G+.2013202D0)*G+9.14989D0)*G+

C62.3096DO)*G+80.4167DO)*G+21.26549D0)*G+1.DO

IF(IFD.EQ.1)RETURN

A(3)=(((3.02094D-3*G+1.15O636DO)*G+29.92851DO)*G+

C78.3592DO)*G+19.91651D0

A(4)=((((2.316438D-3*G+1.OO66O1DO)*G+36.59956DO)*G+

C186.9288DO)*G+160.8334DO)*G+21.26549D0

IF(IFD.EQ.2)RETURN

Y=DSQRT(G)*A(1)/A(2)

RETURN

END

SUBROUTINE SN(IFD,G,A,Y)

DOUBLE PRECISION G,A(4),Y

A(1)=1.DO

A(2)=G+1.DO

A(3)=0 .DO

A(4)=1.DO
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IF(IFD.EQ.2)RETURN

Y=DSQRT(G)*A(1)/A(2)

RETURN

END



APPENDIX F

SOLUTION OF BOLTZMANN EQUATION

Consider an isotropic, isothermal, conducting medium

having an energy dependent relaxation time. Let the conduc-

tor have spherical, quadratic energy surfaces, i.e.

E=('2/2m*)k2 (Fl)

with m*, the effective mass, and k, the wave vector. If

uniform electric and magnetic fields are applied then the

Boltxmann equation is, according to Wilson,3 0

(e/ ) (E+vX R/. )- O f+(f0-) =0 , (F2)

where e>O for electrons, and f and f0 are, respectively, the

distribution function and equilibrium distribution function.

The group velocity is

v=- OkE (F3)

Suppose, as Wilson does,3 ' the requirement

df

f=f0~ 4 EO (F4)

with J containing only terms linear in elements of E. Since

f0 is a function of energy alone then

_:-A. f0

Vkfo(o

-( 0
-lv-E (F5)
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Now observing

6 f0 60

k k 0 k B 4~ k E

6 0 k 2 v i(F6)

and

(vrXN) -Y=0 , (F7)

the Boltzmann equation may be linearized as

evrE-(e/hc)l H- Vk + Y/=0 . (F8)

As the solution of Eq. (F8) is

C =-e rv-E (F9)

if H=0, then the solution with H0 may be

<=-eT'9-9 (F10)

where F is to be determined. Since

Vk -v=fi/m* (F11)

then

Vk c=-e Y fF/m*'+v( k -F) -ev -F v E . (F12)

Substitution of Eq. (F12) in Eq. (F8) and use of Eq. (F7)

results in

v-[E+(e1/m*c )H X F--F-%]=0, (F13)

i.e.

E+(e'/m*c)H X-F=0 . (F14)

Clearly the solution is of the form

F=aE+bH+dE X H , (F15)

where a, b, and d are scalar functions of e r/m*c, E, and H.
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By use of the identities

HXHO0

and (F16)

ExH7~ _-HX E,

Eq. (F14) becomes

E(1-a)+(e T'a/m*c+d)H AE-bH+e/t dH X (E X H)/m*c=0 .(F17)

Since H, H X E, and H X(E X H) are mutually perpendicular and

E. (H X E)=0 , one immediately has

d=-e T a/m*c (F18)

and

b=E-H(1-a)/H2  . (F19)

By using the identity

A X(B XC)-E(A -C)B-(A -B) C , (F20)

Eq. (F17) may be written

[E-(E -H)H/H2][(1-a)-(e T /m*c) H a]=O , (F21)

which implies

a=[1+(e r /m*c) 2 H2 ]-1 . (F22)

Thus one has the solution, noted by Beer,3 2

F=[E-(e't/m*c)E XH+(e T'/m*c)2(E-H)H][L1+(e 'j/m*c)2H2] 1. (F23)

Eq. (F4) is now

f=fo+e'Y -v-F , (F2L)

where using the permutation tensor ijn and Einstein nota-

tion, the dot product is

vr -=(-h/m*) [1+(e 'r'/m*c) 2H2- [ k .- '1 /m*c)E . .nk.Hn
3 ijn 1 n

+(e'I/m*c) 2k.H.H ]E. . (F25)
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