THE DIFFERENTIAL IMPACT OF SEVERAL TEACHING STRATEGIES UPON

 THE INTEGRATION OF ECONOMIC CONCEPTS INTO THE MATHEMATICS CURRICULUM
DISSERTATION

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of DOCTOR OF EDUCATION

By

Daniel M. Schmeling, B.S., M.S.
Denton, Texas
December, 1975

Schmeling, Daniel M., The Differential Impact of Several Teaching Strategies Upon the Integration of Economic Concepts Into the Mathematics Curriculum. Doctor of Education (Secondary Education), December, 1975,263 pp., 31 tables, 4 illustrations, bibliography, 52 titles.

This investigation focuses upon two major problems. The first problem is to determine what effect the inclusion of economics in the mathematics curriculum will have upon student attitudes toward and understanding and retention of economics and mathematics. The second problem is to determine whether different methods of instruction will result in significantly different levels of student attitudes toward and understanding and retention of economics and mathematics. Each question is divided into two studies dealing with the lecture and field-trip methods and the lecture and games-and-simulations methods. In addition, the investigation seeks to ascertain the degree of interaction of the three teaching strategies with each of the following variables: scholastic aptitude, sex, and socioeconomic status of the students.

The principal sources of data are student responses on a "Personal Data Sheet," test scores on teacher-prepared instruments measuring student understanding of selected economic concepts and ability to perform selected
mathematical skills, and student responses on semantic differentials measuring attitudes toward the disciplines of economics and mathematics.

The organization of the study includes a statement of the problems; a review of the literature; the methodology used in the statistical analysis of the data; an analysis of the data; and the findings, conclusions, speculative inferences, implications, and recommendations for additional research.

Chapter One introduces the background and significance of the problems. Hypotheses to be tested are stated, terms in the study are defined, and limitations are delineated.

Chapter Two is a topically arranged review of the related literature. Literature is included on the analysis of the process and on the student variables related to increased economic understanding; the relationship between economic instruction, increased economic understanding, and other cognitive and affective variables; quasi-experiments relating to the integration of economic concepts into other curricular areas; and quasi-experiments relating to the impact of a variety of teaching strategies upon economic understanding.

Chapter Three includes information on the population of the study, the instrument used for collecting data, the teaching module and classroom procedures, the methods of
data collection, and multiple linear regression, the basic statistical analysis used in the study.

Chapter Four reports the analysis of the data collected in the study. Tables reveal the regression coefficients on the twelve dependent variables used to measure the students' cognitive and affective gains in each of the four studies of this investigation.

Chapter Five concludes that the experimental treatments and the teaching strategies used in this study produce no significantly different mean gains in student cognition and attitudes. Although the experimental treatments and teaching strategies produced no significant main effects upon cognition and attitudes, there are significant interactive effects between the lecture method and the students' socioeconomic status upon the measure of short-term retention of the ability to perform selected mathematical skills, and between the field-trip method and the students' socioeconomic status upon the measure of short-term retention of attitudes toward the discipline of mathematics. The conclusions support the pedagogical implication that the desired increase in economic understanding will not be achieved easily through the integration of economic concepts into the mathematics curriculum. Such an implication should lead concerned curriculum planners and teachers to reevaluate the means used to increase economic understanding among young people.

TABLE OF CONTENTS

Page
LIST OF TABLES v
LIST OF ILLUSTRATIONS ix
Chapter
I. INTRODUCTION 1
Background and Significance
Statement of the Problems
Purposes of the StudyHypothesesDefinition of TermsLimitationsBasic Assumptions
Summary
II. REVIEW OF RELATED LITERATURE 22
Analysis of the Process and of theStudent Variables Related to IncreasedEconomic Understanding
Relationship Between Economic Instruction,Increased Economic Understanding, andOther Cognitive and Affective Variables
Quasi-Experiments Relating to the Inte-gration of Economic Concepts Into OtherCurricular Areas
Quasi-Experiments Relating to the Impactof a Variety of Teaching StrategiesUpon Economic Understanding
Summary
III. Methodology 48
Population FrameCharacteristics of TeachersTeaching ModuleClassroom ProceduresInstrumentsVariablesCollection of DataAnalytical Methodology
Chapter Page
IV. ANALYSIS OF THE DATA 83
V. FINDINGS, CONCLUSIONS, SPECULATIVE INFERENCES, IMPLICATIONS, AND RECOMMENDATIONS 106
APPENDICES 115
BIBLIOGRAPHY 258

LIST OF TABLES

Table Page
I. Status of Economic Education in Texas-- 1968-1972 3
II. Characteristics of Experimental and Outside Control Teachers 50
III. Correlation Coefficients of Test-Items and Total Scores of Mathematics Tests 61
IV. Correlation Coefficients of Test-Items and Total Scores of Economics Tests 62
V. Reliability Coefficients of Cognitive
Instruments 64
VI. Variables Used to Test Cognition in Mathematics and Economics 65
VII. Variables Used to Test Attitudes Toward Mathematics and Economics 68
VIII. Regression Coefficients of Student Under- standing of Selected Economic Concepts (Lecture and Field Trips) 117
IX. Regression Coefficients of Student Ability in Selected Mathematical Skills (Lecture and Field Trips) 119
X. Regression Coefficients of Short-Term Re- tention of Student Understanding of Selected Economic Concepts (Lecture and Field Trips) 121
XI. Regression Coefficients of Short-Term Re- tention of Student Ability in Selected Mathematical Skills (Lecture and Field Trips) 123
Table Page
XII. Regression Coefficients of Long-Term Retention of Student Understanding of Selected Economic Concepts (Lecture and Field Trips) 125
XIII. Regression Coefficients of Long-Term Retention of Student Ability in Selected Mathematical Skills (Lecture and Field Trips) 127
XIV. Regression Coefficients of Student Attitudes Toward the Discipline of Economics (Lecture and Field Trips) 129
XV. Regression Coefficients of Student Attitudes Toward the Discipline of Mathematics (Lecture and Field Trips). . . 131
XVI. Regression Coefficients of Short-Term Retention of Student Attitudes Toward the Discipline of Economics (Lecture and Field Trips) 133
XVII. Regression Coefficients of Short-Term Retention of Student Attitudes Toward the Discipline of Mathematics (Lecture and Field Trips) 135
XVIII. Regression Coefficients of Long-Term Retention of Student Attitudes Toward the Discipline of Economics (Lecture and Field Trips) 137
XIX. Regression Coefficients of Long-Term Retention of Student Attitudes Toward the Discipline of Mathematics (Lecture and Field Trips) 139
XX. Regression Coefficients of Student Under- standing of Selected Economic Concepts (Lecture and Games and Simulations) 141
XXI. Regression Coefficients of Student Ability in Selected Mathematical Skills (Lecture and Games and Simulations) 143
Table Page
XXII. Regression Coefficients of Short-Term Retention of Student Understanding of Selected Economic Concepts (Lecture and Games and Simulations) 145
XXIII. Regression Coefficients of Short-Term Retention of Student Ability in Selected Mathematical Skills (Lecture and Games and Simulations) 147
XXIV. Regression Coefficients of Long-Term Retention of Student Understanding of Selected Economic Concepts (Lecture and Games and Simulations) 149
XXV. Regression Coefficients of Long-TermRetention of Student Ability inSelected Mathematical Skills (Lectureand Games and Simulations) 151
XXVI. Regression Coefficients of StudentAttitudes Toward the Discipline ofEconomics (Lecture and Games andSimulations)153
XXVII. Regression Coefficients of Student Attitudes Toward the Discipline of Mathematics (Lecture and Games and Simulations) 155
XXVIII. Regression Coefficients of Short-TermRetention of Student Attitudes Towardthe Discipline of Economics (Lectureand Games and Simulations)157
XXIX. Regression Coefficients of Short-Term Retention of Student Attitudes Toward the Discipline of Mathematics (Lecture and Games and Simulations) 159
XXX. Regression Coefficients of Long-TermRetention of Student Attitudes Towardthe Discipline of Economics (Lectureand Games and Simulations)161TablePage
XXXI. Regression Coefficients of Long-TermRetention of Student Attitudes Towardthe Discipline of Mathematics163

CHAPTER I

INTRODUCTION

The impact of integrating economic concepts into the mathematics curriculum through microunits of instruction is the focus of this study. It also measures the differential impact of three teaching strategies upon the understanding and retention of certain defined economic concepts and mathematical skills and upon student attitudes toward mathematics and economics. Finally, it determines the interaction of three teaching strategies with each of the following variables: sex, scholastic aptitude, and the socioeconomic status of the students.

The study focuses upon the economic literacy of students. The vital role which economics plays in the lives of students makes such a study important. Because each individual is confronted with the realities of economics as he attempts to harmonize his unlimited wants with his limited resources, an understanding of economics is essential if he is to fulfill his responsibilities as an individual and a citizen in a democratic society.

Despite the importance of economics, few high school students ever enroll in a separate course in the subject. As early as 1961, the Report of the National Task Force on

Economic Education reported that "only about 5 percent of all high school students ever take a separate course in economics" (2, p.156). A 1965 study conducted by the Council for Advancement of Secondary Education reported only slight improvement in this area, noting that 6.1 percent of the total four-year high school enrollment of that year was studying economics in a separate course (9, p. 21). Although there are no current figures available, one might estimate, on the basis of the previous figures, that about 7 percent of all high school students are presently taking a separate course in economics.

In Texas, the lack of economic education is even more pronounced than it is on the national level. Since the 19681969 school term, there has been a steady decline in the enrollment of economics courses. (See Table I.) Louis Grigar (Appendix C, p. 235) of the Texas Education Agency has suggested that this decline is due to the increase of other social studies elective courses--i.e., sociology and psychology.

The lack of economic education is reflected in an article written by Roger M. Blough, Chairman of the Board of United States Steel Corporation: "The Opinion Research Corporation asked industrial foremen 39 questions on simple, basic economic concepts. They answered only about half of the questions correctly." Blough, speaking of economics in the secondary schools, stated that "although it seems
TABLE I

School Year	Students Enrolled in Economics Courses	Number of Students in Grades 9-12	Percent of 9-l2 Grade Students Enrolled in Economics
$1968-69$	14,792	739,456	2.00%
$1969-70$	12,894	761,438	1.69%
$1970-71$	12,725	785,047	1.62%
$1971-72$	12,103	803,966	1.50%
$1972-73$	11,764	813,230	1.45%

unfair to burden our secondary schools with the whole responsibility, a start must be made somewhere. The major load must fall upon secondary schools, which educate our youth" (1, p. 35).

On the state level, a study conducted in 1967 among 2,703 senior students in Omaha, Nebraska, reported that the "majority of seniors scored below the median level of economic understanding considered essential for good citizenship" (15, Abstract). The results of this study were supported by the findings of a study conducted in 1969 among 4,547 high school seniors representing 215 high schools in Georgia (14).

Although the level of economic understanding among young Americans must be raised, this cannot be accomplished by placing total reliance upon a separate course which reaches only a small portion of the students. Educators also must seek to increase economic understanding through an integration of economic concepts into other curricular areas as well as through the improvement of the applicable teaching strategies.

Background and Significance

Until recently, little systematic research was available in the field of economic education. As recently as 1965, for example, the American Economic Association's

Committee on Economic Education received only about thirty responses to an invitation to submit information about experimental techniques in elementary economics together with any evaluations of the effectiveness of these methods. The situation, however, has changed significantly in the last few years. Research articles on economic education have appeared in the American Economic Review, the Western Economic Journal, the Southern Economic Journal, Economics, the Review of Social Economy, the Quarterly Review of Economics and Business, and Social Education. In 1969, the Journal of Economic Education was introduced and has carried numerous articles concerning primary research studies (10).

Most of the studies conducted in the area of economic education have been either the descriptive-survey type or discussions from intuitive evaluations made by instructors looking at their own activities. In other words, most of the studies in the area of economic education have not been of an experimental nature.

Walter E. McPhie (13) compiled a comprehensive guide to doctoral dissertations in social studies education from 1933 to 1962. Of the 556 dissertations in the field, only twenty were in the area of economic education. Richard E. Gross and Leonard de la Cruz (8) conducted a survey of doctoral dissertations in social studies during the period 1963-1969. They noted that there was an actual decline in
the percentage of research of an experimental nature compared with the 1933-1962 period surveyed by McPhie. In a followup article to this survey, Gross (7) noted that experimental research studies composed 20 percent of those surveyed by McPhie (1933-1962) but only 10 percent of those surveyed by Gross and de la Cruz (1963-1969).

There is, however, an apparent recent trend toward an increase in social studies dissertations of an experimental nature. June R. Chapin (3) reported to the National Council for the Social Studies that during the period 1969-1973 there was a total of 154 experimental dissertations. This number represents 36 percent of the total number of social studies dissertations completed during that period.

Gerald G. Green (6) wrote abstracts of 125 research reports relative to the teaching of economics prior to 1964. On the basis of these reports, Green concluded that there was a scarcity of research concerning those who have had economic instruction.

This lack of research of an experimental nature, particularly in economic education, was also noted by George Dawson (4) in his 1969 survey of research in economic education. He listed over 900 research projects of which only 133 (or 14 percent) could be classified as generic research.

Much more hard data are needed on many aspects of instructional and curricular performance. Such data are necessary to support or refute theories and to provide objective measurements of the efficacy of programs and approaches for those who wish information concerning the many theories which characterize social studies education and, in particular, economic education.

This study, based on research that is quasi-experimental, finds its significance in the fact that, if the inclusion of economic content into the mathematics curriculum can result in significantly positive gains in economic understanding, mathematical skills, attitudes toward economics and mathematics, and the retention of the same, the information should prove valuable to those who are designing and implementing programs in economic education. These educators would then have statistical evidence upon which to base programs that include economic concepts as a part of the mathematics curriculum.

Further, if significant correlations are found relative to the several teaching strategies and the students' economic understanding, mathematical skills, attitudes toward economics and mathematics, and retention of the same, this should prove valuable to curriculum planners. Curriculum planners would have statistical evidence upon which to base decisions relative to the proper use of different teaching strategies.

Statement of the Problems
This study focuses upon two major problems. The first problem is to determine what effect the inclusion of economics in the mathematics curriculum will have upon student understanding of, retention of, and attitudes toward economics and mathematics. The second problem is to determine whether different methods of instruction will result in significantly different levels of student understanding of, retention of, and attitudes toward economics and mathematics.

Purposes of the Study

The purposes of this study are as follows: (1) to ascertain the effect of integrating economic concepts into the teaching of mathematics upon the level of economic and mathematical understanding, the retention of economic and mathematical understanding, student attitudes toward economics and mathematics, and the retention of those attitudes toward economics and mathematics; (2) to ascertain the relative effectiveness of different teaching strategies (lecturedemonstration method, field trips, and games and simulations) upon the level of economic and mathematical understanding, student attitudes toward economics and mathematics, and the retention of those attitudes toward economics and mathematics; and (3) to ascertain the interaction of the
different teaching strategies with each of the following variables--sex, scholastic aptitude, and the socioeconomic status of the students.

Hypotheses
To carry out the purposes of this study, the following hypotheses have been formulated:
I. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, the teaching strategies X_{1} and X_{2} will produce significantly greater mean gains than will teaching strategy $X_{C}\left(X_{1}\right.$ and X_{2} refer to the experimental groups which received instruction in economic concepts as part of their mathematics course via lecture-demonstration methods and use of field trips, respectively. X_{C} refers to the control group which received no instruction in economics.) in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics.
II. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, there will be significantly different mean gains between teaching strategies X_{1} and X_{2} in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes towards the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics.
III. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, the
teaching strategies X_{1} and X_{3} will produce significantly greater mean gains than will teaching strategy $X_{C}\left(X_{1}\right.$ and X_{3} refer to the experimental groups which received instruction in economic concepts as part of their mathematics course via lecture-demonstration method and use of games and simulations method, respectively. X_{C} refers to the control group which received no instruction in economics.) in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics;
IV. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, there will be significantly different mean gains between teaching strategies X_{1} and X_{3} in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics.

Definition of Terms

The following definitions hold for this study:

1. Construct Validity: The extent to which a test measures one or more dimensions of a theory or trait as determined by panels of experts in economics and mathematics education.
2. Content Validity: The extent to which the content of the test items reflects the academic discipline as determined by panels of experts in economics and mathematics education.
3. Field Trips: A trip arranged by the school and undertaken for educational purposes in which pupils go
to places where the materials of instruction may be observed directly in their functional setting (5, p. l69).
4. Games: Models for student interaction which involve a winner in a competitive setting for the learning of subject matter content. Games contain a chance component with more than one possible outcome (ll, p. 2).
5. Lecture-Demonstration: An instructional procedure in which the verbal message is accompanied by the use of an apparatus to illustrate the principles, determine or verify facts, clarify difficult parts, or test for comprehension of the material under discussion without the use of commercially prepared visual aides (5, p. 238).
6. Long-term Retention: A measurement of the aftereffect taken sixty days after the conclusion of the experience.
7. Retention: The result of an experience occurring as a persistent aftereffect that may serve as the basis for future modification of response (5, p. 349).
8. Scholastic Aptitude: The capacity of a person to achieve future success in school as measured by his intelligence quotient score as recorded on his permanent record (5, p. 28) .
9. Short-term Retention: A measurement of the aftereffect taken thirty days after the conclusion of the experience.
10. Simulations: Models of a portion of reality in an artificial situation in which students assume roles in a social, economic, or political system and try to understand how the system operates by participating in it as a member, not as an observer. The outcome is defined; there are no chance components (1l, p. 2).
11. Socioeconomic Status: The background or environment indicative of both the social and economic status of an individual or group as measured by Hollingshead's Two-Factor Index of Social Position (5, p. 378).
12. Student Attitudes: The positive or negative mental and emotional set of a student with respect to an object or phenomenon as measured by a semantic differential (5, p. 37).
13. Innovative Method: An instructional procedure which includes strategies which differ from the traditional lecture-demonstration method.

Limitations

The population of this study is limited to those students instructed by participants in the Developmental Economic Education Program (DEEP). This limitation is imposed because of the interest in the effect which DEEP has upon the students' understanding of, retention of, and attitudes toward economics and mathematics.

The study was a quasi-experiment in that the experimental and control groups were not randomly selected and distributed. Differences between groups were controlled by partitioning out those elements which, on an a priori basis, were determined to threaten the internal validity of the study. Multiple regression analysis was used to control the impact of the identified variables. This study is limited to the extent that such analysis is able to insure the internal validity of the study. This limitation was placed upon the study because of the availability of intact groups.

This study is limited by the interactive effects of the selection of the population in the experimental treatments, and the effect of multiple experimental treatments upon the results of student achievement. Such a limitation poses a threat to the external validity of the study and limits its generalizability. This limitation was imposed because of the quasi-experimental nature of the study. The study was designed in this manner because of the advantages of working with intact groups as a first step in obtaining a broader understanding of the differential impact of teaching strategies upon student cognition and attitudes. The relationships between the various teaching strategies and the levels of understanding of economic concepts
and mathematical skills may be idiosyncratic to the geographic location of the cooperating students. Replication across a broad geographic spectrum is desirable.

Basic Assumptions

It is assumed that the students will be assigned to the intact groups heterogeneously and that they will respond honestly and to the best of their ability to the instruments used to measure socioeconomic status, academic understanding, and attitudes. It is further assumed that the teachers will accurately follow the predetermined teaching module. Finally, it is assumed that the use of four teachers in three schools will negate the effect of any single instructor or school environment upon either academic achievement or the development of attitudes.

Summary

Since the 1960 's, serious attention has been given to surveying experiments and innovations in economic education, to implementing projects intended to stimulate further research, and to measuring the results (12, p. 25). The problem of this study is to test quasi-experimentally the effect of integrating economics into the mathematics curriculum and the differential impact of three methods of instruction upon student understanding of, retention of, and attitudes toward economics and mathematics.

A three-week unit entitled "Price Index: The Impact of Its Fluctuations on Real Income" was taught using three methods of instruction. Games and simulations, field trips, and traditional lecture-demonstration were assessed as means of increasing student understanding of, retention of, and attitudes toward economics and mathematics.

Student understanding of economic concepts and ability to perform selected mathematical skills were assessed by means of teacher-prepared instruments. Student attitudes toward the disciplines of economics and mathematics were assessed by means of two semantic differentials.

1. Blough, Roger M., "Unfinished Business," NASSP Bulletin, XLIX (November, 1965), 35- $\overline{43 .}$
2. Calderwood, James D. and others, Economics in the Curriculum, New York, John Wiley and Sons, Inc., 1970.
3. Chapin, June R., "Social Studies Doctoral Dissertations 1969-1973," unpublished paper read before the National Council for the Social Studies, San Francisco, California, November 20, 1973.
4. Dawson, George, Research in Economic Education: A Bibliography, New York, Center for Economic Education, New York University, 1969.
5. Good, Carter V., editor, Dictionary of Education, New York, McGraw-Hill Book Company, 1945.
6. Green, Gerald G., "The Teaching of Economics: A Comprehensive Analysis and Synthesis of Research Findings and Thought," unpublished doctoral dissertation, Department of Economics, Indiana University, Bloomington, Indiana, 1964.
7. Gross, R. E., "A Decade of Doctoral Research in Social Studies Education," Social Education, XXXVI (May, 1972), 555-560.
8. \qquad and Leonardo de la Cruz, Social Studies Dissertations: 1963-1969, Reference Series No. 4, Boulder, Colorado, ERIC Clearinghouse for Social Studies/Social Science Education, 1971.
9. Jones, Galen, "The Current Status of Economics Teaching in the High Schools of the United States," NASSP Bulletin, XLIX (November, 1965), 3-26.
10. Lewis, Darrell R. and Charles C. Orvis, Research in Economic Education, New York, Joint Council on Economic Education, 1971.
11.

___ and Donald Wentworth, Games and Simulations, New York, Joint Council on Economic Education, 1971.
12. Lumsden, Keith, New Developments in the Teaching of Economics, Englewood Cliffs, New Jersey, PrenticeHall, Inc., 1967.
13. McPhie, Walter E., Dissertations in Social Studies Education: A Comprehensive Guide, Washington, National Council for the Social Studies, 1964.
14. Schwartz, David J., "Report on the Economic Intelligence Quotient Validation Test," unpublished paper, Georgia State University, Atlanta, Georgia, 1969.
15. Sorenson, Norman L., "Economic Understanding of Senior Students in Omaha, Nebraska Public High Schools," unpublished doctoral dissertations, Department of Economics, University of Nebraska, Lincoln, Nebraska, 1967.

CHAPTER II

REVIEW OF RELATED LITERATURE

The review of the literature is divided into four sections relating to the principal features of the study. The major sections are as follows:

1. Analysis of the process and of the student variables related to increased economic understanding.
2. Relationship between economic instruction, increased economic understanding, and other cognitive and affective variables.
3. Quasi-experiments relating to the integration of economic concepts into other curricular areas.
4. Quasi-experiments relating to the impact of a variety of teaching strategies upon economic understanding.

Analysis of the Process and of the Student Variables
Related to Increased Economic Understanding
It is logical to begin a survey of the related literature by reviewing those efforts designed to identify the process and the student variables which are related to increased economic understanding and which, as a result, need to be controlled in economic education experimentation.

The essence of these studies provides the basis for selection of control variables in current economic education experimentation.

Donald W. Paden and M. Eugene Moyer (18) used multiple regression analysis to determine the significant coefficients in an experiment conducted at the University of Illinois. They found that the significant variables for explaining the variation in scores on the cognitive and affective tests were ability, academic classification, initial level of competence in economics, major, sex, and the number of absences.

Alfred J. Smith, Jr. (22) conducted a study of the relationship between sex, scholastic achievement, learning ability, socioeconomic status, age, major curriculum of concentration, courses taken, and the economic understanding of 1,369 high school seniors in the Mt. Prospect, Illinois, High School District. The results of his study indicated that males were significantly superior in economic understanding to females; he also found that high academic ability, as measured by grade average and intelligence quotient, and socioeconomic status were significantly related to economic cognition. With regard to curricular factors, college preparatory seniors were significantly superior to those who majored in business education, vocational education, or general education.

Bobby Joe Dooley (7) investigated variables related to the posttest scores on a specially constructed economics achievement test among 507 disadvantaged fourth-grade children in eighteen classes. The California Short-Form Test of Mental Maturity was used to measure intelligence, and the Hollingshead Two-Factor Index of Social Position was used to assess the students' social position. Results of Dooley's data analysis, in contrast to the findings of the Paden and Moyer (18) and Smith (22) studies, showed that sex was not a significant predictor of students' economic achievement on posttest scores. Students' socioeconomic status, pretest scores, language ability, teacher education, teacher-attitude rating, and race--Blacks were significantly higher than whites--were significant predictors of posttest scores.

Contrary to the conflicting evidence regarding the influence of sex upon economic understanding, there seem to be no conflicting research studies regarding the influence of student socioeconomic status upon understanding of economic concepts. Sol Spears (24), in a study conducted among 106 first-grade pupils in Culver City, California, and Howard A. Sulkin and Robert W. Prancis (26), in an experiment involving fourth- and fifth-grade students, concluded that pupils from a higher socioeconomic level performed significantly better than those pupils with a
lower socioeconomic status. These studies support the previously reported conclusions of Smith and Dooley.

Additional variables have been identified by Frank W. Gery (10), Wallace D. Oates and Richard E. Quandt (17), and David Ramsett, Jerry Johnson and Curtis Adams (19). Gery found that the students' mathematics background was positively related to increased economic understanding. (This contradicts the Paden and Moyer study cited above.) Oates and Quandt concluded that graduate teaching assistants did about as well as regular faculty members in the instruction of undergraduate economics courses. Ramsett et. al found that "good" teachers, as determined by student evaluation, had a favorable effect upon students' attitudes toward the discipline of economics.

The research evidence has provided significant assistance in identifying control variables for quasi-experimental studies. There is, however, a broad range of student and instructor main effect and interactive variables which still need to be investigated if one is to be definitive in identifying those factors significantly related to economic understanding.

Relationship Between Economic Instruction, Increased Economic Understanding, and Other Cognitive and Affective Variables

The need for increased economic understanding and the impact of economic instruction upon the students' cognitive understanding of selected economic concepts and upon attitudes toward the discipline of economics are the focal points of this study. Resent research in economic education has provided insight into these issues.

As early as 1963, a study was conducted in California among 3,908 senior students in nineteen randomly selected high schools. This study concluded that seniors with economic instruction proved superior to those without economic instruction in the forty-three-item Survey of Economic Understanding (6). Similar studies were conducted in Nebraska in 1967 (23), Illinois in 1967 (22), Maryland in 1968 (12), Indiana in 1969 (9), and Mississippi in 1969 (8). All of these studies have supported the conclusion that high school students who have had instruction in economics have a significantly better understanding of economics than those students who have not had instruction in economics. Elementary school students also have shown increased understanding of economics as a result of participation in economics programs. Howard A. Sulkin and Robert W. Pranis (26) reported on two programs involving twelve fourth-grade
classes and twelve fifth-grade classes. Six classes from each group participated in the six-week economics program, while six were control classes. The results of the study indicated that the students who participated in the programs had significantly higher posttest scores than students who did not participate in the programs.

