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The developement of the conductivity coefficients is
reviewed for both highly degenerate metals, having an energy
dependent relaxation time, and semiconductors, obeying
Boltzmann statistics and having a relaxation time varying as
the energy to the A power. In each case the energy bands
are assumed to be spherical and parabolic. Examination of
the Hall conductivity oxy(H) reveals a similarity of form
between the metal and semiconductor situations which allows
one to determine the number density n and zero-field conduc-
tivity mobility ko for a single band semiconductor, by use
of the maximum absolute value of ch(H) and the corresponding
magnetic field HM’ as for metals. Constants which relate bo
and n to ‘ny(HM)| and Hy are tabled for the following scat-
tering mechanisms: acoustic phonon scattering, A=-1/2;
neutral impurity scattering, A=0; piezoelectric scattering,
A=1/2; and ionized impurity scattering, A=3/2.

A function S(A;v), where Y varies as HZ, which is pro-
portional to Oxy(H), is defined. Evaluation of S(A;y) is
necessary since least-squares analysis is required in order

to determine n and Ko for individual bands of a semiconductor



having multiband conduction. By approximating S(A;Y) by
rational-type functions which are chosen to be best in a
Chebyshev sense, a means of computing dxy(H) is developed
which does not rely on tables, numerical integration, or
otherwise tedious calculation. Thus a means to acquire n
and g rapidly with the aid of a relatively small computer
is presented.

These two developements allow for band parameters to be
determined even in the absence of magnetic fields suffi-
ciently large as to have saturation of the Hall constant.

Regarding the application of the theory which this
work makes convenient to apply, one must consider the nature
of real semiconducting materials. They rarely have com-
pletely quadratic or spherical energy bands, and over many
temperature ranges they do not have power-law dependent
relaxation times. These real situations require much more
complicated and time consuming calculations, so much that
one is usually forced to use simplifications. When applied
in a considered manner, the simple model of oxy(H) will

provide n and Lo adequate for the experimenter's purpose.
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CHAPTER T
INTRODUCTION

Historically the simple theory describing magnetocon-
ductivity and Hall conductivity for spherical, quadratic
energy bands with highly degenerate Fermi-Dirac statistics
has been invaluable in the analysis of metallic conduction.1
Although obviously not appropriate for detailed analysis in
the usual case where the Fermi surface is decidely nonspher-
ical, the model still provides a simple setting for the
definition of various quantities such as density of states
effective mass, number density, and mobility. Because this
model has been extended to the slightly more sophisticated
case of ellipsoidal Fermi surfaces, 1t has remained useful
in the analysis of multiband metals.z’3

The primary reason for the utility of this model is
that for the case in which relaxation time is dependent only
on energy, the integrals defining GXX(H) and oxy(H) can be
written in closed form, such that one may directly compare
data to theory by graphical or perhaps least-squares tech-
niques. Extension to the case of nonellipsoidal surfaces,
such as that given by McClure,u are again easy to interpret
in terms of a weighted aggregate of spherical surfaces.

It is the purpose of this work to emphasize that a



similar situation exists in the case of semiconductors under
highly nondegenerate statistics subject to a power law depen-
dence of relaxation time on energy, with bands described by
a spherical, quadratic dispersion law. Here the integrals
defining GXX(H) and GXy(H) are not reducible to simple closed
forms. 1In fact, historically the dimensionless integrals
which appear have only been tabulated to various degrees of
accuracy.5_9

In this work a study is made of these integrals showing
that there is an underlying simplicity of form which lends
itself to graphical and curve fitting techniques. A surpris-
ing similarity to the metals case is demonstrated, and a simple
function approximation to the integrals is obtained which
minimizes the maximum error in the sense of Chebyshev.10
These simple approximating functions may be calculated with
the use of a desk calculator, removing the need for the exist-
ing tables. A recipe is developed to allow estimation of
number density and mobility in the case of multiband conduction.

One must realize that for real semiconductors the energy
bands are usually nonspherical and nonparabolic; and the
scattering process may often be due to either several scat-
tering mechanisms or to one which does not have a power-law
dependence. However, more realsitic models require more com-
putation to realize the conduction parameters. For this rea-

son the experimenter is often forced to use the simpler models

discussed in this work. Fortunately the simple models do



provide acceptable answers when used with some knowledge of
the energy dispersion relationship and scattering mechanisms
for the examined conductor. The choice of the order of the
approximation used should depend upon the agreement of the

model with the actual case examined by the experimenter.



CHAPTER TI
ELECTRICAL CONDUCTIVITY

General Statistics
Following the work of Beer11 consider a conductor de-
scribed by a single spherical, parabolic energy band, i.e.

the energy relative to the band edge 1s given by

e =(h?/2m*) (kZ+k+k?)
—0%k%/om* (2.1)
with m* the effective mass and k= (kX ky 'k, ) the wave vector.
Furthermore, the relaxation time is dependent only on energy:

Defining the reduced energy and reduced Ferml energy, respec-
tively, as XTEE/kBT and nz EF/kBT (where kp is the Boltzmann
constant and T, the absolute temperature), then the Fermi-Dirac
distribution function is f0=(ex_q +1)~1, and the Fermi-Dirac

function of order % is

1
_ 0,2
F%(h )=ox*f,dx . (2.3)
The number density (also known as carrier concentration) may
be written as12

It 4k

n=

“(2ﬂ)3
=(2n®) " (2mmgr/n?)  2E (0) (2.14)



Suppose uniform electric and magnetic flelds are applied

to the conductor. The current density may be written as
3=- 2e
(2m)°

=6 , (2.5)

[v£ak

where the charge e is greater than zero for electrons, § is
the conductivity tensor, and
$=n"1V s

—hk /m* (2.6)
is the group velocity. In Appendix F Egs. (2.1), (2.2), and
(2.6) together with the assumption of ohmic conduction (which
may be obtained by use of sufficently small’i) are employed
to solve the Boltzmann equation for the distribution function
f.

If the z axis is chosen so that H=(0,0,H) then the

transverse magnetoconductivity (throughout this work refered

to as the magnetoconductivity) is

*
B g2  2m¥kpT 3/2 oo °fy X3/2dX
GXX(H)— 2 ( 2 ) IOT(' BX) 2 [ (207)
3 m* h 1+(WwWT)
the longitudinal magnetoconductivity is
6,, (=0 (0) , (2.8)
and the Hall conductivity is
*
o e? Am¥kpT 4 o, 3Ty (3/24,
GX (H)—‘- 2 ( 2 ) Iowfr (" ax) 2 ;(2'9)
Y 3rm* A 1+(wWT)

where w=eH/m*c is the cyclotron frequence. By defining the

averge of a function G over the Fermi-Dirac distribution as



<=

T
@ln_yfgmx)xy%%—f) ax ,  (2.10)

Egs. (2.7) and (2.9) become, respectively,

Wi

2
(D)= Be_ 1 /(1+w?r?)> (2.11)

and

2
oy ()= D cwr?/ (1 wE Ty (2.12)

If one introduces the common convention of considering e as
being the absolute magnitude of the electronic charge and
requires that w>0, then the (zero-field) conductivity mobil-
ity Lo defined by

Tyx(0) = nelt (2.13)

becomes

uo=e<‘r>/h* (2.14)

and is greater than zero for both electrons and holes. Egs.

(2.11) and (2.12) may be rewritten as

¢ (M =nep < 7> t< /(14w 12)> (2.15)
and

ny(H)=ineuo<7’> <wT?/(1+ w27 2> | (2.16)

where the upper sign is for holes and the lower sign for
electrons.

A calculation of ¢ (H) and ch(H) for arbitrary H
usually requires numerical integration. However using Eq.

(2.13) and the relationship



lim Hoxy(H)z +nec (2.17)

H-o0
one may calculate n and Lo if the Hall saturation field is
available and conduction is due to only one band of carriers;
otherwise examination of conductivity data over a range of
magnetic field is necessary. The calculation of GXX(H) and
cxy(H) for arbitrary H simplifies in two cases: 1) highly
degenerate metals (€F>>kBT), and 2) nondegenerate semicon-

ductors (€F<<O), having T proportional to a power of energy.

Highly Degenerate Metals

Since for a metal

o/

fO
—'BTN 6(X—-Y)) , (2.18)

Egs. (2.15) and (2.16) become

Oyy (H)= mep /(1+Y) (2.19)

and

0y ()= Hnewcvs/(147) (2.20)

where by use of Eq. (2.14)

Y'—‘UJZTZ(V\)
=(py/c) % . (2.21)
Defining the function
S(v) = v2/(1+7) (2.22)

one observes

1
2

Y OXX(H)zneuOS(Y) (2.23)



and

Oxy(H)=i nep,S(v) . (2.24)
Noticing the property

s(v"h)=y"2/(1+v°1)
=3(y) , (2.25)
one perceives that a plot of S(¥) vs log(y) is even about
the point corresponding to Y=1. Observe S(y) to assume the
maximum value of 3 at y=1. Since the Hall conductivity is
proportional to S(Y), then knowledge Of\oxy(HM“’ the maximum
absolute value of ny(H), and the corresponding field Hy

allows one to calculate, using Eqs. (2.21) and (2.24),
“OZC/HM (2.26)
and

n=2 o, (H)|/(epy) (2.27)

If M bands contribute to conduction, the Hall conducti-

vity becomes

H)= 2 . .S . , .
Oxy( ) j:1inJeuOJ (YJ) (2.28)

where yjz(quH/c)z. A least-squares fit of gxy(H) will be
13

required to determine the n. and bo 3

Nondegenerate Semiconductors
Often for a semiconductor one may assume both Boltzmann
statistics (€F<<O) and the relaxation time varies as the

energy to the A power,11 i.e.



fozen (2.29)
and
T (x)= Tyx* . (2.30)

From Eq. (2.14) the conductivity mobility is determined as
po=e To [ (M+5/2)/(m* T(5/2)) 5 (2.31)

and from Egs. (2.15) and (2.16) the conductivity coefficients
are given by

nep . X)\+3/Ze—xdX

Oy (H)= F(X+572)IO L4yx 2t (2.32)
and
oXy(H)=iWn-;i—g7-2-7Y%f§ Xzz:izinxdx ,  (2.33)
where
v=wfT?
=[Hu, I (5/2)/(c TO5/2)) 7% (2.34)
Defining the function
S(x;v)= 7:(%;§7§yv%lg'§§é;%i;i§ , (2.35)
then the Hall conductivity is given by
oxy(H)=inepOS(k;Y) . (2.36)
The S(A;y), for A corresponding to various common pure
power-law scattering mechanisms developed in Nag's book,lLP are

shown in Fig. 1 normalized to unity and plotted against the
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11

common logarithm of Y'=Y/YM. These A and their corresponding
scattering mechanisms are: 1) A=-1/2, acoustical phonon
scattering; 2) A=0, neutral impurity scattering; 3) r=1/2,
piezoelectric scattering; and 4) A=3/2, ionized impurity
scattering. Early attention was devoted to evaluating the
integrals in Egs. (2.32) and (2.33) for the case of acoustical
15,16 5

and constructing a table of values.
6,8,9

phonon scattering
These tables have been extended and improved and other
tables corresponding to A=3/2 have been published.7’9 In
Appendix C these integrals are evaluated in terms of commonly
tabulated functions. As knowledge of ch(H) is sufficient

to allow for calculation of n and p, in a conductor having
spherical, parabolic energy contours, only the S(A;Y) are

evaluated below. The S(A;Y) including their asymptotic

expansions, where appropriate, are: for A=0,

S(o;y)=v%/(1+v)

=5(y) (2.37)
for A=-1/2,

S(-%;Y)=Y%(%‘Y)ﬁ%+YzeYﬂ[1- ¢ (Y%)]

2Y k

2 1
ok+1 !!]Y2+ﬂYzeY (2.38)

o0
z
k=0

1
=n2[5-Y-2Y
and.

