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Influence of rapid growth on skeletal adaptation to exercise

B.L. Specker

E.A. Martin Program in Human Nutrition, South Dakota State University, Brookings, SD, USA

Abstract

During rapid growth, increased body weight and muscle strength result in increased loads on bone. Bone adapts to these
increased strains by increasing bone modeling and remodeling. As the growth rate decreases, bone that was formed as a result
of these adaptations continues to mineralize and "catch up", and bone modeling and remodeling decreases. Bone benefits of
exercise in childhood are reported in some studies, although we observed less BMC gain at trabecular-rich sites during the
peri-pubertal period in children who jumped than those who did not. Data from 13 existing pediatric exercise studies were
compiled to determine whether similar patterns of age-related bone changes could be identified, and whether the bone bene-
fit of exercise differed depending upon pubertal stage. The benefit of exercise on total body BMC gains occurred across all
ages, whereas greater exercise-induced gains at the spine and hip were observed in younger children compared to older chil-
dren. The majority of studies found a positive effect of exercise on bone, but typically this involved limiting the analysis to spe-
cific sub-populations (i.e., higher calcium intake, lower baseline activity levels, smaller body size). Limitations of the studies

published to date are discussed.
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Bone growth

During growth, there are gains in both bone length and
width. The increase in bone length is a result of endochon-
dral ossification. Endochondral ossification involves the for-
mation of cartilage at the ends of the long bones in the
growth plate region, which is then transformed into bone tis-
sue in the adjacent metaphysis.

Modeling and remodeling are distinctly different. Model-
ing is a result of osteoblasts depositing bone matrix on the
periosteal surface, while osteoclasts resorb bone on the
endosteal cortical surface. Remodeling occurs in bone
formed both through endochondral ossification and by mod-
eling, and is the result of successive cycles of bone resorption
and formation on the same surface. Bone modeling leads to
an increase in bone width or circumference, while increased
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bone remodeling leads to increased cortical "porosity." This
increase in cortical porosity explains in part the increased
fracture risk that is observed at the time of peak height
velocity. Bone adapts to increased strains during growth, and
as the growth rate decreases the bone that was formed as a
result of these adaptations continues to mineralize and
"catch up", and bone modeling and remodeling decreases.

Exercise during rapid bone growth

During rapid growth spurts, increased body weight, muscle
strength and longitudinal bone growth result in increased
loads on bone. According to the "mechanostat" theory, pro-
posed by Harold Frost in 1987", the skeleton will adapt to
these loads by increasing its strength. There are numerous
studies reporting an association between bone and lean mass,
and this association is often used as evidence supporting the
"mechanostat" theory*’. However, genetic factors also may
explain the association between bone and lean mass, as well
as between bone and body weight, with leaner or larger indi-
viduals "programmed" to have larger skeletons. Recent find-
ings by Rauch and co-workers show that increased muscle
growth precedes increased bone mass accretion and the
authors suggest that these data support the "mechanostat"
theory that bone is driven by muscle development®.
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Figure 1. The effect of jumping in pre-pubertal, peri-pubertal, and
pubertal children on changes at the: a) total cross-sectional area, b)
trabecular bone area, c) trabecular vVBMD and d) total vBMD at
the 4% distal tibia.
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In general, it is thought that periods of growth are the best
time to influence bone through increased loading due to the
high rates of bone modeling and remodeling that are occur-
ring’. Structurally, the most efficient way for bone to increase
strength is by increasing bone diameter. Exercise during early
adolescence may affect the periosteal surface, which is rapid-
ly growing due to the high rates of modeling that are occur-
ring. Exercise later in adolescence may affect endosteal sur-
faces. This is a time when endocortical apposition is occur-
ring and cortical thickness is increasing. Findings from ran-
domized exercise trials, on the other hand, are not always
consistent with the general belief that increased bone loading
during growth will lead to increased bone mass accrual.

Findings from a preliminary randomized trial of jumping
in 54 pre-, peri-, and post-pubertal children did show bone
benefits in children who were randomized to jump (25 times
per day off a 45 cm box, 5 days per week for 12 weeks) com-
pared to controls who did not jump®. Bone measures includ-
ed DXA scans of the total body and spine and pQCT scans at
the 4% (trabecular) and 20% (cortical) distal tibia at baseline
and 12 weeks. Children who jumped had significantly greater
increases in total body and leg BMC compared to control
children, but jumping lead to significantly less BMC gain at
trabecular-rich sites during the peri-pubertal period (group-
by-puberty interactions, p<0.05). Further investigation of
differences in pQCT measurements at the 4% trabecular
bone site found no difference in total cross-sectional bone
area, but greater trabecular bone area with lower trabecular
and total volumetric bone mineral density (vBMD) in peri-
pubertal children who jumped than control children (Figure
1). These results suggest that loading leads to a greater
increase in endosteal resorption and expansion of the trabec-
ular bone area during the peri-pubertal period. It is likely that
the relatively small sample size contributed to the lack of sig-
nificant difference in total cross-sectional area between chil-
dren who jumped and controls. A further disadvantage of this
study was that pubertal status was self-reported and signifi-
cant hormonal changes occur during the peri-pubertal peri-
od. The findings of this study led to a review of pediatric exer-
cise trials, in order to determine whether other studies report
similar findings during this period of rapid growth.