These results are supported by studies conducted by Sol Spears (24) among first-grade pupils in Culver City, California and by Mary Witt (30) among fourth- and fifthgrade students at the Memphis State University campus school. It is apparent that economics instruction will increase economic understanding of students at the elementary and secondary school levels.

In 1967, a study was conducted in New York to determine whether students who had had economics courses in high school made greater progress in college economics courses than those who had had no previous training in economics. The SRA Test of Economic Understanding (TEU) was administered as a pretest and posttest to 638 students in four New York colleges and universities. The students who had had previous experience in economics courses scored higher on both the pretest and posttest. However, the college economics course did eliminate some of the initial differences between the groups. In other words, the group which
had had an economics course in high school knew more about economics after the college course because they knew more about economics before the college course (5).

The effects of economics instruction upon the retention of economic understanding among elementary school pupils has not been clearly established. The Sulkin and Pranis study (26) found that the fourth-grade experimental group scored significantly higher than the control group on a test taken a year after the completion of the economics program; however, there was no significant difference in retention among the fifth-graders. A follow-up study, published by Sulkin (25) indicated that exposure to the fourth-grade program had little influence on learning the fifth-grade program.

It is evident that instruction in economics does significantly improve the economic understanding of elementary and secondary students. Researchers are, however, also interested in determining the effects of economics instruction upon the affective domain. This is much more difficult to measure; therefore, there is considerably less research material available on that topic.

Thus far, research efforts have not developed a clear link between increased economic understanding and a change in attitude among students. Research activities are only
beginning to measure the degree to which instruction in economics affects an attitudinal change in students.

One such study, conducted by Edward G. Sewell (21), attempted to determine the effect of an increased understanding of economics upon the attitudes of secondary school pupils. A specially prepared, multiple-choice Test of Understanding of Economic Principles was administered to 922 students in twenty-seven classes in eleven schools in eight states. Fifteen classes of 518 students took the test after class instruction in economics, and twelve classes of 404 students took the test without prior classwork in economics. The results indicated that there was a significant difference between the mean scores of the groups with and without work in economics.

An instrument of twenty statements, which was developed for an attitude scale, was presented to the high school students who responded in terms of agreement or disagreement. The instrument produced a scale ranging from one to five, with five indicating the most conservative score and one the most liberal score. The 404 students who marked the attitude scale before work in economics had a mean score of 3.42. The 518 who marked the scale after work in economics made a mean score of 3.50 . This difference was significant beyond the . 01 level.

Those students marking the attitude scale before and after classwork in economics were tested for changes in attitudes. The change in mean score toward a more conservative attitude after taking economics was significant at the . 01 level. Of the students tested only once, those with work in economics showed a lower conservative attitude than those without, at the . 01 level (21).

Darrell Lewis and Tor Dahl (13) have researched the relationship between critical-thinking skills and student performance in the principles of economics course. The results of their study, conducted among 784 University of Minnesota students enrolled in Economics I (Principles of Economics--Macroeconomics) in twenty-three experimental and control sections, indicate that the teaching of the principles of economics does contribute significantly to the development of critical-thinking skills. They further found that, when critical-thinking skills are explicitly taught in an experimental context, little difference in performance can be observed between experimental and control groups.

Another study was undertaken in 1969 as part of a doctoral dissertation at the State University of New York, Albany. Students in forty-six New York State public high schools were pretested and posttested with instruments which measured changes in both the affective and cognitive
domains. The resulting scale measured the extent to which the students' attitudes toward economic problems were similar to the attitudes of the experts in the field of economics. The findings of this research showed that, as knowledge and understanding of economics increased, the students' attitudes toward the economic problems of society tended to agree with the concensus of the economists. Thus, it was shown that instruction in economics did have an impact upon the attitudes of the high school students (11).

William A. Luker (14) of the Center for Economic Education at North Texas State University has undertaken considerable research concerning the effect which instruction in economics has upon the affective domain. In a study conducted in 1970 among students at NTSU, he concluded that 1) there was no relationship between knowledge of economics and dogmatism; 2) there was no relationship between knowledge of economics and opinionation; and 3) there was no positive relationship between economic knowledge and conservatism. In the spring semester of 1972 , Luker and Steve W. Wood conducted a similar study among the 696 senior students in Amarillo, Texas. On the basis of this study, they concluded that

[^0]They further concluded that
the change in economic understanding was not related to a change in liberalism-conservatism. In other words, although increased economic understanding was related to decreased dogmatism, the students' basic liberalism or conservatism was not altered. This, of course, is important in developing economic education programs that are objective and nonpropagandistic (15, p. 8).

The effect which economic education has upon the affective domain has not been adequately determined. The studies which have been conducted are only a beginning and require extensive replication if the affective results of economic education are to be determined.

Quasi-Experiments Relating to the Integration of Economic Concepts into Other Curricular Areas

Numerous efforts have been made since 1962, largely through the Kazangian Foundation, to integrate economic concepts into other curricular areas. Most of these activities have not been of an experimental nature. Instead, they have been descriptive reports of the classroom activities of enterprising teachers. Two significant efforts of a quasi-experimental nature are reported in this section. In 1967, Marvin A. Clark (4) conducted a study intended to determine whether it is possible to teach economic concepts concurrently and incidentally with the normal teaching of typewriting skills. Ninth-grade students from
seventeen classes in nine Minneapolis, Minnesota, junior high schools were assigned to one of two experimental groups. One group of students typed timed writings from specially prepared copy containing economic information. The other group of students used timed writings from specially prepared copy taken from typewriting textbooks.

An economics achievement test was given as a pretest and posttest for the purpose of determining whether equal gains in economic achievement occurred in both experimental groups as a result of typing the special materials. The group using economics copy material scored significantly higher, at the . 01 level, than the group using textbook materials on the economics posttest. This group also made a significantly higher gain at the .01 level from the pretest to the posttest. It was concluded that the use of economics copy material contributed to the learning of economic concepts at all ability levels. Analysis of covariance also indicated that the use of typewriting copy containing economic concepts contributed to increased economic understanding without adversely affecting typewriting speed or accuracy.

Marianne Bonds and William A. Luker (3) reported on a project which integrated economic concepts into the English curriculum through the study of Animal Farm by George Orwell. A one-week unit was taught to two senior English classes in
one of the high schools in Midland, Texas. One of the classes was supplemented with readings and discussions concerning comparative economic systems. The other class served as the control group and studied Animal Farm in the traditional manner.

Both groups were pre- and posttested using twenty questions from the Test of Economic Understanding. On the basis of regression analysis, they concluded that the students in the experimental course, when controlled for differences in pretest knowledge, ability, and absence, scored significantly higher on the posttest of economic understanding.

The integration of economic concepts into the instruction of other curricular areas seems to be effective in increasing the economic understanding of the students. At the same time, such instruction has not had adverse effect upon the students' progress in the curricular areas under study.

Quasi-Experiments Relating to the Impact of a Variety of Teaching Strategies on Economic Understanding The study of the effects of various teaching strategies on cognition in the instruction of economics is of recent origin. The use of objective questions in the evaluation of the success of pedagogy in economics had its genesis in 1960 (27). The great push in this area began during the
summer of 1969 when the staff of the Joint Council of Economic Education met with the Directors of Centers for Economic Education from all sections of the United States to develop a series of research projects to be conducted during the following academic year (28). This was one of the first organized attempts by any of the social science disciplines to become involved with pedagogy on the basis of rigorous research.

Hard research in economic education has been concentrated in six basic areas: 1) traditional lectures, 2) games and simulations, 3) textbook differentials, 4) computer-assisted instruction, 5) television, and 6) programmed learning. Although educational literature has abundant research studies covering a wider range of teaching strategies, research in economic education has been limited to the categories listed above. This study is concerned with the traditional lecture-demonstration method, field trips, and games and simulations. This sect tion will, therefore, concern itself with a review of the literature concerning the use of the traditional lecturedemonstration method and games and simulations in economic education.

Richard L. Wing (29) reported on the development and evaluation of three experimental computer-based economics games for the sixth grade. During the course of this project,
three computer-based games were developed: The Sumerian Game, The Sierra Leone Game, and The Free Enterprise Game. The first two games were used in a formal experiment.

In 1965-66, twenty-six sixth-grade students from Yorktown Heights, New York, played the two newly developed computer-based economics games. Meanwhile, a control class of equal scholastic aptitude studied the same economics topics and content under the direction of a talented teacher using only "conventional" methods.

Employing statistical tests for significance, the researchers reported the following conclusions: 1) the computer-based economics games were at least as effective in teaching principles of economics as the classroom method with which they were compared; 2) the control group showed greater retention of economic understanding several months after the instruction than did the experimental group; and 3) the game appears to have been superior in teaching interpretation of graphs and diagrams but not as effective in teaching facts.

Charles R. Anderson (1) conducted a study to determine whether a simulation learning game was more effective than traditional classroom activities in teaching consumer credit to senior high school students. Three teachers taught a portion of their twelfth-grade Problems of Democracy
classes through a simulation game and the other portion by the traditional lecture-demonstration approach.

A Knowledge Test Score and two measures of observable behavior (a Comparison Frequency Score and a Contract Rating Score) were the basis for comparing the effectiveness of the two teaching strategies. The study concluded that the simulation learning game was equally as effective as traditional classroom activities in teaching students about consumer credit.

Terry K. Reigel (20) reported on a study which examined whether students completing a simulation-game series in economics would score higher in cognitive skills than those taught by the traditional lecture-demonstration method. The study also investigated whether there is a significant increase in critical-thinking ability by students using a simulation game in economics compared to those taught by the lecture-demonstration method.

Eight twelfth-grade classes, taught by four instructors, were selected from a New Jersey high school during the 196869 school year. The four control classes were taught by the lecture-discussion method, while the four experimental classes were taught basically with Economic Discussion Games.

Two tests were administered during three phases of the experiment: the Watson-Glaser Critical Thinking Appraisal, Form YM, and Stages of Economic Growth. Analysis of
covariance was run for the pretest, posttest, and retention test scores on both tests. Both groups gained significantly in cognitive skills as a result of the study. There were no significant differences between the groups.

Glenn F. Marston, Kenneth Lyon and Richard Knight (16) conducted two experiments to determine the effectiveness of a national income simulation model with respect to student understanding of economic concepts and interest in the discipline of economics. One experiment was conducted among university students and the other among high school students.

In both experiments students were assigned to control and experimental groups. The experimental groups played the National Income Simulation Game, while the control group received the conventional method of instruction. Using regression analysis, the authors concluded that the differences in achievement between the control and experimental groups were not significant in either experiment.

Data regarding the students' interest in economics were collected by asking students about their interest in economics compared with other subjects they had taken in the last two years. In both experiments there was no evidence that the National Income Simulation Game increased interest in economics. The authors, therefore, concluded that the National Income Simulation Game was neither superior nor
inferior to the conventional method of instruction in regard to the development of an understanding of macroeconomics and an interest in economics.

Marianne Bonds (2) attempted to determine the differential impact of four pedagogical delivery systems on student understanding of elementary economic concepts. She measured the differential impact of a programmed text, a simulation game, closed-circuit television, and lecture-and-discussion methods upon the students' economic understanding and attitudes toward the discipline of economics.

The experiment was conducted among 113 students enrolled in a weekly lecture section of Economics 110 (Microeconomic Theory) during the fall semester of 1972 and the spring semester of 1973 at North Texas State University. The four informational delivery systems were used during regularly scheduled laboratory sessions conducted by tutors (graduate students in the Economics Department).

Multiple regression analysis was used to analyze the data obtained from the students' test scores on the Test of Understanding in College Economics, the students' revealed preferences for specific methodologies, and the students' evaluations of specific methodologies considered most effective in preparation for class examinations.

On the basis of the research, the author concluded that there was no significant differential impact
attributable to the four methodologies on the students' understanding of economic concepts. She further found that the students had a statistically significant preference for games and simulations and lecture and discussion over closed-circuit television and programmed learning.

To date, no experimental research has been conducted regarding the impact of field trips upon students' understanding of economics and attitudes toward economics. Several descriptive studies have included field trips as part of the methodological treatment; however, there is no hard research upon which to base a judgment regarding their impact upon the students' cognition or attitudes.

On the basis of research evidence, one can conclude that games and simulations used alone or with other instructional methods do as well as the traditional lecturedemonstration method of instruction in increasing student understanding of economic concepts and in improving student attitudes toward economics. Such information can provide the instructor with confidence in using the innovative method, which may assist in the achievement of other desirable objectives, without fearing a loss of cognitive and affective gains.

There is, however, no research evidence comparing the differential impact of the traditional lecture-demonstration
method and field trips upon economic understanding. One might infer that, since there were no significantly different results between the other methods of instruction, there would also be no significantly different results between these methods. As a result of the difference in learning experiences, the cautious researcher must await the results of such experiments before concluding that there are no significant differences between the methodologies.

Summary

The review of the literature in economic education provides rather clear directions for the researcher. As a result of the efforts of the American Economic Association and the Joint Council on Economic Education, there has been a major increase of interest in experimentation in the teaching of economics since the 1960s. This interest has led to a variety of experiments and projects to encourage further experimentation. The findings of these experiments provide a pattern which gives direction for further research.

The research analyzing the process and the student variables related to increased economic understanding has identified a set of control variables for quasi-experimental studies in economic education. This set includes the students' scholastic aptitude, sex, socioeconomic status, grade level,
age, initial level of competence in economics, major curricular area of concentration, number of absences from class, and teacher differences.

The literature provides abundant evidence that economics instruction has a positive effect upon the students' understanding of economics. The impact of economics instruction upon student attitudes is not as clearly understood. The available research evidence does indicate that there is a relationship between economics and affective variables. The direction and extent of that relationship is in need of further clarification.

Most of the activities related to the integration of economics into other curricular areas have not been of an experimental or quasi-experimental nature. The available research evidence indicates that, when economics is integrated into other curricular areas, the students' understanding of economics increases without an adverse effect upon their understanding of the concepts and skills of the other discipline.

There has been considerable research indicating that there is no significant differential impact between games and simulations and the traditional lecture-demonstration method upon student understanding of economics and attitudes toward economics. There has, however, been no
research comparing the differential impact of field trips and traditional lecture-demonstration methods upon student understanding of economics and attitudes toward economics.

CHAPTER BIBLIOGRAPHY

1. Anderson, Charles R., "The Effectiveness of a Simulation Learning Game in Teaching Consumer Credit to Senior High School Students in Comparison to a Conventional Approach to Instruction," unpublished doctoral dissertation, Department of Economics, University of Maryland, College Park, Maryland, 1969.
2. Bonds, Marianne, "A Quasi-Experimental Study of the Differential Impact of a Set of Informational Delivery Systems on Student Understanding of Elementary Economic Concepts," unpublished doctoral dissertation, North Texas State University, Denton, Texas, 1973.
3. Bonds, Marianne and William A. Luker, "The Integration of Economic Concepts Into a High School English Course," Southwestern Journal of Social Education, III (Fall-Winter, 1972-73), 5-15.
4. Clark, Marvin A., "Incidental Learning of Economics in Beginning Typewriting," unpublished doctoral dissertation, Department of Economics, University of Minnesota, Minneapolis, Minnesota, 1967.
5. Dawson, George and Irving Bernstein, The Effectiveness of Introductory Economics Courses in High Schools and Colleges, New York, Center for Economic Education, New York University, 1967.
6. Dietz, James E., "Economic Understanding of Senior Students in Selected California High Schools," unpublished doctoral dissertation, University of California, Los Angeles, California, 1963.
7. Dooley, Bobby Joe, "Comparison of Pupil Test Performance on Two Units in Elementary Economics with a Select Sample of Disadvantaged Children," unpublished doctoral dissertation, University of Georgia, Athens, Georgia, 1968.
8. Ellis, Irby Compton, "A Study of the Status of Economic Education in the Secondary Schools of Mississippi," unpublished doctoral dissertation, University of Southern Mississippi, Hattiesburg, Mississippi, 1969.
9. Gentry, Athal Dennis, "Economic Understanding of Non-College-Bound Senior in Public High Schools in Indiana," unpublished doctoral dissertation, University of Denver, Denver, Cylorado, 1969.
10. Gery, Frank W., "Mathematics and the Understanding of Economic Concepts," Journal of Economic Education, II (Fall, 1970), 100-104.
11. Hemmer, William V., "The Development of an Affective Scale and its Use in Comparing Affective and Cognitive Changes During Twelfth Grade Economics Instruction," unpublished doctoral dissertation, State University of New York, Albany, New York, 1969.
12. Hunt, Eugene H., "An Experimental Study to Determine the Effectiveness of Teaching Economics at the Secondary School Level," unpublished doctoral dissertation, University of Maryland, College Park, Maryland, 1968.
13. Lewis, Darrel R. and Tor Dahl, "Critical Thinking Skills in the Principles Course: An Experiment," unpublished paper, University of Minnesota, Minneapolis, Minnesota, 1970.
14. Luker, William A., "The Relationship Between Economic Knowledge and Certain Elements of the Affective Domain," Research Papers in Economic Education, edited by Arthur L. Welsh, New York, Joint Council on Economic Education, 1972.
15.

and Steve W. Wood, "Cognitive and Affective Changes in Students as a Result of Exposure to Economic Content," unpublished paper, North Texas State University, Denton, Texas, 1972.
16. Marston, Glenn F., Kenneth Lyon, and Richard Knight, "Learning and Attitude Change of Students Subjected to a National Income Simulation Game," Research Papers in Economic Education, edited by Arthur L. Welsh, Joint Council on Economic Education, New York, 1972.
17. Oates, Wallace D. and Richard E. Quandt, "The Effectiveness of Graduate Students as Teachers of the Principles of Economics," Journal of Economic Education, I (Spring, 1970), 131-138.
18. Paden, Donald W. and M. Eugene Moyer, "The Relative Effectiveness of Three Methods of Teaching Principles of Economics," Journal of Economic Education, I (Fall, 1969), 33-45.
19. Ramsett, David E., Jerry D. Johnson, and Curtis Adams, "Some Evidence on the Value of Instructors in Teaching Economic Principles," The Journal of Economic Education, V (Fall, 1973), 57-62.
20. Reigel, Terry K., "A Comparative Study of Two Approaches to the Teaching of Economics in Suburban New Jersey Twelfth Grade Economics Classrooms," unpublished doctoral dissertation, New York University, New York City, 1969.
21. Sewell, Edward G., "Effect of Classwork in Economics on Attitudes and Understanding of a Select Group of Secondary School Pupils," Journal of Educational Research, LVII (November, 1963), 131-136.
22. Smith, Alfred J., "The Relationship Between the Economic Understandings of Graduating High School Seniors and Certain Personal and Curricular Factors," unpublished doctoral dissertation, Indiana University, Bloomington, Indiana, 1967.
23. Sorenson, Norman L., "Economic Understanding of Senior Students in the Omaha, Nebraska Public High Schools," unpublished doctoral dissertation, University of Nebraska, Lincoln, Nebraska, 1967.
24. Spears, Sol, "Children's Concept of Learning in Economics under Three Experimental Curricula," unpublished doctoral dissertation, University of California, Los Angeles, California, 1967.
25. Sulkin, Howard A., "Retention and Transfer of Concepts Taught in Elementary School Economics Programs," Research in Elementary School Economics, edited by Howard A. Sulkin and Chana R. Friedman, Chicago, Industrial Relations Center, University of Chicago, 1969.
26. and Robert W. Pranis, "Evaluation of Elementary School Social-Studies Program," Educational Leadership, XXVII (December, 1969), 271-276.
27. Villard, Henry H., "Where We Now Stand," Journal of Economic Education, I (Fall, 1969), $\overline{60-66 .}$
28. Welsh, Arthur L., editor, Research Papers in Economic Education, New York, Joint Council on Economic Education, 1972.
29. Wing, Richard L. and others, The Production and Evaluation of Three Computer Based Economics Games for the Sixth Grade, Yorktown Heights, New York, Board of Cooperative Educational Services, 1967.
30. Witt, Mary, "Use of Feedback in the Study of Economics in the Elementary School," Educational Quest, XIII (Fall, 1969), 5-9.

METHODOLOGY

Population Frame
The population for this study consisted of all students enrolled in twelve selected mathematics classes taught by four junior high school teachers in the Dallas Independent School District during the spring semester of 1973-74. There were 272 students who participated in the study.

To insure that the subjects' responses did not differ in any systematic manner from other samples, four outside control groups were used. These four control groups were selected at random from the mathematics classes taught in the same junior high schools in which the experimental groups resided. There were 104 students who participated in the outside control groups.

Characteristics of Teachers

The selected mathematics teachers were participants in an institute in economic education during the summer of 1973 at North Texas State University in Denton, Texas. As a part of this institute, a teaching module, which was used for the integration of economic concepts into the mathematics curriculum, was constructed.

Table II describes the characteristics of the teachers in the experimental and outside control groups. There were three females and one male teacher working with the experimental groups. Three of the experimental teachers were Negro, and one was Caucasian. The average age of the experimental teachers was 28.5 years. Their average teaching experience was 7.25 years. All of the experimental teachers had mathematics as their first teaching field. Two of the experimental teachers had eighteen hours of credit in economics, and two teachers had twenty-four hours of credit in economics. The average undergraduate grade point average of the experimental teachers was 3.3 on a 4.0 basis.

There were two female and two male teachers in the outside control groups. Two of these teachers were Caucasian, and two were Negro. The outside control teachers had an average age of 33.25 years. The average teaching experience of these teachers was 9.75 years. Mathematics was the first teaching field of all of the outside control teachers; however, only one had any credits in the discipline of economics. The teachers of the outside control groups had an undergraduate grade point average of 3.2 on a 4.0 basis.

Teaching Module

The teaching module was a three-week unit entitled "Price Index: The Impact of Its Fluctuations on Real Income."
TABLE II
CHARACTERISTICS OF EXPERIMENTAL AND OUTSIDE CONTROL TEACHERS

Teacher	Group	Sex	Race	Age	Teaching Experience	Teaching Field	Credits in Economics	Undergraduate G.P.A.
T_{1}	Exp.	F	N	32	10	Math.	18	3.0
$\mathrm{~T}_{2}$	Exp.	M	N	29	7	Math.	24	3.2
$\mathrm{~T}_{3}$	Exp.	F	C	25	5	Math.	18	3.6
$\mathrm{~T}_{4}$	Exp.	F	N	28	7	Math.	24	3.5
$\mathrm{~T}_{5}$	Con.	F	N	29	8	Math.	0	3.0
$\mathrm{~T}_{6}$	Con.	M	N	27	4	Math.	0	2.8
$\mathrm{~T}_{7}$	Con.	F	C	32	4	Math.	0	3.4
$\mathrm{~T}_{8}$	Con.	M	C	45	23	Math.	30	3.6

It was the objective of this module to enable the students

1. to define "price index" in their own words;
2. to identify the Consumer Price Index as the main device for measuring changes in general price-level trends of consumer goods and services;
3. to identify the Bureau of Labor Statistics as the main agency for compiling the Consumer Price Index;
4. to construct a two-axis graph of price index versus time, given the price index for the respective years;
5. to construct a three-item index, given base period data and current data;
6. to calculate the percentage of change in the Consumer Price Index with respect to the base period; and
7. to determine whether real income increased or decreased, given fluctuations in the Consumer Price Index and an income that remained constant.

The lecture-discussion method developed these abilities through classroom lectures, demonstrations, and the use of numerous student worksheets and handouts. The field-trip method used all of the activities of the lecture-demonstration
method. In addition, it included a field trip to a grocery store and another trip to the school's cafeteria.

The games-and-simulations method centered its activities around several economic games and simulations. Included in the materials were "The Market" (Science Research Associates) and "Consumer" (Western Publishing Company, Inc.), in addition to parts of the material included in the lecturedemonstration method.

The control groups received instruction in their regular areas of study. This instruction was not supplemented with economic concepts relating these mathematical operations to an understanding of the price index or its fluctuations.

Classroom Procedures

The twelve intact groups, taught by the four teachers who attended the economics institute, were divided into eight experimental groups and four control groups. The experimental groups received instruction in economic concepts as outlined in the teaching module. (See Appendix B.) The control groups received their regular instruction in mathematics.

Four outside control groups were taught by teachers who had not attended the economics institutes. They received no instruction in economic concepts. They also received their regular instruction in mathematics.

Demographic information was obtained on all of the students in the population and control groups. This information included their sex, scholastic aptitude, and socioeconomic status.

Each intact group was divided randomly into two groups of equal size. Section 1 of each intact group was pretested on economic concepts and mathematical skills, using the teacher-prepared instrument. They were also pretested with a semantic differential to measure their attitudes toward economics and mathematics.

The experimental groups were paired with respect to the methodology employed by the instructor. The methodologies used were lecture-demonstration, field trips, and games and simulations. Each teacher taught one section via the lecture-demonstration method and one section using one of the other methodologies, as indicated in the research design.

Upon the completion of the teaching module, sections 1 and 2 of each intact group were posttested on economic concepts, mathematical skills, and attitudes toward economics and mathematics, using a companion instrument to the pretest.

Retention tests measuring the students' understanding of economic concepts, mathematical skills, and attitudes toward economics and mathematics were administered thirty
and sixty days after the completion of the posttest. These retention tests were administered to the entire population of students with companion instruments to the pretest and posttest.

Figure 1 presents this procedure in the format of a flow chart.

Instruments

The students' attitudes toward the disciplines of mathematics and economics were measured by a semantic differential. The semantic differential is a technique for measuring the meaning of a concept. The respondent is asked to rate that concept in terms of a set of bipolar adjectives. He is asked to indicate the direction and intensity of his perception of each concept on the sevenpoint continuum (6).

The bipolar adjectives, which were factor analyzed by C. E. Osgood (6) in 1957, resulted in three factors called evaluation, potency, and activity. The scales representing the same factor are alternated in polarity direction to prevent the formation of position preferences. The differential technique can be analyzed through analysis of variance and is particularly appropriate for factor analysis, since the data are perceived as interval data.

Item, factor-score, and concept-meaning reliabilities have coefficients of .85. Test-retest coefficients in the

Fig. l--Flow chart depicting classroom procedures
measurement of attitudes range from . 87 and .93, depending upon the adjectives used, with a mean r (computed by $z-$ transformation) of .91.

The validity of the semantic differential as a measurement of attitude is high. Osgood(6) reported on a comparison of the semantic differential with the Thurstone scales. He found that the correlation between the two measurements was significantly greater than chance (.01 level). The validity coefficients ranged from . 74 to . 82; but, when corrected for attenuation, each is raised to the order of .90 or better. It was apparent that whatever the Thurstone scales measured was measured just about as well by the semantic differential.

A further comparison was made with a fourteen-item Guttman-type scale. The rank-order correlation between the two instruments was likewise greater than chance (.0l level). It is again evident that the semantic differential measures the same thing as the Guttman scale (6, pp. 125-195).