(-1)5(2)
3/2k§2“‘—;g-——£ , (2.39)

1
2

S(-%;5v)~ n3y

where ¢(x) is the probability function and (x)szYx+kL/P(x);
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for A=1/2,

S(0)=r L3/ -2 Ly R 2 %M Y- b (v E) /2

0 K
— 3/ -(2y2)‘1+y‘3+2v'”kzo 2/ ke Il
) (2.40)
and
S(3,7) ~ (n?/2)7"/2 PRS2
k=
and for A=3/2,
1352 6= (2a)3K -3/2
S(3/237)=n?[2=+ 22° = 12726 _
/25v)=r[ 7 kzo%EE%TTTT]
1
ﬁau[ea—Ze'a/Zcos(égi-k%%)]/6 (2.42
and
Y R G P
S(3/2;¥) ~ (n?/6)a”’ = T % , (2.43)

k=1 a

where a:Y—l/B.
As in the case of a metal, Ko and n may be determined
for a single band nondegenerate semiconductor having power-
law scattering by knowledge of lcxy(HM)I and Hy. The con-

ductivity mobility is given by
i
po= [(A+5/2) v/ (Hy T'(5/2)) (2.4L)
and the number density by
n= o, (Hy)| /(eugSsyy)) (2.45)

where ¥, corresponds to the maximum value S(X;YM) of S(\;v).

Egs. (2.44) and (2.45) may be rewritten, respectively, as
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bo=Cq/Hy (2.46)
and
n=czloxy(HM)‘/uo : (2.47)
Values of C1 and C2 for the A examined in this work are
found in Table I which, if H is measured in gauss and Oy (H)

y
in (ohm—cm)_l, will allow calculation of p, in cmz/V-sec and
n in carriers per cm3.
Again, if M bands contribute to conduction then the

Hall conductivity may be written as

M
H)= Zxn. S(ALsY. . .
ny( ) 2 nJeuOJS( 3 YJ) (2.48)

The determination of nj and “Oj is facilitated by a calcu-
lation of S(A;¥) which does not rely upon numerical integra-
tion or published tables. In Chapter III approximations of
S(A;¥) are developed which may be calculated quickly and
easily with a computer or even a desk calculator. These
approximations are of sufficent accuracy to allow precise
evaluation of the nj and “Oj by least-squares analysis, an

example of which is provided in Chapter 1IV.
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CHAPTER TI1I
APPROXIMATION OF S(A;v)

Consideration of the similarity between

S(O;Y)=Y%/(1+Y) (3.1)

and the other S(A;Y) displayed in Fig. 1 and the observation

that
limOS(X;Y)Y_%= [(2a+5/2)/ T (A+5/2) (3.2)
Y —>
and
Lim S(v)y2= [1(5/2)/ ' (h+5/2) (3.3)
Y >0

suggests the S(A;y) may be approximated by
L N . N :
S*(Y)TY'® T a7l /(14 T by d) (3.4)
j=1 j=1 7
having order N with ay and bN unequal to zero, Y'=Y/YM, and
also the requirement that the denominator and numerator have
no common zeros. The aj and bj are selected so as to mini-
mize the maximum absolute value of the remainder function
R(v)=S*(X;Y)-S(r;Y) (3.5)
for 0<Y<w. 1In other words, by minimizing
s=max|R(v)| (3.6)
over the interval [0,), one has found the best approxima-

tion of S(A;Y) having the form displayed in Eq. (3.4).

15
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Characterization of Best Approximation
The problem of determining the best rational-function
approximation of any function f(x) continuous on the closed
interval [a,b] is examined by Ralston.17 If a rational func-
tion

R_(x)=P_(x)/a_(x) , (3.7)

where Pm(x) is a polynominal of degree m and Qn(x) is a poly-
of degree n, is proposed as an approximation of f(x), then
it is the best approximation if and only if

rmn=[§?§]lw(x)[Rmn(x)—f(X)]| (3.8)

is minimized over all Pm and Qn for any weight function w(x)
positive over the open interval (a,b). Rals’conl'7 proves that

if the weighted curve

E(x)=w(x)[R__(x)-f(x)] (3.9)

oscillates about zero m+n+2 times with equal amplitude and

adjacent extrema have opposite signs, i.e. if there exists

X1 Xgreen X o cOntained in la,b] such that for i=1,2,...,
m+n+2
9 m(x)|. =0 (3.10)
dx X5 ’
and for 1=1,2,...,m+n+1
and

E(xi+1)=—E(xi) , (3.12)
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then Rmn(x) is the best approximation of f(x) for the chosen
w(x). Thus for i=1,2,...,m+n+2 one has
ron= B (3.13)
Clearly one can imagine g(x)=w(x)f(x) as the function
to be approximated by w(x)Rmn(x) and, consequently, apply

the above theory to the approximation of S(A;¥) by S*(r;v).
From Egs. (3.2), (3.3), and (3.4) one obtains: 1) for small

Y

R(V)~ a1 ['(2145/2)/ [(\+5/2) ] (3.18)
and 2) for large Y, | |

R(v)vy Z[vEay/by - [(5/2)/ T(+5/2)] . (3.15)

Eq. (3.14) implies that if Y<a<<yy then

nax IR(y)|< nax \R(y)\ , (3.16)

and Eq. (3.15) implies that if Y>b>>y) then

max ‘R(Y)\< max \R(Y)‘ . (3.17)

Therefore for the proper [a,b] one has

nax ‘R(y)|~6 , (3.18)
which is the maximum absolute value of R(Y) over [0,«).

Determination of Best Approximation
Suppose S*¥(A;Y) is the best approximation of S(A;Y) over
[a,b] with a and b chosen to satisfy Egs. (3.16) and (3.17)

and, furthermore, suppose there are only 2N+1 Yi’
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where lR(yi)‘za for asy <...<y;<... Yoy, 4<b. Eq. (3.10)

implies

g _
R, = (3.19)

If R(yl)z-é, then Eq. (3.12) implies
R(v,)=(-1)% . (3.20)

Rearranging Eq. (3.20) one obtains

* IN"l
(a1+y.laz—i~...+y.l

aN)—d(yib1+...+yiNbN)=d , (3.21)
where d=[S(k;yi)+(—1)i6]yi_%. After simultaneously solving
Egs. (3.19) and (3.21) for yi, i=1,...,2N+1l; &; and aj and
bj' j=1,...,N, one may then examine the resulting R(y) to
determine if max lR(Y)\=6. Theoretically these equations

offer a means[ifbgcquiring S*(A;Y); however, as they are
nonlinear in nature an iteration procedure, which is similar
to a simpler process employed to approximate with polyno-
minals,18 is adopted to expedite their solution.

An IBM 360/50 computer, using programs detailed in
Appendix D, first calculates, for a given A, S(A;Y) at 400
points between a=10_1OyM and bxlOlOyM. For N=1, initial
guesses of the zeros of R(y) are provided to the computer.
The R(Y) is then computed for the 400 stored data points and
the extrema are found. Next the N largest maxima, N most
negative minima, and the largest remaining extremum are found,

which are solutions of Eq. (3.19), and their absolute values

are averaged to form &'. Discarding the Y corresponding to
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the last data point used to determine 8', the computer uti-
lizes &', as an estimate of &, and the other 2N values of

to solve Eq. (3.21) for the aj and bj' This is now routine
since Egq. (3.21) has become a set of 2N linear simultaneous
equations. The iterative solution of Egs. (3.19) and (3.21)
is continued until convergence occurs or a counter indicates
the program has failed. After determining the S*(A;Y) of
order N, the computer is directed to automatically use the
R(Y) to estimate the S*(A;y) of order N+1.

In Figs. 2-6 is displayed a series of R(Y) for A=3/2
and N=6 which converges to the R(Y) indicated by the dashed
curve. Iteration number six produces a R(yY) which is virtu-
ally identical to the final fit.

Table II contains the aj and bj for the final approxi-
mations of the S(A;Y) for A=-1/2, A=1/2, and A=3/2. The

estimates of the maximum relative error ‘(S*—S)/S are

M\max
found by fitting R(Y) at the three points nearest each extreme
value by a parabola. Calculation reveals the approximations
are accurate to within the stated error over the extended
range [0,o). In Figs. 7-23 R(Y)/SM is plotted for each
approximation calculated in this work.

The approximation of the S(A;Y) is terminated for each
A whenever an S*(A;Y) is found such that \(S*—S)/SM\maX is
less than 10_5. This level of accuracy should by appropriate

for their proposed application.
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CHAPTER IV
EXAMPLE APPLICATION OF S#*(X\;Y)

As an example for the use of the approximations of
S(\;Y), consider an ideal case of conduction by two hole
bands having pure acoustical phonon scattering and €F<<O.
Using parameters similar to those observed by the author in a

sample of p-type InSb at T=77 K, let the heavy hole band have
L

n=1015 carriers per cm3 and uo=0.953 x 10 cmz/V—sec corre-

sponding to HM=1O kG; and the light holes, n=1O13 carriers per
3

cm” and uo=0.953 X 105 cmZ/V—sec corresponding to H, =1 kG.

M
Choosing the upper sign for holes in Eq. (2.48), the
Hall conductivity becomes
2
z

o. (H)=

njeuojs(“%;Yj) ’ (Ll’-l)

where Yj=(9ﬂ/16)(Huoj/c)2. By inserting e in units of cou-
lombs and Lo and n asg indicated above, the units of de(H)
are (ohm-cm) 1,

Consider least-squares fitting of the imaginary data,
indicated in Fig. 24 by squares, with oxy(H) predicted for

two hole bands having other power-law scattering mechanisms.