Review of pediatric exercise trials

Upon the initial reading of the pediatric intervention tri-
als, it was difficult to come to a single conclusion regarding
the effect of exercise on bone changes and whether or not
puberty or different periods of growth modify the skeletal
effect of loading. The intervention trials reported a variety of
bone sites, various techniques were used, the exercises were
varied in their approach, and the length of the studies also
differed significantly. Therefore, a review of pediatric exer-
cise trials was conducted to attempt to synthesize results of
previous trials to determine whether consistent patterns
could be identified.

There were 13 pediatric exercise trials that were reviewed
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Reference Unit * | Gender Age Number Length Intervention

Morris et al., 1997’ S Girls 10y 71 10 mo High impact + weight training:
30min 3d/wk

Bradney et al., 1998° S Boys 10y 40 8 mo High impact + weight training:
30min 3d/wk

Heinonen et al., 2000° I Girls 12y 126 9 mo High impact: 50min 2d/wk

Witzke et al., 2000%° S Girls 15y 53 9 mo High impact + strength training:
30min 3d/wk

McKay et al., 2000" S Mix 9y 144 8 mo High impact: 10min 3d/wk

MacKelvie et al., 2001" S Girls 10y 177 7 mo High impact: 20 min 3d/wk

& Petit et al., 2002"

Fuchs et al., 2001" S Mix 8y 89 7 mo 100 jumps/d 3d/wk

MacKelvie et al., 2002% S Boys 10y 121 7 mo High impact: 10min 3d/wk

Specker et al., 2003 I Mix 4y 178 12 mo High impact: 30min 5d/wk

Stear et al., 2003" 1 Girls 17y 131 16 mo High impact: 45min 3d/wk

Tuliano-Burns et al., 2003" I Girls 9y 66 9 mo Moderate impact: 20 min 3d/wk

Johannsen et al., 2003° I Mix 11y 54 3 mo 25 jumps/d 5d/wk

VanLangendonck et al., 2003" I Girls 9y 21 9 mo High impact: 10 min 3d/wk

* Unit that was assigned or randomized: I=individual; S=school or classroom

Table 1. Summary of pediatric exercise trials.

(Table 1)*". Trials conducted in infants®* or done as a fol-
low-up® were excluded. The mean annual percentage
changes were calculated for both exercise and control groups,
as well as the difference in percentage change between the
two groups. The changes were annualized in order to allow
for comparisons among studies. The mean annual changes
and differences between percentage change in the exercise
and control groups were plotted against age to determine
whether bone response varied by age. The results for differ-
ent bone regions are illustrated in Figures 2 to 7.

The majority of studies using dual energy X-ray absorp-
tiometry (DXA) found gains in total body BMC at all ages
studied, and annual percentage gains were greater in
younger children (Figure 2a). A greater gain in total body
BMC among the exercise group than the control group was
found in some of the trials and the effect appeared to be sim-
ilar for all ages (Figure 2b). Overall, greater spine BMC
gains occurred around the time of puberty (Figure 3a), with
a greater benefit of exercise among pre-pubertal children
(Figure 3b). The percentage change in spine BMC was
greater among the exercise than control groups, except
around the peri-pubertal period. As expected, greater gains
in femoral neck BMC also were observed in the pre- and
peri-pubertal periods than during post-puberty (Figure 4a).
The benefit of exercise on femoral neck BMC gain also was
fairly consistent across the studies among pre-pubertal chil-
dren, but not post-pubertal children (Figure 4b).

The use of peripheral quantitative computed tomography
(pQCT) or hip structural analysis (HSA) in some of the stud-
ies allowed for the investigation of changes in bone geome-
try. pQCT also provides estimates of changes in trabecular
and cortical volumetric density (vBMD), although measures
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Figure 2. Total body BMC. a) Annualized mean changes by puber-
tal status for both exercise and control groups, and b) differences
in BMC percentage change between exercise and control groups.
Statistically significant findings among single studies are shown
inside a square. x=pre-pubertal; ® =pre- + early puberty com-
bined; m=early or peri-pubertal; o= post-pubertal.
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Figure 3. Spine BMC. a) Annualized mean changes by pubertal
status for both exercise and control groups, and b) differences in
BMC percentage change between exercise and control groups. Sta-
tistically significant findings among single studies are shown inside
a square. x=pre-pubertal; ®=pre- + early puberty combined;
m=cearly or peri-pubertal; o=post-pubertal.

of cortical vBMD may be underestimated in smaller bones
due to a partial volume effect”. Overall, an increase in
periosteal expansion with lower endosteal expansion
occurred around the time of puberty, leading to a greater
increase in cortical thickness (Figure 5). There was no con-
sistent effect of exercise on any of the bone geometric prop-
erties, although one study did report a greater decrease in
endosteal circumference leading to a greater cortical thick-
ness among children who exercised compared to those chil-
dren who did not exercise® (Figure 6). There was a slight
decline with age in the bone differences that were observed
with exercise. Greater increases in cortical vBMD were
observed around the time of puberty, and the gains in vBMD
were not different between exercise and control groups
(Figure 7).

It is likely that there are environmental factors that may
modify the bone response to activity. There has been specu-
lation that greater exercise-induced changes occur in indi-
viduals with greater calcium intake than what is seen in indi-
viduals with lower calcium intake”. Four of the 13 trials
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Figure 4. Femoral neck BMC. a) Annualized mean changes by
pubertal status for both exercise and control groups and b) differ-
ences in BMC percentage change between exercise and control
groups. Statistically significant findings among single studies are
shown inside a square. x=prepubertal; o=post-pubertal.

shown in Table 1 reported results consistent with this specu-
lation®'®',

An exercise program also may only have bone benefits if
the loads that are placed on the skeleton are greater than
what the bone normally senses. Several of the studies found
results that would support this. Positive effects of exercise
were observed in the study by MacKelvie and co-workers
only if the analysis was limited to boys with low or average
body mass index". Van Langendonck et al. found an exer-
cise benefit on bone if they limited their analysis to girls
with minimal weight-bearing activity during their leisure
time".

Compliance with the exercise program also is important
since the less compliant individuals are likely not to have
sufficient loads to observe a bone effect. This was observed
by Stear et al. who reported a significant effect of exercise
on size-adjusted BMC, but only when the analysis was lim-
ited to girls who attended at least 50% of the exercise
classes'’.
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Figure 5. Annualized mean changes by pubertal status in periosteal
and endosteal circumferences and cortical thickness. x=pre-puber-
tal; m=early or peri-pubertal combined; o=post-pubertal.

Study limitations

There are many difficulties in comparing the pediatric
exercise trials that have investigated bone health. Many of
these studies involved randomization of the schools rather
than the individual, and other differences may exist between
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schools that could influence bone changes. In addition, ran-
domized trials are expensive and the majority of studies tend
to be relatively small.

Different methods for assessing bone and the outcomes
that are presented vary from one study to another. Bone
measures that are typically reported include areal measures
of BMD, while more important measures of BMC and bone
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Figure 7. Cortical vBMD. a) Annualized mean changes by pubertal
status for both exercise and control groups, and b) differences in
vBMD percentage change between exercise and control groups.
x=pre-pubertal, m=early or peri-pubertal; o=post-pubertal.

area are often not provided. Measures of bone geometry
include those obtained by pQCT or estimated from HSA that
is performed using the hip DXA scan. There are likely to be
site-specific changes that occur in bone geometry and few
studies have measured similar bone sites. Often only the
unadjusted or adjusted means are given, making comparisons
among studies difficult. The intriguing results of our original
study were changes that occurred at trabecular bone sites.
However, when conducting the review of existing studies it
was apparent that the majority of studies using pQCT meas-
ured primarily cortical bone sites, making it difficult to com-
pare results with changes observed at a trabecular bone site.

While trying to investigate the effect of rapid growth on
bone changes resulting from increased loading, it is difficult
to identify pubertal status in many of the studies. Often study
populations were described simply as pre-pubertal or post-
pubertal, yet this is a continuum that will change over the
period of the trial and the majority of studies did not take
changes in pubertal status over the study period into account.

The trials conducted different types of interventions over
varying lengths of time. The majority of trials involved high
impact activities only and few reported actual increases in
lean mass or strength. Muscle generates significant forces on
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the skeleton and exercises that involve a combination of
impact and strength training exercises are likely to have
more of a bone benefit than exercises involving only impact
activities. The length of the trials ranged from 3 to 15.5
months. Errors in estimates of bone changes over the short-
er study periods will be greater when they are annualized for
comparison purposes.

Due to the small number of trials that have been com-
pleted, it was not possible to present sex-specific results.
There are significant sex differences in bone changes, espe-
cially around the time of puberty, and it is possible that the
response to exercise may differ among boys and girls at dif-
ferent ages. Eight of the studies were conducted in girls, 2 in
boys and three presented the bone results for both boys, and
girls combined.

Summary

Although it is widely believed that exercise during child-
hood leads to significant bone benefits, the results of ran-
domized controlled trials are not consistent and there are
many unanswered questions. It appears that some bone sites
are more responsive to exercise than others and this respon-
siveness varies by age. The benefit of exercise on gains in total
body BMC occurred across all ages, whereas greater exercise-
induced gains at the spine and hip were observed in younger
children compared to older children. The majority of studies
found a positive effect of exercise on bone, but typically this
involved limiting the analysis to specific sub-populations (i.e.,
higher calcium intake, lower baseline activity levels, smaller
body size). These findings suggest specific populations may
benefit from increased exercise more than others.
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