The Two-Factor Index of Social Position was used to determine the students' socioeconomic status. This Index is a modification of the Three-Factor Index of Social Position used by August B. Hollingshead in the study of Social Class and Mental Illness published in 1958 (4). The Index utilizes occupation and education as factors determining the hierarchy of socioeconomic status. These factors are scaled and weighted individually, and a single score is obtained
from the sum, with a high score indicating a low socioeconomic status and a low score indicating a high socioeconomic status. (See Appendix C.)

The occupational scale is a modification of the Alba Edwards system of classifying occupations into the socioeconomic groups used by the United States Bureau of the Census. The scale used in the Index ranks professions into different groups and businesses by their size and value. Its effective use is dependent on the precise knowledge of the occupation of the head of the household.

The educational scale is premised upon the assumption that people who possess similar educations will tend to have similar tastes and similar attitudes, and that they will tend to exhibit similar behavioral patterns. It is based upon the years of school completed by the head of the household.

The Index score is calculated by multiplying the factor weight by the scale scores of each factor and adding the products. The occupational position has a factor weight of seven, and educational position has a factor weight of four.

The various combinations of scale scores for occupations and education are reproducible, for there is no overlap between education-occupation combinations. If an individual's education and occupations are known, one can
calculate his score. Conversely, if one knows an individual's score, he can calculate both occupational position and educational level (1, p. 385).

Hollingshead and others have made extensive studies of the reliability of scoring and the validity of the Index on over one hundred variables. The previously cited 1958 study by Hollingshead found that the prediction of social class using education and occupation as variables had a . 906 correlation with the prediction of social class using a 200question schedule and interviewer impressions. In another survey of the New Haven, Connecticut, community, Theodore Anderson found that 78.2 percent of the households were placed in the same class, using Hollingshead's Index and an extensive survey based on the household's use of mass media of communication (4, pp. 387-407). On the basis of this extensive use of the Two-Factor Index of Social Position, it was deemed to be a reliable, valid, and convenient method of estimating the socioeconomic status of students for this study.

The instruments used for pretest, posttest, and retention measurements of economic understanding and mathematical skills were teacher-prepared tests. The validity of these instruments was determined on an a priori basis by two panels of three judges selected upon the advice of the advisory committee. The validity of the instruments was
verified by obtaining the coefficient of correlation between the individual test items and the final score of the test. The reliability of these instruments was determined through the use of the Kuder-Richardson formula-20 test of internal consistency.

The validation panel for the economics test was composed of the following members:

Lewis Abernathy, Associate Professor of Economics and Director of Manpower Institute, North Texas State University,

Robert Carter, Curriculum Coordinator, Midland Independent School District, and

Thomas Holland, Executive Director of Texas Council for Economic Education.

The validation panel for the mathematical skills test was composed of the following members:

William Denton, Program Evaluator, Dallas Independent School District,

Pamela Hamilton, Director of Title III Project, Dallas Independent School District, and
B. G. Nunley, Associate Professor of Mathematics, North Texas State University.

The validation panels were asked to determine both content and construct validity of the tests. This was deemed feasible based upon observations made by Robert Thorndike and Elizabeth Hagen:

In practice, establishing the content and the construct validity of a test are often closely interwoven. Thus, the same steering committee that judges the importance of different items of content may undertake to translate the underlying concepts . . . into manageable aspects of behavior for testing. The two types of judgments may be made at the same time and by the same people (7, p. 114).

The members of the panels were provided with a list of the module's objectives and a description of the teaching module to aid their evaluation of the instrument. On the basis of their observations, test items were amended and added to the instrument before its use.

The instruments were administered to eighty-one pupils in grades seven through nine in the Denton Independent School District prior to the inaugeration of the study. The validity of the instruments was verified by obtaining a Pearson product-moment correlation coefficient of each test item and the total scores of the Denton group and the two Dallas experimental pretest groups. Tables III and IV present the correlation coefficients of the tests of mathematical skills and economic concepts.

Those items that produced a negative coefficient in the Denton group were reworded upon the advice of the validation panel and used in their new form. All except one of the items had a positive coefficient in the pretest results. That item was retained because of its insignificantly small

TABLE III
CORRELATION COEFFICIENTS OF TEST-ITEMS AND TOTAL SCORES OF MATHEMATICS TEST

Test Item	Denton Group	Dallas Group
1	0.1807	0.1274
2	0.1719	0.4216
3	0.1863	0.3333
4	0.4593	0.1397
5	0.3370	0.3795
6	0.3550	0.5484
7	0.3787	0.3776
8	0.2634	0.3579
9	0.4132	0.3857
10	0.2274	0.3690
11	0.4096	0.4323
12	0.2370	0.4845
13	- 0.1130	0.3799
14	0.4442	0.2501
15	0.5239	0.3000
16	0.3420	0.4237
17	0.5150	0.4786
18	0.3653	0.5114
19	- 0.1285	0.5502
20	0.3605	0.1424
21	0.2535	0.2863
22	0.2051	0.0944
23	0.2388	0.0823
24	0.1611	0.1324
25	0.1661	0.2133
26	0.1235	0.2647
27	0.2442	0.1274
28	- 0.0007	- 0.0472
29	0.4062	0.2950
30	0.0177	0.0289
31	0.1411	0.0967
32	0.4627	0.2578
33	0.3759	0.1747
34	0.4593	0.3720
35	0.3362	0.5089
36	0.4995	0.3431
37	0.5071	0.5449
38	0.4267	0.3426
39	0.4255	0.4056
40	0.4792	0.5711
41	0.5051	0.4626
42	0.4628	0.3150

negative coefficient. On the basis of these results, the instrument was confirmed as a valid measurement of the students' mathematical skills.

TABLE IV

CORRELATION COEFFICIENTS OF TEST-ITEMS AND TOTAL SCORES OF ECONOMICS TEST

Test Item	Denton Group	Dallas Group
1	0.5449	0.4253
2	0.3996	0.2438
3	0.1970	0.2870
4	0.5609	0.3818
5	0.5283	0.3509
6	0.4882	0.1866
7	-0.0260	0.1660
8	0.2508	0.4781
9	0.3934	0.4252
10	0.2306	0.5746
11	0.4013	0.4616
12	0.3716	0.2491
13	0.3465	0.2352
14	0.2617	0.3058
15	0.2437	0.2093
16	0.3213	0.4538
17	0.4823	0.3566

The item that produced a negative coefficient in the Denton group was reworded upon the advice of the validation panel and used in its new form. All items had a positive coefficient in the pretest results. On the basis of these results, the instrument was confirmed as a valid measurement of the students' understanding of selected economic concepts.

The reliability of the instruments was estimated on the basis of their administration to the eighty-one pupils
in grades seven through nine in the Denton Independent School District. Verification of the estimated reliability was obtained on the basis of the pretest scores of the students in the two experimental groups. Both estimates were obtained through the use of the Kuder-Richardson formula20 test of internal consistency.

The Kuder-Richardson reliability coefficient is based upon the premise that, if a test is reliable, every item should measure the same general factors of ability and should correlate positively with one another. The ideal measure of reliability in most instances is obtained from the correlation of alternate forms of a test; however, measures of reliability based on internal consistency provide useful estimates of the test reliability. Measures based on internal consistency do not take into account measurement errors that occur because of changes in people over time; hence, measures based on internal consistency provide upper limits to the results usually obtained from alternate forms. The KuderRichardson formula-20 is used to estimate the correlation between an existing test and a hypothetical alternate form when alternate forms are not available. Since alternate forms of the teacher-prepared tests were not available, the reliability of these instruments was estimated by using this measure of internal consistency (5, pp. 536-537).

Table V presents the reliability coefficients of the test of mathematical skills and the test of economic concepts.

TABLE V

RELIABILITY COEFFICIENTS OF COGNITIVE INSTRUMENTS

Group	Test	N	KR 20
Denton	Mathematics	81	0.7575
Dallas	Mathematics	96	0.7901
Denton	Economics	81	0.4872
Dallas	Economics	96	0.5285

The reliability coefficients of the economics scores are low because students are responding to questions whose content is new to them. All of the reliability coefficients were statistically significant at the . 01 level. The instruments were therefore considered to be reliable measures of the students' understanding of mathematical skills and selected economic concepts.

Variables

The variables used in this research appear in Tables VI and VII which follow.
TABLE VI
VARIABLES USED TO TEST COGNITION IN MATHEMATICS AND ECONOMICS

Variable	Description	Continuous or Dichotomous	Reference
Y - Cognitive test of mathematical skills and economic concepts	A measure of the change in ability to perform mathematical skills and to understand selected economic concepts.	C	Teacherprepared tests
X_{1} - Experimental treatments	A series of variables used to codify each group and account for individual group differences.	D	-•••
X_{2} - Teaching strategy	A series of variables used to codify each teaching strategy and account for methodological differences.	D	- - - -
$\mathrm{X}_{3}-$ Instructors	A series of variables used to codify each instructor and account for individual instructor differences.	D	- - - -
X_{4} - Student sex	A dichotomized variable where $1=$ male and $2=$ female.	D	School records

TABLE VI--Continued

Variable	Description	Continuous or Dichotomous	Reference
X_{5} - Scholastic aptitude	The capacity of a person to achieve future success in school as measured by his IQ score.	C	School records
X_{6} - Scholastic aptitudeMissing data points	A dichotomized variable where 1 = data available and $0=$ data not available.	D	- - - -
	The social and economic background of the student as measured by the Hollingshead Two-Factor Index of Social Position.	C	Student questionnaire
X_{8} - Initial cognitive level in mathematics and economics	A measure of pre-experimental ability to perform mathematical skills and to understand selected economic concepts.	C	Teacherprepared test
X_{9} - Initial cognitive levelMissing data points	A dichotomized variable where 1 = data available and $0=$ data not available.	D	- - - -

TABLE VI--Continued

Variable	Description	Continuous or Dichotomous	Reference
X_{10} - Interaction of students' aptitude and teaching strategies	A series of variables obtained by multiplying the students' IQ score by the dichotomized variable used to identify the teaching strategies.	C	-••••
X_{11} - Interaction of students' sex and teaching strategies	A series of variables obtained by multiplying the dichotomized variable used to identify the students' sex by the dichotomized variable used to identify the teaching strategies.	C	-•••
X_{12} - Interaction of students' socioeconomic status and teaching strategies	A series of variables obtained by multiplying the students' scores on the Index of Social Position by the dichotomized variable used to identify the teaching strategies.	C	-••••

TABLE VII
VARIABLES USED TO TEST ATTITUDES TOWARD MATHEMATICS AND ECONOMICS

Variable	Description	Continuous or Dichotomous	Reference
Y - Affective test of attitudes toward mathematics and economics	A measure of the change in attitudes toward the disciplines of mathematics and economics.	C	Teacherprepared semantic differential
$\begin{gathered} \mathrm{X}_{1}-\underset{\text { Experimental }}{\text { treatments }} \end{gathered}$	A series of variables used to codify each group and account for individual group differences.	D	- • -
X_{2} - Teaching strategy	A series of variables used to codify each teaching strategy and account for methodological differences.	D	- • -
X_{3} - Instructors	A series of variables used to codify each instructor and account for individual instructor differences.	D	- - • -
$\mathrm{X}_{4}-$ Student sex	A dichotomized variable where $1=$ male and $2=$ female.	D	School records

TABLE VII--Continued

Variable	Description	Continuous or Dichotomous	Reference
X_{5} - Scholastic aptitude	The capacity of a person to achieve future success in school as measured by his IQ score.	C	School records
X_{6} - Scholastic aptitudeMissing data points	A dichotomized variable where 1 = data available and $0=$ data not available.	D	-•••
X_{7} - Student socioeconomic status	The social and economic background of the student as measured by the Hollingshead Two-Factor Index of Social Position.	C	Student questionnaire
X_{8} - Initial attitudes toward mathematics and economics	A measure of the pre- experimental attitudes toward the disciplines of mathematics and economics.	C	Teacherprepared semantic differential
X_{9} - Initial attitudes toward mathematics and economics	A dichotomized variable where 1 = data available and $0=$ data not available.	D	-••••

TABLE VII--Continued

Variable	Description	Continuous or Dichotomous	Reference
X_{10} - Interaction of students' aptitude and teaching strategies	A series of variables obtained by multiplying the students' IQ score by the dichotomized variable used to identify the teaching strategies.	C	- • -
X_{11} - Interaction of students' sex and teaching strategies	A series of variables obtained by multiplying the dichotomized variable used to identify the students' sex by the dichotomized variable used to identify the teaching stratgies.	C	- ••••
X_{12} - Interaction of students' socioeconomic status and teaching strategies	A series of variables obtained by multiplying the students' score on the Index of Social Position by the dichotomized variable used to identify the teaching strategies.	C	- - - -

Analytical Methodology

Research Design

The basic research design is a modification of Campbell and Stanley's quasi-experimental, nonequivalent control-group design number 10 and the quasi-experimental, separate-sample pretest-posttest control-group design number 13 (2, pp. 47-55) and is schematically outlined as follows:

	R	O_{1}	X_{1}	O_{2}	O_{3}	O_{4}
	R		X1	O_{5}	O_{6}	07
T_{1}						
and	R	08	X_{2}	O9	O10	011
and	R		X_{2}	012	O_{13}	014
T_{2}						
	R	O15		O_{16}	O17	O_{18}
	R			O_{19}	O_{20}	O_{21}

Fig. 2--Research design for experimental teachers one and two.

	R	O_{1}	X_{1}	O_{2}	O_{3}	O_{4}
	R		X_{1}	O_{5}	O_{6}	07
$\mathrm{T}_{3} \mathrm{R}$						
and R R R^{0}						
	R		X_{3}	O_{12}	O_{13}	O_{14}
T_{4}						
	R	015		O16	017	018
	R			O_{19}	O_{20}	O_{21}

Fig. 3--Research design for experimental teachers three and four.

	R	O_{1}	O_{2}
T			
R		O_{5}	

Fig. 4--Research design for outside control teachers.
$0=$ Pretest, posttest, and retention scores on mathematical skills and economic understanding and attitudes toward mathematics and economics,
$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ and $\mathrm{T}_{4}=$ Experimental teachers,
$T_{O C}=$ Outside control teachers,
$X_{1}=$ Lecture-demonstration method,
$X_{2}=$ Field-trip method, and
$X_{3}=$ Games-and-simulation method.

Statistical Procedures

Data were subjected to multiple linear-regression analysis, with the regression statistics revealing how each variable affected the cognitive and affective scores, other things remaining constant. The basic statistical design of the multiple linear regression was of the form $Y=a+b_{1} X_{1}$ $+\mathrm{b}_{2} \mathrm{x}_{2}$. . . $+\mathrm{b}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$. The dependent variable Y was assumed to be additively and linearly related to the predictor variables. The Y, or dependent variable, in the multiple linearregression analyses was the posttest and retention scores of the mathematical skills and economic understanding and the posttest and retention scores of the attitudes toward the disciplines of mathematics and economics.

The independent variables which were used were the following:

```
X1 = Experimental treatments,
X
X
X4 = Sex of students,
X5 = Scholastic aptitude of students,
X6 = Socioeconomic status of students, and
X7 = Initial cognitive and affective level of
                students.
```

The critical statistics were the beta coefficients of the X_{1} and X_{2} variables. Other variables were utilized for control purposes.

These analyses permitted the inclusion of continuous quantitative variables and also the inclusion of dichotomous qualitative variables in the dummy form (3, p. 428) . Missing data points were controlled by substituting the category's mean score for the missing data and including a dummy companion variable where $1=$ real data and $0=$ mean substitution.

To test Hypothesis One, the regression of the dependent variable (cognitive and affective posttest and retention scores for each subject) on one particular independent variable (experimental treatments) was measured, while the values of other independent variables were held constant. The critical statistic was the beta coefficient of the X_{1} variable. Other variables were utilized for control purposes. (See Tables VIII-XIX.)

To test Hypothesis Two, the regression of the dependent variable (cognitive and affective posttest and retention scores for each subject) on one particular independent variable (teaching strategies) was measured, while the values of other independent variables were held constant. The critical statistic was the beta coefficient of the X_{2} variable. Other variables were utilized for control purposes. (See Tables VIII-XIX.)

To test Hypothesis Three, the regression of the dependent variable (cognitive and affective posttest and retention scores for each subject) on one particular independent variable (experimental treatments) was measured, while the values of other independent variables were held constant. The critical statistic was the beta coefficient of the X_{1} variable. Other variables were utilized for control purposes. (See Tables XX-XXXI.)

To test Hypothesis Four, the regression of the dependent variable (cognitive and affective posttest and retention scores for each subject) on one particular independent variable (teaching strategies) was measured, while the values of other independent variables were held constant. The critical statistic was the beta coefficient of the X_{2} variable. Other variables were utilized for control purposes. (See Tables XX-XXXI.)

Additional multiple linear-regression analyses were run to measure the regression of the dependent variable (cognitive and affective posttest and retention scores for each subject) on the independent variables which were obtained from the interaction of the teaching strategies (lecture-demonstration method and field-trip method) and the control variables (sex, scholastic aptitude, and socioeconomic status), while the values of other independent variables were held constant. The critical statistics were
the beta coefficients of the $X_{2} \cdot x_{4}, X_{2} \cdot X_{5}$, and $X_{2} \cdot X_{6}$ variables. Other variables were utilized for control purposes. (See Tables VIII-XIX.)

Additional multiple linear-regression analyses were run to measure the regression of the dependent variable (cognitive and affective posttest and retention scores for each subject) on the independent variables which were obtained from the interaction of the teaching strategies (lecture-demonstration method and games-and-simulations method) and the control variables (sex, scholastic aptitude and socioeconomic status), while the values of other independent variables were held constant. The critical statistics were the beta coefficients of the $X_{2} \cdot X_{4}, X_{2} \cdot X_{5}$, and $X_{2} \cdot X_{6}$ variables. Other variables were utilized for control purposes. (See Tables XX-XXXI.)

All collected data were keypunched for electronic data processing. The research hypotheses are stated in the null form for testing.
I. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, the teaching strategies X_{1} and X_{2} will produce no significantly greater mean gains than will teaching strategy X_{C} in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics.
II. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, there will be no significantly different mean gains between teaching strategies X_{1} and X_{2} in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics.
III. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, the teaching strategies X_{1} and X_{3} will produce no significantly greater mean gains than will teaching strategy X_{C} in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics.
IV. Other things being equal, when the effects of the control variables (sex, scholastic aptitude, and socioeconomic status) are partitioned out, there will be no significantly different mean gains between teaching strategies X_{1} and X_{3} in
A. Student understanding of selected economic concepts;
B. Student performance of selected mathematical skills;
C. Student short-term retention of the understanding of selected economic concepts;
D. Student short-term retention of the ability to perform selected mathematical skills;
E. Student long-term retention of the understanding of selected economic concepts;
F. Student long-term retention of the ability to perform selected mathematical skills;
G. Student attitudes toward the discipline of economics;
H. Student attitudes toward the discipline of mathematics;
I. Student short-term retention of attitudes toward the discipline of economics;
J. Student short-term retention of attitudes toward the discipline of mathematics;
K. Student long-term retention of attitudes toward the discipline of economics; and
L. Student long-term retention of attitudes toward the discipline of mathematics. Levels of significance are reported.

CHAPTER BIBLIOGRAPHY

1. Bonjean, Charles M., Richard J. Hills, and S. Dale McLemore, Sociological Measurement, San Francisco, Chandler Publishing Company, 1967.
2. Campbell, Donald T. and Julian C. Stanley, Experimental and Quasi-Experimental Designs for Research, Chicago, Rand McNally and Company, 1966.
3. Cohen, Jacob, "Multiple Regression as a General DataAnalytic System," Psychological Bulletin, LXX (1968), 426-443.
4. Hollingshead, August B. and Frederick C. Redlich, Social Class and Mental Illness: A Community Study, New York, John Wiley and Sons, Īnc., 1958.
5. Nunnally, Jum C., Educational Measurement and Evaluation, New York, McGraw-Hill Book Company, 1972.
6. Osgood, C. E., G. J. Suci, and P. H. Tannenbaum, The
Measurement of Meaning, Chicago, University of Illinois Press, 1967.
7. Thorndike, Robert and Elizabeth Hagen, Measurement and Evaluation in Psychology and Education, New York, John Wiley and Sons, Inc., 1955.

ANALYSIS OF DATA

In order to test the hypotheses of this research, four studies, each requiring twelve multiple linear regressions to analyze the various aspects of each hypothesis, were conducted. The analysis of data follows the organization of these studies and corresponds to the previously stated hypotheses.

Study I
Study I was an analysis of the differential impact of the experimental treatments (lecture and field trip) versus the control treatment upon the students' understanding and retention of selected economic and mathematical concepts and upon the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. The data were subjected to twelve multiple linearregression analyses in order to test the various aspects of Hypothesis One.

Table VIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-A. The hypothesized difference between the
experimental treatments and the control treatment on the students' understanding of selected economic concepts was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table IX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for study I-B. The hypothesized difference between the experimental treatments and the control treatment on the students' ability to perform selected mathematical skills was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table X provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-C. The hypothesized difference between the experimental treatments and the control treatment on the students' shortterm retention of selected economic concepts was not significant for the lecture or field-trip methods. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for

Study I-D. The hypothesized difference between the experimental treatments and the control treatment on the students' short-term retention of the ability to perform selected mathematical skills was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-E. The hypothesized difference between the experimental treatments and the control treatment on the students' long-term retention of the understanding of selected economic concepts was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-F. The hypothesized difference between the experimental treatments and the control treatment on the students' longterm retention of the ability to perform selected mathematical skills was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XIV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-G. The hypothesized difference between the experimental treatments and the control treatment on the students' attitudes toward the discipline of economics was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-H. The hypothesized difference between the experimental treatments and the control treatment on the students' attitudes toward the discipline of mathematics was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XVI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-I. The hypothesized difference between the experimental treatments and the control treatment on the students' shortterm retention of attitudes toward the discipline of economics was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XVII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-J. The hypothesized difference between the experimental treatments and the control treatment on the students' shortterm retention of attitudes toward the discipline of mathematics was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method. The hypothesized difference between the experimental treatment (lecture) and the control treatment of the students' short-term retention of attitudes toward the discipline of mathematics approached the level of significance (0.0542). There was a significant interaction between the students' socioeconomic status and the field trip versus control variables.

Table XVIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study I-K. The hypothesized difference between the experimental treatments and the control treatment of the students' longterm retention of attitudes toward the discipline of economics was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Table XIX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the
multiple linear-regression analysis of the variables for Study I-L. The hypothesized difference between the experimental treatments and the control treatment on the students' long-term retention of attitudes toward the discipline of mathematics was not significant. Neither the lecture nor the field-trip methods produced significantly higher mean gains than did the control method.

Study II
Study II was an analysis of the differential impact of the lecture method versus the field-trip method upon the students' understanding and retention of selected economic and mathematical concepts and upon the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. The data were subjected to twelve multiple linear-regression analyses in order to test the various aspects of Hypothesis Two.

Table VIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-A. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-A. The hypothesized difference between the lecture and field-trip methods upon the students' understanding of selected economic concepts was not
significant. The field trip did not produce mean gains which were significantly different from those achieved by the lecture method.

Table IX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for study II-B. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-B. The hypothesized difference between the lecture and field-trip methods upon the students' ability in mathematical skills was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table X provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for study II-C. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-C. The hypothesized difference between the lecture and field-trip methods upon the students' short-term retention of understanding of selected economic concepts was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-D. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-D. The hypothesized difference between the lecture and field-trip methods upon the students' short-term retention of ability in mathematical skills was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-E. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-E. The hypothesized difference between the lecture and field-trip methods upon the students' long-term understanding of selected economic concepts was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study

II-F. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-F. The hypothesized difference between the lecture and field-trip methods upon the students' long-term retention of ability in mathematical skills was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XIV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-G. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-G. The hypothesized difference between the lecture and field-trip methods upon the students' attitudes toward the discipline of economics was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-H. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-H. The hypothesized difference
between the lecture and field-trip methods upon the students' attitudes toward the discipline of mathematics was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XVI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for study II-I. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-I. The hypothesized difference between the lecture and field-trip methods upon the students' short-term retention of attitudes toward the discipline of economics was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XVII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-J. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-J. The hypothesized difference between the lecture and field-trip methods upon the students' short-term retention of attitudes toward the discipline of
mathematics was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XVIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study II-K. The data reflect the significance of the difference between the adjusted means of the lecture method and field-trip method for Study II-K. The hypothesized difference between the lecture and field-trip methods upon the students' long-term retention of attitudes toward the discipline of economics was not significant. The fieldtrip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XIX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for study II-L. The data reflect the significance of the difference between the adjusted means of the lecture method and fieldtrip method for Study II-L. The hypothesized difference between the lecture and field-trip methods upon the students' long-term retention of attitudes toward the discipline of
mathematics was not significant. The field-trip method did not produce mean gains which were significantly different from those achieved by the lecture method.

Study III
Study III was an analysis of the differential impact of the experimental treatments (lecture and games and simulations) versus the control treatment upon the students' understanding and retention of selected economic and mathematical concepts and upon the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. The data were subjected to twelve multiple linear-regression analyses to test the various aspects of Hypothesis Three.

Table XX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-A. The hypothesized difference between the experimental treatments and the control treatment on the students' understanding of selected economic concepts was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study

III-B. The hypothesized difference between the experimental treatments and the control treatment on the students' ability to perform selected mathematical skills was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-C. The hypothesized difference between the experimental treatments and the control treatment on the students' shortterm retention of selected economic concepts was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-D. The hypothesized difference between the experimental treatments and the control treatment on the students' short-term retention of the ability to perform selected mathematical skills was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

There was a significant interaction between the students' socioeconomic status and the lecture versus control variables. Table XXIV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-E. The hypothesized difference between the experimental treatments and the control treatment on the students' longterm retention of selected economic concepts was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-F. The hypothesized difference between the experimental treatments and the control treatment on the students' longterm retention of ability in mathematical skills was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXVI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-G. The hypothesized difference between the experimental treatments and the control treatment on the students'
attitudes toward the discipline of economics was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXVII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-H. The hypothesized difference between the experimental treatments and the control treatment on the students' attitude toward the discipline of mathematics was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXVIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-I. The hypothesized difference between the experimental treatments and the control treatment on the students' short-term retention of attitudes toward the discipline of economics was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXIX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study

III-J. The hypothesized difference between the experimental treatments and the control treatment on the students' shortterm retention of attitudes toward the discipline of mathematics was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Table XXX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-K. The hypothesized difference between the experimental treatments and the control treatment on the students' longterm retention of attitudes toward the discipline of economics was not significant. Neither the lecture nor the games-and-simulations methods produced higher mean gains than did the control method.

Table XXXI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study III-L. The hypothesized difference between the experimental treatments and the control treatment on the students' longterm retention of attitudes toward the discipline of mathematics was not significant. Neither the lecture nor the games-and-simulations methods produced significantly higher mean gains than did the control method.