Approximation of S(A;Y) by
1
S*(A;¥)=v"2A, (A7) /A, (A5v) (4.2)

with

b5
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L7

N -
Al(X;Y)= Y oa.y'd ) (L.3)
j=1"
N .
A (hsy)=1+ % b.y'd (L.b)
e )
=1
and
Y=Y /Yy
)
=H /HM (4.5)

(where the aj and b. are found in Table ITI with )\ correspond-
ing to: A=-1/2, acoustic phonon scattering; A=1/2, piezo-
electric scattering; and A=3/2, ionized inpurity scattering)
provides a convenient expression of the proposed Hall conduc-
tivity. Thus assume the data can be fitted by

2 1
- 2 * .
Oy (H) jEl(pzj_1/p2j)s (A;375)

2
:jzl(pzj_l/pzj)HAl(ki?Yj)/Az(xiin) ’ (4-6)
. 1 . 2 _
where, in Eq. (4.5), one requires HMj Py and Py, ...,p) are
adjustable parameters to be determined by a computer using a
program such as the one listed in Appendix E.
Three fits of the data are made and are represented in

Figs. 25-27. The ki and N chosen are: A,=0 with N=1

1
(S(0;v¥)=S*(0,Y) of order N=1); x2=1/2 with N=U4; and x3=3/2
with N=6. For a given A;» from Eq. (2.46), the conductivity
mobility is

1
“szcl/pzj ’ (L.7)




(e@)
=

Ty

*0=Y BuTA®y Spueq oTOoY om} £q BYEP

TTeH oTdwexe oyj} 03 UOTINQTIFUOD 8y} JO 3713 saaenbs-qsBOT V--G¢2 °'3Td

L1 TATAONPUOD
(OM) H
Vieergg ko ¢ 2 JLesrggh o JLcursg ¢ o Olrsrgsn e o 01
O R I [ S T o i S [ i ‘ I S S N | 1 ¢ |
ST T T \\\Ym.\,.\\‘m\n.zml.unwwllmrlm.i. -0
|//// -

-
hﬂ
<.

SETOH IHOIT HI o
\ . I
/ STTOH XAVAH HH % “m
\

\ SANVE HIOE 0L E0d S
B NOIIAGIYINOD TIVIOL — —
I

_ aNvd TIONIS 0L _ g

00 NOIIAGIYINOD
VIVd @
P ' Tmn
=Y




*Z2/T=\ BuTa®Y SpuBq 8TOY OM] Kq eyep
£1TATAONPUOD TTeY oTdwexs oYy 03 UOTANQTIFUO0D 8Yj JO 3TJ Saaenbs-1sBeT y--92 ‘ST

(51) H | \
> Dlesrgsn e @ Dhesras n € o i e

A 1 O S N N S | | A R |

T
Y

SETOH IHHIT HI &

_T

SATOH XAVAH HH - =

{

SONVE HIOZ 05 &nd 2
NOILNGIHINOD TVIOL =

aNve TTONIS 0L _ _ _
INd NOIINGI¥INOD

VIva Gl




*Z/€=\ Sutaey spueq aToy om} £q ejep
L9TAT3ONPUOD TTey oTdwexs ayy 03 UOT3INqTJIFU0D dYyz JO 3TJ saaenbs-1sBeOT y--42 *3TJ
=y .
(OM) H

Olevrgsn g 2 ._ﬁ_ﬂ_;@mm S coxmm:.m_m
L i

-
(Y\
J
.-—-
O
ot
.
o}
pa
'~
Sl
[5a
=T
ea)
lhd
o
.
J
L=

P

9
~
SYTOH IHOHIT HI <
. I
STIOH XAVAH HH 8% =
SANVE HIOE O and 2
NOIINGTHINOD TVIOL =
[
QNVE FIONIS O g
20T NOTIAGTHINOD
VIVd o
: c/e=x T8




51

where the C1 are found in Table I, and the number density,
from Eq. (4.1), is

nj=p2j_1/eC1 . (4.8)

These Mo and ns are found in Table IIT,.
The standard error of estimate is defined by
ND

sé = (ND-NP) "1 ¢
i=1

(y-50° (4.9)
where ND is the number of data points; NP, the number of
parameters; ?i, the data; and y, the modeled value of the
data. Examination of the final fits shown in Figs. 25-27
indicate a correspondence between S and the accuracy of the
determined constants. Note that although the data is gener-
ated using A=-1/2 (sE:O), a visually excellent fit is obtained
by using the A=1/2 model (s5=0.252 x 1072 (ohm-cm)™1). How-
ever it is seen that the light hole band number density so
obtained is in error by approximately a factor of 1.5. Such
behavior is to be expected since the S(A;Y¥) corresponding to
A=1/2 and A=-1/2 can be made to essentially coincide by
translation and scaling (see Fig. 1). Therefore one must be
cautious in applying these techniques when the dominant scat-
tering mechanism may be either acoustic phonon or piezoelec-
tric in nature. However, by using this method in conjunction
with a study of the temperature dependence of the mobilities,

the proper choice should be made.



52

GES T ge"T 92¢°0 949°0 €91 2/€
z¢e: 764" 26T 2e6” z66" 2/7
ATANY 289" 81°2 96" 976" 0
Eﬁwmmmmﬁ GE6°0 000°T GE6°0 000" T 2/1-
ﬂnAsoéEov Aomm|>\mao moS AmugHo mHoS Aomm|>\mso joi AMIEO mHoS
(,-01) <0y Sy 104 tu X
MW

NOTLVIADTIVD HTIAWVXH 40 SITNSHY
ITT HT1dVdL




CHAPTER V
CONCLUSION

In this dissertation two new means of determining con-
ductivity mobility and number density for nondegenerate
semiconductors having spherical, parabolic energy bands and
a relaxation time varying as a power of the energy are devel-
oped. First, assuming the proper choice of scattering
mechanism, then one may for a single band semiconductor
determine n and Lo from the maximum absolute value of the
Hall conductivity. This maximum value occurs at magnetic
fields much less than the Hall saturation fields necessary
to determine n by use of the high field 1limit of Hoxy(H).
Finally, by approximating S(A;Y) by a rational type function,
one is able to extract information from multiband semiconduc-
tors by least-squares analysis of data taken over a wide
range of magnetic fields. Clearly this is superior to the
use of a low magnetic field expansion19 of S(A;V¥) which not
only covers a range of field where the per cent accuracy of
the measured magnetic field strength and dxy(H) is least,
but is itself inadequate.

Consider the other means of determining S(A;Y). They
are 1) tables, which require either storage of a large number

of functional values or entail a loss of accuracy, 2) numerical
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integration, which requires a relatively large number of
calculations, 3) precise expansions, which require the carry-
ing of a larger number of decimal places as Y becomes larger
due to the mixture of positive and negative terms, and 4)
asymptotic expansions, which are inadequate over much of the
range of Y. By replacing these methods of calculating S(A;Y)
with accurate approximations which may be computed relatively
quickly and often require no more decimal places be carried
than that commonly used by the BASIC computer language, one
has extended the usefulness and convenience of application
of a part of semiconductor theory.

For future research, one may create similar approxima-
tions of the magnetoconductivity integral. Knowledge of
this integral and of S(A;Y) allow the constraints for the
application of the theory presented in this work to be relaxed

to include semiconductors with ellipsoidal energy surfaces.



APPENDIX A

EXPANSION OF FUNCTIONS WITHOUT
ESSENTTAL SINGULARITIES

Many functions f(z) may be expanded as a series in

terms of the poles in the complex plane.

Mittag-Leffler Expansion Theorem
In particular f(z) may be expanded if the following
conditions exist: 1) suppose f(z) has only simple poles lo-
cated in the finite z plane at CIRLEPYRER arranged in order

of increasing absolute magnitude with residues Db,,D

1Mo e
and 2) there exist circles CN of radius RN which do not pass
through any poles and on which |f(z)] <M, where M is indepen-

dent of N and RN»?a>as N+, The Mittag-Leffler expansion

theorem then states that

[ee]
_ -1, -1
f(z)—f(0)+n§1bn[(z—an) +a "] . (A1)
A proof of the theorem is provided by Spiegel.zo Let f£(z)
have poles at z=a n=1,2,... and suppose that z=3 is not a

pole of f(z). Then the function f(z)/(z-$ ) has poles at

z=a  where n=1,2,... and at z= 5. The residue of f(z)/(z-%)
at z=a, is

lim (z-a _)f(z)/(z-% )=b - ,

Ziman z-a,)f(z)/(z-5 )=b_/(a -§) (A2)
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where bn ig the residue of f(z) at z=a_, and the residue at
z=% is

lim (z-%)f(z)/(z-8)=£(8) . (A3)

z>%

Then by the residue theorem, one finds

§C £(z)dz/(2-8 )=£( 3 )+z 2 (AL)

2'rTl n @n” S
where the last summation is taken over all poles inside
circle CN, centered at the origin, of radius RN'

Suppose f(z) is analytic at z=0. Then putting § =0 in
Eq. (AL), one has

b

§C £(2)dn/2=£(0)43 22 . (A5)

2mi

? |
5 s

Substraction of Eq. (A5) from Eq. (A4) then yields

£(8)-£(0)+x0, [ (a -5 ) 1-art]

n

= §c £z )[__g kL

2m §. ﬁ%)gﬁzy : (86)

Now since lz—SJ,ilﬂ-—|§)=RN—'§‘ for z on Cy, one has if
‘f(Z)I<M

f(z)dz M2 Ry
I Cyz(z-§ )I<R - g7 : (A7)

As N=c and thus RNé?w, the integral on the right side of Eq.

(A6) approaches zero. Hence by replacing § by z in Eq. (A6),
Eq. (A1) results.
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Generalized Theorem
This expansion theorem may be easily extended to include
functions f(z) having poles of order k. By using Leibnitz's

rule for higher derivatives of products,

@) £ (IS e[ (0)] L (a8)
dz m=0 dz dz
and
QE_(Z_g y~io L:llE_hi_ (A9)
de (-8 )k+l

observe that if £(z)/(z-5) has a kth order pole at z=a

then its residue is

K
1im 1 gkl (z-a )7f(z)
z>a (E-1)T kI 2o %

. k- k-1-m
: 1 1 k-1,d d 1
= !zlman mgo( )__E_T_ﬁ[(z a,) f(z)] (%)
k-1 k-1-m
1 k-1, (- 1) ! 1i a
G )(a 5 )$+1 { " o T (7o) f(Z)]}
n~
k-1
_ 1 1
= - (k—l—m) !mEO (S _an)m.{.l { }1 . (AlO)

Since the remainder of the proof is identical to that of the

previous theorem, the result may now be stated as

k-1
£(2)=£ (0)+2 mzonck[( SR iﬁ-ﬁ , (a11)

n

where
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. k-1-m '
n~k_ 1 lim {4 k
Cm— k-1-m)! z-van{dzk_i_m[(z'an) f(z)]} . (A12)

Expansion of £(z)=(z"+a) "1

For a positive integer n and a positive real number a

let g(z)z(zn+an)—l—a—n. The poles of g(z) are simple and
occur at
Zk=21exp[iﬂ(l+2k)/n] (A13)
for k=0,1,...,n-1. A% Zy the residue is
lim (z-z,)g(z)=lim (Z_Zk)__lim (z-z,)
Z >y z9z, 0,0 2>z, N
which by L'Hospital's rule becomes (nzf{l-l)"1 or
z
k
- —.1’—1 . (A:I.Ll')
na

By use of Eq. (A1), g(z) may now be written as

n-1 1 1
&)= ok T 7))
n-1
=-a ™™ ma™t z3,/(z-zy) A1
a na k:OZk/ 7% (A15)
With the use of Eq. (A13), f(z)=(z"+a" fl becomes
n-1
£(z)=- (na™ 1)1 kzoexp[iﬂ(1+2k)/n]/[z-aexp[iﬂ(1+2k)/n]]
n-1
~(na"1)-1 k§0exp[iﬂ(1+2k—n)/n]/[z+aexp[iﬁ(1+2k—n)/n]]
n-1
~(na™ -1 5 explim(n-1-23)/n]/[z+a exp[im(n-1-23)/n]],

J=0 (A16)
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where j=n-1-k. If n is even, Eq. (A16) may be compacted to
n-1
55~
(zn-i-an)_1:(1'1an_1)"1 L u/(z+au) + c.c. , (A172a)
j=0
where u=explim(n-1-2j)/n] and [(n-1)/2] is the largest inte-
ger less than or equal to (n-1)/2. If n is odd then f(z) is

equal to the right side of Eq. (A17a) plus

[nan_l(z+a)]—1 . (A17D)



APPENDIX B
GAMMA FUNCTION AND RELATED FUNCTIONS

Several relationships among known and tabulated func-
tions are necessary in order to evaluate the integrals in
Egs. (2.32) and (2.33). While these relationships appear in
the literature, the proofs are included in order to establish
an unbroken link between the introduction of the integrals
and their evaluation in terms of these well-known functions.

Gamma Function
The gamma function is defined, for 0«z)>0, as
Mz)= o1 e bt . (B1)
Clearly, by integration by parts, one finds the recursion
0,7 -%
F(z+1)=fot e “dt

z—le—t

=% TS 4t at
=z ['(z) . (B2)
The product
[(z) T (1-2)=5t7%/(1+%) at (B3)

follows from the manipulation

M(z) T(1-2)=5t" e b at fox % *ax
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=2/%u%t e ™ qu 2%y eV gy
2,.2
g, peo oo =(uTH+vT) vy -2z+1
—'Ll'fofoe (U.) du dv
W/Z r?, 2741
=N T tan (6)dr de
2
=—2jg/2e"r \3tan’2z+1(9)de
—2fﬂ/2tan_22+1(6)d6

=2f§u_22+1/(1+u2)du

=fot i at/ (1)

2
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(BL)

where the transformations successively used are: t=u" and

x:vz; v=r sin( 0) and u=r cos(6) ; u=tan(6), which implies

du=(1+u2)d9; and t:uz. Convergence of the right side of

Eq. (B3) occurs only in 0<A(z)<l. Since
M(z+n)=z(z+1)...(z+n-1) [ (z)
=(z) T (z)
follows from Eq. (B2) and thus
(1-z-n) P (1-z-n)= I'(1-2)

one has

(z) ' (z) [ (1-2)

M(z+n) M(1-z-n)= (1—Z—n)n

_ )y e 7%t
(1—z-n)n 0 1+t

(B5)

(B6)

(B7)
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for 0<R(z)<1, which in effect extends the range of conver-
gence of Eq. (B3) to all noninteger z.

Another definition of the gamma function is

(z)= 1i 1:2+3*,..,
(e nifoz(z+17(z+2)...(z+n) n® . (B8)

21

A proof provided by Arfkin™~ follows. Let

F(z,n)=/0(1-5)"2 Tt (89)

where R (z)>0. Since

e to1im (1—%)n (B10)

n-=>oco
then from Eq. (B1) one acquires
lim F(z,n)=F(z,x)
n oo
= (z) . (B11)

Integrating F(z,n) by parts where u=t/n, one has

F(z,n)/nz=fé(1—u)nuz_1du

5 0

Z
CERLE" o SNV TP

I

n-1 ,,._1 1 z+n-1
z+1 z+n—1‘r0u du

1¢2s:en 1 uz+n,é ’ (B12)

= z2(z+1) -+« (z4n-1) z+n

Fz,n)= Sy rtamy 0 - (B13)

Thus by use of Eq. (B11) one observes the definitions of

['(z) in Egs. (B1) and (B8) to be equivalent.
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For several z, ['(z) must be evaluated. If z is equal
to n, a positive integer, Egs. (B1) and (B8) imply
Mn)=(n-1)! . (B1L)
For z equal to one half, first make the substitution t=u2 in
Eq. (B1), which provides
00 -u2

P(%):Zfoe du . (B153)
Then by forming the square of ['(3) one obtains
—(u2+v2)

]72(%)=4f§f§e du dv

2
=4j§fg/2re_r do dr

2
= (n/2) (<3e™F )|

=T ’ (B16)

1
['(3)=n® . (B17)
Incomplete Gamma Function
The incomplete gamma function is defined as
M(a,x) = P b0 ey . (B18)

Clearly one has
M(a)=T'(a,0) . (B19)

A recurrence relation is

F(a+1.x)=f§tae'tdt

_peea=1 -t o =T
—afxt e "dt-tve 7|
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=0 ["(a,x)+x%e™* (B20)

which generalizes to

OL—Xn
e

k-1
T (atn, x)=(a) [ (o, x)+x k§1%57£] (B21)

by use of induction. In order to prove this, assume Eq.

(B21) is valid and observe, by utilization of Eq. (B20) that

M (an+1,x)=(a+n) I (a+n,x)+x> e ™%

=((x)1’1+1[ T (o, x)+x%e ™ g W]-I-X e

‘n+
:(Ot)n+1[ P(a,x)+xae_xn2. %{E);] . (B22)

Hence Eq. (B21) follows.

If a=-n then one acquires from Eq. (B21)

M(-nx)= iy P(O,x)—x_ne-xkglxk_l/(—n)k
n =

-1 n -n_-Xx
= -3 M(o,x)-x""e

n _ ' _
kzlgnnl!iz .Xk 1(_1)k

- Lo, &5 3 L=l (g yne]

] ’
o i=1 %9

(B23)

where j=n-k+1. For the case of o=%-n, first examine

(3-n),=(3-n) (3-n+1) + - (3-n+k-1)

=(l%§Q)(3%2Q)...(2&522:1)

k
- i;%l—(zn_1)(zn-3)---(zn_zk+1)
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k
_ (-1)" (on-1)!!
Jk (en-2k-1)17 (B2k)
which is valid for n=1,2,... , and where (-1)!!= 1, From

Eq. (B21), one then derives

1 o -X o k-1 1
N(z-n,x) TT“_T— M(3,x)- X e k§1X /(E‘n)k

n,n i _ n _
=l N, x) -x e X & *E(-1)E M (2n-2k-1)11]
nmtaee k=1

Li)J(zq 3)"]
j:1 (2x) 371

2n 1 vv[F( yX)+x §e , (B25)

where j=n-k+1.
A differential equation of which ['(a,x) is the solution

may be created by differentiating Eq. (B18)

dM(a,x) ___a-1 -x (B26)

dx
and requiring that ["(a,0)= (o). The solution is

P o, %)= ()51 5 (c6)5 /K1 at
0" k=0

o K
= (o)~ £ (= pxekea-lgy
k=0 X

k_a+k
1
= (a)- =z OLTE%E§ET_ . (B27)

Clearly Eq. (B26) may be extended to complex numbers as

g;Pga,zz :_Za-le—z , (B28)

which together with the same boundary condition provides
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the solution Eq. (B27) with x replaced by z. Thus T (a,z)
is an analytic continuation of " (a,x) onto the z plane.

Congider the function

00 —xt £~
f(x)= _TT_EYI 1gat (B29)
with x>0. One has
ar _ B 00 —xt B
L e Epaenar
o X

fw -u _-a_o du

7;??“&7 e u X X

e

= T )

-X_0a-1

== X (BBO)
which requires the aid of the transformation u=xt. Also by

Eq. (B3)
f(o):—rﬁ-_—o-t—yfogt_ad‘t/(j_Ft)

=fTT%Ej'P(“) M(1-a)
= ['(a) (B31)
results, which together with Egs. (B30) and (B26) imply

JW -xt t—

F(a,x) "—(I—ay —dt (B32)

1+t

for X>O.22

Psi Function

The psi function is defined as

Y (z)= & ainl " (2)]
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' (=
Flz . (B33)

From Eq. (B8) one acquires

B 1im n! n?
1n P(Z) =1ln ns+o z(z+1)+ -+ (z+n)

lim

"nﬁaa[ln(n!)+zln(n)— g In(z+k)] (B34)

k=0

which implies

Y (z)= 1““ " [1n(n)- 5 (z+k) 19
k=0

11m [1n(n)— Z k llm,(nqijfia_ 2 [(z+k) -1 -(k+1)"~ 1]
k=

-~ - 3 [(z+x) " Lo(iep) 7Y, (B35)
k=0

where

n-—»o

c=1im [ ! ~1n(n)]
=1

=0.577215664901... (B36)

is Euler's constant. Also, by use of Eq. (B1), one determines

Y (z)= ﬂl_z_y -S—Zfogtz_le—tdt

_ 1 d o (z-1)1n(t) -t
- T (z) dzfoe e dt

- 7;%57f§1n(t)tz‘1e‘tdt : (B37)
Thus from Egs. (B37) and (B35) one finds

Y (1)=/71n(t)e  at

= -C . (B38)



Since the natural logarithm of x may be defined as

ln(X)E,det/t ,
then the relationship

-C=1im
R*”oo
690+

Pian(t)e at

R>»
eaO+

=lin (—1)[ln(t)e_t|z-f%e_tdt/t]

= (D[ Rin(r)-e S plat/t - e~ tat/4]

R
eao+

=1im -€.€ 1 -t -t
[e™ riat/t + Jee dt/t + [Te”"dt/t]

Eﬁ0+

=1im 1, -t -¢ o -1
E—*O+Ie(e -e” V)dt/t + J1e dt/t

which becomes
~c=fgle 1) at/t + fe o/t

23

is valid.

Exponential-Integral Function

68

(B39)

(BL4O)

(Bl41)

The exponential-integral function is defined for x>0 as

Ei(-x)= -/Pe at/t .