Study IV
Study IV was an analysis of the differential impact of the lecture method versus the games-and-simulations method upon the students' understanding and retention of selected economic and mathematical concepts and upon the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. The data were subjected to twelve multiple linear-regression analyses to test the various aspects of Hypothesis Four.

Table XX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-A. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-A. The hypothesized difference between the lecture and games-and-simulations methods upon the students' understanding of selected economic concepts was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-B. The data reflect the significance of the difference between the adjusted means of the lecture method and the
games-and-simulations method for Study IV-B. The hypothesized difference between the lecture and the games-andsimulations method upon the students' ability in mathematical skills was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-C. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-C. The hypothesized difference between the lecture and the games-and simulations methods upon the students' short-term retention of understanding of selected economic cuncepts was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-D. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-D. The hypothesized difference between the lecture and the
games-and-simulations methods upon the students' shortterm retention of ability in mathematical skills was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXIV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-E. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-E. The hypothesized difference between the lecture and the games-andsimulations methods upon the students' long-term understanding of selected economic concepts was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXV provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-F. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-F. The hypothesized difference between the lecture and the games-andsimulations methods upon the students' long-term retention
of ability in mathematical skills was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXVI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-G. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-G. The hypothesized difference between the lecture and the games-and-simulations methods upon the students' attitudes toward the discipline of economics was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXVII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-H. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-H. The hypothesized difference between the lecture and the games-and-simulations methods upon the students' attitudes toward the discipline of mathematics was not significant. The
games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXVIII provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-I. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-I. The hypothesized difference between the lecture and the games-and-simulations methods upon the students' short-term retention of attitudes toward the discipline of economics was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXIX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-J. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-J. The hypothesized difference between the lecture and the games-and-simulations methods upon the students' short-term retention of attitudes toward the discipline of mathematics
was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXX provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-K. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-K. The hypothesized difference between the lecture and the games-and-simulations methods upon the students' long-term retention of attitudes toward the discipline of economics was not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

Table XXXI provides a breakdown of the partial standard and partial absolute beta coefficients produced by the multiple linear-regression analysis of the variables for Study IV-L. The data reflect the significance of the difference between the adjusted means of the lecture method and the games-and-simulations method for Study IV-L. The hypothesized difference between the lecture and the games-and-simulations methods upon the students' long-term retention of attitudes toward the discipline of mathematics was
not significant. The games-and-simulations method did not produce mean gains which were significantly different from those achieved by the lecture method.

CHAPTER V

FINDINGS, CONCLUSIONS, SPECULATIVE INFERENCES, IMPLICATIONS, AND RECOMMENDATIONS

Findings

Findings Related to Hypotheses

The preceding analysis of data provides the basis for the findings of this study. The findings are reported in relation to the four hypotheses of the study.

Hypothesis One stated that, other things being equal, when the effect of the control variables are apportioned, the teaching strategies X_{1} and X_{2} will produce no mean gains which are significantly different from those achieved by teaching strategy X_{C} in the students' understanding and retention of selected economic and mathematical concepts and in the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. Hypothesis One is accepted. (See Tables VIII-XIX.) Hypothesis Two stated that, other things being equal, when the effects of the control variables are apportioned, there will be no significantly different mean gains between teaching strategies X_{1} and X_{2} in the students' understanding and retention of selected economic and mathematical concepts
and in the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. Hypothesis Two is accepted. (See Tables VIII-XIX.) Hypothesis Three stated that, other things being equal, when the effects of the control variables are apportioned, the teaching strategies X_{1} and X_{3} will produce no mean gains which are significantly different from those achieved by teaching strategy X_{C} in the students' understanding and retention of selected economic and mathematical concepts and in the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. Hypothesis Three is accepted. (See Tables XX-XXXI.)

Hypothesis Four stated that, other things being equal, when the effects of the control variables are apportioned, there will be no significantly different mean gains between teaching strategies X_{1} and X_{3} in the students' understanding and retention of selected economic and mathematical concepts and in the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. Hypothesis Four is accepted. (See Tables XX-XXXI.)

Additional Findings

In the testing of Hypothesis One, the interactive effect of the teaching strategies and control variables upon the criterion variables was also tested. The test results show that asignificant interactive relationship exists between
the field-trip method and the students' socioeconomic status in relation to the students' short-term retention of positive attitudes toward the discipline of mathematics. (See Table XVIII.)

In the testing of Hypothesis Three, the interactive effect of the teaching strategies and control variables upon the criterion variables was also tested. The test results show that a significant interactive relationship exists between the lecture method and the students' socioeconomic status in relation to the students' short-term retention of ability to perform selected mathematical skills. (See Table XXIII.)

Conclusions
The findings of this study suggest the following conclusions.

First, there was no significant differential impact attributable to the experimental treatments (lecture and field-trip methods) upon the students' understanding and retention of selected economic and mathematical concepts and the students' development and retention of positive attitudes towards the disciplines of economics and mathematics. (See Study I.)

Second, there was no siqnificant differential impact attributable to the teachina strateaies (lecture and fieldtrip methods) upon the students' understanding and retention
of selected economic and mathematical concepts and the students' development and retention of positive attitudes toward the disciplines of economics and mathematics. (See Study II.)

Third, there was no significant differential impact attributable to the experimental treatments (lecture and games-and-simulations methods) upon the students' understanding and retention of selected economic concepts and the students' development and retention of positive attitudes toward the discipline of economics and mathematics. (See Study III.)

Fourth, there was no significant differential impact attributable to the teaching strategies (lecture and games-and-simulations methods) upon the students' understanding and retention of selected economic concepts and the students' development and retention of positive attitudes toward the discipline of economics and mathematics. (See Study IV.)

Additional findings suggest the following conclusions which are based upon the findings not hypothesized.

First, even though the experimental treatments showed no significant impact on cognition, there was a significant interactive effect with an experimental treatment (lecture) and control variable (socioeconomic status) upon cognition. Students with a low socioeconomic status had greater mean gains on the measure of short-term retention of ability to
perform selected mathematical skills than those students with a high socioeconomic status in the experimentallecture group. Students with a high socioeconomic status had greater mean gains on the measure of short-term retention of ability to perform selected mathematical skills than those students with a low socioeconomic status in the control group. (See Table XXIII.)

Second, even though the experimental treatments showed no significant impact on the affective domain, there was a significant interactive effect with an experimental treatment (field trip) and a control variable (socioeconomic status) upon student attitudes toward the discipline of mathematics. Students with a high socioeconomic status had greater mean gains on the measure of short-term retention of attitudes toward the discipline of mathematics than students with a low socioeconomic status in the experimentallecture group. Students with a low socioeconomic status had greater mean gains on the measure of short-term retention of attitudes toward the discipline of mathematics than students with a high socioeconomic status in the control group.

Speculative Inferences

The following inferences are based upon the two significant interactions which were found through the analysis of the data. No clear trend of cause-and-effect relationship
can be found based upon such limited findings. One must, therefore, be cautious about placing unwarranted importance upon the conclusions. The curious researcher is, however, inclined to speculate on the causes of the observed interactive effects. Such speculative inferences may provide the basis upon which further research can be implemented.

The conclusions indicate that the experimental lecture method had a significantly greater impact among students with a low socioeconomic status than among students with a high socioeconomic status. This impact was evidenced in the short-term retention of the ability to perform selected mathematical skills. On the basis of this, one might infer that students with a low socioeconomic status are influenced more positively by the more highly structured format of the lecture-demonstration method because of their greater reliance upon the classroom teacher and classroom activites for their education.

Secondly, it was observed that the experimental fieldtrip method achieved significantly greater mean gains among students with a high socioeconomic status in the short-term retention of positive attitudes toward the discipline of mathematics than among students with a low socioeconomic status. The conclusion would seem to support the earlier inference regarding the lower reliance upon classroom activities by those students with a high socioeconomic status.

It seems that such students would be more favorably impressed by out-of-classroom activities and thus would develop a more positive attitude toward the discipline associated with such activities than would students with a low socioeconomic status.

Implications

The conclusions of this study provide the basis for several pedagogical implications. These implications may provide direction for the concerned curriculum planner and teacher.

The Joint Council on Economic Education has repeatedly sought to "build economics into existing school curricula at all grade levels" (2, p. 12). Through its efforts, teachers have been trained and units of instruction written in order to include economic concepts in the regular instructional program in a wide variety of curricular areas. It has been assumed that such an integration of economic concepts into other curricular areas would provide a relatively easy and effective means of increasing the economic understanding of young people.

The teaching module used in this study provided an excellent opportunity for the integration of economic concepts into the mathematics curriculum. In addition, the teachers of the experimental groups were well-trained in the discipline of economics. According to the assumption of the

Joint Council on Economic Education, the students instructed in the experimental groups should have achieved significant gains in economic understanding.

The conclusions of this study imply that the desired increase in economic understanding will not be achieved easily through the integration of economic concepts into the mathematics curriculum. This calls into question the assumptions of the Joint Council on Economic Education. Such an implication should lead concerned curriculum planners and teachers to re-evaluate the means used to increase economic understanding among young people.

Recommendations
It is suggested that further research using a true experimental design or the Latin square, a modification of the quasi-experimental, counter-balanced design No. 11 (l, pp. 50-52), be implemented. Such a study would provide additional protection against the threats to internal and external validity present in this study.

Finally, it is suggested that this study be replicated across a broad range of subject areas and different student groups.

1. Campbell, Donald T. and Julian C. Stanley, Experimental and Quasi-Experimental Designs for Research. Chicago, Rand McNally and Company, 1966.
2. Joint Council on Economic Education, DEEP 1969, New York, Joint Council on Economic Education, 1969.

APPENDIX A

EXPLANATORY NOTE FOR TABLES VIII-XXXI
F is the ratio of explained to unexplained variations. P is the probability of a chance relationship.
TABLE VIII

REGRESSION COEFFICIENTS OF STUDENT UNDERSTANDING OF SELECTED ECONOMIC CONCEPTS (LECTURE AND FIELD TRIPS)					
Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	0.21221191	0.00140529	0.0009	2.5280	0.1168
Lecture method	0.19404413	0.78355368	4.6275	0.0287	0.8661
Field-trip method	- 0.27183489	- 1.09767414	3.5006	0.0983	0.7549
Student sex	0.06589842	0.43595129	0.5852	0.5549	0.4591
Student IQ	0.19207486	0.05471984	0.0340	2.5854	0.1128
Student IQ--MDP	0.08286728	1.00445600	1.2988	0.5981	0.4422
Socioeconomic status	- 0.16159663	- 0.03976593	0.0223	3.1687	0.0799
Economics pretest	0.18904982	0.31406846	0.1798	3.0517	0.0855
Pretest--MDP	0.65777133	4.42263511	2.6083	2.8750	0.0949
Mathematics pretest	- 0.01425676	- 0.00990582	0.1096	0.0082	0.9283
Pretest--MDP	-0.43468217	- 2.93721877	2.6873	1.1946	0.2785
Attitudes to economics pretest	0.10817285	0.03571631	0.0307	1.3535	0.2490

TABLE VIII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Attitudes to mathematics pretest	0.11757836	0.04374548	0.0438	0.9981	0.3216
Pretest--MDP	-0.07682984	-0.76219952	1.0528	0.5241	0.4718
Interaction of IQ and lecture	-0.19931907	-0.01011248	0.0465	0.0472	0.8286
Interaction of IQ and field trips	0.41161042	0.02039888	0.0532	0.3362	0.5641
Interaction of sex and lecture	-0.18033133	-0.47585846	0.8628	0.3042	0.5832
Interaction of sex and field trips	0.17463891	0.46587177	0.8928	0.2723	0.6036
Interaction of socioeconomic status and lecture	0.22012290	0.01635414	0.0277	0.3487	0.5570
Interaction of socioeconomic status and field trips	- 0.14365024	-0.01070494	0.0298	0.1291	0.7206

${ }^{*}$ Constant $=-1.62072981$
TABLE IX
REGRESSION COEFFICIENTS OF STUDENT ABILITY IN SELECTED MATHEMATICAL SKILLS

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	0.47234624	0.00675865	0.0017	16.2973	0.0001
Lecture method	-0.47778011	-4.16867539	9.6302	0.1874	0.6666
Field-trip method	0.42826515	3.73665280	7.2848	6.2631	0.6098
Student sex	-0.11529051	-1.64800405	1.2071	1.8641	0.1770
Student IQ	0.24793737	0.15262233	0.0697	4.7880	0.0324
Student IQ--MDP	0.10511870	2.75314827	2.6970	1.0421	0.3112
Socioeconomic status	0.17229462	0.09161199	0.0463	3.9172	0.0522
Mathematics pretest	0.46189647	0.69345165	0.2111	10.7919	0.0017
Pretest--MDP	0.54845135	8.00763657	5.5617	2.0730	0.1549
Economics pretest	0.10577834	0.37970521	0.3806	0.9954	0.3223
Pretest--MDP	-0.10075646	-1.46379699	5.5546	0.0694	0.7930

TABLE IX--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest-MDP	0.07279822	1.56049086	2.1941	0.5058	0.4796
Attitudes to economic pretest	0.00068620	0.00048956	0.0647	0.0001	0.9940
Interaction of IQ and lecture	0.69763578	0.07648230	0.0965	0.6281	0.4310
Interaction of IQ and field trips	-0.56922916	-0.06095493	0.0731	0.6953	0.4075
Interaction of sex and lecture	0.08637690	0.49249974	1.8010	0.0748	0.7854
Interaction of sex and field trips	0.09519696	0.54871932	1.8631	0.0867	0.7693
Interaction of socio- economic status and lecture	-0.35277838	-0.05663257	0.0574	0.9724	0.3278
Interaction of socio- economic status and field trips	-0.00385120	-0.00062012	0.0621	0.0001	0.9921

* Constant $=-25.35875506$

REGRESSION COEFFICIENTS OF SHORT-TERM OF
SELECTED ECONOMIC CONCEPTS

TABLE X--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Attitudes to mathematics pretest	0.08870957	0.02557396	0.0436	0.3448	0.5593
Pretest--MDP	-0.10001544	- 0.76882421	0.9817	0.6133	0.4366
Interaction of IQ and lecture	- 2.01661791	- 0.07928219	0.0430	3.3936	0.0704
Interaction of IQ and field trips	1.08993590	0.04185453	0.0333	1.5844	0.2130
Interaction of sex and lecture	- 0.11074857	- 0.22644689	0.8097	0.0782	0.7807
Interaction of sex and field trips	0.03809774	0.07874922	0.8310	0.0090	0.9248
Interaction of socioeconomic status and lecture	0.36050989	0.02075398	0.0257	0.6524	0.4225
Interaction of socioeconomic status and field trips	- 0.37929929	- 0.02190189	0.0288	0.5784	0.4499

Constant $=4.10375382$
TABLE XI

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	-0.02928034	-0.00036643	0.0015	0.0560	0.8138
Lecture method	0.34691492	2.64732808	8.0500	0.1081	0.7434
Field-trip method	-0.64869258	-4.95021113	6.1458	0.6488	0.4238
Student sex	0.19289156	2.41153020	1.0058	5.7488	0.0197
Student IQ	0.03484469	0.01875977	0.0591	0.1007	0.7521
Student IQ--MDP	0.05325127	1.21921621	2.2402	0.2965	0.5881
Socioeconomic status	-0.03520279	-0.01637090	0.0392	0.1741	0.6780
Mathematics pretest	0.04424060	0.05809079	0.1897	0.0937	0.7605
Pretest--MDP	-0.23806438	-3.04001301	4.7745	0.4054	0.5268
Economics pretest	-0.13649991	-0.42854551	0.3135	1.8689	0.1768
Pretest--MDP	0.15353476	1.95087494	4.6347	0.1772	0.6753

TABLE XI--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP Attitudes to eco- nomics pretest Interaction of IQ and lecture Interaction of IQ and field trips Interaction of sex and lecture Interaction of sex and field trips Interaction of socio- economic status and lecture Interaction of socio- economic status and field trips	-0.00717441	0.13450586	1.8173	0.0055	0.9412

TABLE XII
REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT UNDERSTANDING OF SELECTED ECONOMIC CONCEPTS (LECTURE AND FIELD TRIPS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	0.05999708	0.00067425	0.0023	0.0881	0.7678
Lecture method					
Field-trip method	1.24237386	8.51365802	11.6293	0.5359	0.4672
Student sex	-0.16867226	-1.15586618	8.9560	0.0167	0.8978
Student IQ	-0.03439586	-0.38615780	1.5396	0.0629	0.8029
Student IQ--MDP	0.03115820	0.01506407	0.0880	0.0293	0.8647
Socioeconomic status	-0.06513257	-0.02720024	0.0571	0.2267	0.6359
Economics pretest	-0.19437240	-0.54799717	0.4923	1.2390	0.2705
Pretest--MDP	-0.26897715	-3.06914367	6.7117	0.2091	0.6493
Mathematics pretest	-0.19939472	-0.23511432	0.2781	0.7149	0.4015
Pretest--MDP					
Attitudes to economics					
pretest					

TABLE XII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Attitudes to mathematics pretest	-0.11496340	- 0.07258737	0.1185	0.3754	0.5426
Pretest--MDP	0.00533880	0.08988305	2.6634	0.0011	0.9732
Interaction of IQ and lecture	-0.79157077	-0.06815784	0.1185	0.3309	0.5675
Interaction of IQ and field trips	-0.09714478	- 0.00817024	0.0904	0.0082	0.9283
Interaction of sex and lecture	-0.55620376	- 2.49078476	2.1562	1.3344	0.2530
Interaction of sex and field trips	0.62862134	2.84583788	2.2614	1.5837	0.2135
Interaction of socioeconomic status and lecture	0.14214293	0.01792188	0.0699	0.0658	0.7985
Interaction of socioeconomic status and field trips	-0.21501035	-0.02719148	0.0790	0.1186	0.7319

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1	0.20283496	0.00180296	0.0015	1.5116	0.2241
Lecture method	-0.88971481	-4.82242807	7.6114	0.4014	0.5290
Field-trip method	0.40636356	2.20256990	5.8480	0.1419	0.7079
Student sex	-0.04424222	-0.39286788	1.0056	0.1526	0.6976
Student IQ	0.10163070	0.03886386	0.0573	0.4601	0.5004
Student IQ--MDP	0.14085355	2.29172425	2.2316	1.0546	0.3089
Socioeconomic status	0.07807148	0.02578802	0.0373	0.4790	0.4918
Mathematics pretest	0.16179722	0.15089940	0.1818	0.6887	0.4102
Pretest--MDP	0.49914209	4.52725925	4.5021	1.0112	0.3190
Economics pretest	0.24118531	0.53783072	0.3173	2.8739	0.0957
Pretest--MDP	-0.26103105	-2.35583589	4.3844	0.2887	0.5932

TABLE XIII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	0.18267492	2.43256446	1.7099	2.0238	0.1605
Attitudes to economics pretest	0.16241125	0.07197988	0.0523	1.8939	0.1753
Interaction of IQ and lecture	0.99480518	0.06775091	0.0771	0.7713	0.3837
Interaction of IQ and field trips	-0.31945463	-0.02125082	0.0591	0.1295	0.7203
Interaction of sex and lecture	- 0.17124987	-0.60657370	1.4242	0.1814	0.6718
Interaction of sex and field trips	-0.45603575	- 1.63294279	1.4832	1.2121	0.2757
Interaction of socioeconomic status and lecture	-0.11122003	-0.01109155	0.0457	0.0590	0.8090
Interaction of socioeconomic status and field trips	0.43306204	0.04331863	0.0513	0.7118	0.4025

[^1]TABLE XIV
REGRESSION COEFFICIENTS OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF ECONOMICS

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1 ${ }^{*}$	0.23204570	0.00537795	0.0033	2.6324	0.1097
Lecture method	- 0.29189446	- 4.12515498	17.3643	0.0564	0.8130
Field-trip method	0.09561436	1.35125566	13.1480	0.0106	0.9185
Student sex	0.03596337	0.83266346	2.2036	0.1428	0.7068
Student IQ	0.04408987	0.04396017	0.1302	0.1140	0.7368
Student IQ--MDP	0.20768818	8.81060670	4.7705	3.4111	0.0695
Socioeconomic status	0.18684624	0.16091974	0.0835	3.7138	0.0585
Attitudes to economics pretest	0.13321458	0.15393814	0.1148	1.7971	0.1849
Attitudes to mathematics pretest	-0.25704519	- 0.33470445	0.1602	4.3662	0.0407
Pretest--MDP	- 0.03433535	- 1.19213764	3.9651	0.0904	0.7647
Economics pretest	0.10230649	0.59483624	0.6869	0.7500	0.3898
Pretest--MDP	0.10683887	2.51409458	10.0056	0.0631	0.8024

TABLE XIV--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Mathematics pretest	0.03491967	0.08491534	0.4114	0.0426	0.8371
Pretest--MDP	- 0.06642099	- 1.57078238	10.1795	0.0238	0.8779
Interaction of IQ and lecture	0.59870004	0.10631288	0.1742	0.3725	0.5438
Interaction of IQ and field trips	-0.73750815	-0.12791837	0.1314	0.9476	0.3341
Interaction of sex and lecture	- 0.14042821	- 1.29690203	3.2419	0.1600	0.6905
Interaction of sex and field trips	0.36810076	3.43667345	3.3301	1.0650	0.3060
Interaction of socioeconomic status and lecture	-0.05829439	-0.01515778	0.1042	0.0212	0.8848
Interaction of socioeconomic status and field trips	0.30215684	0.07880549	0.1115	0.4995	0.4823

TABLE XV (LECTURE AND FIELD TRIPS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	- 0.19699749	- 0.00424671	0.0026	2.7190	0.1041
Lecture method	- 1.08688917	-14.28724412	13.3860	1.1392	0.2899
Field-trip method	1.09160126	14.34918492	10.0620	2.0337	0.1588
Student sex	0.00254402	0.05478701	1.7152	0.0010	0.9746
Student IQ	- 0.06634557	- 0.06152919	0.1010	0.3709	0.5447
Student IQ--MDP	- 0.24718162	- 9.75346608	3.6043	7.3228	0.0087
Socioeconomic status	-0.21646455	-0.17340457	0.0631	7.5437	0.0078
Attitudes to mathematics pretest	0.48390379	0.58608394	0.1055	30.8562	0.0000
Pretest--MDP	-0.04799384	- 1.54995532	3.0788	0.2534	0.6164
Attitudes to economics pretest	- 0.02972275	- 0.03194716	0.0905	0.1247	0.7251
Mathematics pretest	- 0.13819247	- 0.31257130	0.3175	0.9692	0.3286
Pretest--MDP	0.16916562	3.72110168	7.9020	0.2218	0.6393

TABLE XV--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Economics pretest	-0.12439027	-0.67271237	0.5305	1.6083	0.2094
Pretest--MDP	-0.30530048	-6.68234074	7.7374	0.7459	0.3911
Interaction of IQ and lecture	0.50481105	0.08337853	0.1354	0.3791	0.5403
Interaction of IQ and field trips	-0.19064759	-0.03075716	0.1029	0.0894	0.7659
Interaction of sex and lecture	0.15235676	1.30876992	2.5183	0.2710	0.6051
Interaction of sex and field trips	-0.46662008	-4.05213369	2.5605	2.5045	0.1185
Interaction of socio- economic status and lecture	0.38580316	0.09330895	0.0802	1.3540	0.2489
Interaction of socio- economic status and field trips	-0.49378845	-0.11978812	0.0857	1.9530	0.1672

[^2]TABLE XVI

REGRESSION COEFFICIENTS OF SHORT-TERM RETENTION OF STUDENT ATTITUDES TOWARD
THE DISCIPLINE OF ECONOMICS (LECTURE AND FIELD TRIPS)
Variable
Teacher 1*
Lecture method
Field-trip method
Student sex
Student IQ
Student IQ--MDP
Socioeconomic status

TABLE XVI--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Mathematics pretest	0.01198624	0.01640564	0.1564	0.0110	0.9168
Pretest--MDP	0.04831644	1.76334822	3.5333	0.2491	0.6196
Interaction of IQ and lecture	0.36664617	0.06843559	0.1584	0.1866	0.6673
Interaction of IQ and field trips	-0.09048937	- 0.01649764	0.1206	0.0187	0.8917
Interaction of sex and lecture	0.11271098	1.09424807	2.9014	0.1422	0.7074
Interaction of sex and field trips	-0.19004382	- 1.86502023	2.9758	0.3928	0.5332
Interaction of socioeconomic status and lecture	0.44296716	0.12107055	0.0925	1.7128	0.1957
Interaction of socioeconomic status and field trips	0.49306130	0.13517090	0.1036	1.7018	0.1971

[^3]TABLE XVII

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	-0.03323661	- 0.00069296	0.0023	0.0880	0.7678
Lecture method	- 0.11312756	- 1.43824676	12.1536	0.0140	0.9062
Field-trip method	1.39521523	17.73806304	9.0317	3.8572	0.0542
Student sex	- 0.01714494	- 0.35710472	1.5888	0.0505	0.8229
Student IQ	- 0.05504253	- 0.04937072	0.0890	0.3076	0.5813
Student IQ--MDP	- 0.10374949	- 3.95941077	3.3485	1.3982	0.2417
Socioeconomic status	0.07055521	0.05466441	0.0588	0.8629	0.3567
Attitudes to mathematics pretest	0.21898155	0.25651343	0.1164	4.8544	0.0315
Pretest--MDP	0.05710445	1.78363276	2.7317	0.4263	0.5163
Attitudes to economics pretest	- 0.01967021	- 0.02044815	0.0816	0.0628	0.8030
Mathematics pretest	0.11317413	0.24757892	0.2846	0.7566	0.3879
Pretest--MDP	0.28703723	6.10659951	7.1834	0.7227	0.3987

TABLE XVII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Economics pretest	- 0.01581748	- 0.08273361	0.4802	0.0297	0.8638
Pretest--MDP	-0.13903675	- 2.94328649	6.9918	0.1772	0.6753
Interaction of IQ and lecture	0.29702872	0.04744884	0.1227	0.1496	0.7003
Interaction of IQ and field trips	-0.86104150	-0.13435095	0.0918	2.1435	0.1485
Interaction of sex and lecture	- 0.09277425	-0.77078069	2.2470	0.1177	0.7328
Interaction of sex and field trips	0.12220348	1.02637414	2.3079	0.1978	0.6581
Interaction of socioeconomic status and lecture	- 0.06418281	-0.01501336	0.0726	0.0427	0.8370
Interaction of socioeconomic status and field trips	-0.76222783	-0.17883784	0.0780	5.2600	0.0254