From Eq. (B18) one has
F(O,X)'—'—Ei(—X)

By use of Eq. (B41), Ei(-x) may be evaluated as

Ei(-x)=-JFe tat/t - fle Cat/s

(B43)

(BL3)
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=C + [a(e ™ -1)at/t + r¥e tat/t
=¢ + fe(e Tt -D)at/t + fFav/t + F(eF-1)at/t
=¢ + J¥at/t + JE(eT"-1)at/t

)k—l

¢+ 1n(x) - % Jo (-t dt/k!

k=1

=C + In(x) + ; (—x)k/(klc!) (BLL)

k=1

Selecting a branch cut along the negative x axis, one may
extend Eq. (B4L) to the z plane as

Ei(-2)=C+ln(z)+ & (-2)%/(xkt) . (B43)

k=1
For large x, Eq. (B4U) converges so slowly as to warrant
the developement of an asymptotic series which may be used
to calculate Ei(-x) to sufficient accuracy. By integration
by parts of the right side of Eg. (BL2), as indicated by
Arfkin,ZLP one obtains
-X -t

Ei(-x)=- S—+ [ &5
%

dt

"X n- 1 -t
— ( ) +( 1)1’l+1 00 e d't (BLI'6)

x k= O x X tn+1 *
Thus is found

-Xxn-1 k,
e . (—1)kk. Sp!fwt_n_idt

Ei(-x)+
k=0 X X
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=(n-1)1/x" . (BL7)
Hence by a judicious choice of n, for a given x, the error
of approximation indicated by Eq. (B47) may be minimized.
Extension of the asymptotic series in Eq. (BA47) to the =z
plane may be made with the understanding that the error will

vary as |z|—n times a function of the argument of z.

Probability Integral
The probability integral Q?(x), also known as the error
function erf(x), is defined as
2 o ~£2
¢ (x)= et at . (B48)
2
i
Let u=t°, then from application of Eqs. (B1), (B18), and
(B17), Eq. (B48) becomes

2 _1
¢ ()= § u e au
™

e 2 T (3)-T(3,%%) ]
- E (3, %7) . (BL9)

Thus one obtains

1
M x)=r[1-¢ (0] . (B50)
By application of Egs. (B27) and (B49) one derives

. k_2k+1
@(X)zf%_kfo%él)ﬁ}l() kT (B51)

Also, Dby integration by parts of Eq. (B48), one acquires the

alternate form
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2 2
& (x)=2n"2[xe ™% 2/ %% at]

2 2 2
:zﬂ'%{xe_x +%[x3e"X +2J‘§tue_t ]}

2 o k. 2k+1
—2n %o y 2 X

. (B52)
= Oz2k+1s

To make an asymptotic expansion of @ (x),

1
[ (5,x%)=/"t % "at
X

first write

2
=% /x - -;-J“°°2t'3/2e"tdt

X

2 k(s
- e Ezﬁ (—'1—}){2?—-+<-1>“<%)nf;;—t3¢} . (B53)
Hence observe that
x%n-1 (-1)5(3 5
Thus from Eq. (B49) one developes
§ix) i —inzl (-1)%(), ko Fa ) (355)
ﬂ—x k=0 XZK 2n+1

which together with the other expansions of gf(x) may be

extended to the complex plane by means of analytic contin-
uation.



APPENDIX C
CONDUCTIVITY INTEGRALS

The conductivity integrals in Egs. (2.32) and (2.33)
are proportional to

V-lo-Tgq

(C1)
ts+y

I=J75

If s is an integer then Eq. (A17) may be employed to expand

Eq. (C1) in terms of

o £V 1etgy
- ’

(c2)
where o may be a complex number but not a negative real num-
ber. In order to evaluate I , suppose o is a positive real
number and v>0. Let ax=t, then Eq. (C2) becomes

v—lxv—le—ax

_ o OLdX
I\)_‘fO a(x+1)
_v=1,0 xV"loaX gy
—a IO x+1
-1 o ov-1 —aX g
=’ e T ILEyG S
=0’ "L [ (v) T (1-v,a) (c3)

through use of Eq. (B32). Since both the left and right
sides of Eq. (C3) are analytic over the indicated region

then by analytic continuation the relationship
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v-1_-t
£V te %t v-1a )
0~ TTa =q’ e (v) M'(1-v,a) (cl)
ie . 25
follows for a=re™ > with r>0 and‘e‘ <.

Hall Conductivity
The contribution of a single band of carriers to the
Hall conductivity, as indicated in Eq. (2.33), is propro-
tional to
00 x3/2e_xdx

fo 7™ — - (C5)
0 L 2h,

I=

For several \ corresponding to distinct scattering mechanisms

the I are expanded below in order of complexity.

A=0
In this case one has simply

T X3/2e_xdx
0] 1+ Y

= P(5/2)/(1+Y) . (C6)

A=-1/2
Here one finds

3/2, -x
o X e Tdx

1=/ X+ Y

—Y2e¥ T (5/2) P(3-2,) (c7)
by Eq. (C4). Through application of Egs. (B5), (B17), (B25),
and (B50), one obtains
1

2.2 2 k
1= 26V I (5/2)45 20l P (2, ) ey Be Y p (220 (20))
¥ 2:2-1)11 ¥)TY e o1 (2y)E-L




7k

1

:YB/ZeYﬂ%Eﬂ%(l"@(Y%))+Y eV (- 1+37 )]

1
ar? (B )y Y 2V P[P (1= & (43))] (c8)
which, with the aid of Eq. (B52), becomes
1 0 k
Izﬂe{%—y—zyzk§022§+15!:]+ﬁeyy3/2 : (C9)

For large vy, where an asymptotic expansion 1s more appro-

preate, I is expanded with aid of Eq. (B55) as

RN
IrqPy 5 ——k | (c10)
k=2 Y

As the developement of

3/2_-x
g dx dx (c11)
X T+Y

I=

requires use of the same equations needed for \A=-1/2, the

derivation is indicated with less detail. TLet a:y'1 then

one acquires

x5/2 ~Xax

e
xX+a

Izafz
=a7/22 P (7/2) T (3-3,2)

:a7/zeaﬂ%(—l)|:ﬂ%(1— $ (a%) )+a'%e-a(—1+2—1a - (—l)—z )]
2a

1 2 101 1
2 (- 8 T4a2) a2 P (1 §(aP)) ]

=-re a7/2 2[%; —----i-a3-l-.2aLL by

o a2 ..] . (c12)
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For large a I is approximated by

(-0 (2
Im o2ad 1 - 'k (C13)
k=3 a
=3/2
Here
3/2,-x%
T= co X e dx (ClLl')
IO X—3+y
becomes, through use of Eq. (A17), if a=Y_1/3
9/2,-x
3 a0 X e “dx
T=gJppo X8 dX
0 3483
972, 9/2 -
_a e "dx i2m/3 o0 x7/ “e”Mdx
e e e e /st o]
:% [a9/2ea F(l_g.) ’1(':22,8.) _
(e121/3,9/2 2 exp(i2fn/3)["(%) p(;zg’aeizﬂ/g) + o)
(C15)

Considering the recursion

M(-9/2,a)=T"(%-5,a)

5 1 r
2(1 @(ag))+a .72 ﬁ_llg(Zi 3)! £
kzl (2a)

Il
|
wqm

(C16)
then through the tedious developement

k
_af 928 5557 (2a§
1‘3{. e mremtaT T ZD) 1T "

3 b 1 3 .53 75;
mefa (-1+ = - ) -
2a (2a)2 (2a)3 (Za)
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k
i2n/3,_ .9/2 aexp(iZn/3)+eiﬂ/3a 22 > {2a elZﬂk/B_
e (-a7/ “e T = OTéE:%T_—
—1ﬁ/3 = 4( 1+ L 12ﬂ/3 3 12ﬂ/3+
28 (22)? (Za)

2:5:3 o-21/3))4 ¢.c.]}
(22a)

k
_,9/2.2 5“%
3 e ﬂ+2ﬂ a kzo Sk+1) 11 +

4 1 3 5 3, 7:5.3
2a (1- 5=+ L) -
me 2a (2a)2 (Za)3 (Za)

2[_a9/2ea003(2ﬂ/3% cos(a sin(2n/3) +2n/3) +

. . 3k
z 2 TZLg_%"—
2 [cos(q)(kzofg%;%%rr)+-cos(—ﬂ/3)(2a ZO k+% 7)) +

k=
cos (n/3)((22)° = OTgé;E%TT)]a +

w8 [ cos (n/3) (1- (—5—)i> + cos(-1/3) (- & LLE) -

COS(ﬂ)(zziyg)]]}

the expansion

3k
11/2 -
t-a 12/ 216207 Peon (a3t /2 + 20/3) TP/ kel § {2

k=
, , (c17)
is acquired. For large a one has

3 0%, . -0 (E),
Iy k 3 2’k -i2mk b
ag _ k:5——T;E—_—_+.(elﬂ/ kz5___;E————e Lem /3+ c.c.)a’]
4 k/a K1
_aog® (-1) (g)ki_(eiﬂ/B 5 UG

L
3 " k=5 o k=2 gk
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k k
_i'ﬂ'/Bl ( 1) (2)31{"1‘1_ Z (-1) (%)3k+2+c . ):I
By—p gk k=1 = gJkt2 e
or
k-1
(-1) (%)
TnnZad 5 = Z3kt2 (c18)
k=1 a

Magnetoconductivity

The expansion of the integral

I XB/Z_XG_XdX
0 X—2X+Y

(C19)

found in Eq. (2.32) is similar to that of the above integrals.
These integrals are included for several reasons: 1) magneto-
conductivity data offers as much information to the experi-
menter as does Hall conductivity data and thus presents an
alternate means to determine number densities and mobilities,
2) the integrals are closely related to the Hall conductivity
integrals and require little additional development, and 3)

a future extension to these integrals of approximations
similar to those in Chapter III may create a convenient means

of studying semiconductors having ellipsoidal energy surfaces.

A=0

Eq. (C6) is identical to

I=f XB/Ze—XdX
0 1+y

= (5/2)/(1+y) . (C20)
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=-1/2
By use of EqS- (019)’ (03)1 (B8)s (Bz)v (BZB)! (BHB),

and (B4L), one acquires

x2e~xdx
I=f§ X+Y

=v2e¥ T'(3) M(-2,v)

=Y ey[( 1)2 reo,y)+e?¥ 211___1_( 1)2 k]
k=1 vy

=y [-Bi(-v)+e TV (F5- )]
¥

=—y2eYEi(-y)-+1-y
=1-y-v“e¥[C+In(y)+ 2 L_XlT] (c21)
_4 kek!
k=1
where C 1s Euler's constant. For large Y an asymptotic

expansion is obtained with aid of Eq. (B46)

k 1
1~y SRR (c22)
k=2 Y
A=1/2
Let a=y_1, then use Eq. (C21) to acquire
o xe T dx Xax

=l 3

X T4y
—a [ x%e " ¥dx
Y0 x+a
=a[ 1-a-a ea(C+ln(a)+ z LE—%T)] (C23)

k=1
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For large a, Eq. (C22) provides

Koy
T 5 {=1) Kk (c2b)

Let a=Y'1/3, then develop the lengthy expression

oo xe Fdx
X 7+Y

3

-X
=a3f°° X“e Tdx

0 %3433

3 -x 3
arm x“e dx i2q/3 0 x
=2 [ 2 2222, (T )

3[0 X+a Ox+ae

edx

To 3+c.c.):]

%[a%a P4 M(-3,a)+

(o321/3,3.2 exp(i21/3) P () (13,26 727/3)4 6. c.) ]

L
%—{ 4[Ei(-a)+e™@ T M( 1)3- k:]+
-1 a®

k=

[eizq/Bea exp(i2mn/3) (Ei(-aeiZﬂ/B)-l'

e—aexp(iZﬂ/3) Llé_ll__( 1)3-k 12TT/3)+ c.cC. ]}

k—1 a

=%{a3ea[C+ln(a)+ z Lf)ﬁj+a -a+2+
k=1

. . . [ k .
[elzfﬁ/B(aBe&L exp(i2nm/3) (C+1n(a)+l§ + Z (}—f}){,elzﬂk/j)+
k=1 '

2,-12n/3_, 12n/3, 5y, C'C.j}
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I
e e oian(a)s 5 Bl T,

3 g KoK

L Ls
a/2[(C+ln(a)+ z ‘E‘%{%TBTW)COS("L Zmy

1

D it :
(= G 77 cos (22-)+

[e¢]

( Z iﬁl) 3k-2

_q (3k- 2)(3k 2)!