TABLE XVIII
REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF ECONOMICS (LECTURE AND FIELD TRIPS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1*	- 0.00989241	- 0.00024919	0.0030	0.0069	0.9342
Lecture method	- 0.18227534	- 2.79980244	15.4390	0.0329	0.8568
Field-trip method	0.26043703	4.00038877	11.8254	0.1144	0.7364
Student sex	- 0.10128219	- 2.54875000	2.0066	1.6134	0.2093
Student IQ	0.17559904	0.19029514	0.1134	2.8138	0.0991
Student IQ--MDP	0.14946414	6.80153671	4.4587	2.3890	0.1279
Socioeconomic status	0.01922949	0.01800022	0.0756	0.0567	0.8127
Attitudes to economics pretest	-0.06472962	-0.08129850	0.1070	0.5775	0.4506
Attitudes to mathematics pretest	0.04193737	0.05935239	0.1569	0.1431	0.7067
Pretest--MDP	0.02222398	0.83867139	3.5181	0.0568	0.8125
Economics pretest	0.03474836	0.21959055	0.6573	0.1116	0.7396
Pretest--MDP	- 0.15392579	- 3.93684933	8.8710	0.1969	0.6589

TABLE XVIII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Mathematics pretest	- 0.13434375	- 0.35507366	0.3668	0.9372	0.3372
Pretest--MDP	0.12000322	3.08452720	9.1755	0.1130	0.7380
Interaction of IQ and lecture	-0.26792985	-0.05171098	0.1569	0.1086	0.7430
Interaction of IQ and field trips	- 0.53740485	-0.10131009	0.1187	0.7279	0.3973
Interaction of sex and lecture	0.17926927	1.79946621	2.8737	0.3921	0.5338
Interaction of sex and field trips	0.27291727	2.76941237	3.0082	0.8475	0.3613
Interaction of socioeconomic status and lecture	0.30873723	0.08725349	0.0916	0.9067	0.3452
Interaction of socioeconomic status and field trips	0.18923189	0.05364181	0.1042	0.2649	0.6088

*Constant $=-14.21725823$
TABLE XIX
REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF MATHEMATICS (LECTURE AND FIELD TRIPS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 1^{*}	-0.13967315	- 0.00299766	0.0027	1.1949	0.2791
Lecture method	- 0.09321154	- 1.21985785	14.2439	0.0073	0.9321
Field-trip method	0.41804558	5.47095542	10.8939	0.2522	0.6175
Student sex	0.04894152	1.04932894	1.8725	0.3141	0.5775
Student IQ	-0.17063006	- 0.15754374	0.1052	2.2445	0.1398
Student IQ--MDP	- 0.19516553	- 7.66694345	4.0718	3.5455	0.0650
Socioeconomic status	- 0.09560102	- 0.07624522	0.0690	1.2203	0.2741
Attitudes to mathematics pretest	0.16351221	0.19716386	0.1425	1.9156	0.1719
Pretest--MDP	- 0.09290320	- 2.98703766	3.2216	0.8597	0.3579
Attitudes to economics pretest	0.11096544	0.11874281	0.0979	1.4712	0.2303
Mathematics pretest	0.00103071	0.00232100	0.3412	0.0000	0.9946
Pretest--MDP	- 0.10225070	- 2.23924722	8.4666	0.0699	0.7924

TABLE XIX--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Economics pretest	-0.27663054	- 1.48942788	0.5727	6.7647	0.0119
Pretest--MDP	- 0.01581604	- 0.34464748	8.1969	0.0018	0.9666
Interaction of IQ and lecture	0.39636246	0.06517698	0.1446	0.2032	0.6539
Interaction of IQ and field trips	-0.24800382	- 0.03983360	0.1101	0.1308	0.7189
Interaction of sex and lecture	-0.21596837	- 1.84700497	2.6484	0.4864	0.4885
Interaction of sex and field trips	0.08399495	0.72618932	2.7943	0.0675	0.7959
Interaction of socioeconomic status and lecture	- 0.14862116	- 0.03578611	0.0851	0.1769	0.6757
Interaction of socioeconomic status and field trips	-0.55729192	-0.13459593	0.0946	2.0227	0.1606

*Constant $=41.69539295$
REGRESSION COEFFICIENTS OF STUDENT UNDERSTANDING OF SELECTED ECONOMIC CONCEPTS GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	0.27880922	0.02017631	0.0079	6.5366	0.0122
Lecture method	1.39223760	5.62553604	3.3649	2.7950	0.0979
Games/simulations method	- 0.77692720	- 3.12045813	3.2899	0.8996	0.3454
Student sex	- 0.16492705	- 1.07416000	0.5488	3.8309	0.0533
Student IQ	0.27436816	0.05888361	0.0227	6.7377	0.0110
Student IQ--MDP	- 0.00257025	- 0.04105960	1.4370	0.0008	0.9773
Socioeconomic status	0.10872810	0.02184684	0.0189	1.3397	0.2501
Economics pretest	0.12713835	0.13374914	0.1256	1.1346	0.2895
Pretest--MDP	- 0.22653376	- 1.47187849	2.6572	0.3068	0.5810
Mathematics pretest	- 0.08865486	- 0.05209253	0.0646	0.6499	0.4222
Pretest--MDP	0.10116058	0.65679065	2.4107	0.0742	0.7859
Attitudes to economics pretest	0.13175439	0.04551774	0.0335	1.8446	0.1777

TABLE XX--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Attitudes to mathematics pretest	- 0.00588417	- 0.00229044	0.0414	0.0031	0.9560
Pretest--MDP	0.17164332	1.11440374	2.6431	0.1778	0.6743
Interaction of IQ and lecture	- 0.83066990	-0.03482939	0.0263	1.7520	0.1889
Interaction of $I Q$ and games/simulations	0.55611439	0.02333339	0.0266	0.7718	0.3819
Interaction of sex and lecture	-0.24965398	- 0.60735604	0.7723	0.6184	0.4337
Interaction of sex and games/ simulations	0.18316338	0.46095539	0.7479	0.3798	0.5392
Interaction of socioeconomic status and lecture	0.04085408	0.00336838	0.0262	0.0165	0.8981
Interaction of socioeconomic status and games/simulations	0.01605080	0.00131693	0.0244	0.0029	0.9570

TABLE XXI
STIIMS T甘DIU甘WAHLZN
(LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	- 0.34126720	- 0.05498285	0.0174	9.9676	0.0022
Lecture method	0.18026351	1.62164764	7.6659	0.0447	0.8329
Games/simulations method	0.52777726	4.71940032	7.4053	0.4062	0.5255
Student sex	0.05649047	0.81912540	1.2545	0.4263	0.5154
Student IQ	-0.4930950	- 0.02356076	0.0527	0.1999	0.6559
Student IQ--MDP	0.00853099	0.30341439	3.2257	0.0088	0.9253
Socioeconomic status	- 0.08461401	-0.03785186	0.0425	0.7933	0.3754
Mathematics pretest	0.37332272	0.48837724	0.1364	12.8252	0.0005
Pretest--MDP	0.06375473	0.92156550	5.4132	0.0290	0.8652
Economics pretest	0.11680142	0.27351509	0.2822	0.9399	0.3348
Pretest--MDP	-0.22135358	- 3.20201740	5.9659	0.2881	0.5928
Attitudes to mathematics pretest	0.02334730	0.02023335	0.0930	0.0473	0.8282

TABLE XXI--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	0.18270391	2.64095868	5.9327	0.1982	0.6573
Attitudes to eco- nomics pretest Interaction of IQ and lecture	0.01375387	0.01057886	0.0760	0.0194	0.8896
Interaction of IQ and games/simulations	-0.63173378	-0.05901276	0.0596	0.9819	0.3243
Interaction of sex and lecture	-0.11233370	-0.60843338	1.7385	0.1225	0.7272
Interaction of sex and games/ simulations	-0.18400871	-1.03099545	1.6791	0.3770	0.5407
Interaction of socio- economic status and lecture	-0.49026318	-0.08999382	0.0581	2.3967	0.1250
Interaction of socio- economic status and games/simulations	0.19322964	0.03529688	0.0546	0.4185	0.5193

* Constant $=7.12113480$
TABLE XXII
REGRESSION COEFFICIENTS OF SHORT-TERM RETENTION OF STUDENT UNDERSTANDING OF SELECTED ECONOMIC CONCEPTS (LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	0.02275469	0.00196052	0.0109	0.0321	0.8581
Lecture method	0.76607990	3.68545317	4.4812	0.6764	0.4130
Games/simulations method	-0.66437241	- 3.17699040	4.3389	0.5361	0.4660
Student sex	0.09187472	0.71242537	0.7343	0.9414	0.3345
Student IQ	0.17623858	0.04503270	0.0313	2.0721	0.1535
Student IQ--MDP	0.02373428	0.45142044	1.8344	0.0574	0.8112
Socioeconomic status	0.12521476	0.02995496	0.0251	1.4236	0.2359
Economics pretest	0.10637099	0.13323058	0.1655	0.6479	0.4230
Pretest--MDP	-0.48305437	- 3.73681265	3.4902	1.1463	0.2872
Mathematics pretest	0.11834225	0.08279021	0.0917	0.8159	0.3688
Pretest--MDP	0.10608623	0.82005114	3.1913	0.0660	0.7978
Attitudes to economics pretest	-0.10088778	- 0.04972380	0.0444	1.2537	0.2658

TABLE XXII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Attitudes to mathe- matics pretest Pretest--MDP Interaction of IQ and lecture	0.18518695	0.08582417	0.0542	2.5033	0.1171
Interaction of IQ and games/simulations	0.25100233	1.94025894	3.4981	0.3077	0.5805
Interaction of sex and lecture	-0.91213495	-0.04553473	0.0352	1.6781	0.1985
Interaction of sex and games/ simulations	-0.10840826	-0.314002	1.0237	0.0941	0.7598
Interaction of socio- economic status and lecture	-0.18349430	-0.59980555	0.9997	0.3025	0.5837
Interaction of socio- economic status and games/simulations	-0.16451992	-0.01607123	0.05436140	0.0350	2.4141

[^4]TABLE XXIII

REGRESSION COEFFICIENTS OF SHORT-TERM RETENTION OF MATHEMATICAL SKILLS (LECTURE AND GAMES
AND SIMULATIONS)

TABLE XXIII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	-0.39699765	- 5.82832368	4.5513	1.6399	0.2037
Attitudes to economics pretest	-0.01185490	-0.00926091	0.0592	0.0244	0.8761
Interaction of IQ and lecture	-0.48069900	-0.04557542	0.0463	0.9703	0.3273
Interaction of IQ and games/simulations	-0.38856613	-0.03686538	0.0463	0.6331	0.4284
Interaction of sex and lecture	-0.26019766	-1.43135817	1. 3374	1.1455	0.2874
Interaction of sex and games/ simulations	0.37828366	2.15267226	1.2974	2.7530	0.1006
```Interaction of socio- economic status and lecture```	0.73853117	0.13768740	0.0461	8.9361	0.0036
Interaction of socioeconomic status and games/simulations	0.17532328	0.03252701	0.0419	0.6027	0.4396

*Constant $=9.94246400$
TABLE XXIV
REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT UNDERSTANDING OF SELECTED ECONOMIC CONCEPTS (LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	0.16324615	0.01664526	0.0145	1.3206	0.2537
Lecture method	- 0.71115440	- 4.04881142	5.9581	0.4618	0.4986
Games/simulations method	- 0.14725584	- 0.83334272	5.8111	0.0206	0.8863
Student sex	0.12432923	1.14094164	0.9836	1.3455	0.2493
Student IQ	- 0.03965011	- 0.01198997	0.0417	0.0828	0.7743
Student IQ--MDP	0.04827620	1.08663823	2.5200	0.1859	0.6674
Socioeconomic status	- 0.18189607	- 0.05149716	0.0334	2.3825	0.1265
Economics pretest	- 0.29990222	-0.44453627	0.2189	4.1251	0.0454
Pretest--MDP	0.82667655	7.56811544	4.7277	2.5626	0.1132
Mathematics pretest	- 0.05960008	-0.04934383	0.1303	0.1433	0.7059
Pretest--MDP	0.16714818	1.53908071	4.3438	0.1239	0.7257
Attitudes to economics pretest	0.10840974	0.05277121	0.0609	0.7503	0.3888

TABLE XXIV--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Attitudes to mathematics pretest	- 0.12769200	-0.07003414	0.0727	0.9280	0.3381
Pretest--MDP	- 0.85037421	- 7.77926981	4.7857	2.6423	0.1078
Interaction of IQ and lecture	0.61353111	0.03624658	0.0469	0.5967	0.4420
Interaction of IQ and games/simulations	0.34309123	0.02628320	0.0468	0.1880	0.6657
Interaction of sex and lecture	- 0.59940939	- 2.05466731	1.3492	2.3190	0.1315
Interaction of sex and games/ simulations	- 0.52637963	- 1.86651908	1.3237	1.9883	0.1622
Interaction of socioeconomic status and lecture	0.71002714	0.08248469	0.0483	2.9142	0.0915
Interaction of socioeconomic status and games/simulations	0.53958686	0.06237907	0.0440	2.0064	0.1603

*Constant $=5.33766636$
TABLE XXV
REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT ABILITY IN SELECTED MATHEMATICAL SKILLS (LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	- 0.09784875	-0.01581164	0.0186	0.7195	0.3987
Lecture method	0.81156743	7.32254982	7.6197	0.9235	0.3393
Games/simulations method	-0.22156858	- 1.98716252	7.4498	0.0712	0.7903
Student sex	-0.03121633	- 0.45398980	1.2704	0.1277	0.7217
Student IQ	- 0.02991582	-0.01433669	0.0534	0.0719	0.7892
Student IQ--MDP	-0.10318989	- 3.68097724	3.2101	1. 3149	0.2547
Socioeconomic status	0.08781344	0.03939990	0.0432	0.8328	0.3640
Mathematics pretest	0.39291510	0.51553573	0.1575	10.7084	0.0015
Pretest--MDP	-0.90982425	-13.19047200	5.3855	5.9989	0.0164
Economics pretest	-0.02854165	-0.06704270	0.2874	0.0544	0.8161
Pretest--MDP	0.44703952	6.48592792	6.1136	1.1255	0.2917
Attitudes to mathematics pretest	-0.03336381	- 0.02899985	0.0937	0.0958	0.7577

TABLE XXV--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	0.13000828	1.88483711	6.2294	0.0915	0.7630
Attitudes to economics pretest	-0.00874515	-0.00674637	0.0785	0.0074	0.9317
Interaction of IQ and lecture	- 0.77668738	- 0.07271949	0.0599	1.4757	0.2278
Interaction of IQ and games/simulations	- 0.19818124	-0.01856793	0.0600	0.0957	0.7578
Interaction of sex and lecture	- 0.03268623	-0.17756482	1.7538	0.0103	0.9196
Interaction of sex and games/ simulations	0.34233877	1.92381596	1.7046	1.2738	0.2622
Interaction of socioeconomic status and lecture	- 0.02465024	- 0.00453830	0.0630	0.0052	0.9428
Interaction of socioeconomic status and games/simulations	0.20243794	0.03708887	0.0570	0.4234	0.5170

${ }^{*}$ Constant $=9.21826832$
*
TABLE XXVI

REGRESSION COEFFICIENTS OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF ECONOMICS (LECTURE AND GAMES AND SIMULATIONS)					
Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	- 0.9457138	-0.02238565	0.0292	0.5862	0.4458
Lecture method	-0.65189394	-8.61594339	12.2336	0.4960	0.4830
Games/simulations method	-0.06165255	-0.80996156	11.8724	0.0047	0.9458
Student sex	-0.10174835	- 2.16760326	1.9988	1.1760	0.2810
Student IQ	0.05773910	0.01053275	0.0843	0.2312	0.6318
Student IQ--MDP	-0.15208622	-7.94701468	5.0936	2.4342	0.1221
Socioeconomic status	-0.20627476	-0.13557148	0.0668	4.1191	0.0453
Attitudes to economics pretest	0.28759078	0.32498695	0.1167	7.7496	0.0065
Attitudes to mathematics pretest	-0.15692763	-0.19980563	0.1473	1.8389	0.1784
Pretest--MDP	0.17510307	3.71864531	9.4932	0.1534	0.6962
Economics pretest	0.17828553	0.61348771	0.4492	1.8655	0.1753

TABLE XXVI--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	- 0.44592860	-9.47719234	9.5076	0.9936	0.3215
Mathematics pretest	0.09727661	0.18696343	0.2321	0.6491	0.4225
Pretest--MDP	0.18012785	3.82535593	0.6519	0.1955	0.6594
Interaction of IQ and lecture	0.69039761	0.09468736	0.0949	0.9959	0.3209
Interaction of $I Q$ and games/simulations	0.03970100	0.00544867	0.0958	0.0032	0.9548
Interaction of sex and lecture	0.36870089	2.93396135	2.7661	1.1250	0.2916
Interaction of sex and games/ simulations	0.24981280	2.05641275	2.6831	0.5874	0.4454
Interaction of socioeconomic status and lecture	-0.29207447	- 0.07876880	0.0938	0.7046	0.4034
Interaction of socioeconomic status and games/simulations	- 0.23229597	-0.06234211	0.0872	0.5106	0.4767

[^5]TABLE XXVII
REGRESSION COEFFICIENTS OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF MATHEMATICS (LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	0.17357974	0.03532580	0.0256	1.8970	0.1717
Lecture method	0.79573430	9.04226130	10.7954	0.7016	0.4044
Games/simulations method	-0.84591553	- 9.55484080	10.4412	0.8374	0.3625
Student sex	- 0.12392402	- 2.26981785	1.7612	1.6610	0.2007
Student IQ	-0.11285326	-0.06811350	0.0742	0.8422	0.3612
Student IQ--MDP	0.15214818	6.83540073	4.5029	2.3043	0.1324
Socioeconomic status	0.24718566	0.13967819	0.0585	5.6943	0.0191
Attitudes to mathematics pretest	0.36742953	0.40222166	0.1246	10.4221	0.0017
Pretest--MDP	0.48066903	8.77646601	8.3435	1.1065	0.2956
Attitudes to economics pretest	- 0.18108725	- 0.17593892	0.1058	2.7648	0.0997
Mathematics pretest	0.13149354	0.21728799	0.2045	1.1293	0.2907

TABLE XXVII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	- 0.22328832	- 4.07699403	7.6396	0.2848	0.5949
Economics pretest	-0.04194062	- 0.12408168	0.4006	0.0959	0.7575
Pretest--MDP	- 0.14363893	- 2.62463913	8.4400	0.0967	0.7565
Interaction of IQ and lecture	- 0.80744124	-0.09521091	0.0837	1.2944	0.2582
Interaction of IQ and games/simulations	0.57414314	0.06774735	0.0843	0.6456	0.4238
Interaction of sex and lecture	-0.14933115	- 1.02167718	2.4563	0.1730	0.6784
Interaction of sex and games/ simulations	0.09579131	0.67796116	2.3768	0.0814	0.7761
Interaction of socioeconomic status and lecture	0.04401351	0.01020539	0.0832	0.0150	0.9027
Interaction of socioeconomic status and games/simulations	0.06170894	0.01423872	0.0773	0.0340	0.8542

*Constant $=4.99409472$
TABLE XXVIII
 THE DISCIPLINE OF ECONOMICS (LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	- 0.12353968	- 0.02992353	0.0315	0.9035	0.3444
Lecture method	-0.68763284	- 9.29991528	12.9448	0.5161	0.4744
Games/simulations method	0.19663728	2.64347820	12.5239	0.0446	0.8333
Student sex	- 0.15603958	- 3.40160343	2.1242	2.5644	0.1129
Student IQ	-0.06049750	- 0.04345803	0.0911	0.2277	0.6344
Student IQ--MDP	- 0.07130941	- 3.81291831	5.4247	0.4940	0.4840
Socioeconomic status	-0.02764894	-0.01859504	0.0728	0.0652	0.7990
Attitudes to economics pretest	0.15177632	0.17550580	0.1287	1.8598	0.1761
Attitudes to mathematics pretest	- 0.10635393	-0.13856653	0.1583	0.7664	0.3837
Pretest--MDP	- 0.04432629	- 0.96327190	10.0840	0.0091	0.9241
Economics pretest	-0.06868086	-0.24183656	0.4781	0.2559	0.6142

TABLE XXVIII--Continued

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Pretest--MDP	- 0.08970896	- 1.95095243	10.1085	0.0372	0.8474
Mathematics pretest	- 0.03038561	- 0.05976029	0.2650	0.0509	0.8221
Pretest--MDP	0.16029510	3.48343517	9.1871	0.1438	0.7055
Interaction of IQ and lecture	0.16264359	0.02282581	0.1021	0.0500	0.8236
Interaction of IQ and games/simulations	-0.19431755	-0.02728963	0.1020	0.0715	0.7898
Interaction of sex and lecture	0.24259279	1.97539793	2.9476	0.4491	0.5045
Interaction of sex and games/ simulations	0.27686938	2.33220660	2.8818	0.6549	0.4205
Interaction of socioeconomic status and lecture	0.30487812	0.08413629	0.1057	0.6330	0.4284
Interaction of socioeconomic status and games/simulations	- 0.16276388	- 0.04469864	0.0922	0.2352	0.6289

*Constant $=22.66019745$
TABLE XXIX

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	-0.12810397	- 0.02673218	0.0294	0.8273	0.3655
Lecture method	0.32834979	3.82581975	12.1084	0.0998	0.7528
Games/simulations method	- 0.83373846	- 9.65617388	11.6447	0.6876	0.4092
Student sex	0.03451273	0.64817700	2.0097	0.1040	0.7478
Student IQ	0.25130893	0.15552701	0.0835	3.4723	0.0657
Student--MDP	0.04288083	1.97532775	5.0721	0.1517	0.6979
Socioeconomic status	0.02735574	0.01585012	0.0680	0.0544	0.8161
Attitudes to mathematics pretest	0.08489889	0.09529546	0.1480	0.4146	0.5213
Pretest--MDP	0.31524863	5.90209330	9.3897	0.3951	0.5312
Attitudes to economics pretest	- 0.03002423	- 0.02991058	0.1213	0.0608	0.8058
Mathematics pretest	0.07994984	0.13546518	0.2469	0.3010	0.5846

TABLE XXIX--Continued

Variable	Partial beta	Partial   Absolute Beta	Standard Error	F	P
Pretest--MDP	- 0.14832480	- 2.77694096	8.5752	0.1049	0.7468
Economics pretest	- 0.04420659	- 0.13410304	0.4466	0.0902	0.7646
Pretest--MDP	- 0.19307848	- 3.61751304	9.4272	0.1472	0.7021
Interaction of IQ and lecture	- 0.22362538	- 0.02703807	0.0953	0.0806	0.7772
Interaction of $I Q$ and games/simulations	0.55233474	0.06682721	0.0950	0.4949	0.4836
Interaction of sex and lecture	- 0.07364761	-0.51665515	2.7571	0.0351	0.8518
Interaction of sex and games/ simulations	0.36166663	2.62461685	2.6847	0.9557	0.3309
Interaction of socioeconomic status and lecture	0.01549585	0.00368415	0.0990	0.0014	0.9704
Interaction of socioeconomic status and games/simulations	-0.04174301	- 0.00987610	0.0861	0.0131	0.9090

*Constant $=8.48932858$
TABLE XXX
REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF ECONOMICS (LECTURE AND GAMES AND SIMULATIONS)

Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	0.05187068	0.01471516	0.0304	0.2343	0.6296
Lecture method	0.22451193	3.55629995	12.4531	0.0816	0.7759
Games/simulations method	- 0.46350264	- 7.29791261	12.0938	0.3641	0.5478
Student sex	0.05812669	1.48409281	2.0612	0.5184	0.4735
Student IQ	- 0.05843675	- 0.04916490	0.0868	0.3209	0.5726
Student IQ--MDP	0.06456346	4.04328167	5.2425	0.5948	0.4427
Socioeconomic status	-0.01513268	- 0.01191986	0.0705	0.0286	0.8662
Attitudes to economics pretest	0.07739293	0.10481546	0.1271	0.6801	0.4119
Attitudes to mathematics pretest	0.00626089	0.00955382	0.1524	0.0039	0.9502
Pretest--MDP	- 0.84695114	-21.55670703	9.8591	4.7807	0.0316
Economics pretest	- 0.09320854	- 0.38439574	0.4656	0.6815	0.4114

TABLE XXX--Continued

Variable	Partial beta	Partial Absolute beta	Standard Error	F	P
Pretest--MDP	0.59605399	15.18214157	9.8702	2.3660	0.1278
Mathematics pretest	0.17021948	0.39209432	0.2687	2.1301	0.1481
Pretest--MDP	0.19942520	5.07579526	9.0483	0.3147	0.5763
Interaction of IQ and lecture	- 0.19374544	-0.03184617	0.0981	0.1053	0.7464
Interaction of $I Q$ and games/simulations	0.35337925	0.05812503	0.0975	0.3557	0.5525
Interaction of sex and lecture	-0.02151164	- 0.20515720	2.8522	0.0052	0.9428
Interaction of sex and games/ simulations	-0.09978573	- 0.98445785	2.7909	0.1244	0.7252
Interaction of socioeconomic status and lecture	0.10760395	0.03477939	0.1024	0.1153	0.7350
Interaction of socioeconomic status and games/simulations	0.28507776	0.09169300	0.0924	0.9850	0.3238

[^6]TABLE XXXI

REGRESSION COEFFICIENTS OF LONG-TERM RETENTION OF STUDENT ATTITUDES TOWARD THE DISCIPLINE OF MATHEMATICS (LECTURE AND GAMES AND SIMULATIONS)					
Variable	Partial beta	Partial Absolute Beta	Standard Error	F	P
Teacher 3*	0.03711028	0.00841209	0.0256	0.1079	0.7433
Lecture method	0.28391487	3.59346916	10.4791	0.1176	0.7325
Games/simulations method	- 0.85863006	-10.80237770	10.1327	1.1366	0.2894
Student sex	0.00174230	0.03554472	1.7402	0.0004	0.9838
Student IQ	-0.01906274	-0.01281507	0.0732	0.0307	0.8614
Student IQ--MDP	0.05050013	2.52700772	4.4194	0.3270	0.5690
Socioeconomic status	-0.05350255	-0.03367415	0.0593	0.3228	0.5714
Attitudes to mathematics pretest	0.05757096	0.07019589	0.1281	0.3004	0.5851
Pretest--MDP	1.08459729	22.05765831	8.1844	7.2634	0.0085
Attitudes to economics pretest	0.13100265	0.14176562	0.1063	1.7790	0.1859
Mathematics pretest	- 0.09892345	-0.18207377	0.2281	0.6372	0.4270

TABLE XXXI--Continued

Variable	Partial beta	Partial   Absolute   Beta	Standard   Error	F	P
Pretest--MDP	-0.28081340	-5.71095465	7.6044	0.5640	0.4547
Economics pretest	0.09366780	0.30865972	0.3920	0.6199	0.4333
Pretest--MDP   Interaction of IQ   and lecture					
Interaction of IQ and   games/simulations	0.28322617	0.67972953	-13.83408394	8.2873	2.7866

*Constant $=2.35145932$

APPENDIX B
Price Index:
The Impact of Its Fluctuations on Real Income
Developed by
Shirley Bell
Kathy Helwick
Ray Johnson
Bob Leffel
R.nnie Mitchell
Kelly Walraven
RATIONALE:
Price Index:
The Impact of Its Fluctuations on Real Income
to identify the Consumer Price Index as the main device for measuring changes
in general price level trends of consumer goods and services, in general price level trends of consumer goods and services, to identify the Bureau of Labor Statistics as the main agency for compiling the data for computation of the Consumer Price Index, to construct a two-axis line graph of price index versus time, given the price index for each year,
to construct a one-item index, given the base period data and the current data,
data, and calculate the percentage of change in the Consumer Price Index with respect to the base period.

MINIMAL COGNITIVE CONTENT: 1.
2.
$\dot{m}$

TERMINAL BEHAVIORAL OBJECTIVES:
After participating in the activities and strategies of this module, the student will be able

$$
\begin{aligned}
& \text { Students realize that the present is a price inflationary period, and they } \\
& \text { able to measure the impact of fluctuations in prices mainly through the } \\
& \text { =ed scope of their individual purchases as consumers. They have little or no } \\
& \text { Ledge of the use of indices to compare changes in such things as price, pro- } \\
& \text { ion, or earnings. As literate members functioning in an economic society, } \\
& \text { ents need to understand how a price index is constructed and how it reflects } \\
& \text { jeneral trenas in the price level of consumer goods and services so that they } \\
& \text { determine for themselves the effects of the trends on their income. }
\end{aligned}
$$


1.
2.
3.
4.
5.
6.
TACTICS:
variety of activities. The module has been written so that it can be taught
using either the lecture-demonstration method or a method which has as its major
thrust games and simulations.
LECTURE-DEMONSTRATION METHOD

Enabling Objectives

Enabling Objectives

$$
\begin{aligned}
& \text { The student will be } \\
& \text { able to compute } \\
& \text { the price of an } \\
& \text { item, given the } \\
& \text { base period price } \\
& \text { and the new price } \\
& \text { index. }
\end{aligned}
$$

Activities

Enabling Objectives	Activities	Resources
The student will be able to compute the price of an item, given the base period price and the new price index.	Make another column entitled "Item Price." Let the base price be $\$ 1.00$.   Have the students help fill in the prices for successive years.	
	Repeat this activity for an Item Price in $1970=\$ 200, \$ 400, \$ 90$.   Have the students name items whose current prices approach those in the chart.   At the top of the chart add the information that the price index in 1969 was 90. For each Item Price, fill in the 1969 price with the help of the students.	The students' own experiences.
	Have the students work the problems and answer the questions on the accompanying worksheet.   When the students have completed the exercise, check answers.	Worksheet 1

Enabling Objectives
Point out that this is the same pro-
cedure the students used to fill in
the chart.
From the students' knowledge of equations, they should understand that,
of the three variables in the equa-
tion above, he should be able to
compute the value of the third.
Work the following examples for the
class:

1) Given base price $=\$ 2$
find the index for the new price
Resources


Enabling Objectives
Activities
When completed, check answers and discuss those with which the students
had difficulty.
Work the following example for the
class:

	Year 1	Year 2
eggs (each)	$5 \%$	$5 \dot{5}$
hamburger		
(per liv.)	$40 \%$	$50 ¢$
apples (each)	$10 \%$	$12 \xi$

Step $\frac{1}{\text { items }}$ in Year the total cost of the to the base price.
Step 2: Find the total cost of the
items in Year 2. This corresponds
to the new price.
Step 3: Plug these values into the
index.
Solving, one gets $\mathrm{x}=123-7 / 11$, the
new price index.

$$
\begin{aligned}
& \text { Have a collection of newspapers con- } \\
& \text { taining grocery advertisements (at } \\
& \text { least one paper for each week of } \\
& \text { the past six months). } \\
& \text { Distribute one paper and one copy of } \\
& \text { the chart to each student. } \\
& \text { Working individually, the student will } \\
& \text { find as many of the asked-for prices } \\
& \text { as possible, compute the average } \\
& \text { price of each item, and find the } \\
& \text { total of those averages. } \\
& \text { On the blackboard or overhead pro- } \\
& \text { jector, draw a cumulative chart like } \\
& \text { the one below for compiling the data. }
\end{aligned}
$$

Enabling Objectives

Enabling Objectives

Enabling Objectives	Activities	Resources
	Have a lecture and discussion period during which each student will receive a partial list of the 400 items in the market basket used by the Bureau of Labor Statistics.   Points of emphasis:   1. Definition of the market basket.   2. The types of items that make up the market basket.   3. The measurement of average price change.   Have a lecture and discussion regarding price data collection.   Points of emphasis:   1. The role of the professional shopper.   2. The reasons prices are collected.	Handout 3
The student will be able to name three complexities that arise in the sampling process for computing a price index.	Questions for discussion:   1. Do you believe the Consumer Price Index is an exact measurement of price change?   2. If not: how accurate do you think it is?   3. How much trouble do you think it is to conduct such a survey?	"The Consumer Price Index, a Short Description, 1971," U. S. Department of Labor, Bureau of Labor Statistic p. 5 .

Enabling Objectives
Take a survey of the class by a sampling
procedure.
The problem will be to calculate the
average weight of a member of the
class.
Take a sample of five students. Ask
them their weights. Find the aver-
age weight.
Test the accuracy of the average by deter-
mining the weights of all the people in
the class. (Have each student write his
weight on a piece of paper, which is
then passed to the front). From that
information have the class find the true
average weight.
How close was the sample average to the
class average?
What things account for the difference?
(Try to solicit the following:
not a large enough sampling,
the students chosen were not repre-
sentative, and in
the students in the sample did not
give their true weights)
Take a survey to determine the average
height of the class. Follow the pro-
cedure outlined above.
Enabling Objectives

Enabling Objectives	Activities	Resources
	After the experiment has been completed, measure the heights of all students in the class.   The conclusions that were drawn by the class, with respect to the sampling procedure, are similar to the problems encountered by the Bureau of Labor Statistics when its shoppers collect a sample and the price index is computed.	
The student will begin to understand why the CPI may not be accurate for all areas of the country and for all households.	These problems were encountered by the sampling procedure:   1. Not a large enough sample.   2. False information.   3. Difference in family needs for different products.   4. Difference in the quality of items.	
The student will be able to apply what he already knows about the effects of fluctuations in the price index to actual situations.	Distribute a copy of Budget $A$ to each student.   Budget $A$ will be used by the instructor as an example of what is expected of the student when completing Budgets $B$ and $C$.	Worksheet 5

Enabling Objectives Budget A: This breakdown of expenses shows how a sears of $\$ 8562$ last year. For each category the monthly allotment as well as the yearly total is given. Suppose that the Consumer Price Index increases 5\% in the fol-
lowing year and the man's income remains the same.
Question: What will happen to the man's purchasing power? Has it increased or decreased? Since each of the items listed will cost more for the same quantity and quality (except for the items marked with an *), he will not be able to buy the same items in the same quantity or quality. He will have to reaistris bute his income among the categories listed.

Examine what the new prices will be for each category

Example: Food per year $=\$ 1080$ first find the amount of increase by first find the following equation:
$\frac{5}{100}=\frac{x}{1080}$ where $x=\underset{\text { increase }}{\text { the amount of }}$
lncrease
cent of increase.
Enabling Objectives
Solving, one gets $\mathrm{X}=54$. This means
the man will have to spend an addi-
tional \$54 this year in order to dupli-
cate the quantity and quality of food
purchased during the previous year.
Question: How much will he have to
spend altogether on food next year if
he wants to purchase the same things
as last year? (\$ll34)
Enter those amounts in the appropriate
columns of Budget A.
Repeat the above process for the fol-
lowing categories: "Housing, "Trans-
portation," and "Utilities." Let the
students help do the calculations for
the remaining categories.
Question: What would the man's yearly
salary have to be this year in order
to afford the same items he purchased
last year? (Find Total 2.$)$
Since the man's salary is constant, he
will have to cut back spending in
some or all of the categories.
Question: By how much will he have to
cut his expenses? (Find the differ-
ence between Total 1 and Total 2 .)
Enabling Objectives
In order to make out a revised budget,
one must consider certain limitations.
These minimum amounts are listed in
the column at the far right. Also,
the items marked with an $*$ are fixed
expenditures unless the owner decides
to sell them.
Question: When the budget is revised,
what must the total of the expenses
be? (\$8562)
Have the students help determine how
the expenditures should be redistri-
buted.
Question: Now that some of these areas
have had expenditures limited, in what
ways would this man cut down on spend-
ing in order to live within the new
budget?

Worksheet 1

Year	Price   Index	Price of   a potato   peeler	Price of a   car wash   and wax	Price of a   deluxe air   conditioner
1965	85			
1966	90			
1967	95			
1968	96			$\$ 5.00$
1969	100	$\$ 1.00$		$\$ 200$
1970	110			
1971	115			
1972	130			
1973				

1. Fill in the missing prices in the chart.
2. From the first two columns, plot the price index and year on the axes below. Connect the points with line segments.

3. What is the base year in the chart above?
4. In what years did the price index increase? In what years did the price of the items increase?

## Worksheet l--Continued

5. If a price goes above the base price, is the price index greater or less than 100?
6. If a price goes below the base period, is the price index greater or less than 100?

Worksheet 1
Answer Key

Year	Price   Index	Price of   a potato   peeler	Price of a   car wash   and wax	Price of a   deluxe air   conditioner
1965	85	$\$ .85$	$\$ 4.25$	$\$ 170$
1966	90	.90	4.50	180
1967	95	.95	4.75	190
1968	96	.96	4.80	192
1969	98	100	1.00	5.90
1970	110	1.10	5.00	196
1971	115	1.15	5.50	200
1972	1973	1.30	6.50	230

2. 


3. 1970
4. All years; all years
5. The price index is greater than 100.
6. The price index is less than 100 .

Worksheet 2
Solve for $X$ :

1. $\frac{2}{100} \times \mathrm{x}=5$
2. $\frac{3}{100} \mathrm{x} \mathrm{x}=21$
3. $\frac{10}{100} \times \mathrm{x}=50$
4. $\frac{5}{100} \times \mathrm{x}=5.50$
5. $\frac{1}{100} \times \mathrm{X}=1.10$
6. $\frac{2}{100} \times \mathrm{x}=2.50$
7. $\frac{3}{100} \times x=3.30$
8. $\frac{20}{100} \mathrm{x} \mathrm{X}=25$
9. $\frac{1}{100} \times \mathrm{X}=1.25$
10. $\frac{2}{100} \times \mathrm{x}=1.40$

Find the missing price indices in the chart below using the formula:
$\frac{\text { base price }}{100} \times$ price index $=$ new price

Year	Price	Price index
1967	$\$ 2.00$	100
1968	1.50	
1969	1.75	
1970	2.20	
1971	2.50	
1972	2.80	

Worksheet 2

## Answer Key

1. 250
2. 700
3. 500
4. 110
5. 110
6. 125
7. 110
8. 125
9. 125
10. 70

Year	Price	Price Index
1967	$\$ 2.00$	100
1968	1.50	75
1969	1.75	87.5
1970	2.20	110
1971	2.50	125
1972	2.80	140

## Worksheet 3

COMPUTING THE PRICE INDEX FOR MORE THAN ONE ITEM
Before working the exercises below, study the following steps carefully.

EXAMPLE: Given the following price data, compute the price index for Year 2. (Assume that Year 1 is the base year.)

Year 1 Year 2

TV (black \& white)	$\$ 80$	$\$ 88$
Stereo	100	112

Steps to solve:

1. Total the prices for Year $1=\$ 180=$ base price
2. Total the prices for Year $2=\$ 200=$ new price
3. Substitute into the formula and solve.
$\frac{\text { base price }}{100} \times$ price index $=$ new price

$$
\frac{180}{100} \times x=200
$$

Solving, one gets $\mathrm{X}=111-1 / 9=$ price index for Year 2.

With the data below, compute the price index for Year 2 assuming Year 1 is the base year.
1.

	Year 1	Year 2
car tire	$\$ 20$	$\$ 25$
bike tire	2	3

2. 

Year 1 Year 2
office visit to
physician $\$ 10 \quad \$ 12$
shot
5
6

## Worksheet 3--Continued

3. 

Year 1 Year 2
knit shirt \$1.25 \$1.75
socks . 40 . 45

| tennis shoes $\quad 2.00$ | 2.25 |
| :--- | :--- | :--- |

4. 

Year 1 Year 2
transistor
radio $\$ 15.00 \quad \$ 3.00$
hose
1.00

50
alarm clock
10.00
3.00
record player
25.00
12.00
5.

	Year 1	Year 2
box of salt	$\$ .10$	$\$ .11$
hamburger meat	.33	.59
lettuce	.29	.49

6. 

	Year 1	Year 2
circus tickets	$\$ 1.50$	$\$ 1.75$
fair expenses	3.00	5.00
zoo	--	.50
movie	.35	.75

Worksheet 3

## Answer Key

1. 127.27 or 127-3/11
2. 120
3. 121.91780... or 121-67/73
4. 36.274901... or $36-14 / 51$
5. 165.27 or 165-5/18
6. 164.948556... or 164-92/97

## Worksheet 4

Look through the newspaper you have to complete the chart below. Use only the prices from the following stores: Safeway, Tom Thumb, A \& P, Kroger, and Piggly Wiggly. For each item try to find a price from each store.

After you have found as many prices as possible, compute the average price for each item. Enter this number in the appropriate blank.

Find the total of the average prices. Put this number in the blank at the lower right.

	Safeway	Tom Thumb	$A \& P$	Kroger	PW	Average
White sugar 5 lbs.						
$\begin{gathered} \text { Red potatoes - } \\ 5 \text { lbs. } \end{gathered}$						
Bacon - 1 lb.						
Chicken - l lb.						
$\begin{gathered} \text { Hamburger - } \\ 1 \text { lb. } \end{gathered}$						
Tuna fish - $6 \frac{1}{2} \mathrm{Oz}$.						
Hotdogs - 12 oz .						
$\begin{gathered} \hline \text { Canned corn - } \\ \# 303 \text { can } \end{gathered}$						
```Coffee (canned) l lb.```						
Canned peaches \#303 can						

Month \qquad Total

Handout 1

Handout 1--Continued

[^7]
Handout 3

Consumer Price Index: Major Groups and Individual Items
A. Food

At home:
cereals
bananas
bakery products
oranges
beef
veal
pork
poultry
milk, fresh (grocery)
milk, fresh (delivered)
butter
apples
Away from home: meals
snacks
B. Housing
rent
mortgage interest maintenance
coal
telephone
textile home furnishings
floor coverings
housekeeping supplies
hotels and motels
property taxes
repairs
gas
C. Apparel and Upkeep
men's suits street dresses
street shoes
boys' apparel
water services
bedroom furniture
appliances
baby sitter
home purchasing
property insurance
fuel oil
electricity
sewage services upholstered sofas domestic services postal charges
nylon hose
women's coats
girls' apparel

Handout 3--Continued

D. Transportation
new automobiles
motor oil
auto maintenance
auto operator's permit
local transit fares
airplane fares
used automobiles
auto parts
auto insurance rates
E. Health and Recreation
drugs and prescriptions eyeglasses
daily service charges
health insurance
beauty shop services
bowling fees
cigarettes
whiskey and wine bank service charges
physician--house call
eye examination
hospital services
toilet goods
parking fees
taxicab fares
bus fares
gasoline
auto repairs
auto registration
auto financing
railroad fares

TV
newspapers
cigars
funeral services
physician--office call
dentists' fees
non-hospital services
men's haircuts
movie admissions
college tuition
beer
legal services
Worksheet 5

Budget A						
Description: This husband and wife are making payments on the mortgage of the bedroom, one-bath, one-car-garage home. Their 1968 Ford is completely paid						
Category	Monthly Expenses	Yearly Expenses	Amount of Increase	New Expenses	Revised Expenses	Minimum
Food *	\$90	\$1080				\$ 960
Housing*	94	1128				1128
Transportation						
Payment		-••				-
Upkeep	50	600				420
Taxes*		1693				1693
Utilities	37	444				360
Sears	45	540				200
Montgomery Wards	40	480				200
Note to finance company	42	504				504
Church pledge	40	480				30
Sears retirement	25	300				300
Miscellaneous	. .	713				-••
Medical and insurance	50	600				300
*This price will under the price	t change crease.	Total 1		Total 2	Total 3	

[^8]Worksheet 5
Answer Key

Category	Monthly Expenses	Yearly Expenses	Amount of Increase	New Expenses	Revised Expenses	Minimum
Food	\$90	\$1080	\$54	\$1134		
Housing*	94	1128	-•	1128		
Transportation						
Payment	-•	-•••	-•	-•••		
Upkeep	50	600	30	630		
Taxes*	-•	1693	-•	1693		
Utilities	37	444	22.50	466.20		
Sears	45	540	27	567		
Montgomery Wards	40	480	24	504		
Note to finance						
Church pledge	40	480	24	504		
Sears retirement	25	300	15	315		
Miscellaneous	-•	713	35.65	748.65		
Medical and insurance	ce 50	600	30	630		
		$\begin{aligned} & \text { Total } 1 \\ & \$ 8562 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { Total } 2 \\ & \$ 8849.05 \\ & \hline \end{aligned}$		

Worksheet 6
Budget B
Yearly Income: $\$ 7022$ Position: Coca Cola Route Salesman
Description: This family of three (husband, wife, and small infant) rents a two-
bedroom house. They are in the process of purchasing a second-hand 1965 Dodge. Monthly
Yearly Amount of

Total 2 Total 3
this

A
Worksheet 6
Answer Key

Category	Monthly Expenses	Yearly Expenses	Amount of Increase	New Expenses	Revised Expenses	Minimum
Food	\$110	\$1320	\$132	\$1452		
Housing	95	1140	114	1254		
Transportation Payment*	45	540	-••	540		
Upkeep	40	480	48	528		
Bus*	15	180	-••	180		
Taxes*	...	986	. \cdot	986		
Utilities	35	420	42	462		
Penney's	30	360	36	396		
Levines	38	456	45.60	501.60		
Note to bank*	27	324	-••	324		
Church pledge	20	240	24	264		
Medical \& insurance	48	576	57.60	633.60		
Miscellaneous	\ldots		
		$\begin{aligned} & \text { Total 1 } \\ & \$ 7022 \end{aligned}$		$\begin{aligned} & \hline \text { Total } 2 \\ & \$ 7521.20 \\ & \hline \end{aligned}$		

Worksheet 7

Budget C

Yearly Income: \$ll,286 Position: Truck Driver Description: This family of five (husband, wife and three children) rents an ment. They are currently making payments on a 1970 pick-up and camper and a making payments on a 1972 car. Also they are paying for a recently bought col television set.						
Category	Monthly Expenses	Yearly Expenses	Amount of Increase	New Expenses	Revised Expenses	Minimum
Food	\$200	\$2400				\$1320
Apartment rent	220	2640				2640
Transportation						1680
Car payment	140	1680				1680
Camper	65	780				600
Upkeep	85	1020				1100
Taxes*		1100				1100
Utilities						
Sanger-Harris	40	480				300
Sears *	20	240				200
TV payment*	43	516				516
Church pledge	.	,				300
Medical \& insurance	35	430				30
*This price is fixed and will not change under the price increase.		\qquad		-	Total 3	
Follow the directions at the bottom of Budget A to complete the chart above. this budget the price increase will be 5\%.						

Worksheet 7
Answer Key

Category	Monthly Expenses	Yearly Expenses	Amount of Increase	New Expenses	Revised Expenses	Minimum
Food	\$200	\$2400	\$120	\$2520		
Apartment rent	220	2640	132	2772		
Transportation Car payment	140	1680	84	1764		
Camper	65	780	39	819		
Upkeep	85	1020	51	1071		
Taxes	-••	1100	-••	1100		
Utilities	-•	-••	\cdots	-••		
Sanger-Harris	40	480	24	504		
Sears	20	240	12	252		
TV payment	43	516	-••	516		
Church pledge	\cdots	-•	-••	-		
Medical \& insurance	35	430	21.50	451.50		
		Total 1 \$11286		$\begin{array}{r} \text { Total } 2 \\ \$ 11769.50 \\ \hline \end{array}$		

GAMES-AND-SIMULATIONS METHOD
 Tell the students that they each have
$\$ 4.00$ with which to purchase food for
their meal to be prepared at home.
One possible entree would be steak if
it is desired and if the student has
the money with which to purchase it. Poll the students to see how many would be willing to buy the steak at each of the prices given in the chart. Record these outcomes in the chart. P

Enabling Objectives

Enabling Objectives	Activities
	Plot the points on a two-axis graph with the price on the vertical scale and the quantity demanded on the hori- zontal scale. This graph will show exactly how many students would pur- chase the steak at each price.
	Generalization: As the price increases, the quantity demanded decreases. As the price decreases, the quantity de-
manded increases.	

[^9]
Enabling Objectives
Resources

\[

$$
\begin{aligned}
& \text { Teacher Resource: } \\
& \text { "The Economic } \\
& \text { Problem," } 3 \text { rd } \\
& \text { ed., Robert L. } \\
& \text { Heibroner, } \\
& \text { Prentice-Hall, } \\
& \text { Inc.; chart is } \\
& \text { revised form of } \\
& \text { the supply-demand } \\
& \text { schedule on p. } \\
& 452 \text {. }
\end{aligned}
$$
\]

$\xrightarrow{3}$
(

$$
\begin{aligned}
& \text { Activities } \\
& \text { Graph that information on two axes to } \\
& \text { make a supply curve. On the horizontal } \\
& \text { scale put the quantity supplied, and on } \\
& \text { the vertical scale put the price. } \\
& \text { This graph shows exactly how many cattle } \\
& \text { will be supplied at each given price. } \\
& \text { Generalization: As price increases, the } \\
& \text { quantity supplied increases; and, as } \\
& \text { the price decreases, the quantity sup- } \\
& \text { plied decreases. } \\
& \text { Now the question arises, how is the } \\
& \text { market price of an item determined so } \\
& \text { that the supplier will get a profit } \\
& \text { and so that the consumer will pur- } \\
& \text { chase (demand) the item? } \\
& \text { Put the following chart on the board. } \\
& \text { (kite) } \\
& \text { Price } \\
& \hline \$.05 \\
& .10
\end{aligned}
$$

Resources
Explain how these data correspond to the
steak and cattle examples and the gen-
eralizations drawn from them.
Give an example to show how the chart is
interpreted: At the price $\$.30$ there
is a demand for 25 kites. That is, 25
people are willing and able to buy them
at that price. At that same price, the
suppliers are willing and able to sup-
ply 35 kites and sell them at a profit.
Questions for discussion:

1. What do we mean when we say there
is a demand for 75 kites if the
selling price is \$l.l0?
What do we mean when we say there
is a supply of 70 kites at the
price \$.40?
As the price of the kite increases,
what trend does the demand follow?
If you are the purchaser, does this
seem reasonable? Why?
As the price of the kite decreases,
what trend does the demand follow?
If you are the purchaser, does this
seem reasonable? Why?
As the price of the kite increases,
what trend does the supply follow?
If you are the supplier, does this
seem reasonable? Why?
Enabling Objectives

Enabling Objectives	Activities
	6. As the price of the kite decreases,
what trend does the supply follow?	
	If you are the supplier, does this
seem reasonable? Why?	

Enabling Objectives

Enabling Objectives	Activities	Resources
	2. $P=\$.15, S=10, D=50$ More kites are demanded than are produced. There is a shortage. If you were the producer, what would you do to eliminate the shortage? (produce more and raise the price) Conclusion: If the price of an item is anything except the price at which $S=D$ there will be an oversupply or a shortage that needs to be alleviated. Assign the completion of the accompanying worksheet.	Worksheet 8
The student will be able to allocate his allowance so that the number of utility points is maximized.	"The Market," a simulation learning game. Let the students divide into six-member teams. Appoint a recorder for each team. The recorder will keep the composite tally for the team.	Economic Decision Games, Erwin Rausch, Science Research Associates ("A Guide to Teaching"), ("Student Instructions")
	Distribute to each student a set of instructions and Handouts 4 and 5.	Handouts 4 and 5

Enabling Objectives
$\left.\begin{array}{lll}\text { Enabling Objectives } & \text { Activities } & \text { Resources } \\ \hline & \text { Have the students read through the in- } \\ & \text { structions orally in class, answering } \\ \text { any questions that may arise regarding }\end{array}\right]$

[^10]$\$ 40$
At the end of each day of play, collect all papers.
Enabling Objectives

Copy the cumulative scoresheet on the
board.
Fill it in after the simulation has been
completed.
Concluding discussion of the simulation,
examine the data from the simulation.
Which product had the most demand in
the first exercise? in the second? in
the third? in the fourth? over-all?
Questions for class discussion:
l. Did the demand for books increase
or decrease as the game progressed?
Why?
Did the demand for records increase
or decrease as the game progressed?
Why?
Did the demand for sweaters increase
or decrease as the game progressed?
Why?
Examine Handout 8, the supply curve for
sweaters, for the second, third, and
fourth exercises. Put the following
chart on the board:

Enabling Objectives

Enabling Owjectives

Enabling Objectives

Enabling Objectives	Activities	Resources
	For additional drill work on index interpretation make an overhead plate from Overhead Transparency Plate 1 and let the students help fill it in. Make a line graph on two axes using price index versus the three rounds using the information from above. Let price index be on the vertical scale and the round number on the horizontal scale. Assign the completion of the companion worksheet.	Overhead Transparency Plate 1. Worksheet 1 (Lecturedemonstration)
	Follow the Lecture-demonstration method for the lessons marked with an "*".	Lecturedemonstration method section of the module.

The student will be	"Consumer," a learning simulation game	"Consumer," pub-
able to allocate		lished by West-
his income in order	A modified version of the game will be	ern Publishing
to maximize the	used; the Credit Managers will be pro-	Co., developed
number of utility	vided an expanded form of the interest	by Academic
points earned.	schedules to include loans up to \$200,	Games Associates,
	and the Consumers will not be allowed	Gerald Zaltman.
	to retire a loan before its "due date."	

Enabling Objectives

$$
\begin{gathered}
\text { Activities } \\
\text { Rosources } \\
\text { Roles to be assigned or volunteered for: } \\
\text { Credit Managers } \\
\text { Banker, Department Store Manager, } \\
\text { Finance Company Manager } \\
\text { Salesmen (2) } \\
\text { Coordinator (2), teacher and a stu- } \\
\text { dent } \\
\text { Consumers (all the other students) } \\
\text { Distribute to each Consumer the consumer } \\
\text { rules, profile, product catalog, and } \\
\text { record sheet. } \\
\text { Distribute to each credit Manager, sales- } \\
\text { man, and Coordinator the respective } \\
\text { profiles and tally sheets. } \\
\text { Go over the rules, the object of the } \\
\text { game, profiles, and the forms with all } \\
\text { the students. } \\
\text { Go over the individual profiels with the } \\
\text { Credit Managers, salesmen, and Coor- } \\
\text { dinator. } \\
\text { Collect all papers at the end of the } \\
\text { period. }
\end{gathered}
$$

Enabling Objectives

Begin the simulation and continue play
for two and a half class periods.