)cos(ig?-- %ﬂ)— -'2-31[ sin(32£+%ﬂ)]} .(C25)

For large a one may write

[ Z (-1)k (k 1)! ]+[e12”/3 &k (k 1) -i2nk/3, ]}

a LL a

4

[z (& (-1): ez, 3 (=151 (3K)

_é;
3 3k+1

a =1

cos(-21/3)( Z (Eh §§§;1> )+cos (21/3) ( 22< 1) (Fe=l)ty 73

or

k-1
Inaa3k21£:1) 3k(3k)! . (C26)
= a



APPENDIX D
PROGRAMS TO DETERMINE APPROXIMATIONS OF S

The process of determining approximations of

5 J’°° 2{3/_29_—}_(% (D1)

_ 1
S(hsy) = Tz ¥

is described in Chapter III. These approximations were

0 X—2X+Y

determined with the aid of an IBM 360/50 computer using a

program written in FORTRAN IV.

Calculation of SM
Before initiating the approximation process one must
calculate S over an appropriate range of y including Yy cor-
responding to SM the maximum value of S. The Newton-Raphson

method is employed to determine y such that %§=0.26

Main
DOUBLE PRECISION X(125),Y(125),B(10),T
DIMENSION X1(125),Y1(125)
DO 2 I=2,10
2 B(I)=0.DO
X(1)=1.D0
C PROGRAM FINDS MAXIMUM VALUE OF S BY ITERATION IN LOOP
C BELOW. FIRST DERIVATIVE OF S, Y(1), AT X(1) DIVIDED BY

C SECOND DERIVATIVE OF S, Y(2), AT X(1). THIS IS THEN

81



C SUBSTRACTED FROM X(1) TO FORM NEW X(1).

¢ SMALL THEN ITERATION HALTED.

10

102

101

K=1
B(1)=DSQRT(X(1))

CALL DGL32(K,X(1),B,T)
Y(1)=.5D0*T/B(1)
Y(2)=-.25DO*T/(B(1)*X(1))

K=2

CALL DGL32(K,X(1),B,T)
Y(1)=Y(1)-T*B(1)
Y(2)=Y(2)-T/B(1)

K=3

CALL DGL32(K,X(1),B,T)
Y(2)=Y(2)+2.D0*B(1)*T
T=Y(1)/Y(2)

WRITE (6,102) X(1),Y(1),Y(2),T
FORMAT (4D20.9)

X(1)=X(1)-T

IF (DABS(T).GT.1.D-06)G0 TO 10
K=1

CALL DGL32(K,X(1),B,T)

WRITE (6,101) X(1),T

FORMAT (2D20.7)
B(1)=DLOG10(X(1))-2.04DO

IF DIFFERENCE

82

C S IS CALCULATED FOR A RANGE OF VALUES ABOUT THE MAXIMUM

C OF S AND PLOTTED.
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DO 1 I=1,125
T=B(1)+.04DO*DFLOAT(T)
X1(I)=T
X(I)=10.DO%**T
CALL DGL32(X,X(I),B,T)
Y(I)=T*DSQRT(X(I))
WRITE (6,101) X(I),Y(I)

1 Y1(1)=Y(T)
CALL PPLOT(X1,Y1,1,125,0,6)

STOP
END
DGL32
This subroutine from the IBM Scientific Subroutine Pack-
27

age uses Laguerre-Gauss quadrature to calculate
oy o~k ex  DP (64)
Jof ()x™%e ™ ax= T w,f(x;)+(32)t ['(32.5)£' %7/ (§)/(64)r , (D2)
i=1
1
where O<§<e,x. 1s the ith zero of LBZ(X), one of the gener-

alized Laguerre polynominals, and

wi=(32)1 [ (32.5)x; /[L55(x,) 12 . 28 (D3)

SUBROUTINE DGL32(K,A,B,Y)
C SUB. COMPUTES INTEGRAL (EXP(-X)*FNC(X)/SQRT(X)),
C SUMMED OVER X FROM O TO INFINITY

DOUBLE PRECISION X,Y,FNC,B(10)

X=.11079926894708D3



Y=.11071413071714D-47*FNC (X, A, B, X)
X

i

.97916716L26063D2
Y=Y+.33594959802163D-L2%FNC(K, A, B, X)
X=.87856119943134D2
Y=Y+.68422760225115D-38%FNC (K, A, B, X)
X=.79339086528823D2
Y=Y+.31147812492595D- 34*FNC (X, A, B, X)
X=.71868499359551D2
Y=Y+.50993217982260D-31*FNC (X, A, B, X)
X=.65184L26376136D2
Y=Y+.38582071909299D-28%FNC (K, A, B, X)
X=.59129027934392D2
Y=Y+.15723595577852D-25%FNC (K, A, B, X)
X=.53597231826149D2
Y=Y+.38234137666013D-23%FNC(X, A, B, X)
X=.48514583867416D2
Y=Y+.59657255685597D-21%*FNC(K, A, B, X)
X=.43825886369904D2
Y=Y+.63045091330076D-19*FNC(K, A, B, X)
X=.39488797123368D2
Y=Y+.47037694213516D-17%FNC (K, A, B, X)
X=.35469961396173D2
Y=Y+.256018678264L49D-15%FNC (K, A, B, X)
X=.31742543790617D2
Y=Y+.10437247453182D-13%FNC (K, A, B, X)
X=.28284583194971D2

8L



Y=Y+.32566814614194D-12%FNC (K, A, B, X)
X=.25077856544198D2
Y=Y+.97183555338954D-11*¥FNC (K, A, B, X)
X=,22107070382206D2
Y=Y+.15230L434500291D-9*FNC (K, A, B, X)
X=.19359271087269D2
Y=Y+.23472334846431D-8*FNC (K, A, B, X)
X=.16823405362954D2
Y=Y+.29302506329522D-7*FNC (K, A, B, X)
=.1L489986690780D2
Y=Y+,29910658734545D-6*FNC (K, A, B, X)
X=.,12350838217715D2
Y=Y+.25166805020624D-5%FNC (K, A, B, X)
X=.10398891905553D2
Y=Y+.17576998461701D-4*FNC (K, A, B, X)
X=.86280298574059D1
Y=Y+.10251858271573D-3*FNC (K, A, B, X)
X=.70329577982839D1
Y=Y+.50196739702612D-3*FNC (K, A, B, X)
X=,56091034574962D1
Y=Y+.20726581990152D-2*FNC (K, A, B, X)
X=.43525345293301D1
Y=Y+.72451739570689D-2%FNC (K, A, B, X)
X=.3259892256L4569D1
Y=Y+.21512081019758D-1*FNC (K, A, B, X)
X=.23283376682104D1

85
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Y=Y+. 54406257907 378D-1¥FNC (K, A, B, X)
X=.15555082314789D1
Y=Y+.11747996392820D0*FNC (K, A, B, X)
X=.9394832145007 3D0
Y=Y+.21699669861237DO*FNC (K, A, B, X)
X=.L47875647727749D0

Y=Y+. 3433716846981 7DO*FNC (K, A, B, X)
X=.17221572414540D0
Y=Y+.46598957212536DO*FNC (K, A, B, X)
X=.19127510968447D-1
Y=Y+.54275484988261DO*FNC (K, A, B, X)
RETURN

END

FNC
Here the integrand in Eq. (D1) for A=-% is calculated
along with functions necessary to form the first and second
derivatives of S(-%;y) with respect to y.
FUNCTION FNC(K,A,B,X)
DOUBLE PRECISION A,B(10),X,FNC
Go T0 (1,2,3),K
1 FNC=X#*X/(X+A)
RETURN
2 FNC=X*¥X/(X+A)#*%2
RETURN
3 FNC=X*X/(X+A)*%3
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RETURN

END

Calculation of S
Four hundred values of S were calculated and stored on
cards by a simple program, not listed here, which used the
subroutine DGL32 and FNC. These S correspond to y equally
spaced with twenty points per decade in log space from

0 loYM- As a check, for A=-3,

y=10" ¥y ‘to approximately y=10
the S were recalculated at selected points by use of Egs.
(2.38) and (2.39). 1In the range of vy, for which the asympto-
tic expression is appropreate, errors of one part in 107 or
less were found which is negligible for the intended use;
however, for small y the errors became substantially larger
than one part in 105. Over this latter range of y the S were
recomputed using Eq. (2.38) and a set of corrected cards were

punched with errors no larger than one part in 107. This

procedure was repeated for each A.
Calculation of S*

Main
This program is used to approximate S(A;y) for several
A. By modifying the initial guesses of the zeros of S*-S,
allowance may be made for various A. As listed the program
calculates S*(3/2;y) to order N=6 before failing; however,

by removing the statement labeled 85 and inserting



85

88

J=210+N
17 (I)=J+( (60+N)*(IZ(I)-J))/80

S*(3/2;y) is determined to order N=8. Additional information

is provided by COMMENT statements.

102

11

DOUBLE PRECISION X(400),Y(400),E(400),EM(400),EX,SUM
1ER,EPI,A(10),B(10),XS(20),¥YS(20),YH, YH1
DIMENSION XP(125),YP(125),IZ(400)
READ(5,102)(Y(I),I=1,400)

TORMAT (5D16.7)

DO 1 I=1,400
X(I)=10.D0**(,05DO*DFLOAT(I-1)-10.D0)
DO 11 I=1,125

XP(I)=.05*FLOAT(I)-3.15

EPI=1.D-7

KP=0

NP=2

NP1=3

N=1

N1=2

ER=0.D0

C INITTAL GUESSES FOR ZEROS OF YH-Y(I) OF ORDER N=1

XS(1)=X(191)
¥S(1)=Y(191)
XS(2)=X(211)
YS(2)=Y(211)

C ITERATION LOOP TO CALCULATE A AND B BEGINS HERE
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I, CALL CONST(NP,XS,YS,A,B)
DO 5 I=1,400
YH=A(N)
IF(N.EQ.1) GO TO 51
DO 52 J=2,N
52 YH=YH#*X(I)+A(N1-J)
51 YH=YH*DSQRT(X(I))
YH1=B(N)
IF(N.EQ.1) GO TO 53
DO 54 J=2,N
54 YH1=YH1#X(I)+B(N1-J)
53 YH1=YH1%*X(I)+1.DO
YH=YH/YH1
5 E(I)=YH-Y(I)
DO 55 I=139,263
11=1-138
55 YP(I1)=E(I)
KP=KP+1
IF (KP.GT.50) STOP
C MAKE PRINTER PLOT OF FIRST FIVE APPROXIMATIONS TO YH-Y(I)
C OF ORDER N
IF(KP.GT.5) GO TO 56
CALL PPLOT(XP,YP,1,125,0,6)
56 WRITE(6,101)((A(I),B(I)),I=1,N)
101 FORMAT(2D25.16)

C PRINT ER, THE AVERAGE OF THE 2%*N+1 SELECTED EXTREMA OF
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C YH-Y(I) (ER SET EQUAL TO ZERO BEFORE FIRST ITERATION)
WRITE(6,102) ER
C LOOP DETERMINES ALL EXTREMA OF E(I)=YH-Y(I)
J=0
DO 61 I=1,398
IF((E(I+1)-E(I))*(E(I+2)-E(I+1)).GT.0.D0) GO TO 61
J=J+1
12 (J)=I+1
61 CONTINUE
DO 62 I=1,J
I11=I17Z(1)
62 EM(I)=E(I1)
C N LARGEST MAXIMA LOADED INTO EM(1) - EM(N)
DO 91 K=1,N
DO 91 I=K,J
IF(EM(I).LT.EM(K)) GO TO 91
EX=EM(I)
EM(I)=EM(K)
EM(K)=EX
11=IZ(1I)
12(1)=IZ(K)
17 (K)=I1
91 CONTINUE
C N LARGEST MINIMA LOADED INTO EM(N+1) - EM(2%N)
DO 92 K=N1,NP

DO 92 I=K,J



IF (EM(I).GT.EM(K)) GO TO 92
EX=EM(TI)
EM(I)=EM(X)
EM(K)=EX
I11=12(1I)
17 (1)=I%(K)
17 (K)=11
92 CONTINUE
C LARGEST REMAINING EXTREMUM LOADED INTO EM(2N+1)
K=NP1
DO 93 I=K,J
IF(DABS(EM(I)).LT.DABS(EM(K))) GO TO 93
EX=EM (1)
EM(I)=EM(K)
EM(K)=EX
I11=17(1)
17 (1)=IZ(K)
17 (K)=11
93 CONTINUE
SUM=0.D0
DO 7 K=1,NP1
7 SUM=SUM+DABS (EM(K) )
ER=SUM/DFLOAT (NP1)
DO 8 K=1,NP1
IF (DABS (DABS (EM(K) )-ER) .GT.EPI) GO TO 81
8 CONTINUE
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C AFTER DETERMINING THE BEST YH OF ORDER N, THE COMPUTER
C FINDS THE 2*N ZEROS OF YH-Y(I)
J=0
EX=E(1)
DO 82 I=2,399
IF(EX*E(I).GT.0.D0) GO TO 82
IF(E(I).EQ.0.DO) GO TO 82
J=J+1
17 (J)=1
82 EX=E(I)
I11=1Z(J)-12(J-1)
12 (J+2)=1Z(J)+11
DO 83 I=1,J
I1=J+2-1
83 IZ(11)=IZ(I1-1)
11=12(3)-1Z(2)
1z (1)=1z(2)-11
NP=NP+2
CALL PPLOT(XP,YP,1,125,0,6)
IF(NP.GT.14) STOP
NP1=NP+1
N=NP/2
N1=N+1
ER=0.DO
KP=0
C THE ZEROS OF YH-Y(I) OF ORDER N+1 ARE ESTIMATED
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DO 85 I=1,NP
85 I2(I)=211+(3*(IZ(I)-211))/b
DO 84 K=1,NP
T=1% ()
XS (K)=X(TI)
8l YS(K)=Y(I)
GO TO 4
81 DO 9 K=1,NP
I=17 (K)
XS(K)=X(I)
9 YS(K)=Y(I)+DSIGN(ER,EM(K))
GO TO 4
END

CONST

After CONST calculates the coefficients of Eq. (3.21),

DPG solves for the aj and bj'

SUBROUTINE CONST(NP,X,Y,A,B)

DOUBLE PRECISION X(20),Y(20),A(10),B(10),C(20,21),T,P(20)
NP IS THE NUMBER OF PARAMETERS
X,Y ARE NP PAIRS OF DATA POINTS

A,B ARE NP CONSTANTS DETERMINED FROM NP LINEAR EQUATIONS

Q O o

CONTAINING THE X,Y
N=NP/2
N1=N+1
NP1=NP+1



DO 1 I=1,NP
T=Y(I)/DSQRT(X(I))
C(I,1)=1.D0
C(I,NP1)=T
C(I,N1)=-T*X(I)
IF(N.LT.2) GO TO 1
DO 4 J=2,N
C(I,J)=X(I)*C(I,J-1)
NJ=N+J

b C(I,NJ)=X(I)*C(I,NJ-1)

1 CONTINUE
CALL DPG(NP,C,P)
DO 2 I=1,N
A(I)=P(I)

2 B(I)=P(I+N)
RETURN

END

DPG
This subroutine solves a set of NP linear equations by
means of double pivoting and Gaussian eliminiation. The
process 1s described by Isaacson and Keller.29
SUBROUTINE DPG(NP,T,DP)
DIMENSION KEEP(20)
DOUBLE PRECISION C(20,21),A,B,DP(20),T(20,21)

NP1=NP+1



DO 2 I=1,NP
KEEP(I)=1

DO 2 J=1,NP1
c(1,J)=T(1,J)
L=NP-1

DO 3 I=1,L
A=0.D0

DO 1 II=I,NP

DO 1 JJ=I,NP
IF(DABS(C(II,JJ)).LT.A) GO TO 1
A=DABS(C(II,JJ))
I1I=11

JJJ=JJ

CONTINUE

DO 4 K=T,NP1
B=C(I,K)
C(I,K)=C(III,K)
C(III,X)=B
KP=KEEP(TI)
KEEP(I)=KEEP(JJJ)
KEEP(JJJ)=KP

DO 5 K=1,NP
B=C(K,I)
C(K,I)=C(K,JJJ)
C(X,JJJ)=B
A=C(I,I)
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DO 10 II=I,NP1
C(1,II)=C(I,II)/A

T1=T+1

DO 3 II=11,NP

A=C(II,I)

DO 3 JJ=I1,NP1
C(II,JJ)=C(II,JJ)-A*C(I,JJ)
¢ (NP, NP1)=C(NP,NP1)/C(NP,NP)
DO 7 I=1,NP

DP(I)=C(I,NP1)

DO 6 I=2,NP

II=NP1-I

JJ=NP-1

D0 6 J=II,JJ

DP(II)=DP(II)-DP(J+1)*C(II,J+1)

DO 8 I=1,NP
C(1,I)=DP(I)
DO 9 I=1,NP
K=KEEP (1)
DP(X)=C(1,I)
RETURN

END
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APPENDIX E
LEAST-SQUARES DETERMINATION OF PARAMETERS

Theory of Least-Squares

By comparing observed values?i for i=1,2,...,ND of a

physically neasurable variable with the theoretically expected

values y=y(Dpi;x), where ﬁz(pl,...,pj,...,pNP) represents
adjustable parameters pj and x 1s an independent variable,
one may extract physically meaningful information in terms
of P. A common method is to minimize the sum of the squares

of the deviations

s= T (y9,)°% . (E1)

=0 (E2)
for k=1,2,...,NP and by rejecting those solutions which are
unphysical or do not provide an absolute minimum s. Through
expanding y as a Taylor series
K > NP )
v(P;x)=y(p*;x)+ X oY 25(p.-D¥)+... (E3)
and supposing p* is near a solution ﬁ of Eq. (E2) so that

quadratic and higher terms may be ignored, one obtains
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ND NP
98 _ 2 oy s 8y
€2 -2 ¥ [y(p*;x.)+ T (p.-p¥*)-y. ]
P i=1 L 3=q®Py T 1T TRy
=0 (EL)
or, equivalently,
NP NDd3y.3y. ND 3y
L AD; L sos==- % AYV.3T (E5)
5o T 91=1%P30Pg  yoq T 19
where ZSp:pj—pﬁ, A.yizy(ﬁ*;xi)—ﬁi, and k=%,2,...,NP. Thus

Eq. (E5) is a set of NP linear equations which may be solved

by Gaussian elimination with the aid of a digital computer.

Least-Squares Program

The program below, written in FORTRAN IV for an IBM
360/50 computer, extracts parameters by means of iteration.
After accepting the data and initialization information, a
cycle of solving Eq. (E5) for [5@ and then calculating a new
estimate of P is begun. This process continues until conver-
gence occurs or the number of iterations exceeds a test, in
which case the program terminates.

Several subroutines are used. These are: the major
subroutine LSQ, which contains the iteration process; DPG, a
program, listed in Appendix D, to solve linear equations;
and FNDIR, which calculates y and %% . COMMENT statements
are included to provide additional iiformation. Since LSQ
directs the least-squares calculation, a short program neces-
sary in order to load the initial data into storage is not

included.
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SUBROUTINE LSQ(ND,X,Y,NP,FAC,P,IC,BA,BHW)

DOUBLE PRECISION CF(20,21),ER,F,P(20),PF(20),SE,DP(20),

1FAC(20),BA(20),BHW(20),ERP,SQ

DIMENSION X(100),Y(100)
ND -- NUMBER OF DATA POINTS
NP -- NUMBER OF PARAMETERS
X,Y -- DATA
P -- PARAMETERS
BA -- CENTER OF ALLOWED RANGE OF P
BHW -- HALF-WIDTH OF RANGE OF P
FAC -- USED TO VARY STEP SIZE OF P
IC -- COUNTER
F -- CALCULATED VALUE OF Y
PF —- PARTIAL DERIVATIVES OF F WITH RESPECT TO P
ER -- DEVIATION, F-Y
ERP -- PER CENT DEVIATION, 100%*ER/Y
SQ -- SUM OF ER*ER
SE -- STANDARD ERROR OF ESTIMATE
CF -- STORES COEFFICIENTS OF LINEAR EQUATIONS
DP -- SOLUTION OF LINEAR EQUATIONS

NDP=ND-NP

NP1=NP+1

IC=0
KNT=-1

WRITE(6,103)



103 FORMAT(//,10%,'X',19X,'Y',19X,'F',18X, 'F-Y', 16X,
C'% DIF',//)
C ITERATION LOOP BEGINS HERE
1000 IC=IC+1
IF(IC.LT.100) GO TO 51
WRITE(6,100)
100 FORMAT (' LSQ UNABLE TO FIT FUNCTION TO DATA')
GO TO 700
51 $Q=0.D0
KNT=KNT+1
IF(KNT.EQ.5) KNT=0
IFD=1
DO 11 L=1,ND
CALI FNDIR(IFD,L,X,NP,P,PF,F)
ER=F-DBLE (Y (L))
SQ=SQ+ER*ER
ERP=ER*1.D+2/DBLE(Y (L))

C X, Y, F, ER, ERP PRINTED EVERY FIFTH ITERATION
IF(KNT.NE.O) GO TO 11
WRITE(6,101)X(L),Y(L),F,ER,ERP

11 CONTINUE
SE=DSQRT (SQ/DFLOAT (NDP) )
WRITE(6,101)SQ,SE
DO 1 I=1,NP
DO 1 J=1,NP1

1 CF(I,J)=0.D0

100



909 FORMAT( 12H DEL. PARM. 6D18.8/(12X,6D18.8) )
C NEW ESTIMATES OF P MADE, P=P+FAC*DP

800

801

SQ=0.D0

IFD=2

DO 2 K=1,ND

CALL FNDIR(IFD,K,X,NP,P,PF,F)
ER=F-DBLE(Y(X))

SQ=SQ-+ER *ER

DO 2 I=1,NP
CF(I,NP1)=CF(I,NP1)-ER¥PF(I)
DO 2 J=1,NP
CF(I,J)=CF(I,J)+PF(J)*PF(I)
DO 4 I=2,NP

CF(I,J)=CF(J,T)
SE=DSQRT(SQ/DFLOAT (NDP) )
CALL DPG(NP,CF,DP)
WRITE(6,908)(P(J),J=1,NP)
WRITE(6,909) (DP(J),J=1,NP)

DO 5 I=1,NP
P(I)=P(I)+DP(I)*FAC(TI)

IF(DABS(P(I)-BA(I))-BHW(I).GT.0.D0O) GO TO 800

GO TO 5

TF(P(I)-BA(I).GE.0.DO) GO TO 801

P(I)=BA(I)-BHW(I)
GO TO 5
P(I)=BA(I)+BHW(I)

101
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5 CONTINUE
C CHECK FOR CONVERGENCE
DO 6 I=1,NP
TF (DABS(DP(I))/(DABS(P(I))+1.D-8).GE.1.D-6) GO TO 1000
6 CONTINUE
WRITE(6,908)(P(J),J=1,NP)
908 FORMAT(/12H PARAMETERS 6D18.8/(12X,6D18.8) )
WRITE(6,102)SE
102 FORMAT(/,' THE STANDARD ERROR OF ESTIMATE IS',D18.8,/)
700 IFD=1
WRITE(6,103)
DO 7 K=1,ND
CALL FNDIR(IFD,K,X,NP,P,PF,F)
ER=F-DBLE(Y(X))
ERP=ER#*100.D0/DBLE(Y (X))
7 WRITE(6,101)X(K),Y(K),F,ER,ERP
101 FORMAT(5D20.7)
RETURN

END

FNDIR
This subroutine varies depending upon the functional
form of y. Here the program is specifically designed to cal-
culate using the y of the example in Chapter IV. The use of
subroutine SP indicates the application of piezoelectric
scattering. SP and subroutines for other scattering mecha-

nisms are listed in the next section.
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SUBROUTINE FNDIR(IFD,K,X,NP,P,PF,F)
DOUBLE PRECISION P(20),PF(20),F,XX,G,A(4),Y,F1
DIMENSION X(100)
XX=DBLE (X(K)*X(K))
N=NP/2
F=0.D0
D0 1 I=1,N
I12=2%1
I21=12-1
G=XX/P(12)
CALL SP(IFD,G,A,Y)
F1=DBLE(X(K))*A(1)/(P(I2)*A(2))
GO TO (1,2),IFD
2 PF(I21)=F1
PF(I2)=-P(I21)*(F1+XX*DBLE(X(K))*(A(3)-A(1)*A(L)/A(2))
C/(A(2)*P(I2)*P(12)))/P(12)
1 F=F+P(I21)*F1
RETURN

END

SA, SP, SI, and SN
Subroutines needed by FNDIR to calculate Hall conduc-
tivity for the scattering mechanisms listed in Table I are
listed below. Ugse SA for A=-1/2, SP for A=1/2, SI for A=3/2,
and SN for A=0. Coefficients used to create the first three

subroutines are found in Table II. SN applies Eq. (2.37).
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SUBROUTINE SA(IFD,G,A,Y)

DOUBLE PRECISION G,A(L),Y
A(1)=(((190.90399D0*G+692.60155D0) ¥G+479.81762D0 ) *G+
C63.136891D0) *G+1.1224298D0
A(2)=((((181.9301D0*G+942,89358D0) *G+1317.3871D0) *G+
C553. 5445LD0) *G+59 ., 13848D0 ) *G+1 . DO

IF (IFD.EQ.1)RETURN

A(3)=((763.61596D0%*G+2077.8047D0) ¥G+959.63524D0) *G+
C63.136891D0

A(4)=(((909.6505D0%G+3771.5743D0) ¥G+3952.1613D0) *G+
C1107.0891D0) *G+59.13848D0

IF (IFD.EQ.2) RETURN

Y=DSQRT(G)*A(1)/A(2)

RETURN

END

SUBROUTINE SP(IFD,G,A,Y)

DOUBLE PRECISION G,A(4),Y
A(1)=((.12192377D0*G+1.4099598D0 ) *G+2.7765076D0 ) *G-+
C1.0355748D0
A(2)=(((.11433758D0*G+1.5157628D0 ) *G+4. 504886D0) *G+
Cl.038167D0) *G+1.D0

IF (IFD.EQ.1)RETURN

A(3)=(.36577131D0*G+2.8199196D0) *G+2.7765076D0
A(L)=((.45735032D0%*G+4. 54'72884D0 ) *G+9.009772D0) #G+
ClL.038167D0
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IF(IFD.EQ.2)RETURN
Y=DSQRT(G)*A(1)/A(2)
RETURN

END

SUBROUTINE SI(IFD,G,A,Y)

DOUBLE PRECISION G,A(4),Y
A(1)=((((.604188D-3%G+.2876591D0) *G+9.97617D0) *G+
€39.1796D0)*¥G+19.91651D0) #G+1,2259D0
A(2)=(((((.386073D-3%G+.2013202D0) *G+9.14989D0 ) *G+
€62,3096D0) *¥G+80.4167D0) #G+21.26549D0 ) *G+1.D0
IF(IFD.EQ.1)RETURN
A(3)=(((3.02094D-3*G+1.150636D0) *G+29.92851D0 ) #G+
€78.3592D0)*G+19.91651D0
A(L)=((((2.316438D-3%G+1.006601D0) *G+36.59956D0 ) *G+
C186.9288D0) *G+160.8334D0) *G+21. 26 549D0

IF (IFD.EQ.2)RETURN

Y=DSQRT(G)*A(1)/A(2)

RETURN

END

SUBROUTINE SN(IFD,G,A,Y)
DOUBLE PRECISION G,A(4),Y
A(1)=1.DO

A(2)=G+1.DO

A(3)=0.DO

A(Lk)=1.D0
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IF (IFD.EQ.2)RETURN
Y=DSQRT(G)*A(1)/A(2)
RETURN

END




APPENDIX F
SOLUTION OF BOLTZMANN EQUATION

Consider an isotropic, isothermal, conducting medium
having an energy dependent relaxation time. TLet the conduc-

tor have spherical, quadratic energy surfaces, i.e.
e=(12/2m*) k> (F1)

with m*, the effective mass, and ﬁ, the wave vector. If

uniform electric and magnetic fields are applied then the

30

Boltxmann equation is, according to Wilson,

(e/n) (B+7 X T/c) - \‘7kf+(fo-f)/~r =0 (F2)

where e>0 for electrons, and f and fo are, respectively, the
distribution function and equilibrium distribution function.

The group velocity is
V=RV, e . (F3)

Suppose, as Wilson does,31 the requirement

KN afo
f=fo—¢(k)gg— (FL)
with <ﬁ containing only terms linear in elements of E. Since
fo is a function of energy alone then
o = afo
Vifo=(V &)5e

LT,
=hvs=— . (F5)

107




Now observing

N - - Bf
V=V o (U P57 9V 522
2
of of f
aEOﬂv O(v CP) 4) 1..>~

and
(¥xH) -v=0 ,
the Boltzmann equation may be linearized as
e E-(e/fe)¥ xR ¥, P+ P/1 =0

As the solution of Eq. (F8) is

C#:—e-'ﬁ)f-'f
if H=0, then the solution with“ﬁ#O may be
¢ =-eTV.F
where.ﬁ is to be determined. Since
—_ ._;: i
V'V f/m
tThen
5, b=—e T BF/m*(V, F) -ev. PRyl
Uy P=-e m¥*4+v 1 —evV. Ve -
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(F6)

(F7)

(F8)

(F9)

(F10)

(F11)

(F12)

Substitution of Eq. (F12) in Eq. (F8) and use of Eq. (F7)

results in

Ve [B+(e T /m*c)H X F-FJ=0,

E+(e T /m*c)H X F-F=0 .
Clearly the solution is of the form

F=aE+bH+dE xH

(F13)

(F1k)

(F15)

where a, b, and d are scalar functions of e’T/m*c,-ﬁ, and'ﬁ.
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By use of the identities
and (F16)

Eq. (F14) Dbecomes
E(1-2)+(e Ta/m*c+d)?1,’)k"ﬁ—b-ﬁ+e4” aH X (E X ﬁ)/m*c=0 . (F17)
-

Since H, ﬁXﬁ, and H )((’-E;Xﬁ) are mutually perpendicular and
E.(§ XE)=0, one immediately has

d=-e T a/m¥c (F18)
and
b=E-H(1-a)/HZ . (F19)
By using the identity
AXEXE)= (A-C)B-(AB)C (F20)
Eq. (F17) may be written
[E—(i-ﬁ)ﬁ/sz[(l—a)—(eW'/m*c)zﬁzajzo , (F21)
which implies
a=[1+(e‘1’/m"'*c)szj_1 . (F22)

Thus one has the solution, noted by Beer,32

F[E-(e T/m*c)E XH+(e T /m*c) 2(E-H)R][1+(e T/m*c) 282771, (F23)
Eq. (FL4) is now

f:fo+eT'§E—v'F , (F2u4)
where using the permutation tensor & .. and Einstein nota-

ijn
tion, the dot product is

VoF=(n/m*) [ 1+ (e T/h*c)Zsz 1[k ~(eT /m*c) £ .

1Jn it

+(e T /m*c) kiHan]Ej . (F25)
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