Total the utility points for the Con-
sumers to determine the winner.
Total the utility points for the Credit
Managers to determine the winner in
that bracket.

Worksheet 8
 SUPPLY AND DEMAND

Given the data below, construct a demand curve and a supply curve on the same set of axes.

Price of wheat per bushel	Demand (Number of bushels)	Supply (Number of bushels)
$\$ 5$	9	18
4	10	16
3	12	12
2	15	7
1	20	0

1. What will the market price be for the set of figures above?
2. What happens to the quantity demanded as the price increases?
3. What happens to the quantity supplied as the price increases?

Worksheet 8

p

1. $\$ 3$ per bushel
2. When the price rises, the quantity demanded decreases.
3. When the price rises, the quantity supplied increases.

Handout 4

MARKET SIMULATION

"The Market" simulation game will help you increase your understanding of several concepts: demand, supply, and market price. Demand is made up of the desires of the consumers along with their ability to pay. Supply represents the quantities producers are willing to sell at various prices. Price is established by the forces of demand and supply.

You will work with a market model. This model simplifies the complicated real-life situation. Although a model is not reality, its workings and its basis are similar to a real situation. In order for the simulation to succeed, it is very important that you follow the rules closely.

You will imagine that you represent 100 college students and that each of your teammates represents 100 college students. The students you represent have the same likes and dislikes and the same allowance as you. All your living expenses are paid for except for several items: sweaters, books, and records. If you buy one sweater, all the students you represent will buy sweaters; so that exactly 100 sweaters will be needed to satisfy all of you. Likewise, if you buy three books, 300 books will be needed. Five records will represent 500 .

During the simulation you will decide how to spend your allowance to get the highest number of utility points possible. The Factsheet lists the utility points earned for purchasing different quantities of each item. For example, buying three books will bring you 917 points and seven records will bring you 791 utility points. You may also earn points by saving money. Be sure to notice how the points change with the number of items purchased.

Before you begin to play the game, look over the Factsheet, Worksheets, and Handouts. The Factsheet contains the information you need to play "The Market," and the Worksheets are the records of your decisions.

Worksheet 1--Personal Budget and Utility Chart
This shows how much is purchased and at what price each item is purchased. It also shows how much is saved and the number of utility points you gain from your purchases. Notice that you cannot figure your total utility points
Handout 4--Continued

Money Saved Utility Points

Money Saved Utility Points
NㅡㅇNNㅡNNNONONO

Money Saved Utility Points

垵

Money Saved Utility Points

 \&on-riminuivinniog

TABLE II Satisfaction from savings

Handout 4--Continued

until your team has completed Worksheet 2 and prices have been found. Then you will know how much money you saved and how many utility points the remaining cash gives you.

Worksheet 2--Demand
On this sheet you record the quantity of each item the members of your team want. When you know the total amount of each item needed, then you can find the price by using the graphs.

Handouts 7, 8, 9--Supply curves for Books, Sweaters, and Records

The curves show the amounts for these items that producers will make available at various prices. For example, if your team needs a total of 1500 books, the price will be $\$ 1.50$ for each book. If your team needs 5500 records, the price will be $\$ 1.35$ for each record. Note how the supply curve for sweaters changes for different exercises.

Game procedure--Sample Simulation
Step 1: After you are given your allowance, decide how many of each item you want to buy, and tell the recorder for your team so that he can fill in Worksheet 2.

In the sample game, the student, John Doe, has an allowance of $\$ 45$ with which he bought five books, seven sweaters, and four records.

Step 2: After each team member has reported his decision to the recorder, the recorder totals the amounts for each item. Then use the supply curves to determine the price for each item.

In the sample game, the team totals were thirty books, twenty-seven sweaters, and forty-five records. Since each student represents 100 people, the totals mean the demands were 3000 books, 2700 sweaters, and 4500 records. On the supply curves the prices are $\$ 1.75$ for books, $\$ 4.10$ for sweaters, and \$1.l0 for records.

Handout 4--Continued

Step 3: When you know the prices for your team, fill in Worksheet l by finding your expenditures.

In the sample game, John Doe spent $\$ 8.75$ for books ($5 \mathrm{x} \$ 1.75$), $\$ 28.70$ for sweaters ($7 \mathrm{x} \$ 4.10$), and $\$ 4.40$ for records (4 x \$l.10). He spent a total of $\$ 41.85$, which means he saved $\$ 3.15$.

Step 4: Use the Factsheet to find the number of utility points you earned and record this on Worksheet 1. Then total your utility points.

In the sample game, John got the following points:
5 books = 1332; 7 sweaters = 2609;
4 records $=505$; savings $=705$
SAMPLE GAME

Handout 5: Personal Budget/Utility Chart First Exerciso

Second Exercise

		Try 1		Iry 11		\|ry \mid		If: 11	
		Budget	Utility Points	Budget	Utility Points	Budget	Utility Points	Budget	Utility foints
Books	Price (from Wurhslieet II)								
	Uuantity Desired								
	Total Outlay								
Sweaters	Price (from Worksheet II)								
	Quantity								
	rotal Outlay								
Records	Price (from Worksheet II)								
	Quantity Desired								
	Total Outlay								
	Allowance								
	Total Spent								
	Total Saved								
	Total Utility Points								

Third Exercise Fourth Evercise

		Budget	Utility Points	Budget	Utility Points	Budget	Utility Points	Budget	Utility Points
	Price (from Worksheet II)								
Books	Quantity Desired								
	Total Outlay								
	Price (from Workslieet II)								
Sweaters	Quantity								
	Iotal Outlay								
	Price (trom Wuikslieet III)								
Records	Quantity Desired								
	iotal Uutlay								
	Allowance								
	Total Spent								
	Total Sived								
	Total litility Points								

Second Exercise

Third Exercise

Fourth Exercise

TOTAL in hundreds						
stmply curve PRICE			-			

Handout 7: Supply Curve for Books
(

Handout 8: Supply Curves for Sweaters

Handout 9: Supply Curve for Records
-

Handout 10: Multiplication Table

1	2	3	4	5	6	7	8	9	10	11
0.60	1.20	1.80	2.4	3.00	3.60	4.20	4.80	5.40	6.00	6.60
065	1.30	1.95	2.61	3.25	3.90	4.55	50	5.85	6.50	7.15
$0 / 0$	1.40	2.10	2.8:	3.50	4.20	4.90	660	6.30	7.00	7.70
0.75	1.50	225	30 n	3.75	4.50	5.25	6.00	6.75	7.50	8.25
0.80	1.60	2.40	3.20	4.00	4.80	5.60	6.40	7.20	8.00	8.80
0.85	1.70	2.55	$3.41:$	4.25	5.10	5.95	6.80	7.65	8.50	9.35
0.90	1.80	2.70	3.66	4.50	5.40	6.30	7.20	8.10	9.00	9.90
095	1.90	2.85	3.81	4.75	5.70	6.65	7.60	8.55	9.50	10.45
1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.05	11.00
1.05	2.10	3.15	4.20	5.25	6.30	7.35	8.40	9.45	10.50	11.55
1.10	2.20	3.30	4.40	5.50	6.60	7.70	8.80	9.90	11.00	12.10
1.15	2.30	3.45	4.60	5.75	6.90	8.05	9.20	10.35	11.50	12.65
1.20	2.40	3.60	4.30	6.00	7.20	8.40	9.60	10.80	12.00	13.20
1.25	2.50	3.75	500	6.25	7.50	8.75	10.00	11.25	12.50	13.75
1.30	2.60	3.90	5.20	6.50	7.80	9.10	10.40	11.70	13.00	14.30
1.35	2.70	4.05	5.40	6.75	8.10	9.45	10.80	12.15	13.50	14.85
1.40	2.80	4.20	5.60	7.60	8.40	9.80	11.20	12.60	14.00	15.40
1.45	2.90	4.35	5.80	7.25	8.70	1015	11.60	13.05	14.50	15.95
1.50	3.00	4.50	6.100	7.50	9.00	10.50	12.00	13.50	15.00	16.50
1.55	3.10	4.65	6.20	7.75	9.30	10.85	12.40	13.95	15.50	17.05
1.60	3.20	430	6.40	8.00	9.60	11.20	12.80	14.40	16.00	17.60
165	3.30	4.95	660	8.25	9.90	11.55	13.20	14.85	16.50	18.15
1.0	3.40	5.10	6.80	8.50	10.20	11.90	13.60	15.30	17.00	18.70
1.15	3.50	525	7.00	8.75	10.50	12.25	14.00	15.75	17.50	19.25
1.00	3.60	5.40	7.20	9.00	10.80	12.60	14.40	16.20	18.00	19.80
1.85	3.70	5.55	7.40	9.25	11.10	12.95	14.80	16.65	18.50	20.35
1.4)	3.80	5.70	7.60	9.50	11.40	13.30	15.20	17.10	19.00	20.90
190	3.90	5.85	7.80	9.75	11.70	13.65	15.60	17.55	19.50	21.45
2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.60	22.00
2.05	4.10	6.15	8.20	10.25	12.30	14.35	16.40	18.45	20.50	22.55
2.10	4.20	6.30	8.40	10.50	12.60	14.70	16.80	18.90	21.00	23.10
2.15	4.30	6.45	8.60	10.15	12.90	15.05	17.20	19.35	21.50	23.65
2.10	4.40	6.60	880	11.00	13.20	15.40	17.60	19.80	22.00	24.20
2.25	4.50	6.75	900	11.25	13.50	15.75	18.00	20.25	22.50	24.75
2.30	4.60	6.90	9.20	11.50	13.80	16.10	18.40	20.70	23.00	25.30
2.35	4.70	7.05	9.40	11.75	14.10	16.45	18.80	21.15	23.50	25.85
2.40	4.80	7.20	9.60	1200	14.40	16.80	19.20	21.60	24.00	26.40
2.45	4.90	7.35	9.80	12.25	14.70	17.15	19.60	$2 ? 05$	24.50	26.95
2.50	5.00	7.50	10100	1250	15.00	17.50	20.00	22.50	25.00	27.50
2.55	5.10	7.65	10.20	12.75	15.30	17.85	20.40	22.95	25.50	28.05
2.60						18.20	20.80	23.40	20.00	28.60
26.5	5.30	7.95	10.80	13.25	15.90	18.55	21.20	23.85	26.50	29.15
2.10	5.40	8.10	1080	13.50	16.20	18.90	21.60	24.30	27.00	29.70
2.75	5.50	8.25	11.00	13.75	16.50	19.25	22.00	24.75	$2 \% .50$	30.25
280	5.60	8.40	11.20	14.00	16.80	19.60	22.40	25.20	28.00	30.80
2.85	5.70	8.55	11.40	14.25	17.10	19.95	22.80	25.65	28.50	31.35
290	5.80	8.70	11.0)	1450	17.40	20.30	23.20	26.10	29.60	31.90
295	5.90	8.85	11.60	14./5	17.70	20.65	2360	26.55	23.50	32.45
3.10	6.00	9.00	12.00	13.00	18.00	21.00	24.00	27.00	30.00	33.00
3.05	6.10	9.15	12.20	15.25	18.30	21.35	24.40	27.45	30.50	33.55
3.10	6.20	9.30	12.40	15.50	18.60	21.70	24.80	27.90	31.00	34.10
3.15	6.30	9.45	12.60	11.75	18.90	22.05	25.20	28.35	3150	34.65
3.20	6.41)	9.60	12 ¢ ${ }^{\text {d }}$	10.00	19.20	22.40	25.60	28.80	3? 00	35.20
3.25	$65: 1$	975	13.00	10.25	19.50	22.75	26.00	29.25	32.50	35.75
3.30	6.60	9.90	13.20	16.50	19.80	23.10	26.40	29.70	33.00	30.30

1	2	3	4	5	6	7	8	9	10	11
3.35	6.70	10.05	13.40	16.75	20.10	23.45	26.80	30.15	33.50	36.85
3.40	6.81	10.20	13.60	17.00	20.40	23.80	27.20	30.60	34.00	37.40
3.45	6 6.4)	10.35	13.80	17.25	20.70	24.15	27.60	31.05	34.50	3795
350	7.1)	10.50	14.00	17.50	21.00	24.50	28.00	31.50	35.00	38.50
3.45	7.10	10.65	14.20	17.75	21.30	24.85	28.40	31.95	35.50	39.05
3.60	7.20	10.80	: 8.40	18.00	21.60	25.20	28.80	32.40	36.00	39.60
3.65	7.30	10.95	1.4.60	18.25	21.90	25.55	29.20	32.85	30.50	40.15
370	7.4 i)	11.10	; 1.80	18.50	22.20	25.90	29.60	33.30	37.00	40.70
3.15	7.50	11.25	15.00	18.75	22.50	26.25	30.00	33.75	31.50	$4!.25$
3.80	7.60	11.40	15.20	19.00	22.80	26.60	30.40	34.20	33.00	41.80
3.85	7.70	11.55	1;.40	19.25	23.10	26.95	30.80	34.65	38.50	42.35
3.90	7.80	11.70	11.60	19.50	23.40	27.30	31.20	35.10	39.00	4? 90
3.9	7.90	11.85	$1 \% 80$	19.75	23.70	27.65	31.60	35.55	34.50	43.45
4.00	8.00	12.00	11.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00
4.05	8.10	12.15	1. 20	20.25	24.30	28.35	32.40	36.45	40.50	44.55
4.10	8.20	12.30	11.40	20.50	24.60	28.70	32.80	36.90	41.00	45.10
4.15	8.30	12.45	11.60	20.75	24.90	29.05	33.20	37.35	41.50	45.65
4.20	8.40	12.60	11, 80	21.00	25.20	29.40	33.60	37.80	42.00	46.20
4.25	8.50	12.75	1. 00	21.25	25.50	29.75	34.00	38.25	42.50	46.75
4.30	8.60	12.90	$1 / .20$	21.50	25.80	30.10	34.40	38.70	43.00	47.30
4.35	8.70	13.05	17.40	21.75	26.10	30.45	34.80	39.15	43.50	47.85
4.40	8.30	13.20	1/60	22.00	26.40	30.80	35.20	39.60	44.00)	48.40
4.45	8.90	13.35	1,80	22.25	26.70	31.15	35.60	40.05	44.50	48.95
4.50	9.00	13.50	18.00	22.50	27.00	31.50	36.00	40.50	45.00	49.50
4.55	9.10	13.65	1820	22.75	27.30	31.85	36.40	40.95	45.50	50.05
4.60	9.20	13.80	18.10	23.00	27.60	32.20	36.80	41.40	46.00	50.60
4.65	9.30	13.95	1860	23.25	27.90	32.55	37.20	41.85	46.50	51.15
4.70	9.40	14.10	18:30	23.50	28.20	32.90	37.60	42.30	47.00	51.70
4.75	9.60	14.25	19100	23.75	28.50	33.25	38.00	42.75	47.50	52.25
4.80	9.60	14.40	19.20	24.00	28.30	33.60	38.40	43.20	48.00	52.80
4.85	9.70	14.55	1940	24.25	29.10	33.95	38.80	43.65	48.50	53.35
4.90	9.30	14.70	19.60	24.50	29.40	34.30	39.20	44.10	49.00	53.90
4.95	9.90	14.85	19.80	24.75	29.70	34.65	39.60	44.55	49.50	54.45
5.00	10.00	15.00	20.40	25.00	30.00	35.00	40.00	45.00	50.00	55.00
5.05	10.10	15.15	20.20	25.25	30.30	35.35	40.40	45.45	50.50	55.55
5.10	10.20	15.30	20.40	25.50	30.60	35.70	40.80	45.90	51.00	56.10
5.15	10.30	15.45	20.10	25.75	30.90	36.05	41.20	46.35	51.50	56.65
5.20	10.40	15.60	$20: 0$	20.00	31.20	36.40	41.60	46.80	52.00	57.20
5.25	10.50	15.75	21.10	26.25	31.50	3675	42.00	47.25	52.50	57.75
5.30	10.60	15.90	21..0	26.50	31.80	37.10	42.40	47.70	53.00	58.30
5.35	10.70	16.05	21.40	26.75	32.10		42.80			
5.40	10.80	16.20	21.10	27.00	32.40	37.80	43.20	48.60	54.00	59.40
5.45	10.90	16.35	21:0	27.25	32.70	38.15	43.60	49.05	54.50	59.95
5.50	11.00	16.50	22.10	27.50	33.00	38.50	44.00	49.50	55.00	60.50
5.55	11.10	16.65	22.20	27.75	33.30	38.85	44.40	49.95	55.50	61.05
5.60	11.20	16.80	22.40	28.00	33.60	39.20	44.80	50.40		
5.65	11.30	16.95	22.60	28.25	33.90	39.55	45.20	50.85	56.50	62.15
5.70	11.40	17.10	$22.81)$	28.50	34.20	39.90	45.60	51.30	57.00	62.70
5.75	11.50	17.25	23.(11)	28.75	34.50	40.25	46.00	51.75	57.50	63.25
5.80	11.60	17.40	23.20	29.00	34.80	40.60	46.40	52.20	58.60	63.80
5.85	11.70	17.55	23.40	29.25	35.10	40.95	46.80	52.65	58.50	
5.90	11.80	17.70	23.60	29.50	35.40	41.30	47.20	53.10	59.01	64.90
5. 95	11.90	1785	23.80	29.75	35.70	41.65	47.60	53.55	5959	65.45
6.00	12.00	18.00	24011	30.00	36.00	42.00	48.00	54.00	60.00	66.00
6.05	12.10	18.15	24.20	30.25	36.30	42.35	48.40	54.45	60.50	60.55

Overhead Transparency Plate 1

Round	Price Index	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	
Second	100	$\$ 100$	$\$ 1.00$	$\$ 10.00$	$\$ 500$	$\$ 3.00$	$\$.50$	
Third	124							
Fourth	84							

Overhead Transparency Plate 1

Answer Key							
Round	Price Index	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
Second	100	$\$ 100$	$\$ 1.00$	$\$ 10.00$	$\$ 500$	$\$ 3.00$	$\$.50$
Third	124	124	1.24	12.40	620	3.72	.62
Fourth	84	84	.84	8.40	420	2.52	.42

APPENDIX C

- state commissioner of education
- state department of education

November 13, 1973

Mr. Daniel M. Schmeling
North Texas State University
Center for Economic Education
Denton, Texas 76203

Dear Mr. Schmeling:
This office is in receipt of your request of November 7 concerning enrollmont data. Enclosed please find this data.

Please contact this office if further assistance is needed.

RESEARCH OFFICE, MIC

JTB:BAB: ec

Encls:

Texas Education Agency
Management Information Center

Enrollment Data for Selected Years

Year	Twelfth Grade	Ninth through Twelfth Grades
$1968-69$	147,436	739,456
$1969-70$	151,893	761,438
$1970-71$	159,865	785,047
$1971-72$	164,563	803,966
$1972-73$	163,626	813,230

Source: Superintendent's Annual Report, Part I.

Research Office
November 13, 1973

- state board cf education

78701

- state commissioner of education
- STATE DEPARTMENT OF EDUCATION

November l, 1973

Mr. Dan Schmeling
Center for Economic Education
North Texas State University
NT Box 5427
Denton, Texas 76203
Dear Mr. Schmeling:
The following are the enrollments for the Economics course you requested. These reflect first-semester enrollment only. A general rule-of-thumb we follow is that the second semester enrollment is about the same or slightly larger as reflected in the 1972-73 figures.

$$
\begin{array}{ll}
1972-73 & 11,764 \text { (fall semester) } 12,904 \text { (est., spring) } \\
1971-72 & 12,103 \\
1970-71 & 12,725 \\
1969-70 & 12,894 \\
1968-69 & 14,792 \\
1967-68 & 12,481
\end{array}
$$

Obviously, enrollment has maintained a rather stable figure. There may be a slight downward trend emerging as we have had a rapid increase of enrollment in sociology and psychology courses.

Enclosed is a list of state supervisors you may wish to contact.
Sincerely yours,

Louis Grigar
Social Studies Consultant
Division of Program Development
LG: jp
Enclosure

PERSONAL DATA SHEET

Student Name:

Student Number:	
Teacher Number:	
Method Number:	
Group:	
Student Sex:	
Student Grade Level:	
Student I.Q.:	
Occupation:	

The purpose of the following survey is to measure your attitudes toward economics and mathematics. There are, of course, no "right" or "wrong" answers. If you feel that your attitudes are VERY CLOSELY related to either end of the scale, mark at the appropriate end. The other spaces represent various degrees of feeling. Never fill in more than one box on a single adjective-pair scale. Make each item a sork at a fairly high speed through this survey section; we want your first impressions toward economics and mathematics.
ATTITUDE TOWARD MATHEMATICS

Foolish
Boring
Alive
Clear
Weak
Happy

$$
|1| 1|1| 1 \mid
$$

$$
\begin{aligned}
& \text { Worthless } \\
& \text { Bad } \\
& \text { Important } \\
& \text { Difficult } \\
& \text { Wise } \\
& \text { Interesting } \\
& \text { Dead } \\
& \text { Hazy } \\
& \text { Powerful } \\
& \text { Sad }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Valuable } \\
& \text { Good } \\
& \text { Unimportant } \\
& \text { Easy } \\
& \text { Foolish } \\
& \text { Boring } \\
& \text { Alive } \\
& \text { Clear } \\
& \text { Weak } \\
& \text { Happy }
\end{aligned}
$$

TEACHER CHARACTERISTICS

NAME

IDENTIFICATION NUMBER		($1-2$)
SEX $\quad 1=$ Male $2=$ Female		(3)
AGE		$(4-5)$
NO. OF YEARS TEACHING EXPERIENCE		(6-7)
MAJOR TEACHING FIELD		(8)
$\begin{array}{ll} 1=\text { Mathematics } & 3=\text { English } \\ 2=\text { Economics } & 4=\text { Social Studies } \end{array}$	$\begin{aligned} & 5=\text { Science } \\ & 6=\text { Other } \end{aligned}$	
NO. OF CREDITS IN ECONOMICS		(9-10)
UNDERGRADUATE GRADE POINT AVERAGE		(11-12)

TWO-FACTOR INDEX OF SOCIAL POSITION
August B. Hollingshead
Yale University

Brief Instructions

The Two-Factor Index utilitzed occupation and education. These factors are scaled and weighted individually, and a single score is obtained.

The educational scale is based upon the years of school completed by the head of the household. The scale values are as follows:

Years of School completed	Scale Value
Professional (MA, MS, ME, MD, PhD, LLB, etc)	1
Four-year college graduate (AB, BS, BM)	2
$1-3$ years college (also business schools)	3
High school graduate	4
$10-11$ years of school (part high school)	5
$7-9$ years of school	6
Under 7 years of school	

The occupational scale is attached on a separate sheet. Its effective use is dependent on the precise knowledge of the head of the household's occupation. Occupational position has a factor weight of 7 and educational position a factor weight of 4 . These weights are multiplied by the scale value for education and occupation of each individual or head of a household. The calculated weighted score gives the approximate position of the family on the over-all scale. For example, John Smith is the manager of a Safeway Store; he completed high school and one year of business college. I would score him as follows:

Factor	Scale Score	Factor Weight	Score x Weight
Occupation	3	7	21
Education	3	4	$\frac{12}{}$
Index of	Social	Position	Score

When the Index of Social Position score is calculated, the individual may be stratified either on the continuum of scores or into a "class." In the case of John Smith, I would rate him a Class III on the basis of the position he occupies on the continuum of scores, and the way the scores are grouped into classes.

The range of scores in each class on the Two-Factor Index follows:

Class	ISP Scores
II	$11-17$
II	$18-31$
III	$32-47$
IV	$48-63$
V	$64-77$

The various combinations of scale scores for occupation and education are reproducible in the Guttman sense for there is no overlap between education-occupation combinations. If an individual's education and occupation are known, one can calculate his score. Conversely, if one knows an individual's score, he can calculate both occupational position and educational level.

We have made extensive studies of the reliability of scoring, and the validity of the Index on over one hundred variables in our Social Stratification and Psychiatric Disorders Study. We have also made studies of loss of precision in using the Two-Factor Index rather than the three-factor one of occupation, education, and ecological area of residence. We recommend the Two-Factor one in areas where ecological maps do not exist.

INDEX OF SOCIAL POSITION
A. B. Hollingshead

Yale University

SEVEN SOCIOECONOMIC SCALE POSITIONS

1. Higher Executives of Large Concerns, Proprietors, and Major professionals.
A. Higher Executives (Value of corporation $\$ 500,000$ and above as rated by Dunn and Bradstreet)

Bank presidents	Executive secretary
Vice-presidents	Research directors
Assistant vice-presidents	Treasurer
Business: Directors	
	Presidents
	Vice-Presidents

B. Proprietors (Value over $\$ 100,000$ by Dunn and Bradstreet)

Brokers
Contractors
Dairy Owners
C. Major Professionals

Accountants (CPA) Judges (Superior courts)
Actuaries
Agronomists
Architects
Artists, portrait
Astronomers
Auditors
Bacteriologists
Chemical Engineers
Chemists
Clergymen (professionally trained)
Dentists
Economists
Engineers (college grad)
Foresters
Geologists

Farmers
Lumber dealers

Lawyers
Metallurgists
Military: Comm. officers, Major and above, Officials of the Executive Branch of Government, Federal, State, Local; e.g., Major, City Manager, City Plan Director, Internal Revenue Dir.
Physicians
Physicists, Research
Psychologists, practicing
Symphony conductor
Teachers, university, college
Veterinarians (veterinary surgeons)
2. Business Managers, Proprietors of Medium-Sized Businesses, and Lesser Professionals.
A. Business Managers in Large Concerns (Value $\$ 500,000$)

Advertising directors
Branch managers
Brokerage salesmen
Directors of purchasing
District managers
Executive assistants
Export managers, Int. concern
Govt. officials, minor; e.g., Internal Revenue agents
Farm managers
B. Proprietors of Medium Businesses (Value $\$ 35,000-$ $\$ 100,000$)

Advertising
Clothing store
Contractors
Express Company
Fruits, wholesale
Furniture business
C. Lesser Professionals

Accountants (not CPA)
Chiropodists
Chiropractors
Correction officers
Director of Community House
Engineers (not college graduate)
Finance writers
Health educators
Labor relations consultants
Librarians Military: Comm. officers, Lts., Captain

Poultry business
Real estate brokers
Rug business
Store
Theater

Musicians (symphony orchestra)
Nurses
Opticians
Optometrists, D.O. Pharmacists Public health officers (NPH)
Research assistants, univ. (full-time)
Social workers
Teachers, elementary and high school
3. Administrative Personnel, Owners of Small Businesses, and Minor Professionals.
A. Administrative Personnel

Advertising agents
Chief clerks
Credit managers
Insurance agents
Managers, departments
Passenger agents--RR
Private secretaries
Purchasing agents Sales representatives

Section heads, Federal, State and Local governmental offices
Section heads, large businesses and industries
Service managers
Store managers (chain)
Shop managers
Traffic managers
B. Small Business Owners $(\$ 6,000-\$ 35,000)$

Art gallery
Auto accessories
Awnings
Bakery
Beauty shop
Boatyard
Brokerage, insurance
Car dealers
Cattle dealers
Cigarette machines
Cleaning shops
Clothing
Coal businesses
Convalescent homes
Decorating
Dog supplies
Dry goods
Engraving business
Feed
Finance companies, local
Fire extinguishers
Five and Dime
rlorist
Food equipment.
Food products
Foundry
Funeral directors
Furniture

Garage
Gas station
Glassware
Grocery--general
Hotel proprietors
Jewelry
Machinery brokers
Manufacturing
Monuments
Music
Package stores (liquor)
Paint Contracting
Poultry
Real estate
Records and radios
Restaurant
Roofing contractors
Shoe
Signs
Tavern
Taxi company
Tire shop
Truckina
Trucks and tractors
Upholstery
Wholesale outlets
Window shades
Contracting businesses
C. Semi-professionals

Actors and showmen
Army M/Sgt; Navy, CPO Artists, commercial Appraisers (estimators)
clergymen (not professionally trained)
Concern managers
Deputy sheriffs
Interior decorators
Interpreters, courts
Laboratory assistants
Landscape planners
Morticians
Oral Hygienists
Physio-therapists Piano teachers Publicity and public relations Radio, TV announcers Reporters, court Reporters, newspapers Surveyors
Title searchers Tool designers Travel agents Yard masters, RR Dispatchers, RR Photographers
D. Farmers

Farm owners ($\$ 20,000-\$ 35,000)$
4. Clerical and Sales Workers, Technicians, and Owners of Little Businesses (Value under $\$ 6,000$)
A. Clerical and Sales Workers

Bank clerks and tellers
Bill collectors
Bookkeepers
Business machine
operators, offices
Claims examiners
Clerical or stenographic
Conductors, RR
Factory storekeepers
Factory supervisors

Post office clerks
Route managers
Sales clerks
Sergeants and petty officers, military services
Shipping clerks
Supervisors, utilities, factories
Supervisors, toll stations
Warehouse clerks
B. Technicians

Dental technicians
Draftsmen
Driving teachers
Expeditor, factory
Experimental tester
Instructors, telephone co., factory
Inspectors, weights, sanitary, RR, factory
Investigators
Laboratory technicians
Locomotive engineers

Operators, P.B.X.
Proofreaders
Safety supervisors
Supervisors of maintenance
Technical assistants
Telephone company supervisors
Timekeepers
Tower operators, RR
Truck dispatchers
Window trimmers (stores)
C. Owners of Little Businesses ($\$ 3,000-\$ 5,000$)

Flower shop
Grocery
D. Farmers

Owners (\$10,000-\$20,000)
5. Skilled Manual Employees

Auto body repairers
Bakers
Barbers
Blacksmiths
Bookbinders
Boilermakers
Brakemen, RR
Brewers
Bulldozer operators
Butchers
Cabinet makers
Cable spliceis
Carpenters
Casters (founders)
Cement finishers
Cheese makers
Chefs
Compositors
Diemakers
Diesel shovel operators
Electricians
Engravers
Exterminators
Fitters, gas, steam
Firemen, city
Firemen, RR
Foremen, construction, dairy
Gardners, landscape (trained)
Glass blowers
Glaziers
Gunsmiths
Gauge makers
Hair stylists
Heat treaters
Horticulturists
Linemen, utility
Linotype operators
Lithographers
Locksmiths
Loom fixers

Newstand
Tailor shop

Machinists (trained)
Maintenance foremen
Linoleum Layers (trained)
Masons
Masseurs
Mechanics (trained)
Millwrights
Moulders (trained)
Painters
Paperhangers
Patrolmen, RR
Pattern and model makers
Piano builders
Piano tuners
Plumbers
Policemen, city
Postmen
Printers
Radio, TV maintenance
Diesel engine repair and maintenance (trained)
Repairmen, home appliances
Rope splicers
Sheetmetal workers (trained)
Shipsmiths
Shoe repairmen (trained)
Stationary engineers (licensed)
Stewards, club
Switchmen, RR
Tailors (trained)
Teletype operators
Tool makers
Track supervisors, RR
Tractor-trailer trans
Typographers
Upholsterers (trained)
Watchmakers
Weavers
Welders
Yard supervisors, RR

Small Farmers
Owners (under $\$ 10.000$)
Tenants who own farm equipment
6. Machine Operators and Semi-skilled Employees

Aides, hospital
Apprentices, electricians, printers, steam fitters, toolmakers
Assembly line workers
Bartenders
Bingo tenders
Bridge tenders
Building superintendents
(Construction)
Bus drivers
Checkers
Coin machine fillers
Cooks, short order
Deliverymen
Dressmakers, machine
Elevator operators
Enlisted men, military services
Filers, sanders, buffers
Foundry workers
Garage and gas station attendants
Greenhouse workers
Guards, doorkeepers, watchmen
Hairdressers
Housekeepers
Meat cutters and packers
Meter readers
Operators, factory machines

Oilers, RR
Practical nurses
Pressers, clothing Pump operators
Receivers and checkers
Roofers
Set-up men, factories
Shapers
Signalmen, RR
Solderers, factory
Sprayers, paint
Steelworkers (not skilled)
Stranders, wire machines
Strippers, rubber factory
Taxi drivers
Testers
Timers
Tire moulders
Trainmen, RR
Truck drivers, general
Waiters-waitresses
("Better Places")
Weighers
Welders, spot
Winders, machine
Wiredrawers, machine
Wine bottlers
Wood workers, machine
Wrappers, stores and factories

Farmers
Smaller tenants who own little equipment
7. Unskilled Employees

Amusement park workers (bowl-
ing alleys, pool rooms)
Ash removers
Attendants, parking lots
Cafeteria workers
Car cleaners, RR
Carriers, coal
Countermen
7. Unskilled Employees (continued)

Dairy workers
Deck hands
Domestics
Farm helpers
Fishermen (clam diggers)
Freight handlers
Garbage collectors
Grave diggers
Hod carrier
Hog killers
Hospital workers, unspecified
Hostlers, RR
Janitors (sweepers)
Laborers, construction
Laborers, unspecified
Laundry workers
Messengers
Relief, public, private Unemployed (no occupation)

Platform men, RR Peddlers
Porters
Roofer's helpers
Shirt folders
Shoe shiners
Sorters, rag and salvage
Stage hands
Stevedores
Stock handlers
Street cleaners
Unskilled factory workers
Struckmen, RR
Waitresses ("Hash Houses")
Washers, cars
Window cleaners
Woodchoppers

Farmers--share croppers

ARITHMETIC SKILLS

Work each of the following problems and select the answer you believe to be correct from the choices given.
\qquad 1. 9658
a) 14225 ,
b) 13125,
c) 12101115 ,
d) 12126 ,
e) none of these.
$+3467$
a) 41987,
b) 4867,
C) 418187,
d) 5087 ,

2.

e) none of these.
3. $7+312+53+168=\begin{array}{ll}\text { a) } 360, & \text { b) } 638, \text { c) } 450, \\ \text { d) } 540, & \text { e) none of these. }\end{array}$
_ 4. $52.4+36+7.18+81=\quad \begin{aligned} & \text { a) } 134.9, \text { b) } 241.2, \\ & \text { c) } 146.22, \text { d) } 176.58, \\ & \text { e) none of these. }\end{aligned}$

Subtraction:
\qquad 5. 45386
C) 23131,
d) 23212,
a) 66651,
b) 24121,
-21265
\qquad 6. $\begin{array}{r}6427 \\ -4319\end{array}$
a) 2112 ,
b) 10746,
C) 2118 ,
d) 2101,
\qquad
-4319
e) none of these.
7. 75
a) 29,
b) 39,
c) 121 ,
d) 31 ,
e) none of -46

Multiplication:
\qquad 8. 7264
a) 48620 , b) 43584 ,
c) 43470,
d) 48364,
9.
36
$\begin{array}{r}\times 47 \\ \hline\end{array}$
a) 1622 ,
b) 1242,
c) 2323,
d) 1692,
e) none of these.
10. 2.46
a) 73.8 ,
b) 73800,
c) 738,
d) .738
\qquad e) none of these.
11.
$\begin{array}{r}3.842 \\ \times \quad 6.4 \\ \hline\end{array}$
a) .235888 ,
b) 23.5888 ,
C) 2358880 .
d) 24.5888 ,
e) none of these.

Division:
\qquad 12. $6 \longdiv { 3 2 0 4 }$
a) 524 ,
b) 504,
c) 541,
d) 501,
e) none of these.
\qquad 13. $4 \longdiv { 1 8 0 3 0 0 }$
a) 40070,
b) 45074,
C) 45065
d) 40570,
e) none of these.
\qquad 14. "6 into .6" is written
a) $6 \sqrt{6}$, b) $6 \sqrt{.6}$ c) $.6 \sqrt{6}$
d) $6 \div .6$, e) none of these
\qquad 15. "25 into 5" is written
a) $5 \longdiv { 2 5 }$,
b) $25 \div 5$
c) $2 5 \longdiv { 5 0 }$
d) $2 5 \longdiv { 5 }$,
e) none of these.

Write equivalent numerals for \#16 through \#2l
\qquad 16. $\quad 1=\frac{-}{8}$
a) 1,
b) 4,
c) 8 ,
d) 9, e) none of these.
a) 1,
b) 5,
c) 9,
d) 20 ,
e) none of
these 17. $4=\frac{-}{5}$
\qquad 18. $3 \frac{1}{4}=\frac{}{4}$
a) 7,
b) 8 ,
C) 12 ,
d) 31 ,
e) none of these.
\qquad 19. $6=\frac{-}{8}$
a) 65,
b) 53,
c) 19,
d) 11 ,
e) none of these
\qquad
a) . 7 ,
b) 7 , c) 70 ,
d) 700, e) none of these
\qquad a) .03 , b) .3 , c) 3 , d) 30 ,
e) none of these
\qquad 22. Write 9\% as a decimal.
a) 9 , b) . 9 , c) .09,
d) .009 , e) none of these
\qquad 23. Write 225% as a decimal
a) 2.25 ,
b) 22.5 , c) .225 ,
d) .0225,
e) none of these
24. 5% of 240 is
a) 10 ,
b) 24 ,
c) 48,
d) 15 ,
\qquad 25. 32% of 75 is
a) 12 ,
b) 24 ,
C) 48,
d) 120 ,
e) none of these.
\qquad 26. 40 is 16% of
a) 64,
b) 640,
C) 240 ,
d) 250,
e) none of these
27. Write . 25% as a decimal
a) . 0025 ,
b) .025,
c) .25 , d) 25 ,
e) none of these
28. Write $3 / 4 \%$ as a decimal
\qquad
a) 7.5,
d) .0075,
b) . 75 ,
c) . 075 ,
d) .0075 , e) none of these
29. Write 25% as a decimal
a) . 0025 ,
b) .025 , c) 2.5 ,
d) .0075,
e) none of these
\qquad 30. 28 is what \% of 42?
a) 50,
b) $62 \frac{1}{2}$,
c) 66-2/3,
d) 75 ,
e) none of these
\qquad 31. If a certain pair of shoes cost $\$ 10.00$ last year and if the price rose $6 \frac{5}{5}$ since then, the shoes
now cost
a) $\$.60$,
b) \$16.66,
c) $\$ 10.60$,
d) $\$ 60.00$,
e) none of these
\qquad 32. The average of $25,30,45,20$, and 40 is
a) 80 ,
b) 32 ,
c) 160 ,
d) 30 ,
e) none of these
33. The average of $23,36,42,52$, and 27 is
a) 36 ,
b) 90 ,
c) 35 ,
d) 179 ,
e) none of these
34. Round $13-1 / 3$ to the nearest whole number
\qquad
a) 13,
b) 14 ,
c) 13-1/3,
d) 15 ,
e) none of these
35. Round 14.8 to the nearest whole number
a) 16 , b) 14 ,
c) 14.8 ,
d) 15 ,
e) none of these
36. Round $21-5 / 6$ to the nearest whole number
a) 20 ,
b) 21 ,
c) 22 ,
d) $21-5 / 6$,
e) none of
37. Round 104.1 to the nearest whole number
a) 104 ,
b) 105,
c) 100 ,
d) 104
e) none of these
38. Given the graph below in which the Consumer Price Index is plotted against the years 1965 to 1970, answer the following question:

What was the Consumer Price Index in 1968 ?
a) 95 ,
b) 105,
c) 110,
d) 115 ,
e) none of these

39. Use the graph above to answer the following question:
What was the trend in the Consumer Price Index for the years 1965 through 1970?
a) increasing, b) decreasing, c) about the same,
d) the graph doesn't contain enough information to determine this, e) none of these
40. Graph the information in the chart on the axes provided below and connect the points with line segments:

Price of radios produced by the Widget Manufacturing Company	Year
20.00	1967
35.00	1968
40.00	1969
55.00	1970
70.00	1971
50.00	1972

ECONOMIC CONCEPTS

Answer each of the following questions. Select the answer you believe to be correct from the choices given.

1. The Consumer Price Index measures changes in
a) the prices of goods and services
b) the prices of eggs only
c) the house values after taxes
d) the cost of taxes only
2. The Consumer Price Index is
a) the average income after taxes of a single person
b) price changes from one store to another
c) the measure of changes in prices of goods and services
d) a list of prices posted in stores
3. Real income is
a) your total salary after cashing a check
b) how much money you have when you cash your check at the bank
c) how much you can buy with your income
d) how much you can spend after you pay your bills
4. The Consumer Price Index affects
a) your purchasing power
b) the size of a bank
c) how much gold is in Fort Knox
d) how much money is printed
\qquad 5. If the price index changes from 105 to 111 , the effect is
a) no change in the amount you will be able to buy
b) you will be able to buy more with the same amount of money
c) you will be able to buy less with the same amount of money
d) you will be given a bonus of $\$ 6.00$ off your income tax
— 6. The Consumer Price Index has changed significantly since 1971 because we are in a period of
a) inflation
b) deflation
c) strife
d) none of the above
5. The base period for an index is 100. If the index 116 precedes this base period, then there was
a) an increase of 16% in prices
b) a decrease of 16% in prices
c) no real change in prices that the consumer would notice
d) an increase of 16\% on every item purchased
6. If last year's index of prices was 100 and prices have risen 30% this year, then the new price index would be
a) 70
b) 130
c) 30
d) 100
\qquad 9. The BLS is
a) Bureau of Legal Statistics
b) Baseball League of the South
c) Bureau of Labor Statistics
d) Bowling League of the South
7. The data for the Consumer Price Index are gathered by
a) checking prices in a nearby store
b) checking prices in all stores in Washington, D.C.
c) Checking prices at some representative businesses
d) gathering prices from all the business in the United States
8. Inflation means
a) a price freeze
b) a rise in prices
c) a decrease in prices
d) stable prices
9. What government organization is in charge of the data collection and calculations for the Consumer Price Index?
a) the Department of Commerce
b) the Federal Bureau of Investigation
c) a Certified Public Accountant
d) the Bureau of Labor Statistics
10. The Consumer Price Index can be relied on as an indicator of general price levels
a) always
b) nearly always
c) sometimes
d) never
\qquad 14. Given the following information, compute the price index for Year 2 for a baseball bat.

$$
\frac{\text { Year } 1}{\$ 2} \quad \frac{\text { Year } 2}{\$ 3}
$$

The price index for Year 2 is:
a) $\$ 1$
b) 150
c) $1-1 / 3$
d) 6
15. Given the following information, compute the price index for Year 2 in which all three items are included.

	Year 1	
watch	Year 2	
doctor's bill	12	
dor	19	
shoes	13	15
		16

The price index for Year 2 is
a) 50
b) 133
c) 125
d) 10

Name

Arithmetic Skills
23.
24. 25.
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
31.
32.
33.
34. \qquad
35. \qquad
36. \qquad
37. \qquad
38. \qquad 39. \qquad

ANSWER KEY

Arithmetic Skills

BIBLIOGRAPHY

Books
Bonjean, Charles M., Richard J. Hill, and S. Dale McLemore, Sociological Measurement, San Francisco, Chandler Publishing Company, 1967.

Calderwood, James D. and others, Economics in the Curriculum, New York, John Wiley and Sons, Inc., 1970.

Campbell, Donald T. and Julian C. Stanley, Experimental and Quasi-Experimental Designs for Research, Chicago, Rand McNally and Company, 1966.

Dawson, George, Research in Economic Education: A Bibliography, New York, Center for Economic Education, New York University, 1969.

Dawson, George and Irving Bernstein, The Effectiveness of Introductory Economics Courses in High Schools and Colleges, New York, Center for Economic Education, New York University, 1967.

Good, Carter V., editor, Dictionary of Education, New York, McGraw-Hill Book Company, 1945.

Hollingshead, August B. and Frederick C. Redlich, Social Class and Mental Illness: A Community Study, New York, John Wiley and Sons, Inc., 1958.

Lewis, Darrell R. and Charles C. Orvis, Research in Economic Education, New York, Joint Council on Economic Education, 1971.
and Donald Wentworth, Games and Simulations, New York, Joint Council on Economic Education, 1971.

Lumsden, Keith, New Developments in the Teaching of Economics, Englewood Cliffs, New Jersey, Prentice- $\overline{\mathrm{Hall}}$, Inc., 1967.

McPhie, Walter E., Dissertations in Social Studies Education: A Comprehensive Guide, Washington, National Council for the Social Studies, 1964.

Nunnally, Jum C., Educational Measurement and Evaluation, New York, McGraw-Hill Book Company, 1972.

Osgood, C. E., G. J. Suci, and P. H. Tannenbaum, The Measurement of Meaning, Chicago, University of Illinois Press, 1967.

Thorndike, Robert and Elizabeth Hagen, Measurement and Evaluation in Psychology and Education, New York, John Wiley and Sons, Inc., 1955.

Welsh, Arthur L., editor, Research Papers in Economic Education, New York, Joint Council on Economic Education, 1972.

Wing, Richard L. and others, The Production and Evaluation of Three Computer Based Economics Games for the Sixth Grade, Yorktown Heights, New York, Board of Cooperative Educational Services, 1967.

Articles

Blough, Roger M., "Unfinished Business," NASSP Bulletin, XLIX (November, 1965), 35-43.

Bonds, Marianne and William A. Luker, "The Integration of Economic Concepts Into a High School English Course," Southwestern Journal of Social Education, III (FallWinter, 1972-73), 5-15.

Cohen, Jacob, "Multiple Regression as a General DataAnalytic System," Psychological Bulletin, LXX (1968), 426-443.

Gery, Frank W., "Mathematics and the Understanding of Economic Concepts," Journal of Economic Education, II (Fall, 1970), 100-104.
Gross, R. E., "A Decade of Doctoral Research in Social Studies Education," Social Education, XXXVI (May, 1972), 555-560.

Jones, Galen, "The Current Status of Economics Teaching in the High Schools of the United States," NASSP Bulletin, XLIX (November, 1965), 3-26.
Luker, William A., "The Relationship Between Economic Knowledge and Certain Elements of the Affective Domain," Research Papers in Economic Education, edited by Arthur L. Welsh, N N Work, Joint Council on Economic Education, 1972 .

Marston, Glenn F., Kenneth Lyon, and Richard Knight, "Learning and Attitude Change of Students Subjected to a National Income Simulation Game," Research Papers in Economic Education, edited by Arthur L. Welsh, Joint Council on Economic Education, New York, 1972.

Oates, Wallace D., and Richard E. Quandt, "The Effectiveness of Graduate Students as Teachers of the Principles of Economics," Journal of Economic Education, I (Spring, 1970), 131-138.

Paden, Donald W. and M. Eugene Moyer, "The Relative Effectiveness of Three Methods of Teaching Principles of Economics," Journal of Economic Education, I (Fall, 1969), 33-45.

Ramsett, David E., Jerry D. Johnson, and Curtis Adams, "Some Evidence on the Value of Instructors in Teaching Economic Principles," The Journal of Economic Education, V (Fall, 1973), $\overline{57-6}$.

Sewell, Edward G., "Effect of Class Work in Economics on Attitudes and Understanding of a Select Group of Secondary School Pupils," Journal of Educational Research, LVII (November, $\overline{1963), 1} 1 \overline{31}-\overline{136 .}$

Sulkin, Howard A., "Retention and Transfer of Concepts Taught in Elementary School Economics Programs," Research in Elementary School Economics, edited by Howard A. Sulkin and Chana R. Friedman, Chicago, Industrial Relations Center, University of Chicago, 1969.
and Robert W. Pranis, "Evaluation of Elementary School Social-Studies Program," Educational Leadership, XXVII (December, 1969), 271-276.
Villard, Henry H., "Where We Now Stand," Journal of Economic Education, I (Fall, 1969), 60-66.

Witt, Mary, "Use of Feedback in the Study of Economics in the Elementary School," Educational Quest, XIII (Fall, 1969), 5-9.

Reports

Gross, R. E. and Leonardo de la Cruz, Social Studies Dissertations: 1963-1969, Reference Series No. 4, Boulder, Colorado, ERIC Clearinghouse for Social Studies/Social Science Education, 1971.

Publications of Learned Organizations
Joint Council on Economic Education, DEEP 1969, New York, Joint Council on Economic Education, 1969.

Unpublished Materials
Anderson, Charles R., "The Effectiveness of a Simulation Learning Game in Teaching Consumer Credit to Senior High School Students in Comparison to a Conventional Approach to Instruction," unpublished doctoral dissertation, Department of Economics, University of Maryland, College Park, Maryland, 1969.

Bonds, Marianne, "A Quasi-Experimental Study of the Differential Impact of a Set of Informational Delivery Systems on Student Understanding of Elementary Economic Concepts," unpublished doctoral dissertation, North Texas State University, Denton, Texas, 1973.

Chapin, June R., "Social Studies Doctoral Dissertations 1969-1973," unpublished paper read before the National Council for the Social Studies, San Francisco, California, November 20, 1973.

Clark, Marvin A., "Incidental Learning of Economics in Beginning Typewriting," unpublished doctoral dissertation, Department of Economics, University of Minnesota, Minneapolis, Minnesota, 1967.

Dietz, James E., "Economic Understanding of Senior Students in Selected California High Schools," unpublished doctoral dissertation, Department of Economics, University of California, Los Angeles, California, 1963.

Dooley, Bobby Joe, "Comparison of Pupil Test Performance on Two Units in Elementary Economics with a Select Sample of Disadvantaged Children," unpublished doctoral dissertation, University of Georgia, Athens, Georgia, 1968.

Ellis, Irby Compton, "A Study of the Status of Economic Education in the Secondary Schools of Mississippi," unpublished doctoral dissertation, University of Southern Mississippi, Hattiesburg, Mississippi, 1969.

Gentry, Athal Denriis, "Economic Understanding of Non-College-Bound Senior in Public High Schools in Indiana," unpublished doctoral dissertation, Iniversity of Denver, Denver, Colorado, 1969.

Green, Gerald G., "The Teaching of Economics: A Comprehensive Analysis and Synthesis of Research Findings and Thought," unpublished doctoral dissertation, Department of Economics, Indiana University, Bloomington, Indiana, 1964.

Hemmer, William V., "The Development of an Affective Scale and its use in Comparing Affective and Cognitive Changes During Twelfth Grade Economics Instruction," unpublished doctoral dissertation, State University of New York, Albany, New York, 1969.

Hunt, Eugene H., "An Experimental Study to Determine the Effectiveness of Teaching Economics at the Secondary School Level," unpublished doctoral dissertation, Departmeni of Economics, University of Maryland, College Park, Maryland, 1968.

Lewis, Darrel R., and Tor Dahl, "Critical Thinking Skills in the Principles Course: An Experiment," unpublished paper, University of Minnesota, Minneapolis, Minnesota, 1970.
Luker, William A. and Steve W. Wood, "Cognitive and Effective Changes in Students as a Result of Exposure to Economic Content," unpublished paper, North Texas State University, Denton, Texas, 1972.

Reigel, Terry K., "A Comparative Study of Two Approaches to the Teaching of Economics in Suburban New Jersey Twelfth Grade Economics Classrooms," unpublished doctoral dissertation, New York University, New York City, 1969.

Schwartz, David J., "Report on the Economic Intelligence Quotient Validation Test," unpublished paper, Georgia State University, Atlanta, Georgia, 1969.

Smith, Alfred J., "The Relationship Between the Economic Understandings of Graduating High School Seniors and Certain Personal and Curricular Factors," unpublished doctoral dissertation, Indiana University, Bloomington, Indiana, 1967.

Sorenson, Norman L., "Economic Understanding of Senior Students in the Omaha, Nebraska Public High Schools," unpublished doctoral dissertation, University of Nebraska, Lincoln, Nebraska, 1967.

Spears, Sol, "Children's Concept of Learning in Economics under Three Experimental Curricula," unpublished doctoral dissertation, University of California, Los Angeles, California, 1967.

[^0]: decreased dogmatism is associated with increased economic understanding. Furthermore, this relationship persists when academic ability, student evaluation of the course, socioeconomic class and pretest understanding of economics are held constant (15, p. 7).

[^1]: *Constant $=-15.36013072$

[^2]: * Constant $=32.88406690$

[^3]: *Constant $=-10.62672694$

[^4]: ${ }^{*}$ Constant $=-3.87885877$

[^5]: Constant $=30.37486467$

[^6]: *Constant $=-0.57369941$

[^7]: - Indicates areas for which separate indexes are published.
 ${ }^{1}$ The 18 largesi Standard Metropolitan Statistical Areas as defined for the 1960 Census of Population were selected on a certainty basis and represent themselves only in the population weight patterns. The other ample aelections carry not only, their own population weights but also prorata shares of the population weights of all cities in their region in the same population class.
 "Item samples are identified as amples " 1 " and " 2 ." Outlet samples are identified as samples "A" and "B." The determination as to extent of ampling within an areadepended on plans for publishing separate area indexes and on plans for developing estimates of ampling error and its componenta.
 ${ }^{3}$ Foode, fuels, and several other items are priced every month in all cities. Prices of a few items are collected emiannually or annally in allcities. Prices ot other goods and services are obtained on the schedule indicated:

 $$
 M=\text { Every month. }
 $$

 1 = January, April, July, and October.
 $2=$ February, May, August, and November.
 3 = March, June, September, and December.
 ${ }^{4}$ Standard Consolidated Areas.
 ${ }^{5}$ Population weights revised for this group beginning January 1966.

[^8]: Assume increase; then increase; th to spend in the check your revised
 each category would
 budget so that the he man would first year-

[^9]: Would you make a profit by selling? Would you sell your cattle under those conditions? Why or why not?

[^10]: Return the papers to each team. Begin the simulation.

 Budgets assigned to the students:

