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ABSTRACT 

DISEASE RESISTANCE IN WHEAT AND ITS RELATIVES  

ETHAN JAMES ANDERSEN 

2019 

  

Plants have evolved a complex defense system against pests and pathogens 

utilizing many types of receptors, signaling factors, and defense compounds to detect 

pathogen presence and respond effectively. Since many pathogens have evolved immune-

suppressing effectors used to reduce plant resistance, plants have evolved a family of 

receptors that detect pathogenic effectors as a result of an evolutionary arms race. These 

receptors contain Nucleotide-Binding Site and Leucine-Rich Repeat domains and are 

called NBS-LRR or NLR proteins. Many grasses possess huge genomes with hundreds of 

NLR-encoding genes, often found in clusters at the extra-pericentromeric regions of 

chromosomes, where unequal crossing over causes tandem duplication and a mechanism 

for resistance (R) gene diversification. R genes also possess domains associated with 

signaling factors that either serve as baits for pathogen effectors or as active signaling 

components to initiate defense responses. The objectives of this dissertation project were 

to: 1) identify R genes in wheat and some of its relatives; 2) assess how they may have 

evolved in grasses with available genomes, such as wheat, barley, foxtail millet, and rice; 

3) investigate integrated domains found in wheat NLRs; and 4) assess differences in gene 

expression between tan spot resistant and susceptible wheat when exposed to 

Pyrenophora tritici-repentis (Ptr), a pathogen that uses wheat R gene Tsn1 as a 

susceptibility gene to facilitate infection. Genomic data was analyzed by the construction 

of Hidden Markov Model profiles and sequence annotation using programs such as 
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InterProScan and MEME (Multiple Expectation maximization for Motif Elicitation). R 

genes were used to construct phylogenetic trees, chromosomal maps, exon-intron 

diagrams, and syntenic maps. The interaction between wheat and Ptr was investigated 

through a greenhouse experiment, where resistant and susceptible wheat was inoculated 

with Ptr spores or directly infiltrated with the Ptr ToxA protein. Genome-wide 

identification of R genes revealed that Hordeum vulgare, Setaria italica, Aegilops 

tauschii, and Triticum aestivum had 175, 202, 402, and 802 NLRs with N-terminal 

Coiled-Coil domains (CNLs), respectively. In each species studied, R genes formed 

clusters, many containing highly similar genes, providing evidence of tandem 

duplication. CNLs in wheat and wheat relatives formed an expansion of the CNL-C clade 

that showed evidence of purifying selection. R gene sequences necessary for effector 

detection diversified, while domains necessary for signaling remained conserved. Wheat 

NLRs contained integrated domains (IDs) associated with kinase, transcription factor, 

and other signaling mechanisms. Wheat NLR-ID genes encoded multiple transcripts, 

indicating that wheat is able to include or exclude IDs through alternative splicing. 

Greenhouse experiments revealed several groups of genes that differed in expression 

between tan spot resistant and susceptible cultivars. Wheat resistant to Ptr showed 

increased expression of genes associated with resistance: chitinases, signaling factors (i.e. 

transcription factors and kinases), resistance receptors, and enzymes associated with 

phytoalexin production. These results all showed that resistance in wheat and its relatives 

relies on a complex network of factors, and that NLRs have diversified to be a variable 

family of components that initiate defense responses when triggered by pathogenic 

effectors. 
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INTRODUCTION 

 

Plants have evolved numerous strategies to detect and respond to biotic stress 

imposed by pests and pathogens 1-3. Elicitors from pathogens trigger host receptor 

proteins, which utilize signaling mechanisms to initiate gene expression linked to defense 

responses 4. Plants utilize several types of receptors to detect the following elicitors: 

pathogen components, damage caused by infection, and effectors that pathogens use to 

inhibit host defenses 5-7. These receptors then initiate signal transduction pathways, often 

including kinase cascades and transcription factors, in order to trigger the expression of 

genes associated with various resistance responses, such as hypersensitive response or 

phytoalexin production 8-10. This dissertation research focuses on genes involved in 

disease resistance mechanisms. Chapter 1 of this dissertation provides a literature review 

of the components required for pathogen detection, signal transduction, and defense 

response. This chapter is published in the journal Genes 11.  

Receptors that detect pathogenic effectors are often encoded by genes referred to 

generally as resistance genes (R genes), and more specifically based upon domains they 

encode for: Nucleotide-Binding Sites and Leucine-Rich Repeats (NBS-LRRs or NLRs) 4. 

The dynamic nature of the plant immune system’s response to quickly evolving 

pathogens has driven a rapid coevolution of the receptors and corresponding effectors 12-

14. Agriculture relies heavily on cultivars with these genes to provide genetic resistance 

against diseases that cause yield loss. Grasses play a significant role in agriculture, and 

wheat, for instance, makes up a large percentage of the human food supply. Other grass 

crops include barley, rice, corn, and millet. Due to the economic importance of these 

species, their genomes have recently been sequenced and made available in public 
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databases 15. The genomes of some wild relatives of crop species, such as the wheat 

progenitor Aegilops tauschii, have also been made available 16. Chapter 2, 3, and 4 focus 

on a genome-wide identification of R genes in Hordeum vulgare, Setaria italica, and 

Aegilops tauschii, respectively. Several gene annotation programs were employed to 

identify, map, align, and compare R gene sequences, and multiple programs were used to 

assess phylogenetic relationships, evidence of duplications, and genome synteny. 

InterProScan 17 and MEME 18 were used to annotate domains and motifs within R genes. 

The programs ClustalW 19 and MEGA 20 were used to align and construct phylogenetic 

trees. SyMAP 21 was used to generate syntenic maps comparing whole chromosome 

sequences between species. The Gene Structure Display Server 22 and Geneious 23 were 

used for data visualization, such as exon-intron diagrams and chromosomal clustering. 

DNAsp 24 was used to measure the ratio of nonsynonymous substitutions per 

nonsynonymous site to synonymous substitutions per synonymous site. The findings 

showed that 175, 202, and 402 R genes occur in H. vulgare, S. italica, and A. tauschii, 

respectively. These genes occurred both in isolation and in clusters, providing evidence 

of tandem and segmental duplication, respectively. An expansion of CNLs (NLRs with 

Coiled-Coil motifs) was consistent across all the species analyzed in this study, 

particularly the CNL-C clade, with members undergoing purifying selection. These three 

chapters (2, 3, and 4) are published in the journals Evolutionary Bioinformatics 25, Plant 

Gene 26, and Proceedings of the South Dakota Academy of Science 27, respectively. 

 Due to the importance of wheat to the human diet, pathogens reducing wheat 

yield have become major topics of research. Chapter 5 focuses on identification and 

characterization of R genes in the Triticum aestivum genome. In addition to the methods 
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implemented in earlier chapters, Circa (http://omgenomics.com/circa) and Circoletto 28 

were used to map genes to chromosomes and generate similarity diagrams between 

clustered genes, respectively. A total of 2151 potential R genes were found in wheat, with 

802 belonging to the CNL class. These genes formed 547 clusters, providing evidence of 

tandem duplications. In Chapter 6, further domain analysis of R genes with potential 

roles in signal transduction or as baits for pathogenic effectors was elaborated. Gene 

annotation using InterProScan was used to identify integrated domains, and genomic data 

regarding alternative transcripts were analyzed to understand possible alternative 

splicing. Wheat R genes that contain integrated domains (IDs) show evidence that 

alternative splicing is used to include or exclude IDs, which, based upon sequence 

homology, are likely functional as signaling domains or baits for pathogenic effectors. 

Chapter 6 has been accepted for publication in the Journal of Botanical Research.  

Chapter 7 focuses on the disease tan spot, caused by the fungal pathogen 

Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus (Phylum Ascomycota) 29,30. 

This pathogen secretes effectors that cause leaf chlorosis and necrosis, leading to the tan 

spot symptoms. Wheat cultivars possess varying levels of resistance to Ptr, at least 

partially due to the presence of susceptibility genes in the wheat genome. Wheat cultivars 

possessing the susceptibility gene Tsn1 are susceptible to the Ptr effector ToxA and 

develop necrotic lesions 31. Tsn1 is a cytoplasmic NLR protein, indicating that Ptr ToxA 

hijacks the wheat defense system to lead to symptom development 32. Therefore, while 

NLRs are generally described as resistance genes, some pathogens have developed 

mechanisms to use them as susceptibility genes. Research presented in Chapter 7 

examined differences between resistant and susceptible wheat cultivars after either 
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infection with Ptr or direct infiltration with an isolate of the Ptr ToxA. Gene expression 

was analyzed in susceptible wheat cultivar Glenlea and resistant wheat cultivar 

Salamouni with a greenhouse experiment in which plants were inoculated with Ptr ToxA-

producing race 2 or directly infiltrated with Ptr ToxA isolate. The programs FASTQC 33, 

Btrim 34, Hisat 35, and Htseq 36 were used to quality check, trim, map, and assemble the 

RNA sequencing data to the pathogen and host genomes. The program R 37 with the 

Bioconductor package and DESeq2 38 were used to assess differential gene expression. 

The results showed that Ptr-resistant wheat expressed genes associated with resistance 

functions, such as chitinases, signaling factors (i.e. transcription factors and kinases), 

resistance receptors, and enzymes associated with phytoalexin production. 

Overall, this dissertation research shows that disease resistance in wheat and its 

relatives relies on a complex network of factors, with R genes that have evolved to 

encode a highly variable set of effector-detecting receptors. These findings show that R 

genes generally exist in clusters at the extra-pericentromeric regions of chromosomes and 

experience purifying selection. The transcripts that R genes encode are alternatively 

spliced to include additional domains that extend R protein function as signal 

transduction factors and baits for pathogenic effector modification. Wheat-pathogen 

interactions involve the expression of multiple classes of genes that have roles in 

detection, signaling, and response (e.g. NLRs, kinases, and chitinases). These findings 

serve as a framework for future analyses of R genes in grasses and will have implications 

for the development of wheat cultivars with durable resistance.  
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CHAPTER 1: PATHOGEN RESISTANCE MECHANISMS IN PLANTS 

 
This chapter is published in the journal Genes: 

Andersen, E.J., E. Byamukama, S. Ali, Y. Yen, and M.P. Nepal. 2018. Disease 

Resistance Mechanisms in Plants. Genes. 9(7): 339; doi: 10.3390/genes9070339 

 

Abstract: Plants have developed a complex defense system against diverse pests and 

pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors 

initiate signaling pathways driving the expression of defense response genes. Plant 

immune systems rely on their ability to recognize enemy molecules, carry out signal 

transduction, and respond defensively through pathways involving many genes and their 

products. Pathogens actively attempt to evade and interfere with response pathways, 

selecting for a decentralized, multicomponent immune system. Recent advances in 

molecular techniques have greatly expanded overall understanding of plant immunity, 

largely driven by potential application to agricultural systems. Here, the major plant 

immune system components, state of the art knowledge, and future direction of research 

on plant-pathogen interactions are reviewed. In this review, one major focus is how the 

decentralization of plant immune systems have provided both increased evolutionary 

opportunity for pathogen resistance as well as additional mechanisms for pathogen 

inhibition of such defense responses. Conclusions include that the rapid advances in 

bioinformatics and molecular biology are driving an explosion of data and information at 

a much faster rate, contributing to agricultural production and useful in addressing 

complex problems in evolutionary biology in general. 
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1. INTRODUCTION 

1.1. Plant Disease Resistance has Emerged as a Complex, Multicomponent System 

 The agricultural revolution of approximately 10,000 years ago intensified 

humanity’s relationship with plants. Since survival largely depended on yield, early 

farmers would have selected plants based on multiple factors, including their ability to 

resist disease. Multiple plant diseases recorded in ancient times were often attributed to 

supernatural causes, but phytopathological observations can be traced back to the third 

and fourth centuries B.C. in the writings of Aristotle’s student Theophrastus 1. 

Microbiology during the enlightenment enabled systematic classification of pathogenic 

organisms, newly visible under compound microscopes. Early experiments in the 19th 

century demonstrated the efficacy of fungicides, such as the Bordeaux mixture of copper 

sulfate and calcium oxide 2. Also in the 19th century, pathogenic microbes were 

demonstrated to be the causal agents of plant diseases by Heinrich Anton de Bary 3. 

Understanding of heritability and genetics developed in the early 20th century allowed 

researchers to identify sources of heritable resistance, call Resistance genes (R genes) 4,5. 

R genes were further described by H. H. Flor’s ground-breaking Gene-for-Gene model 6, 

correlated with avirulence genes present in the pathogen that create an incompatible 

response. Mechanisms for resistance utilizing R genes were then elucidated following 

advances in chemistry and molecular biology later in the 20th century 7,8. The advances in 

molecular techniques and genomics of the early 21st century drove the discovery of 

numerous classes of genes that encode regulators of disease resistance and susceptibility 

9. R genes were found to be only one set of participants in a web of interacting factors. 

Recent molecular research has revealed that plant resistance relies on a complex 
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regulatory system that controls plant defense responses, greatly building upon the simple 

structure of H. H. Flor’s gene-for-gene model. Plant immune system components 

participate in pathogen detection, signal transduction, or defense response. Selection 

pressures drive the evolution of plants with complex detection systems and pathogens 

with sophisticated evasion techniques, as outlined in the Zig-Zag model 10. This review 

focuses on these components and how they are involved in immunity. This review does 

not aim to completely exhaust every aspect of each component, as whole reviews can and 

are dedicated to a single class of one factor. Instead, the conceptual framework of 

phytopathogen resistance is presented, as supported by examples. The first area this 

review describes is which components are involved in this plant immune system and how 

pathogens have evolved to subvert defenses. 

 

1.2. Plant Defense Relies on Detection and Response 

Investigation into the molecular basis of pathogen resistance reveals a suite of 

cellular receptors that performs direct detection of pathogenic molecules. Pattern 

Recognition Receptors (PRRs) within the cell membrane detect pathogen-associated 

molecular patterns (PAMPs) and Wall-Associated Kinases (WAKs) detect damage-

associated molecular patterns (DAMPs) that result from cellular damage during infection 

11,12. Receptors with Nucleotide-binding domains and Leucine-rich Repeats (NLRs) 

detect effectors that pathogens use to facilitate infection 13. PRRs, WAKs, and NLRs 

initiate one of many signaling cascades that have yet to be completely elucidated. 

Mitogen-Activated Protein Kinases (MAPKs), G-proteins, ubiquitin, calcium, hormones, 
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Transcription Factors (TFs), and epigenetic modifications regulate the expression of 

pathogenesis-related (PR) genes 14-18. This leads to various responses that prevent further 

infection: Hypersensitive Response (HR), production of Reactive Oxygen Species (ROS), 

cell wall modification, closure of stomata, or the production of various anti-pest proteins 

and compounds (e.g. chitinases, protease inhibitors, defensins, and phytoalexins) 19,20. As 

now understood from molecular techniques, pathogen resistance in plants involves 

various organelles and classes of both proteins and non-protein compounds, each of 

which are required to regulate defense response (see Figure 1.1). Factors in each of these 

roles affect various other signaling systems, such as growth and abiotic stress response. 

An improved understanding of plant-pathogen interaction requires a full description of 

these molecular interactions that take place when a compatible pathogen interacts with 

plant tissue. First, however, the pathogens that elicit these responses must be described 

and how their evolution has led to the complex immune system that plants possess.  
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Figure 1.1 Components of plant pathogen resistance pathways involved in pathogen 

detection, signal transduction, and defense response (detection in the upper center 

and progressing around clockwise, ending in defense response in the upper left). 

Pathogenic elicitors (cell components or effectors) produced by bacteria, fungi, 

insects, nematodes, or viruses trigger plant receptors to initiate signaling cascades. 

Activated receptors (blue) then initiate one of many signal transduction pathways or 
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directly act as transcription factors (TFs). Signal transduction pathways (yellow) 

include MAPK cascades, calcium ion signaling, hormone production, TF activity, 

and epigenetic regulation. These factors trigger the expression of genes associated 

with defense responses, such as those regulating the production of ROS, 

antimicrobial enzymes, defensins, and phytoalexins. These defense-related 

compounds (red) actively inhibit pathogen reproduction or make further infection 

more difficult. Breakdown of pathogenic cell components by defense compounds 

leads to further release of receptor-triggering elicitors, increasing the resistance 

response. Multiple organelles are involved in defense response, including 

chloroplasts and peroxisomes for hormone production and the nucleus, endoplasmic 

reticulum, and Golgi apparatus for antimicrobial protein production. 

 

1.3. Pathogen Virulence Relies on Attack and Evasion 

Diverse species and races of pathogens drive plant populations to evolve a highly 

varied set of immune receptors and modes of response 8,21,22. Pathogens respond by 

evolving mechanisms to evade host perception or negate defense responses 10. Pathogens 

often subvert PAMP-Triggered Immunity (PTI) through effectors, which can be secreted 

through various systems. The bacterium Xanthomonas translucens, for example, secretes 

20-40 effectors through a type III secretion system, resembling a tube that transfers 

effectors into wheat cytoplasm 23. Other members of the Xanthomonas genus utilize a 

type VI secretion system which transfers effectors extracellularly 24. Pathogens can also 

increase virulence by transfering effector genes from one species to another, called 

horizontal gene transfer. Such an event has been proposed to describe the transfer of the 
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necrosis-inducing ToxA gene from Parastagonospora nodorum to Pyrenophora tritici-

repentis, which causes the disease tan spot in wheat 25. Plant Effector-Triggered 

Immunity (ETI) detects these effectors and initiates a defense response. Such responses 

must also be varied as pathogens differ in how they extract nutrients: biotrophs from 

living tissue and necrotrophs from dead tissue. HR intended to inhibit biotrophs only 

facilitates necrotroph infection 26. Hemi-biotrophs trick the plant by switching from 

biotrophy to necrotrophy 27, producing effectors in waves that differ by tissue and 

infection stage 28. The complex system leading to pathogen resistance described in 

Figure 1 has been subverted at various levels, with pathogens evolving effectors that 

compromise many of the various signaling steps. As reviewed next, the first stage of 

pathogen detection relies upon the recognition of molecules unique to pathogens or 

resulting from pathogen infection. 

2. PATHOGEN DETECTION 

2.1. PRRs and WAKs detect PAMPs and DAMPs 

 PRRs are able to recognize a wide array of microbial components, including 

fungal carbohydrates 29, bacterial proteins 30, and viral nucleic acids 31. These receptors 

often possess: Leucine-Rich Repeats (LRRs) that bind to extracellular ligands, 

transmembrane domains necessary for their localization in the plasma membrane, and 

cytoplasmic kinase domains for signal transduction through phosphorylation 11. LRRs are 

highly divergent, associated with their ability to bind to diverse elicitors. Many PRRs rely 

on the regulatory protein Brassinosteroid Insensitive 1-Associated Kinase1 (BAK1) and 

other Somatic-Embryogenesis Receptor-Like Kinases (SERKs) 32,33. Extensive signaling 



 16 

is not always initiated, as some PRRs, upon activation, release kinase domains that travel 

to the nucleus to trigger transcriptional reprogramming 34. Molecules detected by PRRs 

are diverse: bacterial (flagellin, elongation factor EF-Tu, and peptidoglycan) 35-37, fungal 

(chitin, xylanase) 38,39, oomycete (β-glucan and elicitins) 40,41, viral (double stranded 

RNA) 31, and insect (aphid-derived elicitors) 33. Although many of these studies were 

conducted to elucidate specific molecular interactions in Arabidopsis, wheat PRRs 

TaLRK10, TaRLP1.1, and TaRLK-R1-3 have been associated with resistance to rust 

(fungi of the genus Puccinia) via detection of fungal PAMPs 42-44.  

Unlike the PRRs that detect non-self pathogen molecules upon infection, other receptors 

perceive damage by recognizing cellular components that have been disrupted by 

pathogenic enzymes. This has been shown in Arabidopsis with RKWAK1 perception of 

oligogalacturonides 45 or DORN1/LecRK-I.9 perception of extracellular ATP 46. WAKs 

possess an N-terminal, extracellular galacturonan-binding domain that interacts with 

pectins in the cell wall and cytoplasmic kinase domains, similar to the structure of PRRs. 

WAK1 and WAK2 perceive oligogalacturonic acid, resulting from plant cell wall pectin 

degradation by fungal enzymes 45. Plant lectins are able to recognize carbohydrates that 

originate directly from pathogens or from damage incurred during infection 47. Many 

PAMPs and DAMPs contain carbohydrates (i.e. lipopolysaccharides, peptidoglycans, 

oligogalacturonides, and cellulose) and are recognized by PRRs/WAKs with lectin 

domains, such as lectin receptor-kinases 47. Plants detect many extracellular molecules 

that indicate pathogen infection 48, such as extracellular DNA, ATP, and NAD(P). 

Pathogens have evolved to interfere in the detection of PAMPs and reduce the efficacy of 

PTI. Cladosporium fulvum and Magnaporthe oryzae produce chitin-binding proteins in 
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order to prevent plant perception (i.e. Avr4 and Slp1, respectively) 49-51. Pathogens also 

produce effectors to thwart many aspects of plant immunity, which plants have developed 

ways to overcome, as outlined in the zig-zag model 10. In order to recognize these 

infection-facilitating pathogen effectors, plants utilize another, more varied class of 

proteins. 

 

2.2. NLRs detect pathogen effectors 

NLRs are R genes among the fastest evolving gene families. Their products, upon 

detection of pathogenic effectors, undergo a conformational shift from a condensed, 

ADP-bound state to an open ATP-bound state with exposed N-terminal domains for the 

initiation of downstream signaling 52-54. N-terminal Toll/interleukin-1 receptor-like (TIR) 

or coiled-coil (CC) domains precede an evolutionarily conserved NB-ARC domain and a 

highly variable LRR 52. CNL genes are found in both monocots and dicots but TNL genes 

are restricted only to the latter 55. Similar to PRRs, variability in the LRR provides these 

receptors with the ability to recognize various effector structures. Unlike PRRs, NLRs are 

generally located in the cytoplasm and possess LRRs at the C-terminal end. The NB-

ARC is named for a Nucleotide-Binding domain with homology to Apoptotic protease 

activating factor 1, plant R-proteins, and Caenorhabditis elegans death-4, and contains 

many conserved motifs: P-loop/Walker-A, RNBS-A, Kinase-2/Walker-B, RNBS-B, 

RNBS-C, GLPL, RNBS-D, and MHDV. However, not all motifs are required for 

function, exemplified by the rice Pb1 CNL protein, which lacks a P-loop 56. Wu et al. 

(2016 and 2017) have shown that NLRs operate in networks, differentiating sensor and 
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helper NLRs, along with NLRs required for cell death (NRCs) 57,58. NLRs have emerged 

as complex receptors that can detect a variety of changes, both through non-self and 

modified-self recognition 59. NLR interactions are not always advantageous, as 

mismatching of NLRs in hybrids can result in autoimmunity 60. NB-ARCs similar to 

those found in NLRs are found in many different species, from the bacterial Streptomyces 

coelicolor genome 61 to those of nematode 62 and human 63, the latter two also involved in 

programmed cell death. Many NLR genes are located in extra-pericentromeric clusters 64, 

which experience high rates of chromosomal recombination. These genes evolve quickly 

through duplications, chromosomal rearrangements, and unequal crossing over 65. 

Transposable elements also play a role in the evolution of regulatory sequences, like 

promoters 66,67. Translocation of NLR genes to unlinked loci increases the likelihood of 

functional diversification 57. Similar to PRRs, many effector-NLR interactions have been 

elucidated in Arabidopsis 68. NLRs have been shown to become activated by direct 

interaction with pathogen effectors 69 or other ways by detecting: modification of the 

effector’s target protein 21,70, modification of a target-mimicking decoy protein 71, or 

modification of the NLR itself 72-74. One of the most well-studied NLR-effector 

interactions involves the NLRs RPM1 and RPS2, which perceive the targeting of 

resistance negative regulator RIN4 by P. syringae effectors AvrRpt2 and AvrRpm1 75. 

Unlike other NLRs, RPS2 and RPM1 are located within the plasma membrane, since 

their guardee, RIN4, is also associated with the plasma membrane 76. After activation, 

RPM1 associates with the promoter-binding AtTIP49a negative regulator to up-regulate 

resistance responses 77. Targets guarded by resistance proteins appear to be conserved 
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among plant species, as found in analysis of PBS1 homologs in grass species (see 

Appendix I).  

NLRs have diverse structures that may include integrated decoy domains that 

exist as targets for effectors, such as TF sequences that effectors regularly target. 

Arabidopsis Resistance to Ralstonia Solanacearum 1 (RRS1) has a WRKY TF domain at 

the C-terminal end to directly bind to promoter sequences 78. The Ralstonia 

solanacearum effector PopP2 modifies this WRKY domain, which triggers activation of 

the NLR 79,80. NLRs are also able to dimerize, such as CNL proteins RGA5 and RGA4 in 

rice, in which RGA5 directly binds to Magnaporthe oryzae effectors Avr-Pia and Avr1-

Co39 81,82. Much research is still necessary to elucidate how NLRs self-associate or 

dimerize, specifically genes with economic importance, such as wheat stem rust 

resistance genes 83. Similar to PRR reliance on BAK1, NLRs rely on other proteins to 

transmit signals. CNLs and TNLs associate with Non-race-specific Disease Resistance 1 

(NDR1) and Enhanced Disease Susceptibility 1 (EDS1) proteins, respectively 84-86. NLRs 

are also able to localize to specific areas of the cell, such as endosomes or the nucleus. 

Potato CNL protein R3a, when triggered by Phytopthora infestans effector Avr3aKI, 

moves to endosomes, where it recruits additional effectors 87. Barley CNL MLA proteins 

accumulate in the nucleus to interfere with WRKY TFs to down-regulate immunity 88. 

Plants also use exocytosis to move immune receptors to the plasma membrane and 

secrete antimicrobial substances. As a way to benefit from disruption of antimicrobial 

compound production, some pathogen effectors interfere with protease secretion 89, 

vesicular trafficking via proteasome degradation 90, and endocytosis 91. 

Parastagonospora nodorum (Septoria nodorum) and Pyrenophora tritici-repentis 
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effectors SnTox1 and PtrToxA utilize susceptibility genes Snn1 and Tsn1, which encode 

WAK and NLR proteins, respectively 92-96. This hijacking of immune components allows 

necrotrophic pathogens to triggering HR through ROS accumulation 97. PRRs, WAKs, 

and NLRs rely on complex signaling mechanisms to initiate defense responses. MAPKs, 

hormones, TFs, and other components play major rolls in this signal transduction.  

  

3. SIGNAL TRANSDUCTION 

3.1. Resistance Involves Multiple Signaling Mechanisms 

Receptors activate signaling mechanisms that are common to many cellular 

processes, including MAPKs, G-proteins, ubiquitin, and calcium fluctuations. In the 

general model of MAPK signaling, membrane-bound Ras proteins facilitate the 

conversion of GTP to GDP, phosphorylating MAPKKK (Raf) proteins, which then 

phosphorylate MAPKK (MEK) proteins, leading to the phosphorylation of MAPK (ERK) 

proteins 14. The involvement of MAPK in many cellular processes has led to the 

identification of MAPK genes in Arabidopsis, which contains 60 MAPKKKs, 10 

MAPKKs, and 20 MAPKs 98. Initiated by bacterial flagellin and elongation factor 

interaction, PRRs FLS2 and EFR dimerize with BAK1 and trigger MAPK signaling 99,100. 

Pathogen pectin degradation detected by WAK1 and WAK2 also initiates a MAPK 

cascade 45,101,102. Studies in tomato show MAPK genes involved in signal transduction of 

NLR perception as well 103-105. Defense responses can also be down-regulated by MAPK 

signaling 106 and pathogens have developed effectors that interfere with MAPK signaling 

to suppress resistance responses 107. Similarly, the heterotrimeric G-protein and G-
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protein-coupled receptor (GPCR) system has been heavily studied due to its involvement 

in numerous cellular processes. Extracellular ligands bind to the transmembrane GPCR, 

causing the exchange of GDP for GTP in the α subunit of the G-protein complex, 

allowing a dissociation of the α subunit from the β-γ subunit complex, initiating further 

signaling 108. Hydrolysis of GTP by the α subunit then causes the subunits to re-associate. 

Metazoan systems make more use of G-protein signaling 109-111, but G-proteins possess 

roles in HR and stomatal closure 15. Ubiquitination and subsequent protein degradation 

by the proteasome also has activity in many signaling systems, including defense. 

Components are regulated positively by the repression of their degradation or negatively 

by targeted degradation 17. Pathogens have evolved effectors to interfere with the 

ubiquitin proteasome system in an attempt to disrupt this signaling and facilitate infection 

17. Small ubiquitin-like modifiers (SUMOs) are also utilized by plants to regulate 

response and pathogens disrupt this signaling as well 112. 

Receptors triggering fluctuations in calcium ions (Ca2+) acts as signaling 

mechanisms to trigger responses to symbiotic or pathogenic microbes 16,113. Calmodulin 

(CaM), calcium-dependent protein kinases (CDPKs), and calcineurin B-like proteins 

detect calcium to activate diverse families of TFs, including Calmodulin-Binding 

Transcription Activators (CAMTAs) 113,114. CaM is involved in ROS production through 

MAPK cascade initiation 115. Calcium signaling controls hormone activation and the 

expression of NDR1 and EDS1 proteins 113. CDPKs move to the nucleus to 

phosphorylate WRKY TFs involved in RPS2 and RPM1 ETI 116. This molecular signal 

can be transmitted through hormones that have roles in many different stress and 

developmental responses 14. Similar to calcium signaling, fluctuations in hormones drive 
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differential expression of defense response genes. While sustained MAPK activity during 

ETI allows for less reliance on hormonal regulation, transient MAPK activity during PTI 

depends heavily upon hormonal signaling 117.  

 

3.2. Plant Hormones Systematically Initiate and Repress Resistance 

 Hormones operating downstream of pathogen detection provide another layer of 

regulation and take many forms: salicylic acid (SA), jasmonic acid (JA), ethylene (ET), 

abscisic acid (ABA), nitric oxide (NO), cytokinins (CK), gibberellin (GA), auxin, and 

brassinosteroids (BR). Along with affecting a multitude of developmental and response 

functions, including cross-talk with other hormones, SA plays a central role in local and 

systemic resistance responses to biotrophic and hemi-biotrophic pathogens 118. SA and 

MAPK cascades can act upstream of each other, with some cascades triggering SA 

activity or SA triggering MAPK cascades 118. Signaling is transferred from receptors to 

SA through NDR1 for CNL receptors and a combination of EDS1 and Phytoalexin 

Deficient 4 (PAD4) for TNL receptors 86,119,120. Through a complex web of interactions, 

SA transfers the signal that a pathogen is present through the action of TFs to induce the 

expression of defense-related genes. After initiated by signaling, SA leads to the 

reduction of disulfide bonds in the oligomer protein Nonexpressor of Pathogen 

Resistance Gene 1 (NPR1) by thioredoxins, allowing its constituent monomers to pass 

from the cytosol into the nucleus, bind to the TF TGA (binding site: TGACG), and up-

regulate genes associated with resistance 18,121. Taking advantage of this system, the 

Cochliobolus victoriae pathogenic effector victorin targets the thioredoxin TRX-h5, 
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involved in the monomerization of NPR1, and triggers cell death through the action of 

Arabidopsis susceptibility gene LOV1 122. 

JA and ET play key roles in the plant’s response to necrotrophic pathogens 18,123-

125 and herbivorous insects 126,127. JA and ET up-regulate the emission of volatile 

compounds in response to caterpillar herbivory, initiated by caterpillar oral secretions 128. 

In order to subvert plant response, insect gut microbes can reduce the JA-mediated 

defense in plants 129. Perception of bacterial flagellin enhances the production of ET as a 

signaling mechanism 130. Without ET present, TF Ethylene Insensitive 3 (EIN3) is 

degraded by F-box protein-mediated ubiquitination and proteasome activity. ET 

inactivates receptors and the Constitutive Triple Response1 (CTR1) protein, which stops 

the repression of EIN2 and EIN3 and allows up-regulation of ET signaling, expression of 

defense genes, and necrotroph resistance 18,131. This is also a target of pathogen 

interference, as the XopD effector of tomato pathogen Xanthomonas euvesicatoria 

desumoylates the TF SIERF4 to interfere with hormone signaling, specifically 

suppressing ET production and resistance 132. Functioning of the hormones ABA, NO, 

auxin, CK, GA, and BR in immunity and development shows that defense and growth are 

closely linked 133, often inversely related. ABA is involved in various plant stresses 134, 

including the repression and promotion of resistance responses during presence and 

absence of abiotic stress, respectively 135. Closure of stomata involves ABA signaling to 

regulate water loss, gas exchange, and pathogen access to tissue 136,137. GA and ascorbic 

acid (AA) deficiencies lead to enhanced resistance 138,139. Since hormones are broadly 

defined as systemic regulators, peptides can also function as plant hormones. Recently, 

the small peptide hormone systemin has been shown to be involved in system herbivory 
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response, leading to changes in gene expression, specifically of neighboring plants that 

are not exposed to the biotic stress 140. This indicates that plant hormones can trigger 

communication between individual plants to increase defense responses. Having 

discussed some of the major signaling factors, the proteins that directly alter transcription 

in the nucleus will be reviewed.  

 

3.3. TFs Play an Essential Role in Transcriptional Reprogramming 

Transcriptional reprogramming through TF activity plays roles at several levels of 

resistance: 1) basal expression of resistance components (e.g. receptors, kinases, response 

suppression proteins), 2) direct TF activity of activated receptor proteins, and 3) TFs 

activated downstream of receptor initiation (i.e. MAPK cascade leading to TF activation 

via phosphorylation 141). Plant TFs are diverse in comparison to Metazoan systems: 

homeodomain, MADS box, C2H2 zinc finger, AP2/ERF, bHLH, TGA/bZIP, MYB, NAC, 

and WRKY; the latter six families are especially involved in defense 131. AP2/ERF 

defense-related TFs (binding to GCC boxes: GCCGCC) are associated with ethylene 

regulation and involved in positive regulation of rice resistance to Chilo suppressalis 142 

and Arabidopsis resistance to B. cinerea 143,144. In the latter example, Ethylene Response 

Factor 6 (ERF6) activates Plant Defensin 1.1 and 1.2 after MPK3/MPK6 phosphorylation 

145. An MYC2 TF, NaMYC2 regulates the production of nicotine, an anti-herbivory 

secondary metabolite from Nicotiana attenuata 146. The chitin-triggered rice bZIP TF 

OsTGAP1 up-regulates antimicrobial compound synthesis 147. Abiotic stresses can also 

impact resistance signaling, like cold, drought, or wounding 148,149. bHLH TF MYC2 
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works antagonistic to Ethylene Response Factor 1 (ERF1) by down-regulating resistance 

and up-regulating wounding responses 150. Aside from kinase phosphorylation, TFs can 

also be activated by modifications, such as proteolysis in NAC TF NTL6 148. TFs can 

also target specific aspects of infection, like barley HvNAC6 up-regulating genes 

involved in resistance to Blumeria graminis penetration 151. In addition to these classes of 

TFs, WRKYs appear to be involved in many of the thoroughly studied resistance 

responses. 

WRKY TFs bind to W-box regions (TTGACC/T) and possess conserved 

WRKYGQK amino acid residues along with zinc finger domains 152. In addition to their 

involvement in abiotic stresses, like drought and salt tolerance, WRKY TFs positively 

and negatively regulate the expression of genes associated with defense, including 

response to viruses 153. WRKY TFs are classifying into groups I, IIa-e, and III, with 

analysis of ancestral species (i.e. algae) leading to potential phylogenetic relationships 152. 

Arabidopsis resistance to B. cinerea involves phosphorylation of WRKY33 by 

MPK3/MPK6, followed by WRKY33 binding to its own promoter and the promoters of 

components necessary for the synthesis of ethylene 154 and antimicrobial compounds (via 

Phytoalexin Deficient 3) 155. In contrast, barley HvWRKY1 and HvWRKY2 repress PTI, 

disrupted by CNL protein Mildew Locus A10 (MLA10) after detection of the Blumeria 

graminis effector AVRA10 
88. Barley CNL protein MLA1 interacts with WRKY1 and 

MYB6 TFs, the latter up-regulating B. graminis resistance 156. Rice WRKY45 positively 

regulates blast resistance when activated by the CNL protein Pb1 157. Receptor TF 

activity is shown in resistance to Xanthomonas oryzae, where rice PRR/RLK Xa21 is 

cleaved and sends a kinase domain to the nucleus that binds to the negative regulator 
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OsWRKY62 34,158. The allelic variants OsWRKY45-1 and OsWRKY45-2 both positively 

regulate resistance to Magnaporthe grisea, but down-regulate and up-regulate resistance 

to Xanthomonas oryzae, respectively 159. WRKY TFs also interact with other families of 

TFs, such as bHLH TFs AtBZR1 and AtBES1/BZR2, working in conjunction with a 

WRKY TFs to regulate BR signaling 160. Wheat TFs TaWRKY49 and TaWRKY62 have 

been demonstrated to play roles in resistance to P. striiformis, affecting the expression of 

genes associated with SA, JA, ET, and ROS 161. 

Pathogens have evolved effectors that interfere with transcriptional 

reprogramming by blocking plant TF activity or directly promoting plant gene 

expression. Phytophthora infestans effectors prevent potato NAC TFs from moving from 

the endoplasmic reticulum to the nucleus 162. Pseudomonas syringae effector HopD1 

interacts with the membrane-bound TF NTL9, suppressing effector-triggered immunity 

163 and Tobacco Mosaic Virus (TMV) also appears to interfere with the NAC TF ATAF2 

to suppress resistance 164. Pathogens also produce effectors that act as plant TFs 28. 

Xanthomonas and Rastonia bacteria produce transcriptional activator-like effectors 

(TALEs) that bind to plant susceptibility gene promoters 23,165. Rice Xa10 and pepper Bs3 

genes possess TALE-binding promoter sites for TALEs AvrXa10 and AvrBs3 involved 

in resistance to Xanthomonas oryzae pv. oryzae and Xanthomonas campestris pv. 

vesicatoria, respectively 166,167. While TFs directly trigger transcriptional reprogramming, 

an additional layer of regulation exists for response-related genes. 
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3.4. Epigenetic Regulation and PDR Provide Additional Regulatory Mechanisms 

Nucleic acids have roles as regulators of plant immunity and are critical targets of 

plant and pathogen degradation. Epigenetic changes can increase pathogen resistance 

through up-regulation of response proteins or down-regulation of response inhibitors. 

Pathogen exposure causes chromatin modification that affects expression of various plant 

defense response components 168. DNA methylation, histone methylation/acetylation, 

RNA interference (RNAi), and recombination between homologous chromosomes 

influence plant defense 169. Methylation of genes encoding resistance components has 

been shown to reduce pathogen resistance 66,170,171. SA repression activity is facilitated by 

histone deacetylase HDA19 172, which interacts with WRKY TFs in response to P. 

syringae 173. SA analog treatment and P. syringae infection of Arabidopsis both result in 

histone acetylation and methylation of gene promoters 168,174. Epigenetic regulation 

intensifies the host’s reaction to likely threats and ensures that host resources are not 

wasted on resistance to unlikely threats. The physiological cost of defense and longevity 

of pathogen inoculum both give a selective advantage to plants that can repress and prime 

responses. Epigenetic factors serve as another layer of regulation of resistance responses 

by the plant. 

In contrast to the ligand-receptor resistance mechanisms discussed earlier, 

pathogen-derived resistance (PDR) involves the use of pathogen components to confer 

resistance. Inoculation of a plant with a less virulent form of the pathogen can cause the 

plant to become more resistant to later infection by a more virulent race/pathotype 175. 

Barley primed with chemical elicitors produced offspring with enhanced resistance to the 

fungi Rhynchosporium commune 176. Interestingly, priming to increase resistance of 
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Fusarium graminearum by wheat caused an increase in F. graminearum mycotoxin 

production 177. PDR to viruses often involves expression of viral coat proteins, replicases, 

and interfering RNAs 178,179. Plants expressing the coat protein of a virus resist other viral 

strains 180 due to interference in viral disassembly that is necessary for viral replication. 

Viral sequences transcribed by the plant are used to generate microRNAs that interfere 

with viral transcription, which is necessary for viral replication within the host cell. RNAi 

is used as an anti-viral mechanism that degrades pathogenic RNA. Some pathogens 

possess effectors that suppress RNA silencing 181-183 and RNAi is the underlying 

mechanism in the development of transgenic wheat with resistance to the wheat streak 

mosaic virus 184. RNAi has also been proposed for development of nematode resistance in 

soybean 185. Plants regulate defense components using microRNAs, alternative splicing, 

and alternative polyadenylation 186-194. Pathogens have evolved the ability to use small 

RNAs as effectors that move into plant cells and repress host defense machinery 195. In 

order to facilitate infection, Botrytis cinerea uses RNA silencing of the host 196 and 

Phytopthora sojae suppresses RNA silencing 182,197. Ribonucleases (RNases) in the 

apoplast have also been correlated with increased resistance to RNA viruses 198 and anti-

fungal activity 199-201. The wheat Wheatwin1 protein possesses both RNase and antifungal 

activity 202. Corresponding to the diverse receptors and messengers that signal the 

presence of pests, plants possess a sophisticated array of defense tactics that restrict 

pathogens and pests from further infection, growth, herbivory, and reproduction. 
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4. DEFENSE RESPONSE 

4.1. HR, ROS, and Cell Wall Modification Inhibit Pathogen Infection 

 HR is one of the most commonly used immune responses, causing planned cell 

death in the area surrounding an infection. This establishes a quarantine zone to stop the 

pathogen from spreading, an effective technique for pathogens that require living tissue 

(biotrophs). Pathogen infection triggers the production of peroxidases in order to generate 

ROS, which are used in multiple aspects of the resistance response 203,204. NADPH 

oxidases are necessary for the production of superoxide, which peroxidases use to 

generate hydrogen peroxide (H2O2). One NADPH oxidase, RBOHD, associates with the 

PRRs EFR and FLS2, and is phosphorylated by BIK1, triggering ROS production 205. 

ROS trigger programmed cell death and hydrogen peroxide moves to surrounding cells to 

initiate the production of compounds that prevent oxidative damage 206. Transgenic plants 

that lack the ability to detoxify the ROS compounds were found to have more intense 

responses to pathogens that trigger HR 207. Along with assisting in HR, ROS are used to 

create environments unsuitable for pathogen survival and reproduction, described as an 

oxidative burst 208. Therefore, ROS are directly involved at levels of signal transduction 

and defense response, inhibiting fungal spore germination 208. In addition to peroxidases 

and NADPH oxidase, other enzymes produce ROS, including amine and oxalate oxidases 

209. Sclerotinia sclerotiorum, a necrotrophic fungus with a broad host range that includes 

many crops, produces oxalic acid, which suppresses plant oxidative burst 210 in the early 

stages of infection, but increases ROS production after establishment 211. Wheat and 

barley produce oxalate oxidase proteins, also known as germins 212,213, which break down 

oxalic acid, increasing their pathogen resistance 214. Transgenic crops with wheat or 
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barley oxalate oxidase genes showed increased resistance to S. sclerotiorum 215-217 and 

other pests 218-221. 

 ROS mediate glycoprotein cross-linking, which strengthens cell walls 208,222. 

Since fungi, bacteria, and nematodes need to penetrate the cell wall, this restricts 

pathogen movement and limits access to the nutrients necessary to complete 

reproduction. Bacterial pathogens, lacking some of the degradation enzymes that many 

fungi possess, use wounds and stomata in order to gain access to plant nutrients. Stomatal 

guard cells, recognizing bacterial PAMPs (i.e. flg22) and lipopolysaccharides, induce 

stomatal closure via SA and ABA signaling to prevent entry 137,223. In response to this, P. 

syringae produces coronatine to initiate reopening of closed stomata 223 by interfering 

with hormone biosynthesis and mimicking phytohormones 28. Once viewed as a passive 

way of pathogen entry into plant tissue, regulation of stomata has been demonstrated to 

include a complex defense mechanism, in addition to its response to abiotic stress. In 

addition to oxidase production, plants and pathogens generate many other factors that 

interfere with each other’s carbohydrates, proteins, and lipids.  

 

4.2. Enzymes and Enzyme Inhibitors Counter Pathogenic Effectors and Facilitate 

Detection 

Fungi use enzymes like cellulases to degrade plant cell walls. Upon detection of 

these fungal proteins, plants respond by producing enzyme inhibitors and depositing 

callose and lignin to strengthen the cell wall 224. In addition to cellulases, pathogens like 

Fusarium graminearum and Fusarium culmorum degrade plant carbohydrates with 
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pectinases and xylanases 225,226. In a form of evolutionary retaliation, plants have evolved 

enzymes that degrade pathogen carbohydrates, including chitinases and β-1-3-glucanases 

227,228. This degradation of fungal cellular components not only inhibits microbial growth, 

but also makes PAMPs available to plant PRRs, thwarting the pest’s attempt at evasion. 

Wheat chitinases, degrading a major component of fungal cell walls, inhibit fungal spore 

germination 229,230. Recombinant wheat chitinases have been shown to possess antifungal 

activity against many different fungal species, not limited to wheat pathogenic fungi 231. 

The chitin-binding Avr4 of C. fulvum protects chitin from plant chitinases 50. Hevamine 

possesses chitinase and lysozyme activity and contains β barrel structural domains 232, 

otherwise associated with a multitude of functions generally associated with cellular 

metabolism 233. Similar to chitinases, plant β-1,3-glucanases hydrolyze β-1,3-glucan in 

fungal cell walls, producing monomers that further stimulate plant defense responses 

234,235. This multifaceted approach aims at reducing the effectiveness of pathogenic 

components as well as strengthening plant defenses. Since the components of cell walls 

are diverse (i.e. cellulose, hemicellulose, pectin, lignin, etc.), pathogens must have a 

diverse set of proteins to infect the host, leading to an even more complex arrangement of 

plant receptors and defense proteins. Thus, the evolutionary battle over the ability to 

penetrate or reinforce the cell wall is a microcosm for the overall evolutionary 

coevolution of the plant-pathogen interaction. 

Proteases released by both plants and pathogens evolved to reduce the efficacy of 

the catalytic proteins used by both groups (i.e. plant chitinase and fungal cellulase). 

Plants and pathogens also use protease inhibitors to impede the activity of these proteases 

236. Thomas and van der Hoorn (2018) discuss ten important types of proteases, grouping 
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them based on location: apoplastic, cytonuclear, vacuolar, endomembrane 237, showing 

how proteases act at multiple levels in plant-pathogen interaction. The Fusarium 

verticillioides Zn-metalloproteinase fungalysin cleaves defense chitinases 238, but wheat 

produces hevein-like antimicrobial proteins that inhibit fungalysin by binding to the 

enzyme without being cleaved 239, stopping the degradation of chitinases that are 

necessary to prevent infection. Barley protease inhibitors block the activity of Fusarium 

trypsin, chymotripsin, and α-amylase 240. Wheat and barley α-amylase inhibitors interfere 

with pest starch digestion by interfering with α-amylase, used by insects and fungi to 

metabolize starches 241-245. Both proteinaceous and non-proteinaceous α-amylase 

inhibitors are produced, the latter being organic compounds that mimic α-amylase 

substrates 245. Nicotiana attenuata produces trypsin proteinase inhibitors along with 

nicotine to defend against Spodoptera exigua 246. Plants may also detect pathogens 

through protease inhibitors. For example, Cladosporium fulvum, is percieved by tomato 

RLP Cf-2 detection of Avr2, which is initially produced to inhibit tomato proteases Rcr3 

and PiP1 247,248. Oomycete Phytophtora infestans and nematode Globodera rostochiensis 

interfere with tomato protease activity 249,250, exemplifying a multilayered system of 

protein-protein interactions.  

Like proteins, lipids participate in many cellular activities. Lipids form major 

barriers that separate a host plant from prospective pathogens. Pathogens initiate infection 

after perception of cutin or other compounds of the waxy cuticle. Puccinia graminis and 

Blumeria graminis initiate appressoria formation upon contact with surface wax of wheat 

251 and barley 252, respectively. Cutinases are then utilized by fungi to hydrolyze cutin 

into cutin monomers to move through the cuticle 253. Plant lipases inhibit fungal 
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infection, found in Arabidopsis 254 and wheat 255. Lipid-transfer proteins also possess 

antimicrobial function linked to increased pathogen membrane permeability. However, 

details regarding how these proteins affect microbes remain to be elucidated 256. Effectors 

that have activity within host cells, such as those of P. syringae, require lipid 

modification to move into the host cell 257, with NLRs receptors that detect these 

effectors located in the plasma membrane instead of the cytoplasm 258,259. Lipids can also 

be direct targets of pathogens or plant perception such as the Fusarium toxin fumonisin 

interference with sphingolipid metabolism 260, or defense responses triggered by bacterial 

lipopolysaccharide PAMPs 261,262. Phospholipases and lipoxygenases (LOXs) are 

involved in the break down of phospholipids/galactolipids into free fatty acids for the 

production of defense components 263 and can act in stomatal closure 264. Phospholipase 

activity, which is involved with various hormone and stress responses 265, may generate 

products that are directly involved in defense response, such as phosphatidic acid 263,266. 

In addition to this general enzyme activity related to cellular components, plants have 

evolved specialized proteins that defend them from pathogen infection. 

 

4.3. Defensins and Thaumatin-like Proteins Offensively Inhibit Pathogen Infection 

Defensins are a diverse class of small plant proteins that directly attack or inhibit 

invading microbes and parasitic plants 267. Initially reported as barley 268 and wheat 269 γ-

thionins, it was shown that they possess structural similarity to animal defensins 270,271. 

Analogous to the action of many medical antibiotics, plant defensins interfere with 

pathogen protein synthesis and enzyme function. Barley defensins γ-hordothionin and ω-
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hordothionin inhibit protein translation 268,272 and defensins can move into pathogen 

cytoplasm 273,274. Wheat defensin TAD is expressed in the crown and possesses 

antifungal and antibacterial properties 275. Defensins inhibit proteases 276, trigger 

pathogen ROS production 277, and block ion signaling 278. Unlike animal defensins that 

inhibit bacterial growth, many plant defensins are antifungal and are especially active in 

seeds. They make up 0.5% of the total seed protein and a substantial amount of proteins 

that are released from the seed coats, at 30% 279. Defensins have been found in many 

tissues 280 and may be induced during seasonal changes 275. C-terminal hydrophobic and 

γ-core regions are critical for membrane interaction and antifungal activity, respectively 

281,282. Defensins contain scorpion toxin-like, knottin, and purothionin domains, with 

conserved cysteine residues that form a cysteine-knot structure composed of disulfide 

bridges. Scorpion toxins and some plant defensins both block potassium channels using 

similar protein domains 283,284. Defensins cause an increase in pathogen membrane 

permeability that initiates necrosis 285. Previous studies identified over 300 cysteine-rich 

defensin-like proteins in Arabidopsis 286 and Medicago truncatula 287. Van Der Weerden 

and Anderson (2013) have proposed the classification of defensins into 18 groups based 

on species, structure, and function 288. Plant defensins have potential as medical 

antibiotics, anti-tumor medication 289, and artificial sweeteners 290.  

Thaumatin-like proteins, named after the protein thaumatin from Thaumatococcus 

daniellii 291, are also pathogenesis-related proteins. Barley thaumatin-like proteins bind to 

1,3-β-D-glucans 292, associated with resistance to powdery mildew 293, F. graminearum 

294, or general antifungal activity 295. The antifungal thaumatin-like proteins osmotin 

(tobacco), zeamatin (maize), hordomatin (barley), avematin (oat), and trimatin (wheat) 
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are permatins that form transmembrane pores in fungal membranes 295-298. Like defensins, 

permatins accumulate in seeds 299. Research in barley and wheat shows thaumatin-like 

proteins PRHv-1 and PWIR2, respectively, expressed along with other genes during 

fungal resistance responses 300,301, with similar sequences in oat 302. Thaumatin-like 

proteins have potential as artificial sweeteners and influence the malting quality of barley 

303. Thaumatin-like proteins make up one of the 17 categories of pathogenesis-related 

(PR) proteins: oxidases and oxidase-like (PR-9, 15, and 16), chitinases (PR-3, 4, 8, and 

11), β-1,3-glucanases (PR-2), endoproteinases (PR-7), proteinase inhibitors (PR-6), lipid-

transfer proteins (PR-14), ribonuclease-like (PR-10), defensins and thionins (PR-12 and 

13, respectively), thaumatin-like (PR-5), and the less understood antifungal (Pr-1) and 

functionally uncategorized (Pr-17) groups 20,304-306. Additional mechanisms that plants 

use to deter pests involve non-protein compounds and assistance from other species. 

 

4.4. Phytoalexins and Beneficial Symbionts are Chemical and Biological Plant 

Weapons 

 Phytoalexins are organic compounds produced in response to invading pests to 

interfere with metabolism, development, and reproduction. Phytoalexins were initially 

investigated as defense compounds that protected potatoes from Phytophthora infestans. 

Several classes of plant chemicals have pesticide activity and those that are constitutively 

produced are described as phytoanticipins. A model phytoalexin used by Arabidopsis, 

camalexin is produced in response to many different types of microbial pathogens and 

pests 307. Camalexin is regulated by MAPK cascades 308 and WRKY TFs 155,309,310. Some 
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adaptive pathogens are able to detoxify this chemical 311. Wheat produces benzoxazinoids 

(BXs), such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which 

defends against microbes and insects, such as reducing  transmission of barley yellow 

dwarf virus through aphid feeding 312-314. Wheat pathogens Gaeumannomyces graminis 

and Fusarium culmorum can detoxify BXs 315. Wheat likely inherits genes required to 

convert 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) to DIMBOA through the 

progenitor of its B genome (chromosome 4B) since Aegilops speltoides accumulates 

DIMBOA, but Triticum urartu and Aegilops tauschii do not 316. Additional phytoalexins 

in cereals include avenanthramides in oat and diterpenoids in rice 310. As a phytoanticipin 

of the saponin group, avenacin A-1 is produced by oat root epidermis and forms pores in 

fungal membranes by interacting with fungal membrane sterols 317-319. G. graminis var. 

avenae has evolved the ability to detoxify avenacin A-1 320. While phytoalexins have 

been found in many species 310 with classified allelopathic effects 321, some signaling 

mechanisms leading to production remain elusive. Phytoalexins may also show 

usefulness in medical applications 310,322. Exogenous chemicals applied to crops, such as 

glyphosate-based herbicides, may increase crop susceptibility to disease 323. 

In addition to producing pesticides, plants can recruit natural predators of 

herbivorous insects as a defense through the production of herbivore-induced plant 

volatiles. Caterpillars feeding on maize leaves induce the production of terpenoid 

compounds and indole, attracting parasitic wasps that feed on the caterpillars 324-326. JA 

signaling is also activated, driven by volicitin from caterpillar oral secretions 128. To 

protect themselves from herbivory, plants can also produce sticky substances that trap 

insects, such as resin and latex 327-329, along with increasing photosynthetic production 
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330. Morphological features, like trichomes, reduce insect herbivory, in addition to many 

cellular components, such as flavonoids, tannins, terpenoids, alkaloids, and phenolics 331. 

Aside from providing the plant with access to nutrients, some symbionts assist their host 

in pathogen defense. Wheat rhizobacteria have activity against the soilborne pathogen G. 

graminis through the production of antibiotic substances 332 and rice arbuscular 

mycorrhiza trigger improved immune responses to protect the host 333. Mycorrhiza in 

corn have the ability to enhance production of DIMBOA 334. Symbionts have been shown 

to affect resistance responses through repression of JA-mediate defense 335 or interference 

with ROS and β-1,3-glucanse production 336,337. These interactions demonstrate the multi-

layered nature of the plant immune system. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

Knowledge of plant-pathogen interactions will undoubtedly continue to flourish 

in the 21st century, driven by new molecular techniques and greater computational power. 

Phytopathology, like other fields, will continue to grow as more details emerge regarding 

plant-pathogen interactions. Research will be driven by several factors, such as disease 

pressures associated with modern agricultural practices and climate change, increasing 

the need for durable pathogen resistance in crops 338. In addition to improving knowledge 

of plant immunity, efforts will continue to alter crop genetics to develop better resistance. 

Continuing to alter the receptors necessary to initiate defense responses is likely the best 

route for development of resistance. NLRs may become a major topic of biotechnology, 

allowing the engineering of resistance to any pathogen, similar to the modified activity of 

the CRISPR/Cas9 system. The mechanism utilized in one of these approaches is the 

activation of Arabidopsis NLR RPS5 by P. syringae protease AvrPphB cleavage of PBS1 
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339,340. Kim et al. (2016) showed that the cleavage site of PBS1 can be replaced with a 

cleavage site for other pathogen proteases, allowing for defense responses to be triggered 

by other pathogens 341. While this technology is currently limited, future studies will 

likely engineer crops with novel R-genes that were not directly transferred from other 

species. In order to trigger the most effective defense response, engineering novel 

resistance pathways to different pathogens will also need to pair the receptors with the 

appropriate method of signal transduction. PDR may also have applications in genetic 

engineering, by allowing plants to express pathogen genes that promote resistance 342. 

Future studies will also focus on understanding quantitative resistance and gene 

pyramiding due to the durable resistance it holds 343, such as the multi-decade resistance 

found in barley cultivar NDB112 344-347. Additional mechanisms of resistance regulation 

and response will be uncovered in future years, having applications to agricultural 

systems. Understanding pathogen resistance and plant immunity will greatly enhance not 

only the modes of reducing crop loss, but also will contribute to the overall understanding 

of the molecular interactions and coevolution that underlies this field and numerous 

applications to other biological systems.  
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CHAPTER 2: DIVERSITY AND EVOLUTION OF DISEASE RESISTANCE GENES 

IN BARLEY (HORDEUM VULGARE L.) 

This chapter is published in the journal Evolutionary Bioinformatics: 

Andersen, E.J., S. Ali, R.N. Reese, Y. Yen, S. Neupane, and M.P. Nepal. 2016. Diversity 

and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.). 

Evolutionary Bioinformatics. 12:99. 

 
 

ABSTRACT 
 

Plant disease resistance genes (R-genes) play a critical role in the defense response to 

pathogens. Barley is one of the most important cereal crops, having a genome recently 

made available, for which the diversity and evolution of R-genes are not well-understood. 

The main objectives of this research were to conduct a genome-wide identification of 

barley Coiled-coil, Nucleotide Binding Site, and Leucine Rich Repeat (CNL) genes and 

elucidate their evolutionary history. A Hidden Markov Model was employed using 52 

Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic 

relationships, structural variation, and gene clustering. A total of 175 barley CNL genes 

were identified, nested into three clades, showing a) evidence of an expansion of the 

CNL-C clade, primarily due to tandem duplications, b) very few members of clade CNL-

A and CNL-B, and c) a complete absence of CNL-D clade. The results also showed that 

several of previously identified mildew locus A (MLA) genes may be allelic variants of 

two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery 

mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in 

the extra-pericentromeric regions on six of the seven chromosomes; over half of the 
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clusters were located on chromosomes 1H and 7H. Higher average numbers of exons and 

multiple splice variants in barley relative to that in Arabidopsis and rice may have 

contributed to a diversification of the CNL-C members. These results will help us 

understand the evolution of R-genes with potential implications for developing durable 

resistance in barley cultivars. 

 

INTRODUCTION 

 

Plants have evolved complex signaling pathways for pathogen detection and 

defense response 1. Lacking an adaptive immunity and cell-transporting circulatory 

system, plant resistance to pathogens depends upon innate immunity that utilizes 

molecular signaling to initiate local and systemic responses 2. Resistance genes (R-genes) 

encode proteins that detect pathogens 3,4. Plant immunity can be divided into two types: 

pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-

triggered immunity (ETI) 2,5. PAMPs are pathogen structural molecules, such as bacterial 

flagellin, peptidoglycan, or fungal chitin, that the plant’s immune system perceives 

through membrane-localized, receptor-like kinases called pattern recognition receptors 

(PRRs), which elicit a response 6,7. In contrast, ETI involves the interaction between 

specific pathogen effectors and NBS-LRR receptors within the cell5. Resistance 

responses vary widely and act in limiting the spread and effectiveness of the pathogen 3 

including: 1) causing localized death of infected tissue through hypersensitive response 8, 

2) promoting hostile conditions for pathogens such as hydrogen peroxide production in 

an oxidative burst9, and 3) fortifying cell walls to strengthen the physical barrier between 
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pathogens and the plant protoplasm 10. Resistance responses are expensive for the cell 11, 

therefore, in the absence of a pathogen, diverse down-regulating control factors are 

mobilized 12, including salicylic acid production for localized and systemic resistance 

13,14, WRKY transcription factors15, and silencing through micro-RNA 16.  

Several models have been proposed to describe the mechanism of host-pathogen 

relationship. The Gene-for-Gene Model involves direct interaction between a single 

pathogen avirulence-gene and a plant R-gene 17. Additionally, there is evidence of 

indirect interaction as described in the Guard Model, where R-proteins bind with or 

guard, particular target proteins, activating a response when the ‘guarded’ protein is 

cleaved or modified by a pathogen 18,19. Similar to the Guard Model, the Decoy Model 

describes specific decoy proteins that mimic unguarded pathogen effector targets, 

forming a complex with effectors that is perceived by NBS-LRR R-proteins20. With 

increasing understanding of molecular interactions between the pathogen and host, the 

Zig-Zag Model was proposed to describe co-evolution of plant R-genes and pathogen 

effectors2. In this model, the pathogen evolves effectors to reduce the effectiveness of the 

plant’s PTI response, and the plant responds to these newly-evolved effectors by 

developing receptors that initiate ETI 2. Intense selection pressures from pathogens cause 

R-genes to evolve rapidly through several mechanisms, including recombination and 

transposable elements 4,21,22. However, R-genes can also be removed from the genome 

through loss of lineages and deficient duplications 23.  

R-genes have been recently classified into eight major groups: 1) Toll Interleukin 

Receptor, Nucleotide Binding Site, Leucine Rich Repeat (TIR-NBS-LRR or TNL); 2) 

Coiled-Coil, NBS, LRR (CC-NBS-LRR or CNL), 3) LRR Transmembrane domain 
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(LRR-TrD); 4) LRR-TrD-Kinase; 5) LRR TrD Protein degradation domain proline-

glycine-serine-threonine (LRR-TrD-PEST); 6) TrD-CC; 7) TNL-nuclear localization 

signal amino acid domain (TNL-NLS-WRKY); and 8) Enzymatic genes 24. Among these 

groups, the NBS-LRR (TNL and CNL) genes form the largest group and respond to 

various pests and pathogens. NB-ARC-containing genes originated before grasses, with 

many plant ancestors possessing them (see Appendix II). The NBS-LRR genes are 

highly variable 25,26, but their NBS region contains several conserved motifs that can be 

traced back to early land plant groups 27. The N-terminal region of the protein contains 

either a TIR or CC region, the former being restricted to only dicot species 26. The NBS 

contains a highly conserved Nucleotide Binding Domain shared by Apaf-1, Resistance 

gene products, and CED-4 (NB-ARC) 28, whereas the C-terminal LRR is a highly 

variable region that can bind to many different molecules 7,29. The CNL genes have been 

identified in the genome of many plant species: 52 in Arabidopsis 26, 159 in rice 30,31, 188 

in soybean 30,32, 203 in grape 33, 65  in potato 34, 94 in common bean 35, 177 in alfalfa 36, 

six in papaya 37, and 18 in cucumber 38. Recent studies have shown that CNL genes are 

effective at resistance to the devastating Ug99 stem rust strain in wheat 39,40. In the 

present study, the recently available barley genome41 was explored to understand the 

diversity and evolution of CNL genes.  

Cultivated barley (Hordeum vulgare L.) is a grass family (Poaceae) member that 

was domesticated approximately 10,000 years ago 42 and is now a major cereal crop 43. 

Even before genomic information was available, the use of barley cultivars with 

resistance gene Rpg1 in 1942 greatly reduced the loss of barley yield due to stem rust, 

Puccinia graminis, in the Midwestern United States and Canada 44,45. Additionally, barley 
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cultivars containing the gene Rph20 are resistant to barley leaf rust (pathogen: Puccinia 

hordei), which otherwise causes up to 62% crop loss 46,47. It has been shown that the 

recessive barley mlo mutant allele confers broad-spectrum resistance to powdery mildew 

(pathogen: Erysiphe graminis f. sp. hordei) 48,49, but presence of these mlo mutant alleles 

also increases susceptibility to Ramularia Leaf Spot (RLS) 22. Genes within the mildew 

locus A (MLA), some of which are CNL, also play a role in resistance to powdery mildew 

and were formed through duplication, inversion, and insertion over a period of greater 

than seven million years 50. It has been hypothesized that many variants of MLA are 

different alleles rather than separate genes51. In a recent study, higher nucleotide diversity 

was found in wild barley samples relative to that in the cultivated samples 52. 

The objectives of this research project were to identify CNL resistance genes in 

the barley genome and elucidate their evolutionary relationships. This in silico analysis 

aims at comparing barley CNL genes with their orthologs in rice and Arabidopsis. With 

barley and related species making up a significant portion of the staple food supply, 

analyses that would potentially lead to more pathogen-resistant cultivars make a 

significant contribution to agriculture. Wheat, another member of the same family, may 

contain many similar R-gene pathways and barley resistance may be conferrable to the 

wheat cultivars. 

 

MATERIALS AND METHODS 

 

CNL gene identification. Barley CNL gene identification followed methods used 

in Arabidopsis 26 and soybean 53. Barley protein sequences were accessed through the 



 84 

Ensembl Genomes database 54.  Arabidopsis CNL genes, as identified and classified by 

Meyers et al. (2003) 26, were obtained from Phytozome 55 and their orthologs in rice were 

obtained, as confirmed in Benson (2014) 31. Fifty two Arabidopsis CNL genes were used 

as reference sequences to explore orthologs in the barley genome (62,236 analyzed 

protein sequences), by aligning the sequences in the program ClustalW56 and constructing 

a Hidden Markov Model (HMM) using HMMER version 3.1b2 57 at a stringency of 0.05. 

Further selection involved identification of NB-ARCs using the database Pfam 58, 

accessed through Interproscan 59. Genes containing NB-ARCs were then aligned using 

ClustalW, integrated within the program Geneious 60. A second HMM profile was 

constructed to use these barley NB-ARC-containing proteins to perform a reiterative 

search of the genome with a stringency of 0.001. Interproscan 59 was then used to identify 

the protein sequences with both an NB-ARC and a “DiseaseResist” region. MEME 

analysis 61, set to display the 20 most prevalent motifs, was used to identify protein 

sequences with P-loop, Kinase-2, and GLPL regions, the diagnostic motifs of the CNL 

genes.   

Phylogenetic analysis. The NB-ARCs were extracted from the protein sequences 

identified by the MEME search. These sequences were aligned using ClustalW integrated 

within the program Geneious. The protein sequences were imported along with the 

original Arabidopsis genes and their orthologs in rice for phylogenic comparison. An 

evolutionary model for the CNL amino acid sequences was determined using a Maximum 

Likelihood Model Test function in the program MEGA 6.0 62, which identified JTT+G+I 

as the best substitution model. This model was used to construct a Maximum Likelihood 

tree with 100 bootstrap replicates.   
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Gene structural variation, clustering, and Ks analysis. Information on location 

and exon size was obtained from Ensembl Genomes, which was uploaded into the 

program Fancygene v1.4 63 to generate an exon map. Entire chromosome sequences were 

accessed through Ensembl Genomes and imported into the program Geneious. A 

genomic map to visualize gene clustering was generated by matching gene locations with 

their respective chromosomes, along with centromere locations 41. Nucleotide intervals 

between genes on each chromosome were determined in order to quantify any clustering 

following Jupe et al. (2012) 64. Accessions were grouped into clades according to their 

nesting pattern. Coding sequences were downloaded from Ensembl Genomes to estimate 

the nonsynonymous substitutions per nonsynonymous site (Ka) and synonymous 

substitutions per synonymous site (Ks) values, and  Ka/Ks ratios were calculated using the 

program DnaSP 5.10.1 65. Average Ks values were used to infer relative time of 

duplication events.  

 

RESULTS 

 

Identification of CNL genes. A total of 175 CNL genes were identified in the 

barley genome (Figure 2.1, Supplementary Figure 2.1 for the complete phylogenetic 

tree, and Supplementary Table 2.1 for all identified accessions and clade information). 

Initial Hidden Markov Model (HMM) analysis of the 62,236 barley protein sequences 

resulted in 982 orthologous sequences when using the 52 Arabidopsis CNL reference 

sequences and a stringency of 0.05. Interproscan integrated into the program Geneious 

was used to identify 908 sequences with Nucleotide Binding Domain shared by Apaf-1, 
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Resistance gene products, and CED-4 regions (NB-ARCs). Using these 908 putative 

barley sequences, the reiterative HMM analysis against the genome at a stringency of 

0.001 yielded 950 protein sequences in barley. Using Interproscan, 654 of the 950 barley 

genes were identified as containing both NB-ARCs and DiseaseResist regions. All splice 

variants were removed, yielding 233 unique NBS-LRR genes, 175 of which contained the 

signature motifs: P-loop, Kinase-2, and GLPL (Supplementary Figure 2.2). 

 
Phylogenetic relationships. Phylogenetic relationships of barley CNL genes and 

their orthologs in Arabidopsis are shown in Fig. 1 (also in Supplementary Figure 2.1, 

and Supplementary Table 2.1). Among the four clades previously reported in dicot 

species26,31, CNL-D is completely absent in barley. The vast majority of the barley CNL 

genes (168 of the 175 members) belong to the clade CNL-C. Very few members of the 

CNL-A (2 members) and CNL-B clades (5 members), as well as the large amount of the 

CNL-C genes in barley were consistent to those in rice, but diverse from Arabidopsis 

(Figure 2.1). The orthologs in rice and barley show a high degree of interspecific nesting 

with a diversified CNL-C clade with complete absence of CNL-D members. Basal 

support for CNL-C is weak but leaf branches with specific gene relationships are strongly 

supported (BS >90%). Identification of MLA genes using BLAST within the Ensembl 

Genomes database showed that MLOC_10425 and MLOC_66581 are the likely 

accession names for many MLA sequences (Figure 2.2).  
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Figure 2.1 Phylogenetic analysis of the CNL genes from H. vulgare (MLOC), 

Arabidopsis thaliana (AT), and Oryza sativa (LOC). The Maximum Likelihood tree 

was constructed using the JTT+G+I model with 100 bootstrap replicates. 

Arabidopsis CNL-A, CNL-B, CNL-C, and CNL-D groups are represented as blue 

triangles, pink circles, red squares, and green diamonds, respectively. The tree was 

rooted using outgroup p25941 as used in Arabidopsis26. CNL-C clades were 

collapsed to increase readability (for the complete tree see Supplementary Figure 1) 

and lists of genes can be found in Supplementary Table 1. The Ks values and Ka/Ks 
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ratios are shown in parentheses following the clade name, first Ks and then Ka/Ks 

ratio. The collapsed clades contain only barley genes with the exception of clades C2 

and C6, containing Arabidopsis orthologs AT3G14470 and AT3G07040, 

respectively. 

 

Figure 2.2 Maximum Likelihood phylogenetic analysis of MLA accessions and 

selected barley CNL-C9 gene members using the JTT+G+I model with 100 

bootstrap replicates. The tree was rooted using outgroup, p25941as previously used 

in Arabidopsis 26. 
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MEME analysis, gene clustering, and structural variation. Conserved motifs 

visualized through MEME analysis show structural differences between the NB-ARC 

regions of various barley CNL clades (Supplementary Figure 2.2). The P-loop, Kinase-

2, and GLPL motifs are present in all genes and RNBS A, B, and C motifs are present in 

165, 172, and 151 members, respectively (Supplementary Figure 2.2 and 

Supplementary Table 2.2). Exon-intron analysis shows that CNL genes are composed 

of an average of 3.34 exons, ranging from one exon in accession MLOC_6570 to twelve 

exons in MLOC_10066 (see Supplementary Figure 2.3). Of the 175 genes, 30, 46, 26, 

and 35 had one, two, three, and four exons, respectively; thus over 78% of the genes were 

found to contain one to four exons.     

Gene locations on each chromosome were visualized to show CNL gene 

clustering (Fig. 3), which is defined as: 1) genes within a 200 Kb sliding window and 2) 

fewer than eight other genes between the beginning and end of the cluster. Using these 

criteria, 15 gene clusters were identified (Table 2.1). Genes tended to be located in the 

extra-pericentromeric regions of chromosomes (Figure 2.3). Each chromosome except 

chromosome 4H contained at least one cluster, and ten of the fifteen clusters were 

composed of only two genes, as shown in Table 2.1.  
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Figure 2.3 Distribution of the CNL genes on the chromosomes of barley (N=7). The 

black lines and blue arrows represent chromosomal length and gene 

location/orientation, respectively. Black rectangles indicate the centromere positions 

on each chromosome. 

Table 2.1 CNL gene clusters in barley genome: 15 clusters containing 39 genes were 

identified using a sliding window of 200 Kb and eight open reading frames (ORFs). 

CNL clades for each gene are included in parentheses and Ks values are included for 

each individual cluster. 

 
Cluster Clustered Genes Ks value 

1_1 MLOC_66596 (C2) MLOC_5818 (C6) MLOC_3117 (C2)   1.435 

1_2 MLOC_70559 (C1) MLOC_73882 (C7)    1.753 

1_3 MLOC_767 (C9) MLOC_53251 (C9) MLOC_70910 (C9) MLOC_69663 (C6)  1.229 

2_1 MLOC_44743 (C1) MLOC_24729 (C1)    0.194 

2_2 MLOC_66581 (C9) MLOC_10425 (C9)    0.520 

2_3 MLOC_4541 (C9) MLOC_65574 (C6)    1.443 

2_4 MLOC_76088 (C1) MLOC_5583 (C1)    0.579 

3_1 MLOC_56904 (C4) MLOC_56905 (C4)    0.217 

5_1 MLOC_12201 (C1) MLOC_64708 (C9) MLOC_64709 (C9)   0.880 

6_1 MLOC_38183 (C9) MLOC_76360 (C1)    2.622 

6_2 MLOC_11605 (C1) MLOC_10242 (C1)    0.392 

6_3 MLOC_79526 (C9) MLOC_67477 (C9)    0.293 

7_1 MLOC_57007 (C9) MLOC_78491 (C2) MLOC_4344 (C9) MLOC_4343 (C9) MLOC_10643 (C1) 1.249 

7_2 MLOC_11112 (C8) MLOC_75786 (C9) MLOC_30912 (C8) MLOC_72805 (C6)  1.353 

7_3 MLOC_6883 (C9) MLOC_31061 (C9)    0.163 
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Ks values. Synonymous substitutions per synonymous site (Ks values) are often 

used as a proxy for inferring duplication events, so Ks values were used in inferring 

relative age of the CNL gene clusters (Table 2.1). Average Ks values were highest for 

CNL-B members and lowest for the CNL-C8 members (Figure 2.1). All average Ka/Ks 

ratios were less than 1, indicating a prevalence of purifying selection. Functional 

homologs for the identified barley genes were compiled and compared with results from 

the phylogenetic analysis (Table 2.2). Using this information, instances of genomic 

expansions as well as reductions were inferred.  

 

Table 2.2 CNL orthologs of Arabidopsis, rice, and barley with associated pathogens. 

 
Barley Accession Rice Homolog 

Arabidopsis 
Homolog 

Synonym Pathogen 

MLOC_55575, 
MLOC_56324, 
MLOC_67526, 
MLOC_51950, 
MLOC_6570, 
MLOC_20874, 
MLOC_34944, 
MLOC_5818, 
MLOC_69663, 
MLOC_77773, 
MLOC_1192, 
MLOC_72805, 
MLOC_65574, 
MLOC_1818, 
MLOC_64033, 
MLOC_16581, and 
MLOC_56093 

LOC_Os06g22460, 
LOC_Os06g30430, 
LOC_Os08g09430, 
LOC_Os12g31620, 
LOC_Os07g08890, 
LOC_Os08g16070, 
LOC_Os02g09790, 
LOC_Os11g35580, 
LOC_Os08g16120, 
LOC_Os11g12000, 

and 
LOC_Os11g12340 

AT3G07040 RPM1 Pseudomonas syringae66 

MLOC_31949 

LOC_Os08g32880, 
LOC_Os03g50150, 
LOC_Os10g10360, 

and 
LOC_Os11g41540 

AT3G50950 ZAR1 Pseudomonas syringae67 
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DISCUSSION 

Phylogenetic analysis and evidence of duplications. Phylogenetic analysis of 

the CNL protein sequences from barley and Arabidopsis showed a high level of tandem 

duplications within each species. Barley R-genes were nested as expected within the 

CNL-A, CNL-B, and CNL-C clades with their orthologs in Arabidopsis, concurring with 

the previous findings in rice 31 and Aegilops 79. Fewer members of CNL-A, CNL-B, and 

complete absence of CNL-D were observed in barley relative to that in Arabidopsis. 

MLOC_74471, 
MLOC_66163, 
MLOC_11423, 
MLOC_60872, and 
MLOC_4798 

LOC_Os12g10410, 
LOC_Os11g29090, 
LOC_Os09g14100, 
LOC_Os03g10900, 

and 
LOC_Os04g43440 

AT1G12210 
AT4G26090 
AT1G12220 
AT1G12280 

RFL1 
RPS2 
RPS5 

SUMM2 

Pseudomonas 
syringae68,69,19,70 

 
 

MLOC_60268 ----- 

AT1G33560 
AT4G33300 
AT5G04720 
AT5G47280 

ADR1 
ADR1-L1 
ADR1-L2 
ADR1-L3 

Peronospora 
parasitica and Erysiphe 

cichoracearum71 
 

MLOC_31949 

LOC_Os08g32880, 
LOC_Os03g50150, 
LOC_Os10g10360, 

and 
LOC_Os11g41540 

AT3G46530 
AT3G46710 
AT3G46730 

RPP13 
RPP13-like 
RPP13-like 

Peronospora parasitica72,73 
 

MLOC_57619, 
MLOC_69420, 
MLOC_58258, and 
MLOC_1443 

LOC_Os07g19320, 
LOC_Os11g15500, 

and 
LOC_Os11g37740 

----- Yr10 Puccinia striiformis74 

MLOC_44141 
LOC_Os05g34230 

and 
LOC_Os04g02110 

----- Rga3 Magnaporthe oryzae75 

MLOC_66596 

LOC_Os01g25740, 
LOC_Os01g25810, 

and 
LOC_Os03g63150 

----- Pm3 Blumeria graminis76 

MLOC_4581 
LOC_Os02g16270 

and 
LOC_Os02g16330 

----- Xa1 Xanthomonas oryzae77 

MLOC_67378 and 
MLOC_10643 

LOC_Os01g57310 ----- Rp1 Puccinia sorghi78 
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Using comprehensive phylogeny of flowering plants 80 as a reference, it can be inferred 

that Arabidopsis has experienced a reduction in CNL-C and expansions in CNL-A, CNL-

B, and CNL-D. In a recent analysis of CNL genes in soybean (Glycine max) 53, a similar 

expansion in the CNL-C clade was observed. In contrast to CNL genes in soybean, there 

was a sharp reduction in CNL-A and CNL-B, and absence of CNL-D, in both barley and 

rice, which may be common in other grass species as well. Phylogenetic analysis of CNL 

genes of barley with rice (a model monocot81 with a more recent common ancestor 82) 

showed more interspecific nesting patterns than with Arabidopsis (Figure 2.1). Existing 

differences in R-gene diversity, structure, and evolutionary rates across these species may 

reflect phylogenetic constraints and species-specific evolutionary history83. 

Closely related genes within the same gene cluster in the phylogenetic tree 

(Figure 2.1 and Table 2.1) show strong evidence of gene duplication events. Despite the 

huge genome size (5.1 Gb) of barley, there are numerous closely located CNL genes and 

their clusters that diversified through tandem duplications. One of the most striking 

examples of tandem duplication involves MLOC_24729 and MLOC_44743 genes which 

are only 113 bases apart and are 69.5% identical (528 out of 760 sites). The gene 

accessions MLOC_19475, MLOC_58383, MLOC_44175, and MLOC_12318 are closely 

related and form their own clade (Figure 2.1), with three of these genes located within a 

2.24 Mb segment of chromosome 7H, another instance of tandem duplication. The fourth 

gene in the same clade, MLOC_12318, is located on chromosome 2H, indicating that it 

resulted from segmental duplication. Similar duplication events have been reported in 

other plant genomes 84. Overall variation within R-genes is attributed to duplications, 

recombination, and diversifying selection 25, with whole genome duplications lessening 
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selective pressures and allowing for diversification, as seen in the soybean genome85. 

Increased diversity of R-genes may provide barley with a selective advantage even 

though maintenance of R-genes during low pathogen exposure might prove very costly as 

suggested in literature 86. While not residing within a technically defined cluster in 

barley, many genes are likely formed by gene duplication events, the origin of which 

could be traced to a common ancestor gene. The genes MLOC_11112, MLOC_30912, 

and MLOC_15443 form their own clade, with MLOC_30912 basal to the other two. 

MLOC_11112 and MLOC_30912 are clustered on chromosome 7H, likely formed by 

tandem duplication. The third gene, MLOC_15443, is approximately one Mb upstream of 

the other two, a possible instance of segmental duplication. Another example is a five-

gene sub-clade (MLOC_66610, MLOC_66596, MLOC_19284, MLOC_68128, and 

MLOC_3117; BS 78%) in which all five genes are located within a 2.1 Mb section of 

chromosome 1H, likely to have arisen through gene duplication. It has been shown that 

R-genes can cluster in larger regions that do not fall within the defined criteria (i.e. with 

the narrow sliding window) of a cluster 87. In Medicago, superclusters have been 

identified in which a single chromosome arm contains a large percentage of the genome’s 

resistance genes36. Zhou et al. (2004)30 suggests that duplications of diversely clustered 

R-genes could explain the frequent and dissimilar duplications. 

Ks values have been used to infer the history of duplication events within a 

genome, especially when analyzing genome duplications or polyploidy 88,89. The barley 

CNL-B clade has a higher average Ks value than any CNL-C subclade, suggesting recent 

expansion of CNL-C members in grasses (see Figure 2.1). While average Ka/Ks values 

for each CNL-C clade were <1 indicating purifying selection, 23 individual pairwise 
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values were >1, 15 of those being from CNL-C9.  This indicates that while the majority 

of the identified genes are undergoing purifying selection, a few genes are undergoing 

positive selection. These Ks values can also give insight into the clustered genes that arise 

from duplications. For instance, cluster 3_1, composed of MLOC_56904 and 

MLOC_56905, has a very low Ks value of 0.217, indicating a recent duplication event. 

Since rice only has one paralog to these two sequences, LOC_Os01g05620 (Fig. 1), the 

duplication event likely happened after the split of rice and barley lineages. A similar 

case is shown by MLOC_44743 and MLOC_24729 (cluster 2_1) which have the Ks 

value of 0.194 and do not have a close paralog in rice, suggesting more recent evolution 

after rice and barley split. The same happens with cluster 7_3 (MLOC_6883 and 

MLOC_31061) with a low Ks value of 0.163. From this information, it can be concluded 

that cluster 3_1 formed first, followed by cluster 2_1, and finally 7_3.   

Arabidopsis and rice homologs in barley. Looking more closely at the gene 

duplications and expansions within the barley genome, a species-specific history of 

pathogen load can be inferred. Arabidopsis gene AT3G07040 is functionally known as 

RPM1, an NBS-LRR gene that recognizes either the AvrRpm1 or AvrB type III effectors 

of Pseudomonas syringae, conferring resistance through a hypersensitive response66.  As 

shown in Fig. 1 and summarized in Table 2, barley contains nine homologs (clade CNL-

C6) of RPM1, what can be inferred to be a large expansion. It is possible that monocots 

faced a heavy P. syringae load during their evolutionary history, perhaps both before and 

after barley and rice diverged, since rice contains only five RPM1 homologs (Table 2). 

Another possibility is that Arabidopsis experienced a reduction through 

pseudogenization. In some other cases, barley genome contains fewer R-genes than 
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Arabidopsis. The Arabidopsis ADR1 genes (AT1G33560, AT4G33300, AT5G04720, and 

AT5G47280) are involved in the resistance response to Peronospora parasitica and 

Erysiphe cichoracearum 71. Barley genome contains only one homolog (i.e. 

MLOC_60268) for these four genes in Arabidopsis. The same occurs with the RPP8 and 

RPP13 genes where many Arabidopsis gene members do not have any homologs in 

barley. Barley and rice appear to differ in the number of ZAR1, RPP13, and ADR1 

homologs, with barley’s single ADR1 homolog not being represented in the rice genome. 

There are also no barley homologs for AT1G10920 (LOV1 – CNL-D), which causes 

susceptibility to Cochliobolus victoriae 90. 

The MLA locus in barley confers resistance to powdery mildew (Blumeria 

graminis f. sp. hordei). Many variants of MLA have been identified in this analysis (see 

Figure 2.2). Two CNL-C9 gene members, MLOC_66581 and MLOC_10425, are highly 

similar to many different MLA sequences, with MLOC_66581 being a gene that most 

likely responds to powdery mildew. A BLAST search using MLOC_66581 and 

MLOC_10425 within the Ensembl Genomes database reveals that these two genes have 

the highest sequence identity to all MLA sequences. Seeholzer et al. (2010)91 identified 

two functional MLA genes, MLA27 and MLA18, that both correspond to MLOC_66581 

and MLOC_10425 accessions, respectively. As shown in Fig. 2, these genes nested close 

to the MLA sequences, along with MLOC_64444 and MLOC_21734, which would also 

be closely related to the MLA genes. Thus, the results support the previous predictions by 

Shen et al. (2003)51 and Seeholzer et al. (2010)91 that many MLA variant sequences are 

alleles rather than separate genes 51,91.   
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MLOC_60268 and MLOC_3451 are the only barley genes that nest with 

Arabidopsis CNL-A, with high bootstrap support. This shows that these two genes 

represent current CNL-A members in barley and are likely to have existed before the 

evolutionary split between monocot and dicot plants, between 200 and 140 million years 

ago 82,92. Accession MLOC_3451 shows most homology to the Apoptotic Protease-

Activating Factor 1 (APAF1) from Triticum uratu, contributor of wheat’s A-genome 93. 

The similarity is not partial; entire protein sequence alignment shows the sequences are 

96.3% similar (1002 identical sites out of 1040). The presence of APAF1 would be 

expected since hypersensitive response involves an apoptosis-like cell death to prevent 

the spread of a pathogen. Therefore, CNL-A members in barley are predicted to 

contribute in hypersensitive response. 

Gene structure and genomic content. Since there is no strict correlation 

between CNL gene content and genome size, a reasonable prediction of barley’s CNL 

gene content could range from a few dozen members to several hundred. Two earlier 

studies in barley reported 50 CNL genes 45 and 191 NBS-LRR genes 41. While the rice 

and barley genomes have vastly different sizes, 420 Mb and 5.1 Gb, respectively41,94, the 

genome wide CNL diversity is rather similar, 159 and 175 genes, respectively. The P-

loop, Kinase-2, and GLPL motifs are highly conserved in both species30 and the 

Resistance Nucleotide Binding Site (RNBS) A, B, and C motifs (Supplementary Figure 

2.2 and Supplementary Table 2.2) are also prevalent and conserved within CNL 

genes26,30.   

The CNL genes in barley showed a higher number of exons (3.34 exons per gene; 

Supplementary Fig. 3) than Arabidopsis and rice, with Arabidopsis genes generally 
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consisting of one exon each 26 and rice averaging 2.1 exons per gene 31. The higher 

number of exons per gene in barley could enable a more variable response to the 

pathogens through multiple splice variation. Since many of the 982 initially identified 

protein sequences were variants of the same genes, it is possible that barley has used 

multiple splicing patterns to vary its pathogen-response proteins. It has been shown that 

NBS-LRR genes go through alternative splicing in Arabidopsis 95, and ratios of different 

transcripts are required for a resistance response 96.   

While number of exons per gene is higher than other species, the amount of CNL 

gene clustering is lower in barley, where only 39 of 175 CNL genes form 15 gene 

clusters (Figure 2.3 and Table 2.1). In Arabidopsis, 109 of the 149 NBS-LRR genes 

formed 43 clusters 26, but it was predicted that larger genomes may have a more complex 

distribution of CNL genes and that unclustered CNL genes are not unusual 26. Barley 

genes that are highly clustered, such as those on chromosome 7H, allow for higher 

recombination rates and faster evolution 26,97. Resistance genes show varying speed of 

evolution, with Type I genes evolving relatively faster than Type II genes 98. The 

expansion of CNL-C indicates that many of the CNL genes in barley are of the Type I 

class, suggesting a potential expansion in all grass species. Combining the evidence of 

duplications and clustering with Ka/Ks ratios, the majority of barley CNL genes are 

currently undergoing purifying selection, which has been reported to be a common 

phenomenon among duplicated genes, especially in crop species 99. The reduction in 

nucleotide diversity that took place during the cultivation of barley also likely impacted 

evolution of R-genes 52. 
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Current challenges in the development of durable resistance and future 

directions.  Understanding of disease resistance has expanded greatly due to advances in 

molecular techniques and computational ability. Challenges regarding how efficiently 

researchers utilize genomic data to develop more durable resistance continue to exist and 

can be overcome through the development and utilization of transcriptomic and 

metabolomics data. Additional genomic annotations are also needed as some 

chromosomal locations could not be accessed to determine clustering, and 

standardization of nomenclature is necessary. Specifically in the case of barley, current 

proteomic information is not complete and additional data would allow us to assess 

functionality. This, along with expression data upon pathogen exposure, and biochemical 

assays of signaling pathways are major areas that require continued research. Also, 

cultivar-specific genome sequences would be useful to determine variation and educate 

breeders about how variation across cultivars is related to crop yield. This would allow 

for the development of barley cultivars that can better combat pathogens, and may 

indirectly uncover directions for developing durable resistance in wheat and other closely 

related species. 

 

CONCLUSIONS 

 

In this study findings on the diversity and evolution of CNL genes in barley have 

been presented. The 175 identified barley R-genes show evidence of gene duplications as 

well as expansions and contractions of the NBS-LRR clades. The CNL gene diversity in 

barley is slightly higher than in rice and more than three times that in Arabidopsis. Many 
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RPM1 homologs could be identified, indicating substantial exposure to pathogens such as 

P. syringae in barley’s evolutionary history. The results also indicated that several 

previously identified MLA sequences are the allelic variants of two CNL genes 

(MLOC_66581 and MLOC_10425). Many splice variants and multiple exons per gene 

may have allowed rapid diversification of R-genes in barley, especially the members of 

the CNL-C clade. As expected, several gene clusters were found, especially in the extra-

pericentromeric regions of chromosomes, a location that experiences high rate of 

recombination needed for rapid gene diversification. Further research should aim to 

measure expression levels of these genes upon pathogen exposure and assess if some of 

these CNL genes could be used in developing cultivars with durable resistance. 

 
 

SUPPLEMENTARY DATA (SEE NEXT PAGE) 
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Supplementary Figure 2.1   Phylogenetic analysis of the CNL genes from H. vulgare 

(MLOC), Arabidopsis (AT), and Oryza sativa (LOC). The Maximum Likelihood tree 

was constructed using the JTT+G+I model with 100 bootstrap replicates. 

Arabidopsis CNL-A, CNL-B, CNL-C, and CNL-D groups are represented as blue 

triangles, pink circles, red squares, and green diamonds, respectively. The tree was 

rooted using outgroup p25941 as previously used in Arabidopsis26.  
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Supplementary Figure 2.2 Motif structure of the 175 H. vulgare CNL genes based on 

MEME analysis. The CNL-A, B, and C clades are in blue, pink, and red 

respectively. The six characteristic motifs P-loop, Kinase2, GLPL, RNBS-B, RNBS-

A, and RNBS-C are specifically named and the following fourteen motifs are named 

based upon their amino acid residues. 
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Supplementary Figure 2.3 Exon-intron variation across 175 CNL R-genes in barley.  

This illustration was generated using the program Fancygene 1.4 after input from 

Ensembl Genomes transcript information. Genes are presented by clade. Thick gray 

bars and dashed lines represent exons and introns, respectively. On the lower right 

corner is the summary information on the abundance of exons.  
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Supplementary Table 2.1 List of identified CNL genes and their corresponding 

clades. 

Name Clade Name Clade Name Clade Name Clade Name Clade 
MLOC_91 C3 MLOC_10643 C1 MLOC_34833 C9 MLOC_58383 C7 MLOC_68128 C2 
MLOC_767 C9 MLOC_11112 C8 MLOC_34944 C6 MLOC_58526 C4 MLOC_68129 C1 
MLOC_1192 C6 MLOC_11254 C9 MLOC_34954 C1 MLOC_59797 C7 MLOC_69265 C9 
MLOC_1443 C9 MLOC_11423 B MLOC_36552 C9 MLOC_59845 C9 MLOC_69266 C9 
MLOC_1818 C6 MLOC_11487 C1 MLOC_36685 C7 MLOC_59980 C MLOC_69392 C1 
MLOC_2429 C3 MLOC_11605 C1 MLOC_37321 C9 MLOC_60268 A MLOC_69420 C9 
MLOC_3117 C2 MLOC_12024 C1 MLOC_38183 C9 MLOC_60393 C9 MLOC_69492 C1 
MLOC_3451 A MLOC_12169 C9 MLOC_38423 C9 MLOC_60431 C9 MLOC_69663 C6 
MLOC_4343 C9 MLOC_12201 C1 MLOC_38436 C1 MLOC_60872 B MLOC_70453 C5 
MLOC_4344 C9 MLOC_12318 C7 MLOC_38445 C1 MLOC_61599 C9 MLOC_70559 C1 
MLOC_4541 C9 MLOC_12389 C MLOC_43545 C2 MLOC_62062 C9 MLOC_70910 C9 
MLOC_4581 C1 MLOC_12653 C9 MLOC_44141 C1 MLOC_62208 C7 MLOC_71927 C 
MLOC_4798 B MLOC_12945 C4 MLOC_44175 C7 MLOC_62506 C4 MLOC_72544 C9 
MLOC_5056 C9 MLOC_13229 C5 MLOC_44276 C1 MLOC_62757 C9 MLOC_72616 C2 
MLOC_5059 C9 MLOC_13234 C2 MLOC_44470 C9 MLOC_63244 C4 MLOC_72627 C3 
MLOC_5468 C3 MLOC_14667 C1 MLOC_44743 C1 MLOC_64033 C6 MLOC_72805 C6 
MLOC_5552 C9 MLOC_14867 C1 MLOC_50140 C1 MLOC_64208 C3 MLOC_73327 C1 
MLOC_5583 C1 MLOC_14928 C9 MLOC_50823 C4 MLOC_64296 C9 MLOC_73623 C9 
MLOC_5818 C6 MLOC_15443 C8 MLOC_51950 C6 MLOC_64338 C3 MLOC_73797 C9 
MLOC_6032 C9 MLOC_16581 C6 MLOC_52055 C2 MLOC_64418 C3 MLOC_73882 C7 
MLOC_6390 C9 MLOC_17471 C9 MLOC_52532 C1 MLOC_64444 C9 MLOC_74172 C1 
MLOC_6570 C6 MLOC_18184 C1 MLOC_53251 C9 MLOC_64580 C9 MLOC_74471 B 
MLOC_6633 C9 MLOC_19262 C2 MLOC_54234 C9 MLOC_64708 C9 MLOC_74974 C9 
MLOC_6883 C9 MLOC_19284 C2 MLOC_55575 C6 MLOC_64709 C9 MLOC_75786 C9 
MLOC_7267 C3 MLOC_19457 C7 MLOC_56093 C6 MLOC_65262 C1 MLOC_76088 C1 
MLOC_7601 C9 MLOC_20874 C6 MLOC_56324 C6 MLOC_65574 C6 MLOC_76360 C1 
MLOC_10032 C4 MLOC_21734 C9 MLOC_56904 C4 MLOC_66163 B MLOC_76783 C1 
MLOC_10066 C1 MLOC_22072 C1 MLOC_56905 C4 MLOC_66453 C2 MLOC_77081 C1 
MLOC_10090 C1 MLOC_24045 C9 MLOC_57007 C9 MLOC_66581 C9 MLOC_77713 C9 
MLOC_10242 C1 MLOC_24729 C1 MLOC_57426 C4 MLOC_66596 C2 MLOC_77773 C6 
MLOC_10308 C9 MLOC_25688 C9 MLOC_57619 C9 MLOC_66610 C2 MLOC_78491 C2 
MLOC_10360 C9 MLOC_30912 C8 MLOC_57686 C9 MLOC_67378 C1 MLOC_78783 C4 
MLOC_10420 C1 MLOC_31061 C9 MLOC_58039 C2 MLOC_67477 C9 MLOC_79526 C9 
MLOC_10425 C9 MLOC_31949 C MLOC_58236 C9 MLOC_67526 C6 MLOC_79654 C5 
MLOC_10452 C2 MLOC_34514 C2 MLOC_58258 C9 MLOC_67608 C9 MLOC_80142 C1 
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Supplementary Table 2.2 Sequence information with the conserved motifs as 

identified by MEME analysis. 

 

 

 

 
Accession	 P-loop	 Kinase-2	 GLPL	 RNBS-A	 RNBS-B	 RNBS-C	 Protein	Length	
MLOC_91	 IIPIVGPTGLGKTSLAQLVFN	 LNKYSCLIVLDSLWG	 EIVRRCGGTPLVANFLGSVVN	 IWVHVSMGNV	 ESKIVVTTHSYKVAE	 LSEDDCLNIFSQRAM	 1022 
MLOC_767	 VVAIVGFGGSGKTTLAKAVYD	 YHQDRYLIVVDDIKD	 KLLKKCGGLPLALYSVACQLS	 	 NGRIIVTTATQSVAN	 	 726 
MLOC_1192	 LITLTGMGGLGKTTLAANVYR	 LEELKYLIILDDVWT	 EILSKCKGLPLAIVSIGSLLH	 AWVSISQTYS	 GSRLIITTRQADVAA	 LPEDKAWDLFCKKSF	 923 
MLOC_1443	 VVSIVGSGGLGKTTLANQVYQ	 LKHKRYFIVIDDIWG	 EILKKCGGLPLAIITVASLLA	 AFVSVSQKPD	 SSRILTTTRIITVAK	 LSATHSKSLFFKRAF	 952 
MLOC_1818	 IIALWGMGGIGKSTLVSNVFR	 LKKKRYLIILDDVWT	 LIVGRCDGLPLALVAIGSSLS	 AWVSVSQSYK	 GSRIIITTRSEEVAS	 LEEEDAWRLFCRKAF	 404 
MLOC_2429	 IIPIVGLVGLGKTTLARLIFH	 LHDKRCLIVLDGLCS	 QIVKRCDGIPSLAHFLGSVVH	 IWIDLNRKFD	 WIKVLVTTSSDITAE	 LSEDDCWTIFFEKAF	 1305 
MLOC_3117	 VVPIVGMGGLGKTTLAQLIYN	 LSGKRYLLVLDDVWN	 EIVKRCRGSPLAATALGSVLR	 LWVCVSDTFD	 GSAVLTTTRDKQVAE	 	 1288 
MLOC_3451	 VVLIVGLSGIGKSCLARQIAS	 LVGKSMLILLDDVWE	 DLLDSCGHHPLTVAVLGKALR	 	 DCRYLVTTRDEAVYE	 	 1042 
MLOC_4343	 VVSVLGSGCMGKTTLANTLYS	 LQDKRYLVVIDDLLD	 EIVNMCGGLPLATISIASHLA	 AFIRMSKKPD	 GSRIIITTQIEDVAL	 LDDDHSRKLFFNRLF	 551 
MLOC_4344	 VISIVGFDGIGKTLLARNVYD	 LGSKRFFIVIDDMRT	 EALKKCDGLPLALVTTARYLQ	 AWVSTTEQGG	 SGRVLVTTAIQSVAN	 LTDEHSRQLFLKEAF	 1087 
MLOC_4541	 VVSIVGLGGLGKTTLANSVYE	 LGDKRYLIVIDDIWD	 KILDRCGGVPLAIITIGSLLS	 AFVSVSLNPT	 GSRVIVTTRILDVAQ	 LSVADSRKLFYQRIY	 928 
MLOC_4581	 VLPIVGPGGIGKTTLTQHLYN	 LKSKRFLIVLDDVWK	 KISQKLKCSPLAAKTVARLLK	 VWVCVSTDFD	 GSMVIVTTRFPKIEQ	 LDPDEFFEFFLACVF	 1264 
MLOC_4798	 VIGIWGPGGVGKTHLLNNIKN	 LKKRSFLVLLDDLWD	 ELVMEMKGLPLALITIAKAMY	 VQVTASRGCS	 RRKVVITTRSRKVCG	 LQEEESWQLFQDKVG	 1170 
MLOC_5056	 MVSIVGCRGIGKTTLAVEVYQ	 LKTRRYFIVIEDIWD	 DILKKCGGIPLAIITIASLLA	 	 GSRILVTTCIISIAS	 LSDAEARKLFFSRIF	 992 
MLOC_5059	 VVSILGPRGIGKTTLARVVYD	 QANTRYLIVIDDIQT	 SILKKCEGLPLGIVNIANYLK	 AWIVASEHRG	 NGRIIVTTTMHSIAN	 LSKEDSKALLLKIVL	 896 
MLOC_5468	 IVPIVGLGGLGKSTLAESVFV	 LADRRYLIVLDDLWE	 KIAEKCGGVPLVAIALGQVMS	 AWVHVSKEFD	 GSRVIVTTRNQSVVN	 LSNDDCWEVMKQTAF	 1487 
MLOC_5552	 VAAVVGSGGMGKTTLAHQVYT	 LRDKRYLIVLDDIWA	 EILKKCDGVPLAILSVASYLA	 AFVTVSQNAS	 GSRVITTTRNEDVAK	 LNDLDSRRLFYKRVF	 546 
MLOC_5583	 ILPIVGPGGIGKTTLVQHIYH	 LKSKRFLFILDDIWK	 KIAEKLKGSPLAAKTVGRLLR	 VWICVSQNFI	 GNVILVTTRFPAIAE	 LEHKEFRNFFRACIF	 1493 
MLOC_5818	 VTVVWGMPGVGKTTLVDHVYN	 LQGKRYILVLDDVWA	 KFIAKCQGLPIAIACISRLLS	 AWVTVSEGYR	 TSRVIITSRKQAVLA	 LEEHYSWLLFCKGAF	 567 
MLOC_6032	 IVSIVGFGGLGKTTLANAVYQ	 LLNKRYFIVIDDIWN	 NILKRCGGVPLAIMTTASMLA	 AFVSVSLNPN	 GSRIITTTRIFDVAK	 LSPIDSRKLFHQRIF	 920 
MLOC_6390	 VIFIVGFGGLGKTTLAMEVCR	 LQNNRYLILIDDVWS	 VILKKCGGLPLAIISIASLLS	 AKVSVSQTFG	 GSRIIVTTRTNTLAK	 LDRVESKQLFMSKTF	 964 
MLOC_6570	 IITVWGMGGVGKTTLVAHVYN	 LEKKRYVLVLDDVWS	 KFVEKCNGLPIAIVCIGRLLS	 AWITVSHSYE	 LGRIIFTSRIYEVAL	 LQNHYAWDLFCKEAF	 897 
MLOC_6633	 VVSIVGVGGLGKTTLANVVYQ	 LRDKRYLIIVDDIWD	 EIIRKCDGVPLAIITIASLLS	 AFVTVSLKPD	 SSRVITTTRIAGVAA	 LDHDDSKKLFYERIF	 983 
MLOC_6883	 TISIVGVGGLGKTTLTKAVFE	 LVDKRYLVVIDDIWE	 EILKKCGGVPLAIITIASLLV	 AFVPVGQNPD	 HSRVITTTRNVSVSQ	 LSDDDSLILFHRRIF	 465 
MLOC_7267	 IIPIVGLGGIGKTTLAKSVYA	 LAGKKYLIVLDDFWE	 EIAGKCGGVPLVANAFGQVMS	 AWVHVSEKFD	 GSKIIVTTRNQSVVK	 LPTKDCWELIKIRAF	 1166 
MLOC_7601	 VIAVVGFCGLGKTALAAEVYN	 LVKKRYFIVIDDIRT	 EVLKKCDGQPLALVTIGEFLQ	 AWVYAALRSP	 SSRILVTTTIQSVAN	 LDKICSKQLFTKKAC	 989 
MLOC_10032	 VFAIVGAVGIGKTTLAREIFT	 ALSKRFLIVLDDLDS	 KIAEKCKGHPLAIKVIAGVLR	 VWVKMSKDLS	 RGRILVTTRDEEVAT	 MDADNSWALLREQVF	 1093 
MLOC_10066	 VIFIIGVGGVGKTSLARLAFG	 IAGKKFLLILDDVWY	 QICRRLNGLPLAAKIIGRLLN	 MWVSVSDTYD	 GSKILVTARADKACS	 LDKDDYWLLFRNHAF	 1176 
MLOC_10090	 VLPIVGPGGVGKTTFTQHIFE	 LRSKRFLLVLDDVWK	 KIVENLKGFPLAAKTVGRLLR	 IWICVSLNFT	 GNMVIVTTRIPGVAN	 LGPQDIMSFFEACVF	 1569 
MLOC_10242	 IVSVVGHGGMGKTALAQSICE	 LKSMNYLLVLDDVWE	 QIAKKLGGCPLVTKVTSGHLR	 IWVTVSTTFD	 GSKILLTTRMQSVSN	 LEEDKNLELFNHHVF	 689 
MLOC_10308	 VVSIVGFGGLGKTTLANEVYR	 LEEKSYLVVIDDLWD	 EILKKCGGMPLAIISISSLLA	 AFVPVSQKPN	 GSRLIVTTRIKNVAE	 LTAEDSRKLFFDRIF	 905 
MLOC_10360	 VVCLVGSGGIGKTTLAKELYR	 LQDKRYLIVIDDVWA	 NIIRKCDGLPLAVVTVAGLLV	 AFVRTSRKPD	 CSGILMTTEVDDVAL	 LGHDDSSKLFFSTAF	 872 
MLOC_10420	 VIPIVGPGGIGKTTLTQYIYN	 LKNKRFLFVLDDIWK	 KIVEKLKGSPLAAKTVGRLLR	 VWICVSLDFS	 GDTILVTTRFLEVAE	 LEPKEYWTLFLACVF	 1550 
MLOC_10425	 IISVVGFGGMGKTTLVKTVYE	 LKNKRYLIVIDDIWD	 DVLKKCGGVPLAIITIASLLA	 AFVPVGRKAE	 GSRLITTTRIVSVCE	 LSDEDSERLFYKRIF	 561 
MLOC_10452	 VLPIFGMGGLGKTTLAKMVYN	 IGRKRFLLVLDDVWN	 KIVNKCGGLPLALKTMGGLLS	 MWHCVSDNFD	 GSVILVTCRSKQVAS	 LGEEDSWELFSKKAF	 599 
MLOC_10643	 VLAIVGAGGMGKSTLAQLVYN	 QESGKFLLVLDDVWF	 KIAKRLGQSPLAAKIVGSQLK	 MWVSISRKLD	 GSRVLVTTRQNSFPA	 MEDAQFLALFKHHAF	 1289 
MLOC_11112	 VAFVVGMGGLGKTTLARKIFE	 LEDKRYFIVLDDVWS	 KIVNKCGCLPLAILTIGGMLA	 AWITVSQTFS	 GSRIMITTRNIGLHQ	 	 612 
MLOC_11254	 VIIIVGFHGMGKTLLANHVYR	 IGKKRFFIVIDDLRT	 EALKKCDGLPLALVTTARFLQ	 AWVLGGRRTA	 TGRFLVTTAIQPVAN	 LTNQDSRTLFFKEAF	 931 
MLOC_11423	 IVGIWGMGGVGKTTLLRKINN	 LRRKKFLLLLDDLWN	 EVAEECGGLPLALVTIGRAMS	 	 KQKVVMATRYESVCG	 LDPEKAWKLFKQKAT	 966 
MLOC_11487	 VHTIVGVGGIGKTTLAQLIYN	 LRCKRFLLVLDDVWY	 QIVQKLKGSPLALKVVGGHLN	 MWVSVSNNFD	 GSKILVTTRTELVAK	 LGRDDSWSLFRRCAF	 1257 
MLOC_11605	 ILSVVGHGGMGKTALAQRICE	 NLHTKFLLVLDDVWE	 KIAKKLGGCPMLTKVVSGHLQ	 IWVHVSDSFD	 GSKILLTTRMQSVAD	 LEEGENLELFNHHVF	 1293 
MLOC_12024	 VFSLVGLGGIGKTSLAQDICS	 LISKTFLLVLDDVWN	 KMVKKLSGSPLAAKVLGGLLN	 IWVCASHDFD	 ESKILLTTRMQSVAV	 	 651 
MLOC_12169	 VACIDGPAGVGKTTLAKQLYY	 LQDKRYFIVIDDLWE	 GIIRKCGGLPLATICISGLLA	 AFVRASRKSD	 YSRIITTAETDSVAL	 LGSHASAELFFSIVF	 1022 
MLOC_12201	 GVAIVGLGGMGKSTLAQHVYN	 QKSNRYLLVLDDVWF	 KLAKRIGTSPLAAKTVGSQLS	 MWVCISRRLD	 GSKILITSRSNILPA	 MEDNDILALFKDHAF	 1283 
MLOC_12318	 VMSVWGIAGVGKSALVMNMFC	 LKKHRCLVVIDGLQS	 ELTSLCGGLPKVIVEVAVVFA	 GWVDVSHPFN	 	 	 1207 
MLOC_12389	 VLCIVGLAGIGKTTIARSLYQ	 LEKYSYLLVLDDVWS	 AHWEMCMSLPLAIVIMAGYVA	 AMVTVSHNSD	 GSRVIVTSRFQAVAS	 LSENKSEELFMDIMA	 999 
MLOC_12653	 VVSIVGVGGIGKTTLAKQLWL	 LQNKRYFLIIDDLWA	 EIVRRCAGLPLAIISVASVLA	 AFVRTAKKPD	 CSRIVTTTEIEDVAR	 LNVSNSKELFTNGVL	 1545 
MLOC_12945	 VVTIVGCCGIGKTTLAQKVYD	 LEGKRFLLVLDDISS	 TIIQRCNKVPLAIKIIGGVLA	 IWVDGSKDTT	 GSRILITTRDQRVAA	 	 1004 
MLOC_13229	 VISVMGKSGVGKTKLVKERYE	 LENKKYLLVIDAEVS	 FIFDVTGGLPLAVVLLSGLLR	 AWVTCAPNLN	 	 	 732 
MLOC_13234	 VFPIVGVGGLGKTTLAQLIYN	 LSGRRYLLVLDDVWN	 EIVKRCRGSPLAATALGSVLR	 IWVCVSDSFD	 GSVVLTTTRDKGVAE	 	 744 
MLOC_14667	 IIGIHGIGGSGKSTLSQLVCA	 LPGKRFLLVLDDVWY	 DIAKKLKGSPLAAKIVGGQLR	 MWVHVSQDFS	 GSKILVTSRTKDALL	 LDEDVFLNLFKHYAF	 985 
MLOC_14867	 VIGIHGVSGSGKSTLAQFVCA	 LDGKRFLLVLDDVWS	 EIAEKLKGSPLAARTVGGNLR	 MWVHVSQNFS	 GSKILVTTRSKHALT	 VDETAFFELFMHYAL	 960 
MLOC_14928	 VVSIVGFGGLGKTTLANQVYH	 LREKRYFFVIDDIWD	 EILKKCGGLPLAIVSIASLLV	 VFVSISQRPN	 GSKVITTTRIEMVAK	 LDDQNSRKLFFSRVG	 981 
MLOC_15443	 VICVVGMGGLGKTTLARKVYE	 LEDMRYFIVLDDLWT	 KMVKKCGGLPLAVLTIGGMLA	 AWITVSQSFS	 DSRILITTRDVGLAA	 	 968 
MLOC_16581	 VITVSGMGGLGKSTLVSNVYE	 LENRRYLIVLDDVWE	 SIVEKCHGLPLAIVTIGSMLS	 AWIVVSQIYT	 GSRIIITTRKDHVAG	 LSNPDAFKLFCRRAF	 903 
MLOC_17471	 VVSVVGSGGLGKTTLVKELYR	 LQHKRYLIVIDDAWA	 SIIRKCAGLPLAIVAVASLLS	 AFVRSSRKPD	 CSGILITTEINDVAL	 LIDDDSSKLFFSTAY	 557 
MLOC_18184	 VIGIYGVAGSGKTTFAGYIRD	 LCGKRFFLILDDLWV	 EIAKKLHRSPIAAVTVAGRLV	 MCIHVSETFS	 GSKILVTARTKEAAG	 LDEDQYLKMFMHYAL	 1163 
MLOC_19262	 ILPIVGMGGLGKTTLTQLVYN	 LKGKRFLLVLDDVWN	 EIVKKLKGLPLAAKAIGSLLC	 VWLCVSENFD	 GSRIVVTTRNKNVGK	 LSDNDCWFLFRSYAF	 1131 
MLOC_19284	 VVPIVGMGGLGKTTLTQLIYN	 VSGQRYLLVLDDVWD	 EIVKRCSGSPLAATALGSVLY	 LWVCVSDTFD	 GSVVLTTTRDKRVAE	 	 1294 
MLOC_19457	 VMSVWGIAQVGKSALVKKLFY	 LKKDWCLIVIDDLRS	 DLISKCGGLPKVISAIAGLLA	 YWVDVSHPFN	 KSVVIVITTDPTIAE	 LEATHALDLFKKKVH	 846 
MLOC_20874	 ISTVWGMGGVGKTTLVAHVYN	 LRGKKYLLVLDDVWG	 RFVDKCNGLPIAIACIGRLLS	 AWITVSKAYQ	 TSRFVITSRIHDVAL	 LEEHHSWELFCKEAF	 921 
MLOC_21734	 IVSVVGFGGLGKTTLVRAVYD	 LEDKRYLVIIDDIWD	 DILKKCGGVPLAILTIASLLS	 AFVPVGRNPD	 GSRLITTTRIFTVSE	 LSSNDSARLFYKRIF	 1010 
MLOC_22072	 VLPVVGPGGMGKTTLIQHIYH	 LKSKRFLLVLDDIWQ	 KIMEKLKGSPLAAKTVGRLLS	 IWICVSFNFN	 GSMVLVTTRFQAIAQ	 LKSEEFRKLFLAFIF	 1081 
MLOC_24045	 TVSIVGFGGLGKTTLARAAYD	 LHEKRYLIIIDDIWD	 DILKKCGGIPLAIITIASLLA	 AFVSVSQNPN	 GSRLITTTRVISVSE	 LSNDVSRTLFCKRVF	 489 
MLOC_24729	 VLPVIGPGGMGKTTLIQHIYN	 LKHQRFLLVLDDIWQ	 EIMGKLKGSPLAAKTVGRLLR	 IWICVSFNFN	 GSVILVTTRQKEIAD	 LERGEFRKLFLVYVF	 754 
MLOC_25688	 VVAIVGGGGLGKTTLAMEVYR	 LTRKRYLLVIDDVWK	 RILRKCGGLPLAIITIASLLA	 ASVSVSRTLD	 GSRIIATTRITKVAK	 LNVVDSQRLFFKRIF	 406 
MLOC_30912	 VVCVVGMGGLGKTTLTRKVYE	 LLEKRYFVVLDDLWN	 KIVKKSGLLPLAILTIGGMLA	 AWITVSQSFV	 GSRIMVTTRDVGLAE	 	 998 
MLOC_31061	 TISIVGVGGLGKTTLTKAVYE	 LVDKRYLIVIDDIWE	 DILKKCGGVPLAIITIASLLA	 AFVPVGQKPD	 QSRVITTTRNVSVSE	 LSDEDSQILFHKRIF	 797 
MLOC_31949	 VVSLVGAGGAGKSTIARKVYN	 LKDKRYLVVLDDVWR	 ILALKCNGLPLAIVVMGGFLS	 AWICISQQFT	 GSRIVLTTRNSAVSN	 LNNEESVELFNRKAF	 880 
MLOC_34514	 VVPIVGVGGLGKTTLAQLIYN	 VSGRRYLLVLDDVWN	 EIVKRCCGSPLAATALGSVLR	 IWVCVSDSFD	 GSVVVTTTRDEGVAK	 	 1271 
MLOC_34833	 VITIVGFHGMGKTLLANHVYK	 IGTKRFFIVIDDLRK	 AVLKKCDGLPLALVTTARFLQ	 AWVPPRKLGE	 SGRFLVTTTIQRVAN	 LADQHSRLLFFKEAF	 625 
MLOC_34944	 IAAIWGMGGVGKTTLVHHLYK	 LQGSKYLIVLDDVWH	 QFLGKCGGLPIAIACVGRLLS	 VWITVSSSCQ	 TGRFVITTRIQEVAL	 LQRRYAWQLFCNEAF	 744 
MLOC_34954	 VLPIVGPGGIGKTTFTTHLYN	 LKSKRFLIVLDDIWK	 KIANKLKGSPLAARTVGRLLY	 VWVCVSTDFD	 GSMLLVTTRFPKVAD	 LESNDFITFFEACIF	 585 
MLOC_36552	 VVSILGMEGLGKTTLGNEIYS	 LATKRYFILVDGLWS	 NMFEMCGGMPLALVLAAGLLA	 AFVTLGRRPS	 GSRVLTTTCISAVAQ	 LNEEMSARLYLNLIR	 1009 
MLOC_36685	 VISVWGMGGLGKTTLVRSIYK	 LKMRSCFVVLDDISS	 LTLQKCDGLPLAISTIGGFLA	 	 AGRIIVTTRQKNIAK	 LKHAAALDLFIKKVF	 1237 
MLOC_37321	 VLSVLGSACLGKTTLARVLYN	 LQDKRYLIIIDDLWA	 EIVEICDGLPLATVSIASVLA	 AFIRVSKKPD	 GSRIITTTQMEDVAL	 LDDDHSRKLFFNSLF	 433 
MLOC_38183	 VISLVGFGGIGKTLLAKHVYN	 LGTKRFFIVIDDMRR	 EVIRKCDGLPLALITTARLLH	 AWVCAAEKGS	 NSRVIVTTATQTIAI	 LAEQHSKQLFCEKAS	 1164 
MLOC_38423	 VIPIIGCAGVGKTTAARTLYH	 LQGKGYFIVLDDLWT	 EIIRKCEGLPLAIVSIASLLA	 AFVSVSPNPD	 RSRVITTTQVHDVAL	 LDEHESRELFFRMVF	 1168 
MLOC_38436	 ILPIVGPGGIGKTTLIQHIYN	 LNSKSLLLILDDIWK	 RIADKLKGSPLAAKTVGRLLR	 IWICVSQNFI	 GNVILVTTRFPAVAE	 LEHGEFRKFFRACIF	 701 
MLOC_38445	 VLPIVGPGGIGKTTFVRHLYN	 LKSKRFLIVLDDIWK	 RIANKLKGSPLAAKTVGRLLQ	 VWVCVSTDFD	 GSVLLVTTRFPKLAE	 LEPNDFLTFFEACVF	 1146 
MLOC_43545	 VIPVVGMGGLGKTTLMQMVYN	 LRGKRYLLVLDDVWN	 QIVKKLKGLPLASKALGSLLF	 IWIYVSECFD	 GSKIVVTTRNDNVGR	 LSDDDSWSVFKNHAF	 1183 
MLOC_44141	 VAAIIGLGGMGKTALARVLLH	 VSSKRFLLVLDNVWN	 RLVHKLKGLPLAAKVVGGMLK	 MWVCPAAAYH	 GSKIMVTTRKKIVAT	 LAFDDIWSLFTRIAF	 908 
MLOC_44175	 VTSVWGIAGIGKSYLTRRFFY	 MQQHRCFVVIDGLRS	 LITPMCGGLPQVIAAISKYCR	 GWVDVPHPFD	 QGYIIVVTNEESIAR	 LNDNEALHLFNKISR	 1012 
MLOC_44276	 VLPVVGTGGIGKTTLARYVYH	 IRNKRFLLVLDDMWE	 QIAKALKGCPLAAQSVGALLS	 MWICVSTNFD	 GCMVLATTRTKSVAK	 LDEKDFWLFFKACAF	 950 
MLOC_44470	 VVSIVGFGGLGKTTLANAVYQ	 LRNKRYLIVIDDIWD	 KILQRCGGVPLAIITIGSLLS	 AFISVSLNPN	 ESRVITTTRILDVAQ	 LSVVDSRKLFHQRIY	 865 
MLOC_44743	 VLPVVGPGGMGKTTLIQHIYH	 LKYKRFLLVLDDIWQ	 KIMEKLKGSPLAAKTVGRLLR	 IWICVSFNFN	 GSMILVTTRFQEIAK	 LEPEEFRKLFLVYVF	 855 
MLOC_50140	 VVPLVGPGGIGKTTLTQHIYG	 LKSKRLLLVLDDMWT	 KIVTNLKGFPLAAKTVGRLLR	 VWVCVSLDFN	 GNVIIVTTRIPEVAS	 LGYKDIMSFFEACVF	 530 
MLOC_50823	 KLAIVGTGGVGKTTLAQKIFN	 IEGKSFFLVLDDVWH	 EIVRKCGRLPLSIKVTSSALA	 AWICVSRDYN	 SGVILITTRDDQIAV	 	 570 
MLOC_51950	 VISVWGMGGVGKTTLVTHVYN	 LHSRRYILILDDLWD	 KIVESCDGLPIAIVCIGRLLS	 AFITVSQHCR	 SSKVVLTSRIHDVAS	 LESQHSWDLFCKEAF	 919 
MLOC_52055	 LLPIIGMGGIGKTTLAQLVHN	 LGKKRYLLVLDDVWN	 SIVLKCKGLPLAIKTIAALLR	 IWVCVSDKFV	 GSAIIVTSRSNQVAS	 LNDYQSWKLFRRNAF	 839 
MLOC_52532	 VIGIHGIAGSGKSTLAQYVYE	 LRGKQILLVLDDVWY	 DIAKKLKGSPLAARTVGSRLR	 MWIHVSQKFD	 GSKILVTSRTEAALV	 LDEKVFLEMFMHYAL	 991 
MLOC_53251	 VLSIVGFGGLGKTTLANEVYL	 LQDKRYLVIIDDIWS	 TILKKCGGLPLAIISISGLLA	 AFVSVSQKPD	 SSRIITTTRILEVAR	 LSDLLSERLFCNRIF	 931 
MLOC_54234	 VASIVGTSGVGKTTLARQVYH	 LQDKTYIIVIDNLQA	 EIIKRSGGLPLAIIILASLLV	 AFVQASPKQD	 CSRILTTTEVDAIAQ	 LSEDESRELFLGTVF	 1146 
MLOC_55575	 IIMIQGMGGSGKSTLARSIYR	 LQNRKYLIVLDDLWD	 KILEKCQGLPLAIAAIGSLLS	 AWISTSRNRQ	 GSIVIITTRNEAVAS	 LSEEESWDLFSKKAF	 900 
MLOC_56093	 VITVSGMGGLGKSTLVSNVYE	 LKNRKYLIVLDDVWE	 SIVDRCHGLPLAIVTIGGMLS	 AWIVVSQVYT	 GSRIIITTRKDHVAG	 LSKSDAFDLFCRRAF	 915 
MLOC_56324	 IMSILGMGGLGKTTIASSVYK	 LQDKKYLIVLDDVWD	 KIVKKCQGLPLAIVAIGSLLS	 VWVTLSQNYL	 GSRVLVTTRKKDVAS	 LPYAESWHLFCQKAF	 923 
MLOC_56904	 VFGIQGMGGIGKTTLAQKIYN	 IKGKSVLLVLDDVWK	 EIVKKCDGLPLAIKVVAGVLS	 IWLCISQSYT	 NFHVLVTTRDLDVLA	 MNYHDGLELLMKKSF	 989 
MLOC_56905	 VLGIQGMGGIGKTTLAQKIYN	 IKGKSVFLVLDDVWK	 DIVKKCDGLPLAIKVVAGVLS	 IWLCITQSYT	 NFHILVTTRDLCVLS	 MNYSDGLELLMKKSF	 990 
MLOC_57007	 VISIFGFAGVGKTTLIRTFYR	 LQCKRYLIVIDDLWA	 EIIRKCGGLPLAIENMASMLA	 AFVRVSRNPD	 CSRIIVTTEIKDVAL	 LNDHQSRKLFLSRVF	 1237 
MLOC_57426	 LFAIVGTIGVGKSTLARKIYH	 GSTRNLLLVIDNVSK	 SIVQKCSGVPMAIRTIGWNLR	 LWVNISNDSR	 GCKVIVTTRDENVAR	 	 1051 
MLOC_57619	 ILSIFGFGGLGKTTLAKAVYD	 LHNKRYLIVIDDIWD	 KILHKCGGIPLAIITIASLLA	 AFVPVGRNPS	 GSRIITTTRILEVAT	 LSLDLSKDLFHRRLS	 844 
MLOC_57686	 VVAIVGGGGLGKTTLAMEAYR	 LTGKRYLLVIDDVWK	 RILRKCGGLPLAIITIAKLLS	 ASVSVSRTLD	 GSRIIVTTRIANVAK	 LNYIDSRRLFFKRIF	 469 
MLOC_58039	 VLPIVGMGGLGKTTFAQIIYN	 VSGRRYLLVLDDVWN	 EIVDRCCGSPLAAKALGSVLS	 KWVCVLDDFD	 GSAVLMTTRDERVAQ	 MDTSDLLAIFEKRAF	 1337 
MLOC_58236	 VVSMVGCGGLGKTTLARRVYD	 LQDKRYFIIVDDVWD	 KILQKCGGLPLAIIAISGLLI	 AFVSVSRRPH	 GSRIITTTRIHEVAK	 LSAIDSERLFFKLVF	 894 
MLOC_58258	 VVSVVGAGGLGKTTLANQVYR	 LQDKRYLIVIDDIWS	 EIVKKCGGLPLAIITMASLLT	 SFVSLSQNPD	 GSRIIVTTRIGTVAK	 LSEDHSKMLFFRRIF	 892 
MLOC_58383	 VMSVWGIAGVGKSALLKNLLC	 LEQGRCLVVIDGLQS	 ELISKCGGLPHVIVELAGLLG	 AWVDVSYPFN	 TNGIIVITTEASVAK	 LQAEDAFALFEKEVS	 830 
MLOC_58526	 VVAIVGQGGIGKSTLAKKILA	 LSKNKFLLVMDDVWD	 KIVKKCDGLPLAIKVMGGLLS	 IWLSVTQQFT	 GSRVLVTSRKAGVVR	 LNDEDAWCLLKKQLP	 1042 
MLOC_59797	 VISVWGMGGLGKTTLVRDVYQ	 LEGKKYLIVLDDLSS	 LILKKCDGLPLAIVTIGGFLA	 ACVTIMHPFN	 SSRIIVTTRSENIAR	 LGYEDGLNLFMEKVF	 1214 
MLOC_59845	 VISIVGCWGLGKTALAADVYR	 LANKRYFIVIDDIQT	 AILNKCYGQPLALITMGEFLK	 AWVCAALKSP	 SSRVVVTTTIQSVAS	 LDEKCSKRLFSEKAC	 958 
MLOC_59980	 ILPITGMAGIGKTTLAQLVFW	 LSGRKLFLVLDDAWD	 MIAETCAGVPSLLLSASNKLK	 IWVSVPRNFN	 GSKMIVTSRIPDVVK	 	 407 
MLOC_60268	 VVSICGMGGSGKTTLAMEIYK	 RDRGPVLVILDDVWS	 QVAAECRGLPLALKVIGASLR	 	 	 LGEEEALSVFCSAAF	 847 
MLOC_60393	 TISIVGFGGLGKTTLAKAVYD	 VDKSRYLIIVDDIWE	 DILKKCGGVPLAIITVASLLV	 AFVSVAQNPD	 CSRIVTTTRKISVSE	 LCDGDSQILFYRRIF	 932 
MLOC_60431	 IVSVVGFGGLGKTTLANQVYH	 LKNKRYLVIIDDLWD	 EILKKCAGLPLAIISISSLLA	 AFLSVSQKPN	 CSRLIVTTRIRTVAG	 LSEKDSRKLFFGRIF	 900 
MLOC_60872	 MIGIWGPGGVGKTHLLKNINN	 MKTKSFLVLLDDLWD	 ELMKELKGLPLALITIGKAMY	 LFVTASRGCS	 NRKVVLTTRLREVCG	 LQEHEAWHLFEENIG	 1355 
MLOC_61599	 VIPIIGSAGIGKTMVARAIYH	 LQGKSYFIVVDDLWT	 RIIRKCSGLPLSIVNIASLLL	 AFVRVSRNPD	 WSRILTTTQVEDVAL	 LNYGESRKLFFNNVF	 1368 
MLOC_62062	 VLSIVGSGGLGKTTLARQVYN	 LQDKRYFIIIDDIWD	 DILKKCGGLPLAINAISSLLT	 AFVSVSRNPN	 GSAIITTTRNIDVAK	 LGVDHSKKLFFKRIF	 954 
MLOC_62208	 VVSVWGMGGMGKSSLVRMLYN	 LEEKSCLVVVDDVSS	 RILERCRGLPLAIATIGGLLA	 AWVTVPHPLE	 GSRVVVTTRRDDVAR	 LQDEEARKLFCQKVY	 947 
MLOC_62506	 VVAIVGPDGVGKTKLARMVYE	 VANKRFLLVVDDVWY	 RLVDKCGCIPLAIKAVAGVLR	 SWVRLSRGYT	 GGKVLVTARRGTTAR	 	 1460 
MLOC_62757	 TISIVGVGGLGKTTLTKAIYE	 LVDKRYLIVIDDIWE	 DILRKCGGVPLAIITIASLLV	 AFVPVGQNPD	 QSRVITTTRSVSVSE	 LSDEDSQILFHRRIF	 928 
MLOC_63244	 VFGIEGMGGIGKTTLAQKIYW	 IKRKTVFLVLDDVCL	 AIVKKCDGLPLAIKAVAGVLS	 IWLCISETYT	 NACVLITTRDHKVLQ	 	 989 
MLOC_64033	 VITVSGMGGLGKTTLVTNVYE	 LKDRKCLIVLDDVWN	 SIVDRCQGLPLAILSIGGLLS	 AWMVVSQTYT	 ASRVIITTRNNHVAA	 LGNAHAFELFCRRVF	 910 
MLOC_64208	 IIPIVGPGGQGKTTLAESVIA	 LAGRRYLIVLDDLWE	 QIVDKCGGLPLVVNALGQVMS	 AWVHVSKEFD	 GSRIIVTTRNQRVVD	 	 479 
MLOC_64296	 VISISGSAGVGKTTVARTIYH	 LQGKSYFIVVDDLWA	 RIIRKCSGLPLSIVSIASLLL	 AFVRVSRNPD	 CSRILTTTQVEDVAL	 LNDGEARKLFFNNVF	 1293 
MLOC_64338	 VIPIVGFGGLGKTTLAQLVFN	 FTGKKYLLVLDDVWS	 GIVQKCGGVPLAAKALGSMLR	 IWVSMSVDFS	 GSKIMVTTRSRKVGM	 LSDDDCWELFKGKAF	 1286 
MLOC_64418	 IIPIVGLGGLGKTTLVQSVIG	 LAGRRYLIVLDDLWE	 QIVDKCGGLPLVVNALGQVMS	 AWVHVSKEFD	 GSRIIVTTRNQRVVD	 LSRDDCWKMMKQRAL	 1319 
MLOC_64444	 IVSVVGFGGLGKTTLVRAVFD	 LQNKRYLVVIDDIWD	 DILKKCGGVPLAILTIASLLT	 AFVPVGQNPD	 GSRLITTTRIFSVSI	 LSDSDSTRLFCKRIF	 967 
MLOC_64580	 MVAITGHAGVGKTTLAKQLSR	 LQNKRYFIVIDDLWE	 IIITRCAGLPLATICVSGLLT	 AFVRASRKPD	 CSRIIATTEIEEVAL	 LGGEDSGKLLLNLVF	 1344 
MLOC_64708	 VVSVLGSGCLGKTTLANVLYD	 LQDKRYLIVIDDLWD	 EIVDICGGLPLATINIASHLA	 AFIRVSKKPD	 GSRIIITTQIEDVAL	 LNIGHSRELFFNRLF	 1280 
MLOC_64709	 VISIVGFDGIGKTLLARHVYH	 LGTKRFFIVIDDMQT	 EALKKCDGLPLALVTTARYLQ	 AWVCTAEQRG	 SGRILVTTAIQSVAN	 LPNEHSRQLFFKEVF	 1110 
MLOC_65262	 VVGIHGIAGSGKSTLAQCVYH	 LCGKRILLVLDDVWY	 DISKKLKRSPLAARTVGSRLR	 MWIHVSQKFD	 GSIILVTSRTEAALV	 LDDEVFLEMFMHYAL	 900 
MLOC_65574	 VVVLSGMGGLGKTALAANVYK	 FLAQKYLIVLDDVWK	 QIVAKCKGLPLAIVSVGSLLF	 AWISVSQTYS	 GSSIVITTRSADVAR	 LPDDKAQELFHRKAF	 660 
MLOC_66163	 VVGIYGMAGIGKTALLNKFNN	 LTKMNFVLLLDDLWE	 GLAMKCGGLPLALITVGRAMA	 	 KSKIIVATRIEDVCD	 LEPQPAWDLFCEKVG	 908 
MLOC_66453	 VLPIVGMGGIGKTTLAQLVHN	 LVNKRCLLVLDDVWN	 NIVPNCKGLPLAIKSISTLLC	 LWVCVSDKFV	 GSAIIVTTRSDKVAS	 LNEYDSWELFQRNTF	 700 
MLOC_66581	 IVSVVGFGGLGKTTLVKTVYD	 LEEKRYLIVIDDIWE	 GILKKCGGVPLAIITIASVLA	 AFVSVGQKAD	 GSRLITTTRIVDVSK	 LSDYDSQRLFHKRIF	 943 
MLOC_66596	 IVPIVGMGGLGKTTLAQLIYN	 VSGQRYLLVLDDIWN	 EIVKRCRGSPLAATALGSVLR	 LWVCVSDTFD	 GSAVLTTTRDKRVAE	 	 1267 
MLOC_66610	 VVPIIGMGGLGKTTLAQLIYN	 VSGRRYLLVLDDVWD	 EIVKRCCGSPLAATALGSVLR	 LWVCVSDTFD	 GSAVLTTTRDKRVAK	 	 1382 
MLOC_67378	 GLAIVGVGGMGKSTLAQLVYN	 QESGKFLLVLDDVWF	 KIAKRLGQSPLVAKVVGSQLK	 MWVSISRKLD	 GSKVLVTSRRDRFPS	 MEDAEFLALFKHHAF	 1177 
MLOC_67477	 VLSIVGFGGLGKTTLAKEVHR	 LQDKRYLIVIDDIWS	 KILKKCGGLPLAIISISSLLA	 AFVSVSQKPN	 SSRIIATTRIVDVAR	 LSDLHSKRLFFKRIF	 951 
MLOC_67526	 LVAVCGMGGVGKTTLVTSVYK	 LAKKRYLLLLDDVWD	 KILDRCCGLPLAIVSVGNLLA	 AWVSVSKNFT	 GSKIIITTRSQNVAS	 LPKQEAWSLFCNTTF	 925 
MLOC_67608	 VASIVGPGGYGKTTLAKQVYR	 LQDKTYLIVIQDLWA	 EIITASGGLPLAIIILASILA	 AFVRTSPKAD	 CSRILTTTQVEVIAQ	 LTEYESRELFLSTAF	 1125 
MLOC_68128	 VVPVVAMGGLGKTTLAQLIYN	 VNGQRYILVLDDVWN	 EIVKRCRGSPLAATALGSVLR	 IWVCVSDTFD	 GSAVLTTTRDKRVAE	 	 1371 
MLOC_68129	 VLPVVGPGGIGKTTLMQHIYH	 LKSKRFLLVLDDIWQ	 KIMEKLKGSPLAAKTVGRLLS	 FWICVSLNFN	 GSMILVTTRFQAIAE	 LEPEEFRKLFLAFIF	 1471 
MLOC_69265	 LVSIVGSRGIGKTTLAMEVYQ	 LKTRRYFIVIEDIWD	 DILKKCGGIPLAIIIIASLLA	 	 GSRILVTTCIVSIAS	 LSDAEARKLFFRRIF	 954 
MLOC_69266	 VISILGPRGIGKTTLARAIYD	 QVKSRYLIVIDDVQT	 SILRKCEGLPLGIVNIANYLK	 AWVVASEHRG	 NGRIIVTTSMQSIAN	 LSDDDSKALLFKIVL	 903 
MLOC_69392	 VLPLVGPGGIGKTTLTQYIHN	 LKSKRLLLILDDMWK	 KIIEKLKGSPLAAKTVGRLLR	 VWTCVSLDFN	 GSMILVTTRFQALAE	 LEPQEFRKLFLAYIF	 779 
MLOC_69420	 ILSIFGFGGLGKTTLAKAVYD	 LTNKRYLIIIDDIWD	 KILQKCGGIPLAIITIASLLA	 AFYSVGQNPN	 GSRVITTTRIFEVAK	 LSPGRSKELFCMRLS	 1033 
MLOC_69492	 VLPIVGPGGIGKTTLIQHIYH	 LISKRFLLVLDDIWK	 KIMEKLKGSPLAAKTVGTLLG	 IWVCVSHSFN	 GSVILLTTRFPAIAK	 LESEEFRKLFLAFVF	 1468 
MLOC_69663	 VTTVWGMPGVGKTTLVAHVYN	 LQGKKYILVLDDVWT	 KFIAKCQGLPIAIACIGRLLS	 AWVTVSKSCH	 TGRFVITSRKHEVSL	 LQEHHSWLLFCKGAF	 930 
MLOC_70453	 VISILGECGIGKKTLAKKLYN	 MQNRRYLVVLDGLLE	 KVHNISSGLPLAIIVLAGVLR	 AWVCLPPHIR	 GSRILLTTRLSVKEI	 LETIHGQQLFCRRVF	 1001 
MLOC_70559	 VIGIYGIAGSGKTTFAGYIQD	 LRGKRFFLILDDLWV	 EIAKKLHRSPIAAVTVAGRLG	 ICIHVSETFT	 GSKILVTARTREAAG	 LAEDQYIKMFMHYAL	 830 
MLOC_70910	 VLSIVGFGGLGKTTLANEVSR	 LKEKRYLVIIDDIWS	 AILKKCGGLPLAIISISGLLA	 AFVSVSQKPD	 SSRIVATTRILEVAS	 LSDPHSERLFFRRIF	 929 
MLOC_71927	 LLPIVGDIGVGKTTLVQHVCD	 FRRKRFLMVFEDVDM	 AIARKLNGSFFGAKIVGGVLK	 	 GSKIILTTNIRHVAA	 LPHPEYWFFFKAHAF	 378 
MLOC_72544	 VVAIVGPAGVGKTTLAKQVYH	 LQNKRYVVVIDDLWE	 SIITKCAGLPLATIFVAGLLT	 AFVRASRKPD	 CSRIITTTESEGVAQ	 LGREDSGKLLYNLIF	 1021 
MLOC_72616	 VLPVFGMGGLGKTTLAKMVYN	 IGWKRFLLVLDDVWN	 RIVSKCKGDPLALSAMGGLMS	 MWHCASDSFE	 GSVIIVTTRSPRVAS	 LTEEHSWELFSKKAF	 1240 
MLOC_72627	 VLAIHGIGGLGKTTLAKMIYN	 FTNKKILIILDDLWA	 AIAAKCGGVALAAQSIGSILE	 VWIYVSEKFD	 KVVVIATTRNEEIAR	 	 940 
MLOC_72805	 VIALHGMGGLGKTALAANVYK	 LEQKKYLIILDDVWT	 KIVSRCKGLPLVIVLVGSLLR	 AWVSISQTYS	 GSRLIFTTREHHVAT	 LPEDKAWDLFCKKTF	 915 
MLOC_73327	 VLPVVGIGGVGKTTLARFVCK	 IRNKRFLLVLDDMWE	 QIVKALKGCPLAAQSVGALLN	 MWVCVSTDFN	 GCMILAATRMDSVAK	 LNEEEFWLLFKACAF	 1491 
MLOC_73623	 VVSIVGMAGSGKTTLAREVYR	 LQDKRYLVMIDDLWS	 RIMRKCGGLPLAIVSVGGLLA	 ALVSVGRSSD	 GSRIITTTRIEAVAK	 LDEANAETLFKQRTF	 873 
MLOC_73797	 VVPIVGVGGIGKTTLAQKLWS	 LRDKRYFIIIDDLWA	 QIKRSCGGLPLAIIVAASLLT	 AFVRTAQKPD	 GSRIVTITETMEVAL	 LGEDDSEKLLLQRIL	 1224 
MLOC_73882	 VISVWGMGGLGKTTLVRDVYQ	 LAGHKYLIVLDDLSS	 LILKKCSGLPLAIVTIGGFLS	 ACVTVLRPFD	 SSRIIVTTRVKGIAI	 LGHSSALDLFTEKVF	 839 
MLOC_74172	 VLPIVGPGGIGKTTFLQHLYN	 LKSKRFLIVLDDIWK	 KIADKLKGSPLAAKTVGKLLH	 VWVCVSTDFD	 GSMLLVTTRFPKVAD	 LESNAFFTFFEACIF	 680 
MLOC_74471	 IIGVWGQGGVGKTTLLHVFNN	 LARKRFVILLDDVRK	 AIARSCGGLPLALNVIGTAVA	 	 RSKLILTSRYQEVCF	 LGNDASWELFLSKLS	 920 
MLOC_74974	 VVTVVGSGGIGKSTLVKELYR	 LQDKRYLIVIDDVWA	 NIIRKCAGFPLAVVTIAGLLV	 AFVRTSRKPN	 YSGILITTEIDDVAL	 LCHDDSRKLFFRTAF	 1377 
MLOC_75786	 VITIVGFHGMGKTLLADHVYK	 IGDKRFFIVIDGLRK	 EALKKCDGLPLALVTTARFLQ	 AWVPPAKLGV	 RGRFLVTTAIQRVAN	 LANQHSKLLFFKEIF	 486 
MLOC_76088	 VLPLVGPGGIGKTTLTQYIHN	 LKTKRLLLILDDMWK	 KIIEKLKGSPLAAKTVGRLLR	 VWTCVSVDFN	 GSMILVTTRFQALAE	 LEPQEFRKLFLSYIF	 790 
MLOC_76360	 VLPIVGIGGVGKTTIAQHIYQ	 VCQEKLLIVLDDLWD	 GILPKLKGSPLAAKTLGRMLR	 IWLSVSDNFD	 GSMMLVTTRSQKVAD	 LQDDVLWNIFKLCMF	 1100 
MLOC_76783	 VLPIVGPGGIGKTTFTTHLYN	 LKSKRFLIVLDDIWK	 KIADKLKGSPLAAKTVGRLLH	 VWVCVSTDFD	 GSMLLVTTRFPKVAD	 LEPNDFITFFEACIF	 869 
MLOC_77081	 IVSLVGHGGMGKTTLAQSICE	 MERLSFLLVLDDVWE	 QIARKLGGCPLVTKVASGHLH	 VWVTVSTTFD	 RSKILLTTRMRSVAS	 LKEDENLELFNHHVY	 669 
MLOC_77713	 IVSIVGSGGLGKTALANLVFR	 LQSERYLIIVDDLWR	 EILAICSGIPSVIITIAELLN	 AFVSVSSMPD	 GSRVIVTTRVNDIAK	 LDHLNSKSLFLRRCF	 930 
MLOC_77773	 VIALLGMGGLGKTTLAANIYR	 LEQKKYLIILDDVWT	 EIVSKCKGLPLIIVSVGSLLR	 AWVSISQTYS	 GSRLIITTREGDVAA	 LPEDKACDLFHKKAF	 918 
MLOC_78491	 VLPIFGMGGLGKTTLAKMVYN	 IGQNRFMLVLDDVWN	 RIINKCRGLPLALKTMGGLLS	 LWHCVSDNFD	 GSVIVVTTRSQKVAS	 LNEQDSWQLFAQKAY	 1169 
MLOC_78783	 KLAIVGTGGVGKTTLAQKIYN	 IEGKSFFLVLDDLWH	 EIVRKCGHLPLAIKVTSSALA	 AWICVSRDYN	 TEVILVTTRDDQIAL	 	 1045 
MLOC_79526	 VLSIVGFGGLGKTTLAREVYR	 LQDKRYLIVIDDIWS	 KILKKCGGLPLAIISIASLLA	 AFVSVSQKPN	 SNRIIATTRVVDVAK	 LNDLHSKRLFFKRIF	 964 
MLOC_79654	 LVSIVGESSIGKTTLARKVYQ	 MTGRRYLVVVDGSIA	 DVFRITRGLPLSIVILAGVLR	 TWTVLPPNSR	 GSRVVLVTDAAGLEV	 LSAENTYELFRRRVF	 784 
MLOC_80142	 VLPVIGPGGMGKTTLIQHIYN	 LKHKRFLLVLDDIWQ	 EIMGKLKCSPLAAKTVGRLLS	 IWICVSFSFN	 GSMILVTTRQKEIAD	 LEPGEFKKLFLVYIF	 679 
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CHAPTER 3: GENETIC DIVERSITY OF DISEASE RESISTANCE GENES IN 
FOXTAIL MILLET (SETARIA ITALICA L. BEAUV.) 

 
This chapter is published in the journal Plant Gene and supplementary data is published 

in the journal Data in Brief: 

Andersen, E.J. and M.P. Nepal. 2017. Genetic diversity of disease resistance genes in 

foxtail millet (Setaria italica L.). Plant Gene. 10:8-16. 

Andersen, E.J. and M.P. Nepal. 2017. Data on the genome-wide identification of CNL R-

genes in Setaria italica (L.) P. Beauv. Data in Brief. 13:259-273. 

 
 

ABSTRACT 
 

Foxtail millet (Setaria italica L. Beauv.) is a potential biofuel plant species, which is also 

one of the most commonly cultivated millet species for food and fodder. The aims of this 

study are to conduct a genome-wide identification of Coiled-coil, Nucleotide-binding 

site, Leucine-rich repeat (CNL) disease resistance genes (R-genes) in foxtail millet and 

study their evolutionary relationships. A total of 242 CNL genes were identified with 

domains for NBS-LRR receptor function, with the addition of a few genes that contained 

transmembrane or zinc finger domains. Of the identified CNL genes, more than half 

formed gene clusters within the foxtail millet genome, with the majority showing 

evidence of tandem duplications. Syntenic analysis displayed chromosomal similarities 

among foxtail millet, rice and barley, identifying strong syntenic relationships between 

foxtail millet and rice. Approximately 30% of the foxtail millet CNL gene clusters were 

found on chromosome Si08, exhibiting strong synteny with chromosome Os11 of rice. 

Selection pressure analysis showed a prevalence of purifying selection among all 

phylogenetic clades. Foxtail millet homologs of several well-studied R-genes in other 
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species were identified. The results from this study will have implications in research on 

CNL gene signaling pathways, and development of durable resistance in foxtail millet 

and other crop species in general. 

 

 

INTRODUCTION 

 

 Plants face a broad spectrum of pathogens including viruses, bacteria, and fungi 1-

3, as well as pests including nematodes, parasitic plants, and insects 4-6. Several models 

have been proposed to describe the diverse mechanisms utilized by plants to resist 

pathogens and pests, such as the Gene-for-Gene model 7, Zig-Zag model 8, Guard model 

9,10, and Decoy model 11. These plant resistance mechanisms can evolve quickly 12-14 and 

are initiated by pathogen-associated molecular patterns (PAMPs) or pathogen effectors 

8,15. Nucleotide-Binding Site, Leucine-Rich Repeat (NBS-LRR) receptors in plants are 

activated upon contact with pathogenic effectors, and a pathogen-specific defense 

response is triggered 15. Response variation corresponds to pathogen diversity, such as 

pathogens deriving nutrients from living tissue (biotrophic), dying tissue (necrotrophic), 

or switching from biotrophy to necrotrophy as the infection progresses (hemibiotrophic) 

16,17. Due to the biotrophic requirement of living host tissue, hypersensitive response, or 

triggered cell death of infected tissue, is effective against biotrophs 18, but fails to inhibit 

necrotrophs 16. Plants can also produce chemicals to inhibit pathogen growth 19, thicken 

their cell walls 20, or utilize systemic signaling via salicylic acid, ethylene, or jasmonates 

16. 
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 Foxtail millet (Setaria italica L. Beauv.; family Poaceae; tribe Paniceae) is an 

important food crop and a potential biofuel plant species. S. italica was domesticated 

from Setaria viridis between 8,700 and 5,900 years ago in northern China 21,22, where a 

dry climate gave the C4 photosynthetic pathway of this plant an advantage over other 

species 4,23. For this reason, foxtail millet is a model for studying phosphate transport 

mechanisms (Ceasar et al., 2014) and abiotic stress tolerance, particularly in response to 

draught 24. Recent availability of the complete S. italica genomic sequence 23 facilitates 

investigation into functional genomics and evolutionary divergence of foxtail millet and 

closely related species 25. In a previous investigation using a Genome-Wide Association 

Study (GWAS), 916 varieties of foxtail millet were sequenced to construct a haplotype 

map (Jia et al., 2013) 26. Switchgrass (Panicum virgatum L.), another potential biofuel 

species of the same family and tribe, diverged from foxtail millet about 13 million years 

ago 25,27. Therefore, foxtail millet has been used as a reference in the assembly of the 

switchgrass genome 28. S. viridis is also studied in context with foxtail millet, with both 

species sharing morphological similarities to other Panicoideae members 29. Previous 

analyses have also focused on identifying genomic relationships between foxtail millet, 

rice, and switchgrass (Devos et al., 1998; Daverdin et al., 2015), with rice being another 

model grass species and major contributor to the global food supply 30,31. Among the 

diseases common to foxtail millet, blast caused by the hemibiotroph Magnaporthe grisea 

(Magnaporthe oryzae) is a major issue that can lead to 60% crop yield loss 32. This 

pathogen also greatly affects rice 33, classifying M. grisea as a significant detriment to the 

human food supply 34 and a significant focus of research. In rice, the Pib gene has been 

identified as an NBS-LRR R-gene that confers rice blast resistance 35. Additionally, the 
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Pi-ta and Pi9 NBS-LRR genes have been studied extensively and confer resistance to 

rice blast 36-41. Other diseases that impact foxtail millet production include downy 

mildew, leaf rust, and smut, caused by Sclerospora graminicola, Uromyces setariae-

italiae, and Ustilago crameri, respectively 42.  

The main objectives of this study were to conduct a genome-wide identification of 

foxtail millet CNL R-genes and assess their evolutionary relationships. Assessment of R-

gene evolutionary patterns was accomplished by: 1) construction of a phylogenetic tree 

including foxtail millet, Arabidopsis, rice, and barley; 2) inference of functional 

homologs using BLAST results; and 3) generation of syntenic maps comparing 

chromosomes of foxtail millet, rice, and barley. With foxtail millet’s status as a model 

plant for crop and biofuel species, genetic evidence of pathogen resistance can be utilized 

in other grass species with sequenced genomes. Biofuel alternatives to maize that can 

grow in areas otherwise unsuitable for agriculture will likely expand the available 

resources for production. 

 

MATERIALS AND METHODS 

 

CNL R-gene identification   

Identification of CNL genes in foxtail millet follows methods for the Arabidopsis 

thaliana 43, soybean 44, and barley 45 genomes. Foxtail millet protein sequences were 

downloaded from the Ensembl Genomes database 46. Arabidopsis reference NB-ARC 

sequences 43 were accessed from Phytozome 47 and aligned within ClustalW 48. A Hidden 

Markov Model (HMM) was constructed using HMMER version 3.1b2 49 at a 0.05 
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stringency. Identified protein sequences were then annotated using Pfam 50 within 

InterProScan 51 and NB-ARCs were extracted, aligned within ClustalW, and used as 

reference sequences in a reiterative HMM with a 0.001 stringency. Identified protein 

sequences were again annotated using Pfam and sequences with NB-ARC and 

“DiseaseResist” domains were then extracted and imported into Multiple Expectation 

maximization for Motif Elicitation (MEME) software 52 to isolate sequences with P-loop, 

Kinase-2, and GLPL motifs.  

 

Phylogenetic analysis   

NB-ARCs for all four species (Arabidopsis, barley, rice, and foxtail millet) were 

aligned using ClustalW integrated within the program Geneious 53 and manually 

trimmed. The alignment was then imported into MEGA 7 54,55 and a maximum likelihood 

model test resulted in the JTT+G+F model, which was used in constructing a maximum-

likelihood tree with 100 bootstrap replicates. MEME results and clade information was 

added to the phylogenetic tree using the Interactive Tree Of Life (ITOL) website (Letunic 

and Bork, 2016). In order to assess homology to other species, BLAST results for each of 

the 242 foxtail millet NB-ARCs were compiled by: 1) uploading foxtail millet sequences 

to the PLAN BLAST server 56 set to return the top ten hits, and 2) a script file was 

composed initiating BLASTP with an e-value threshold of 1x10-50 using the program 

BLAST+ 57 in the South Dakota State University High Performance Computing Cluster 

(HPC Cluster). The Biomart function within the Ensembl Genomes database was used to 

access additional InterProScan and Gene Ontology (GO) annotation data 58 for the 

identified CNL genes in order to make inferences regarding gene function. InterProScan 
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and MEME analyses were used to identify likely CNL genes among 88 Sorghum bicolor 

NBS-LRR sequences 59 and 405 Panicum virgatum CC and NB-ARC containing 

sequences 60, resulting in 80 and 234 genes, respectively. These genes were aligned with 

foxtail millet and Arabidopsis sequences and a maximum-likelihood model test was 

performed, leading to the construction a maximum-likelihood tree in MEGA 7 (model: 

JTT+G+F) with 100 bootstrap replicates.  

 

Gene structure, clustering, and synteny   

Exon locations accessed from Ensembl Genomes site were uploaded to the Gene 

Structure Display Server 61 to generate exon maps. Coding sequence locations, also 

accessed from Ensembl Genomes, were used to annotate chromosome maps and detect 

R-gene clustering as in previous studies 62. The program R 63 was used to generate a plot 

describing the relative densities of R-genes across foxtail millet, rice, and barley 

chromosomes. Coding sequence nonsynonymous substitutions per nonsynonymous site 

(Ka) and synonymous substitutions per synonymous site (Ks) were calculated using 

DnaSP version 5.10.1 64 to compare selection pressure and relative age between CNL 

clades and clusters. Using the HPC cluster, syntenic maps of barley, rice, and foxtail 

millet were generated from whole chromosome sequences and CNL R-gene location 

annotation files in the program SyMAP version 4.2 65.   
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RESULTS 

  

CNL R-genes Identification  

I identified 242 CNL genes in the foxtail millet genome. The nesting patterns of 

the identified genes showed a clear expansion of CNL-C (237 members) and a reduction 

in CNL-A (one member: Seita.3G369800), CNL-B (four members: Seita.5G344600, 

Seita.7G165200, Seita.7G164900, and Seita.9G466500), and a complete absence of 

CNL-D (Figure 3.1). The NB-ARC signature motifs can be seen in Fig. 1 with RNBS-A, 

B, and C motifs identified in 225, 236, and 210 genes, respectively. InterProScan and GO 

annotations (see Supplementary Table 3.1), include the following sequence 

descriptions: ATPase (10 genes), ATP binding site (20 genes), ADP binding (242 genes), 

DNA-binding (Seita.8G039400, Seita.7G242200, and Seita.J025700), DNA-binding 

WRKY (Seita.2G175200), mannose-binding lectin (Seita.8G124300), no apical meristem 

protein (Seita.8G039400), phospholipase C (Seita.3G100200), P-loop containing 

nucleoside triphosphate hydrolase (242 genes), tetratricopeptide repeat (Seita.8G133400), 

phosphorus-containing group transferase activity (Seita.8G100000 and Seita.4G035100), 

zinc finger (Seita.7G242200, Seita.J025700, and Seita.1G053100), and multiple kinase 

domains (Seita.4G035100 and Seita.8G100000). It should be noted that the ADP binding 

and nucleoside triphosphate hydrolase annotation were found in all 242 of foxtail millet’s 

R-genes. Foxtail millet R-gene exon composition ranged from one (37 genes) to thirteen 

(i.e. Seita.8G100000) exons, with an average of 3.1 exons per gene (Supplementary 

Figure 3.1). 
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Figure 3.1 Maximum-likelihood phylogenetic analysis of the NB-ARC amino acid 

sequences of CNL genes in Setaria italica (Seita), Hordeum vulgare (MLOC), 

Arabidopsis thaliana (AT), and Oryza sativa (LOC) with labels shaded in green, blue, 

yellow, and pink, respectively. The JTT+G+F model with 100 bootstrap replicates 

was used to construct this tree rooted on the outgroup p25941 from Streptomyces 

coelicolor. Foxtail millet accessions are followed by their respective number of 

exons, chromosome, GC-content percentage, and genomic cluster as listed in Table 

3.1, respectively. Barley and rice accession names are also followed by clade and 

chromosome location, respectively. Clades are labeled by color in the strip 
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surrounding the accessions and protein motifs from the MEME analysis are 

included radiating outward from the accession and clade information. 

  
Genomic structure and synteny  

Approximately 55% of foxtail millet CNL genes formed gene clusters (see Figure 

3.2 and Table 3.1). Of the 53 clusters, 36 were composed of two genes each. Many of the 

clusters presented evidence of tandem duplication, especially the approximate 66% of 

clusters that formed intraspecific clades in the phylogenetic tree (see Figure 3.1). 

Chromosome Os11 in rice is densely populated with CNL gene clusters and contains 40 

of the 149 CNL orthologs (approximately 27%). A similar case exists in the foxtail millet 

genome, with chromosome Si08 containing 79 of 242 genes (approximately 33%). 

Syntenic analysis showed a very strong similarity between chromosomes Os11 and Si08 

(see Figure 3.3). Several instances of possible chromosomal inversion were found 

between rice and foxtail millet. For instance, the region between 5.25-8.75 Mb on Os11 

and 8-13 Mb on Si08 show a likely chromosomal inversion in the evolutionary history of 

one of the two species (see Supplementary Figure 3.2). Evidence of a similar event was 

witnessed between Os02 and Si01, where the first 10 Mb of the chromosomes appear to 

be inverted. Synteny between barley and foxtail millet is much less prevalent and blocks 

were more spread out (Figure 3.3). Foxtail millet R-genes were more evenly distributed 

across chromosomes than those in barley, prominently seen on chromosomes Si02, Si04, 

Si07, Si08, and Si09 (Figure 3.2; also see Supplementary Figure 3.3).  
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Figure 3.2 Chromosomal map of the CNL R-genes found in foxtail millet. Black 

bars represent each of foxtail millet’s nine chromosomes with black rectangles 

denoting centromere positions. Arrows represent gene locations. 

 
 

 
Gene homology and evolution   

Homology inferred from BLAST results for each of the 242 foxtail millet 

sequences showed a prevalence of homologs in Brachypodium distachyon and rice, with 

some to wheat and barley (Supplementary Table 3.2). Rice homologs Lr21 

(Seita.6G021300), Pi (34 genes), MLA (seven genes), Yr10 (Seita.1G006400 and 

Seita.2G050400), Xa1 (five genes), YNR1-5 (Seita.8G184900 and Seita.8G184000), and 

Pm3b (five genes) along with Brachypodium homologs RPM1 (57 genes), RPP13 (29 

genes), and RPS2 (four genes) were found (see Supplementary Table 3.2). Homologs of 

wheat Lr21 (Seita.6G021300), Pm3b (Seita.3G406200 and Seita.3G402500), Tsn1 

(Seita.8G097100), PM (Seita.3G107100 and Seita.2G055800), and Yr10 

(Seita.8G133400) were identified, along with a few select homologs in Zea mays (PIC21, 
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Rp1, and RXO), Sorghum bicolor (Pc and Yr10/Mla1), Hordeum vulgare (NBS3-

RDG2A), and Vitis vinifera (RPM1, RPP8, and RDL6/RF9) (see Supplementary Table 

3.2). S. bicolor and P. virgatum, both nested closely with foxtail millet sequences, with 

all the grasses showing reductions in CNL-A and CNL-B, expansion in CNL-C, and 

absence of CNL-D (Supplementary Figure 3.4). Ka/Ks pairwise comparisons of all 

genes within the same clade were substantially less than one (Fig. 1), with the only 

exceptions being two pairs from CNL-C4 (Seita.8G208400-Seita.9G134600 and 

Seita.2G172800-Seita.9G549300) and one pair from CNL-C9 (Seita.2G009000-

Seita.2G103400). Ks values for each of these clades showed that CNL-C1 had the highest 

Ks value of 1.748 and CNL-B had the lowest Ks value of 1.036 (Figure 3.1).   

 
 

 
 
Figure 3.3 Syntenic map of foxtail millet CNL genes with barley (A) and rice (B). 
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Table 3.1 Gene clusters within the foxtail millet genome, named with the first 

number representing the chromosome in which the cluster is found and the second 

number representing the order of the clusters on that chromosome. Clade and Ks 

values for each cluster are also included; “NA” is used when a particular Ks value 

could not be calculated.  

 
Cluster Clustered Genes Ks value 
1_1 Seita.1G010400 (C1), Seita.1G011100 (C1)   0.000 

1_2 Seita.1G126600 (C1), Seita.1G126700 (C1), Seita.1G126800 (C6)  0.745 

2_1 Seita.2G008500 (C9), Seita.2G009000 (C9)  0.040 

2_2 Seita.2G055500 (C2), Seita.2G055800 (C2), Seita.2G056400 (C2)  0.055 

2_3 Seita.2G056600 (C2), Seita.2G057000 (C2)  0.082 

2_4 Seita.2G103300 (C9), Seita.2G103400 (C9)  0.129 

2_5 Seita.2G169100 (C1), Seita.2G169300 (C1)  0.221 

2_6 Seita.2G172700 (C4), Seita.2G172800 (C4)  NA 

2_7 Seita.2G175100 (C9), Seita.2G175200 (C9)  0.894 

2_8 Seita.2G335000 (C2), Seita.2G335100 (C2)  NA 

3_1 Seita.3G099900 (C2), Seita.3G100200 (C2)  0.042 

3_2 Seita.3G107100 (C2), Seita.3G107300 (C2)  0.090 

3_3 Seita.3G241300 (C1), Seita.3G241400 (C1)  3.124 

3_4 Seita.3G333300 (C9), Seita.3G333400 (C9)  2.204 

3_5 Seita.3G367600 (C1), Seita.3G368000 (C1)  0.000 

3_6 Seita.3G393500 (C1), Seita.3G393700 (C1)  0.000 

3_7 Seita.3G395700 (C9), Seita.3G396100 (C1), Seita.3G396300 (C7)  2.003 

3_8 Seita.3G400200 (C2), Seita.3G400300 (C2)   0.085 

3_9 Seita.3G406200 (C2), Seita.3G406300 (C2)   0.040 
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4_1 Seita.4G126400 (C8), Seita.4G126900 (C8), Seita.4G127000 (C8)  1.599 

4_2 Seita.4G243900 (C6), Seita.4G244000 (C6), Seita.4G244400 (C6)  0.928 

5_1 Seita.5G230900 (C9), Seita.5G231000 (C9)   NA 

6_1 Seita.6G014500 (C9), Seita.6G014600 (C9), Seita.6G014700 (C9), Seita.6G014800 (C9) 0.000 

6_2 Seita.6G017100 (C9), Seita.6G017500 (C3)   NA 

6_3 Seita.6G023500 (C9), Seita.6G023600 (C9)   0.000 

6_4 Seita.6G229200 (C7), Seita.6G229300 (C7), Seita.6G229600 (C7), Seita.6G229700 (C7) 0.430 

6_5 Seita.6G232800 (C2), Seita.6G233200 (C2), Seita.6G233300 (C2), Seita.6G233400 (C2) 0.318 

7_1 Seita.7G003900 (C9), Seita.7G004000 (C3)   2.283 

7_2 Seita.7G164900 (B), Seita.7G165200 (B)   1.318 

7_3 Seita.7G241500 (C1), Seita.7G241600 (C1), Seita.7G242200 (C1)  1.085 

7_4 Seita.7G245900 (C1), Seita.7G246200 (C1), Seita.7G246400 (C1)  0.303 

8_1 Seita.8G039400 (C9), Seita.8G039500 (C9)   0.920 

8_2 Seita.8G049900 (C9), Seita.8G050000 (C9)   0.702 

8_3 Seita.8G064200 (C6), Seita.8G064300 (C6), Seita.8G064400 (C6), Seita.8G064700 (C6), 
Seita.8G064900 (C6) 

0.395 

8_4 Seita.8G087200 (C9), Seita.8G087300 (C6)   1.805 

8_5 Seita.8G088100 (C6), Seita.8G088200 (C6), Seita.8G088300 (C6)  1.904 

8_6 Seita.8G088900 (C6), Seita.8G089000 (C9), Seita.8G089100 (C9), Seita.8G089200 (C6), 
Seita.8G089500 (C7) 

1.929 

8_7 Seita.8G090100 (C7), Seita.8G090200 (C6)   NA 

8_8 Seita.8G123800 (C), Seita.8G124300 (C9)   3.419 

8_9 Seita.8G162600 (C4), Seita.8G162700 (C4)   0.044 

8_10 Seita.8G166700 (C7), Seita.8G166900 (C7), Seita.8G167100 (C7), Seita.8G167300 (C7), 
Seita.8G167500 (C7) 

0.026 

8_11 Seita.8G181000 (C6), Seita.8G181900 (C7)   2.866 

8_12 Seita.8G182600 (C9), Seita.8G183100 (C6)   NA 

8_13 Seita.8G183400 (C6), Seita.8G184000 (C9), Seita.8G184200 (C9)  NA 

8_14 Seita.8G184600 (C9), Seita.8G184900 (C9)   1.093 

8_15 Seita.8G191900 (C9), Seita.8G192200 (C9)   0.129 

8_16 Seita.8G199500 (C9), Seita.8G199600 (C9)   0.539 

8_17 Seita.8G200100 (C9), Seita.8G200400 (C9), Seita.8G201100 (C4)  1.074 
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8_18 Seita.8G208200 (C4), Seita.8G208400 (C4)   0.042 

8_19 Seita.8G234200 (C2), Seita.8G235200 (C2)   0.000 

8_20 Seita.8G242600 (C2), Seita.8G242800 (C2), Seita.8G243100 (C7)  1.556 

8_21 Seita.8G249100 (C4), Seita.8G249300 (C4)   0.092 

9_1 Seita.9G374900 (C5), Seita.9G375200 (C5)   0.000 

 
 
 
 

DISCUSSION 
  
Genetic structure   

In a previous study, 96 NBS-LRR genes were identified in the foxtail millet 

genome, 45 of which were CNL 66. The 242 genes identified in the present study indicate 

that the number of CNL genes in foxtail millet is over five times higher than formerly 

reported and that the majority of them are CNL-C members. CNL-D members were 

completely absent in foxtail millet (Figure 3.1), consistent to the findings in several 

previous studies 44,45,67. Two key differences stood out between the gene nesting of foxtail 

millet with that of barley: 1) CNL-C appears to be ancestral to CNL-B in foxtail millet 

and 2) CNL-C2 is basal to clades B, C1, and C3 in foxtail millet (see Fig. 1). These 

results indicate uncertainty regarding the clade positions in the phylogenetic tree of the 

CNL genes in foxtail millet and barley. In fact, there was weak or no bootstrap support 

for the four major clades of the barley CNL genes. Activation of NBS-LRR proteins 

through the removal of ADP and binding to ATP 68 is supported by annotation of ADP 

and ATP-binding sites in the identified genes, with specific annotations for each gene 

being found in Supplementary Table 3.1. An earlier study 69 showed a prevalence of the 

amino acid residues DDVD in TNL R-genes and DDVW in non-TNL genes, which this 

study confirms within foxtail millet, pointing out the highly conserved nature of the NB-
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ARC within plant species. CNL proteins with unique domains were identified, such as 

zinc fingers (amino acid residues: CxxCxxCxx…HxxxH) in accessions Seita.7G242200, 

Seita.J025700, and Seita.1G053100 which potentially interact with DNA to directly 

initiate a defense response after activation by pathogen effectors 70. Seita.7G242200 and 

Seita.J025700 contain “DNA-binding” annotations, strengthening this hypothesis. 

Nineteen of the 242 genes contained “nucleotide binding” annotations, with 

Seita.2G175200 containing annotations for “transcription factor activity” and “DNA-

binding WRKY” (Supplementary Table 3.1). Seita.3G100200 contained a “lipid 

metabolic process” annotation, which may play a role in the change in metabolism that 

occurs during plant defense response 71. Exon-intron variation (see Supplementary 

Figure 3.1) is very similar between foxtail millet and barley 45, with such a prevalence of 

introns in particular genes indicating that alternative splicing may be an important 

regulatory mechanism of R-gene expression 72. 

Six of the foxtail millet protein sequences (Seita.2G315000, Seita.6G021300, 

Seita.3G396300, Seita.8G192200, Seita.2G172700, and Seita.9G466500) have evidence 

of transmembrane domains, indicating that some S. italica CNL proteins are localized 

within cellular membranes, in contrast to the prevalence of cytoplasmic NBS-LRR 

proteins 73. Of these transmembrane domain-containing genes, Seita.9G466500 and 

Seita.3G396300 showed strong homology to RPS2 and RPM1, respectively, each of 

which are membrane-localized R-proteins that initiate defensive cellular signaling 74,75. 

Possessing such characteristics, it can be inferred that Seita.9G466500 and 

Seita.3G396300 are localized within the plasma membrane and confer resistance to 

Pseudomonas syringae. The other genes listed (Seita.2G315000, Seita.6G021300, 
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Seita.8G192200, and Seita.2G172700) do not explicitly show homology to membrane 

localized R-genes so further investigation will be necessary to confirm their localization. 

These four genes show homology to R-protein RPP13, which has been shown to be 

localized in the cytoplasm 76.  

 

Genomic structure and synteny   

The number of gene clusters in foxtail millet (Figure 3.2 and Table 3.1) is much 

higher than that in barley but similar to rice 45,77. The genomes of foxtail millet and rice 

possess many conserved attributes that two earlier studies show in their syntenic maps 

23,78, corresponding heavily to Figure 3.3 (also see Supplementary Figure 3.2). This 

confirms the chromosomal relationships in the following ways: (Si01=Os02); 

(Si02=Os07+Os09); (Si03=Os05+Os12); (Si04=Os06); (Si05=Os01); (Si06=Os08); 

(Si07=Os04); (Si08=Os11); and (Si09=Os03+Os10) 23,78. Syntenic relationships between 

foxtail millet and barley R-gene-containing regions exist within the extra-pericentromeric 

regions of chromosomes, the locations of barley’s CNL genes 45, showing the large 

divergence in their respective genome sizes (Figure 3.3). This indicates that the ancestor 

of barley and wheat experienced substantial evolutionary divergence from their common 

ancestor with rice, and that each lineage underwent a diverse, independent evolutionary 

history. A remnant of this can be seen by the fact that no single barley chromosome 

contains such a substantial amount of its CNL genes 45 and foxtail millet R-genes are 

more evenly distributed across chromosomes (Supplementary Figure 3.3).  
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Gene homology and evolution   

Rice, barley, and foxtail millet all share a common ancestor about 57 million 

years ago 79. From the prevalence of homologs found in foxtail millet (Supplementary 

Table 3.2), it can be inferred that Seita.6G021300 is the likely S. italica ortholog of Lr21 

and confers resistance to leaf rust 80; Seita.3G406200 and Seita.3G402500 confer 

resistance to powdery mildew as Pm3b 81; and Seita.J025700 and Seita.9G392900 confer 

resistance to bacterial blight as Xa1 82. Fungal diseases like rusts and powdery mildew are 

particularly damaging to cereal crops and resistance to these diseases have been studied 

extensively, especially in wheat 83-86. Several genes, including all three genes of cluster 

7_4 (Seita.7G245900, Seita.7G246200, and Seita.7G246400), show homology to fungal 

R-protein RGA4, which functionally interacts with RGA5 in the recognition of M. oryzae 

effectors AVR-Pia and AVR1-CO39 87,88. Cluster 6_5 (Seita.6G232800, Seita.6G233200, 

Seita.6G233300, and Seita.6G233400) contains homologs of leaf stripe (Pyrenophora 

graminea) R-gene Rdg2a 89. Clusters 8_15 (Seita.8G191900 and Seita.8G192200), 8_16 

(Seita.8G199500 and Seita.8G199600), and 8_17 (Seita.8G200100, Seita.8G200400, and 

Seita.8G201100) all show homology to stripe rust R-gene Yr10 and nest within C9, with 

S. bicolor Yr10 having eight homologs in foxtail millet (see Table 3.2 and 

Supplementary Figure 3.4). S. bicolor NBS-LRR genes, along with P. virgatum, share a 

similar nesting pattern to foxtail millet (Supplementary Figure 3.4), with Zea mays and 

Sorghum bicolor sharing a more recent common ancestor with foxtail millet than rice and 

barley 90. Numerous foxtail millet genes share homology with maize RGA4, rp3, Rp1, 

and RXO1, along with sequences from the genus Solanum and the species Vitis vinifera 
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(for accessions see Supplementary Table 3.2), displaying the highly conserved nature of 

the NB-ARC.   

 The Ka/Ks ratios and Ks values for pairwise comparisons give information 

regarding the selection pressures and relative ages of gene groups, respectively. Ka/Ks 

ratios show a strong prevalence of purifying selection among all clades in Figure 3.1, as 

seen in barley 45, which can be expected for crop species 91. The Ks-derived relative ages 

of the clades differ slightly from results found in barley 45, but concur with the nesting 

patterns of the phylogenetic tree where CNL-C is ancestral to CNL-B (Figure 3.1). It can 

also be inferred that clusters 8_8, 3_3, 8_11, 7_1, 3_4, and 3_7 are the oldest clusters to 

have formed (see Table 3.1 for accessions within each cluster). With the exception of 

3_7, these clusters are each composed of two genes. In the case of larger gene clusters, 

pairwise comparisons between more recent duplication events can lower the overall age 

of the cluster. For instance, cluster 8_6 is composed of five genes (Seita.8G088900, 

Seita.8G089000, Seita.8G089100, Seita.8G089200, and Seita.8G089500) and has a Ks 

value of 1.929. When specific pairwise comparisons are investigated, Seita.8G088900 

and Seita.8G089500 have a Ks value of 3.542, making the duplication event that formed 

the pair much older than Seita.8G089200 and Seita.8G089100, with a Ks value of 1.018. 

Therefore, it can be inferred that within cluster 8_6, the Seita.8G088900 and 

Seita.8G089500 pair formed through duplication long before later duplicating to form 

Seita.8G089200 and Seita.8G089100. Homology to these genes also shows a difference, 

with Seita.8G088900 and Seita.8G089500 showing most homology to RPM1 and 

Seita.8G089100 appearing to have diverged. Almost all foxtail millet RPM1 homologs 

nested within either clade C6 or C9. RPM1 homologs in C6 mostly showed homology 
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only to RPM1, with homologs in C9 also showing homology to RPP13 or other R-genes. 

RPM1 and RPP13 each show a high degree of diversity that is maintained by balancing 

selection 92-94. These findings lead to the prediction that these two genes either contain a 

highly conserved NB-ARC or have experienced convergent evolution. Convergent 

evolution has been observed in resistance to Pseudomonas syringae through detection of 

effectors AvrB and AvrRpm1, which evolved separately in soybean and Arabidopsis 95; 

and variation in RPM1 has resulted in loss-of-function alleles possibly due to the cost of 

R-gene expression 96.  

Due to the destructive nature of blast, dozens of blast R-genes have been 

identified and cloned in rice, most of those being CNL genes 40. Clade C7 contains many 

homologs of the Pib blast R-gene, which has been previously investigated in rice 35. 

These homologs form an expansion in foxtail millet, which makes up cluster 8_10 

(Seita.8G167100, Seita.8G166900, Seita.8G167300, Seita.8G166700, and 

Seita.8G167500) and five genes from chromosome 6 (Seita.6G229300, Seita.6G229600, 

Si13130, Seita.6G229700, Seita.6G229200), four of which form cluster 6_4. It can be 

inferred that blast exposure has heavily selected for an expansion of these genes and 

duplication provided a mechanism for this expansion. Gene pairs within cluster 8_10 all 

have very low Ks values (0-0.044), which correspond to cluster 6_4 (0.045-0.650). Since 

these two clusters also nested together, it can be hypothesized that cluster 6_4 formed 

first and the entire region may have duplicated onto chromosome 8. Another closely 

related cluster, 4_1 (Seita.4G126400, Seita.4G126900, and Seita.4G127000) may be the 

progenitor to cluster 6_4, having three genes with Ks values ranging from 1.477 to 1.727, 

one of which showing homology to Pi9, which also confers resistance to blast 39. 
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Accession Seita.8G181900 from the neighboring cluster 8_11 (clustered with accession 

Seita.8G181000) also shows homology to Pib. Other fungal R-genes are homologs of 

Pm3b (Seita.3G400200, Seita.3G400300, Seita.3G406200, Seita.3G406300, 

Seita.8G242800, and Seita.8G242600) and Pc (Seita.2G172800) genes, conferring 

resistance to Blumeria graminis 81 and Periconia circinata 97, respectively. Evidence of a 

more recent duplication event can be seen in cluster 6_1 (Seita.6G014500, 

Seita.6G014600, Seita.6G014700, and Seita.6G014800) where four homologs of RGH1A 

each have Ks values of 0.000, indicating recent origin not allowing enough time for 

diversification. Genes conferring resistance to pests were also found, especially within 

clusters 3_1 (Seita.3G099900 and Seita.3G100200), 3_2 (Seita.3G107100 and 

Seita.3G107300), and 3_8 (Seita.3G400200 and Seita.3G400300), showing homology to 

brown planthopper R-gene Bph14 4,98, conferring resistance to Nilaparvata lugens, a 

devastating pest throughout Asia 99. These genes also showed homology to powdery 

mildew R-genes, another evidence of the highly conserved nature of the NB-ARC. 

However, since entomopathogenic fungal species such as Beauveria bassiana and 

Metarhizium anisopliae have been shown to control brown planthopper populations 

100,101, future research should investigate the possibility that plants use fungal R-genes to 

select for the growth of species that reduce damage from insects. 

  

Future directions  

Foxtail millet is both a substantial crop and a model for the study of closely 

related grass species. Future research should aim at increasing the available knowledge 

about molecular pathways within foxtail millet, specifically regarding host-pathogen 
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interactions. Genomic data from other grass species (e.g. Panicum hallii, P. virgatum, 

and S. viridis) will further develop the understanding of R-gene evolution in S. italica. A 

demand for efficient biofuel production will undoubtedly require future breeders to 

develop durable resistance in species that previously did not have such global impact, 

especially as increased cultivation causes a greater pathogen exposure. These results have 

potential implications in elucidating specific signaling pathways, measuring expression 

before and after pathogen exposure, as well as further development of abiotic stress 

resistance in foxtail millet and other closely related grass species.  

 

CONCLUSION 

 

 In this study, 242 CNL foxtail millet genes were identified. Conserved domains 

within the protein sequences concurred with expectations based upon existing knowledge 

of NBS-LRR receptor function, with the presence of additional transmembrane (six 

genes) and zinc finger domains (three genes). Syntenic analyses among foxtail millet, 

rice, and barley showed a high degree of genomic similarity between foxtail millet and 

rice, as previously reported. Approximately 55% of identified genes formed clusters and 

many presented evidence of tandem duplications as a means of diversification in response 

to rapidly diversifying pathogens (e.g. evolution of blast resistance). Homology of foxtail 

millet R genes was confirmed (i.e. Lr21, P9, Pib, MLA, Yr10, Xa1, YNR1-5, RGA4, 

RPM1, RPP13 and Pm3b) to that of other crop species, and a prevalence of purifying 

selection as means of R-gene evolution in response to corresponding pathogens. Future 

efforts should include thorough analysis of disease resistance signaling mechanisms and 
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investigation of cross-talk with abiotic stress resistance pathways for cultivars of foxtail 

millet and other crop species. 

 

SUPPLEMENTARY DATA  

I report data on the identification of 242 disease resistance genes (R-genes) in the 

Setaria italica genome as presented in “Genetic diversity of disease resistance genes in 

foxtail millet (Setaria italica L.)”102. This data describe the structure and evolution of 

plant Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) R-genes, and were 

obtained through rigorous extraction and analysis of recently available plant genome 

sequences using cutting-edge analytical software. In order to display the data, figures 

include gene structure diagrams, chromosomal syntenic maps, a chromosomal density 

plot, and a maximum-likelihood phylogenetic tree comparing: Sorghum bicolor, Panicum 

virgatum, Setaria italica, and Arabidopsis thaliana. Compilation of InterProScan 

annotations, Gene Ontology (GO) annotations, and Basic Local Alignment Search Tool 

(BLAST) results for the 242 R-genes identified in the foxtail millet genome are also 

included in tabular format.  

These data provide details regarding foxtail millet R-genes102. Generated from 

sequence annotations, gene structure diagrams for each of the 242 genes were compiled 

(Supplementary Figure 3.1), along with InterProScan and Gene Ontology (GO) 

annotations (Supplementary Table 3.1). Utilizing R-gene genomic locations, 

chromosomal syntenic maps (Supplementary Figure 3.2) and R-gene density 

(Supplementary Figure 3.3) are displayed. Based on R-protein sequences, homologs 

were compiled (Supplementary Table 3.2) and a maximum-likelihood phylogenetic tree 
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(Supplementary Figure 3.4) displays the evolutionary relationships between Setaria 

italica, Arabidopsis thaliana, Sorghum bicolor, and Panicum virgatum accessions.  

Exon and intron locations for the 242 identified R-genes were accessed from the 

Ensembl Genomes database46 and uploaded to the Gene Structure Display Server61 in 

BED format to generate the visual display of structure. InterProScan and GO 

annotations51, also from the Ensemble Genomes Biomart, were downloaded and 

summarized in tabular format. Chromosome sequences for foxtail millet, rice, and barley 

genomes were uploaded in FASTA format to SyMAP version 4.265 along with GFF3 

annotation files. Using the 2D Chromosome Explorer function within SyMAP, figures 

were generated comparing chromosomes. Chromosomal locations for each of the R-

genes of foxtail millet, rice, and barley were uploaded to the program R63 to generate a 

density plot visualization. S. bicolor and P. virgatum R-genes60,103 were compiled with S. 

italica and A. thaliana sequences for the construction of a phylogenetic tree. Nucleotide-

Binding, Apoptosis protease-activating factor-1, R-protein, Caenorhabditis elegans 

death-4 protein (NB-ARC) sequences were aligned within ClustalW48 and a maximum-

likelihood phylogenetic tree (100 bootstrap replicates) was generated in MEGA 754,55 

using the JTT+G+F model, selected based upon a maximum-likelihood model test. This 

tree was edited in the Interactive Tree of Life server104. Using the South Dakota State 

University High Performance Computing Cluster and the PLAN server56, BLAST results 

of the foxtail millet NB-ARC protein sequences were acquired and summarized in tabular 

format. S. italica accessions were updated to version 2.2 of the genome, available in 

Phytozome28,47. 
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Supplementary Figure 3.1 Exon variation across foxtail millet CNL gene sequences, 

with exons and introns represented by yellow bars and grey lines, respectively. 
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Supplementary Figure 3.2 Synteny between selected foxtail millet and rice 

chromosomes, illustrating orthologous relationships of CNL genes. Comparisons are 
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shown for substantial chromosomal inversions and duplications. Maps are arranged 

by foxtail millet chromosomes (Si) in rows, with rice chromosomes (Os) being 

individually labeled. 

 
 

 
Supplementary Figure 3.3 Density plot of chromosomal R-gene locations for H. 

vulgare, O. sativa, and S. italica, labeled as Hv, Os, and Si, respectively. 
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Supplementary Figure 3.4 Maximum-likelihood phylogenetic analysis of the NB-

ARC amino acid sequences of R-genes in Setaria italica (Seita), Sorghum bicolor 

(Sobic), Panicum virgatum (Pavir), and Arabidopsis thaliana (AT) using the 

JTT+G+F model and 100 bootstrap replicates, rooted on the outgroup p25941 from 

Streptomyces coelicolor. CNL clades A, B, C, and D are shown in blue, pink, red, and 

green, respectively. 
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Supplementary Table 3.1 InterProScan and GO annotation identities and 

descriptions for the foxtail millet CNL sequences, accessed from the Biomart 

function of Ensembl Genomes. 

 
Annotation Name: 

Annotation 
ID: Accessions:                   

AAA+ ATPase domain IPR003593 
Seita.7G250
100 

Seita.6G014
500 

Seita.6G014
700 

Seita.2G315
000 

Seita.5G158
300 

Seita.3G387
100 

Seita.8G039
400 

Seita.7G164
900 

Seita.8G087
200 

Seita.6G014
600 

Armadillo-like helical IPR011989 
Seita.1G043
600                   

Armadillo-type fold IPR016024 
Seita.1G043
600                   

DNA-binding WRKY IPR003657 
Seita.2G175
200                   

FNIP IPR008615 
Seita.8G242
600                   

Leucine-rich repeat 

IPR001611, 
IPR032675, 
IPR006553, 
and 
IPR003591 

Seita.8G029
500 

Si027449m.
g 

Seita.8G208
200 

Seita.4G244
000 

Seita.6G233
400 

Seita.9G134
600 

Seita.3G241
300 

Seita.9G182
800 

Seita.3G278
200 

Seita.8G103
500 

Seita.9G224
800 

Seita.8G048
800 

Seita.2G178
600 

Seita.6G233
300 

Seita.7G311
300 

Seita.6G232
200 

Seita.5G344
600 

Seita.2G062
100 

Seita.6G232
800 

Seita.7G164
900 

Seita.2G172
700 

Seita.7G165
200 

Seita.8G133
400 

Seita.8G191
900 

Seita.7G074
000 

Seita.9G466
500 

Seita.8G100
000 

Seita.6G235
800 

Seita.2G075
000 

Seita.3G393
500 

Seita.8G185
700 

Seita.3G333
400 

Seita.6G229
700 

Seita.1G126
700 

Seita.8G217
800 

Seita.7G288
400 

Seita.5G046
800 

Seita.8G161
100 

Seita.9G375
200 

Seita.2G103
300 

Seita.8G089
100 

Seita.6G023
500 

Seita.3G342
000 

Seita.2G078
700 

Seita.5G036
400 

Seita.7G250
100 

Seita.6G023
600 

Seita.7G066
800 

Seita.8G088
100 

Seita.4G284
200 

Seita.8G181
000 

Seita.1G072
100 

Seita.7G060
600 

Seita.8G124
300 

Seita.8G184
200 

Si005074m.
g 

Seita.8G064
700 

Seita.3G107
100 

Seita.3G369
800 

Seita.3G395
700 

Seita.4G126
400 

Seita.8G039
500 

Seita.7G245
900 

Seita.2G169
100 

Seita.8G183
100 

Seita.8G249
100 

Seita.6G229
300 

Seita.3G195
000 

Seita.8G200
100 

Seita.7G306
800 

Seita.8G167
500 

Seita.8G236
700 

Seita.2G172
800 

Seita.8G087
300 

Seita.4G250
500 

Seita.3G274
400 

Seita.8G187
100 

Seita.3G207
600 

Seita.8G202
300 

Seita.8G184
000 

Seita.8G166
700 

Seita.5G074
500 

Seita.6G252
300 

Seita.9G392
900 

Seita.8G199
600 

Seita.3G400
300 

Seita.8G201
100 

Seita.5G337
400 

Seita.3G367
600 

Seita.7G043
100 

Seita.8G064
300 

Seita.4G213
400 

Seita.2G378
800 

Seita.1G166
800 

Seita.8G162
600 

Seita.3G325
300 

Seita.6G014
500 

Seita.3G350
300 

Seita.3G400
200 

Seita.6G220
900 

Seita.7G044
200 

Seita.7G014
800 

Seita.5G053
900 

Seita.1G053
100 

Seita.2G128
800 

Seita.8G088
200 

Seita.2G103
400 

Seita.7G241
600 

Seita.8G146
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400 

Seita.3G107
300 

Seita.5G353
600 

Seita.8G244
000 

Seita.9G298
900 

Seita.6G021
300 

Seita.3G396
300 

Seita.4G288
900 

Seita.2G009
000 

Seita.8G234
200 

Seita.7G246
400 

Seita.4G067
000 

Seita.2G011
700 

Seita.2G294
100 

Seita.6G017
100 

Seita.9G181
300 

Seita.2G056
400 

Seita.8G089
500 

Seita.7G003
900 

Seita.1G006
400 

Seita.8G208
400 

Seita.3G368
000 

Seita.8G242
800 

Seita.2G055
500 

Seita.4G126
900 

Seita.8G194
100 

Seita.1G126
800 

Seita.5G231
000 

Seita.6G014
800 

Seita.8G235
200 

Seita.2G050
400 

Seita.8G249
300 

Seita.6G229
600 

Seita.6G229
200 

Seita.3G221
500 

Seita.8G198
300 

Seita.8G192
200 

Seita.8G184
600 

Seita.8G090
100 

Seita.8G243
100 

Seita.8G195
900 

Seita.J02570
0 

Seita.8G065
300 

Seita.8G167
100 

Seita.8G006
800 

Seita.1G126
600 

Seita.8G200
400 

Seita.8G064
200 

Seita.8G049
900 

Seita.3G406
200 

Seita.6G233
200 

Seita.5G103
000 

Seita.8G162
700 

Seita.3G388
700 

Seita.8G064 Seita.8G183 Seita.3G317 Seita.8G089 Seita.5G230 Seita.1G011 Seita.2G056 Seita.5G435 Seita.3G333 Seita.6G092
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900 400 600 000 900 600 600 000 300 200 

Seita.2G057
000 

Seita.1G011
100 

Seita.8G089
200 

Seita.3G402
500 

Seita.4G243
900 

Seita.8G088
300 

Seita.8G064
400 

Seita.8G077
900 

Seita.1G010
400 

Seita.5G432
300 

Seita.4G244
400 

Seita.9G185
000 

Seita.3G099
900 

Seita.2G169
300 

Seita.8G166
900 

Seita.7G187
000 

Seita.8G155
500 

Seita.8G167
300 

Seita.6G143
000 

Seita.8G088
900 

Seita.4G127
000 

Seita.2G335
100 

Seita.9G419
800 

Seita.9G549
300 

Seita.2G176
700 

Seita.7G234
900 

Seita.3G396
100 

Seita.8G097
100 

Seita.4G035
100 

Seita.8G123
800 

Seita.7G004
000 

Seita.6G017
500                 

ATP binding GO:000552
4 

Seita.7G250
100 

Seita.6G014
500 

Seita.6G014
700 

Seita.2G315
000 

Seita.5G158
300 

Seita.3G387
100 

Seita.8G039
400 

Seita.7G164
900 

Seita.8G087
200 

Seita.6G014
600 

Seita.8G100
000 

Seita.8G039
500 

Seita.8G184
000 

Seita.7G246
200 

Seita.6G021
300 

Seita.2G009
000 

Seita.7G246
400 

Seita.6G014
800 

Seita.2G176
700 

Seita.4G035
100 

binding 
GO:000548
8 

Seita.1G043
600                   

defense response GO:000695
2 

Seita.7G250
100 

Seita.6G014
500 

Seita.6G014
700 

Seita.2G315
000 

Seita.5G158
300 

Seita.3G387
100 

Seita.8G039
400 

Seita.7G164
900 

Seita.8G087
200 

Seita.6G014
600 

Seita.1G043
600 

Seita.2G175
200 

Seita.8G242
600 

Seita.8G029
500 

Si027449m.
g 

Seita.8G208
200 

Seita.4G244
000 

Seita.6G233
400 

Seita.9G134
600 

Seita.3G241
300 

Seita.9G182
800 

Seita.3G278
200 

Seita.8G103
500 

Seita.9G224
800 

Seita.8G048
800 

Seita.2G178
600 

Seita.6G233
300 

Seita.7G311
300 

Seita.6G232
200 

Seita.5G344
600 

Seita.2G062
100 

Seita.6G232
800 

Seita.2G172
700 

Seita.7G165
200 

Seita.8G133
400 

Seita.8G191
900 

Seita.7G074
000 

Seita.9G466
500 

Seita.8G100
000 

Seita.6G235
800 

Seita.2G075
000 

Seita.3G393
500 

Seita.8G185
700 

Seita.3G333
400 

Seita.6G229
700 

Seita.1G126
700 

Seita.8G217
800 

Seita.7G288
400 

Seita.5G046
800 

Seita.8G161
100 

Seita.9G375
200 

Seita.2G103
300 

Seita.8G089
100 

Seita.6G023
500 

Seita.3G342
000 

Seita.2G078
700 

Seita.5G036
400 

Seita.6G023
600 

Seita.7G066
800 

Seita.8G088
100 

Seita.4G284
200 

Seita.8G181
000 

Seita.1G072
100 

Seita.7G060
600 

Seita.8G124
300 

Seita.8G184
200 

Si005074m.
g 

Seita.8G064
700 

Seita.3G107
100 

Seita.3G369
800 

Seita.3G395
700 

Seita.4G126
400 

Seita.8G039
500 

Seita.7G245
900 

Seita.2G169
100 

Seita.8G183
100 

Seita.8G249
100 

Seita.6G229
300 

Seita.3G195
000 

Seita.8G200
100 

Seita.7G306
800 

Seita.8G167
500 

Seita.8G236
700 

Seita.2G172
800 

Seita.8G087
300 

Seita.4G250
500 

Seita.3G274
400 

Seita.8G187
100 

Seita.3G207
600 

Seita.8G202
300 

Seita.8G184
000 

Seita.8G166
700 

Seita.5G074
500 

Seita.6G252
300 

Seita.9G392
900 

Seita.8G199
600 

Seita.3G400
300 

Seita.8G201
100 

Seita.5G337
400 

Seita.3G367
600 

Seita.7G043
100 

Seita.8G064
300 

Seita.4G213
400 

Seita.2G378
800 

Seita.1G166
800 

Seita.8G162
600 

Seita.3G325
300 

Seita.3G350
300 

Seita.3G400
200 

Seita.6G220
900 

Seita.7G044
200 

Seita.7G014
800 

Seita.5G053
900 

Seita.1G053
100 

Seita.2G128
800 

Seita.8G088
200 

Seita.2G103
400 

Seita.7G241
600 

Seita.8G146
600 

Seita.7G241
500 

Seita.7G242
200 

Seita.5G055
400 

Seita.2G055
800 

Seita.9G296
900 

Seita.3G338
500 

Seita.2G008
500 

Seita.1G098
800 

Seita.8G181
900 

Seita.2G246
400 

Seita.1G191
600 

Seita.8G247
800 

Seita.2G175
100 

Seita.2G076
700 

Seita.8G182
600 

Seita.8G050
000 

Seita.3G406
300 

Seita.3G393
700 

Seita.8G184
900 

Seita.8G090
200 

Seita.7G246
200 

Seita.3G100
200 

Seita.2G335
000 

Seita.8G199
500 

Seita.8G130
400 

Seita.4G214
400 

Seita.9G374
900 

Seita.3G241
400 

Seita.3G107
300 

Seita.5G353
600 

Seita.8G244
000 

Seita.9G298
900 

Seita.6G021
300 

Seita.3G396
300 

Seita.4G288
900 

Seita.2G009
000 

Seita.8G234
200 

Seita.7G246
400 

Seita.4G067
000 

Seita.2G011
700 

Seita.2G294
100 

Seita.6G017
100 

Seita.9G181
300 

Seita.2G056
400 

Seita.8G089
500 

Seita.7G003
900 

Seita.1G006
400 

Seita.8G208
400 

Seita.3G368
000 

Seita.8G242
800 

Seita.2G055
500 

Seita.4G126
900 

Seita.8G194
100 

Seita.1G126
800 

Seita.5G231
000 

Seita.6G014
800 

Seita.8G235
200 

Seita.2G050
400 

Seita.8G249
300 

Seita.6G229
600 

Seita.6G229
200 

Seita.3G221
500 

Seita.8G198
300 

Seita.8G192
200 

Seita.8G184
600 

Seita.8G090
100 

Seita.8G243
100 

Seita.8G195
900 

Seita.J02570
0 

Seita.8G065
300 

Seita.8G167
100 

Seita.8G006
800 

Seita.1G126
600 

Seita.8G200
400 

Seita.8G064
200 

Seita.8G049
900 

Seita.3G406
200 

Seita.6G233
200 

Seita.5G103
000 

Seita.8G162
700 

Seita.3G388
700 

Seita.8G064
900 

Seita.8G183
400 

Seita.3G317
600 

Seita.8G089
000 

Seita.5G230
900 

Seita.1G011
600 

Seita.2G056
600 

Seita.5G435
000 

Seita.3G333
300 

Seita.6G092
200 

Seita.2G057
000 

Seita.1G011
100 

Seita.8G089
200 

Seita.3G402
500 

Seita.4G243
900 

Seita.8G088
300 

Seita.8G064
400 

Seita.8G077
900 

Seita.1G010
400 

Seita.5G432
300 

Seita.4G244 Seita.9G185 Seita.3G099 Seita.2G169 Seita.8G166 Seita.7G187 Seita.8G155 Seita.8G167 Seita.6G143 Seita.8G088
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400 000 900 300 900 000 500 300 000 900 

Seita.4G127
000 

Seita.2G335
100 

Seita.9G419
800 

Seita.9G549
300 

Seita.2G176
700 

Seita.7G234
900 

Seita.3G396
100 

Seita.8G097
100 

Seita.4G035
100 

Seita.8G123
800 

Seita.7G004
000 

Seita.6G017
500                 

DNA binding 
GO:000367
7 

Seita.8G039
400 

Seita.7G242
200 

Seita.J02570
0               

intracellular signal transduction 
GO:003555
6 

Seita.3G100
200                   

lipid metabolic process 
GO:000662
9 

Seita.3G100
200                   

metal ion binding 
GO:004687
2 

Seita.1G053
100                   

nucleoside-triphosphatase activity GO:001711
1 

Seita.7G250
100 

Seita.6G014
500 

Seita.6G014
700 

Seita.2G315
000 

Seita.5G158
300 

Seita.3G387
100 

Seita.8G039
400 

Seita.7G164
900 

Seita.8G087
200 

Seita.6G014
600 

Seita.8G039
500 

Seita.8G184
000 

Seita.7G246
200 

Seita.6G021
300 

Seita.2G009
000 

Seita.7G246
400 

Seita.6G014
800 

Seita.2G176
700     

nucleotide binding GO:000016
6 

Seita.7G250
100 

Seita.6G014
500 

Seita.6G014
700 

Seita.2G315
000 

Seita.5G158
300 

Seita.3G387
100 

Seita.8G039
400 

Seita.7G164
900 

Seita.8G087
200 

Seita.6G014
600 

Seita.8G039
500 

Seita.8G184
000 

Seita.7G246
200 

Seita.6G021
300 

Seita.2G009
000 

Seita.7G246
400 

Seita.6G014
800 

Seita.2G176
700 

Seita.4G035
100   

nucleus 
GO:000563
4 

Seita.8G039
400                   

phosphatidylinositol phospholipase C activity 
GO:000443
5 

Seita.3G100
200                   

protein binding GO:000551
5 

Seita.7G164
900 

Seita.8G029
500 

Si027449m.
g 

Seita.8G208
200 

Seita.4G244
000 

Seita.6G233
400 

Seita.9G134
600 

Seita.3G241
300 

Seita.9G182
800 

Seita.3G278
200 

Seita.8G103
500 

Seita.9G224
800 

Seita.8G048
800 

Seita.2G178
600 

Seita.6G233
300 

Seita.7G311
300 

Seita.6G232
200 

Seita.5G344
600 

Seita.2G062
100 

Seita.6G232
800 

Seita.2G172
700 

Seita.7G165
200 

Seita.8G133
400 

Seita.8G191
900 

Seita.7G074
000 

Seita.9G466
500 

Seita.8G100
000 

Seita.6G235
800     

protein kinase activity 
GO:000467
2 

Seita.8G100
000 

Seita.4G035
100                 

protein phosphorylation 
GO:000646
8 

Seita.8G100
000 

Seita.4G035
100                 

protein serine/threonine kinase activity 
GO:000467
4 

Seita.8G100
000 

Seita.4G035
100                 

regulation of transcription, DNA-templated 
GO:000635
5 

Seita.8G039
400 

Seita.2G175
200                 

sequence-specific DNA binding 
GO:004356
5 

Seita.2G175
200                   

signal transduction 
GO:000716
5 

Seita.3G100
200                   

transcription factor activity, sequence-specific DNA 
binding 

GO:000370
0 

Seita.2G175
200                   

transcription, DNA-templated 
GO:000635
1 

Seita.8G039
400                   

transferase activity, transferring phosphorus-
containing groups 

GO:001677
2 

Seita.8G100
000 

Seita.4G035
100                 

 
 
 
 
 
 
 
 
 



 150 

Supplementary Table 3.2 Homology generated from BLAST results for the 

clustered and unclustered foxtail millet sequences.  

  
Clustered Genes Non-Clustered Genes 

Accession Homolog Clust
er 

Accession Homolog Clust
er Accession Homolog Accession Homolog 

Seita.2G00
8500 

RPM1 2_1 Seita.7G00
3900 

RPM1 7_1 Seita.5G05
5400 RGA4 

Si027449m
.g RPM1 

Seita.2G00
9000 

RPM1 2_1 Seita.7G00
4000 

RGA1 7_1 Seita.5G05
5400 At3g14460 

Seita.8G19
5900 RGA4 

Seita.2G10
3300 

RPM1 2_4 Seita.7G16
5200 

RPS2 7_2 Seita.5G05
5400 RGA3 

Seita.8G09
7100 Tsn1 

Seita.2G10
3400 

RPM1 2_4 Seita.7G16
5200 

NBS-LRR disease resistance 
protein homologue 

7_2 Seita.5G35
3600 RGA3 

Seita.8G13
0400 RDL5/RF45 

Seita.2G10
3400 

RPP13 2_4 Seita.7G16
5200 

O1 7_2 Seita.5G03
6400 RPP8 

Seita.8G13
0400 RGH1A 

Seita.2G10
3400 RGA1 

2_4 Seita.7G16
5200 

O2 7_2 Seita.5G03
6400 MLA6 

Seita.8G19
4100 Yr10/Mla1 

Seita.2G10
3400 MLA6 

2_4 Seita.7G16
4900 

RPS2 7_2 Seita.5G43
5000 RPP13 

Seita.8G16
1100 RGA1 

Seita.2G17
2700 

RGA3 2_6 Seita.7G16
4900 

O1 7_2 Seita.5G05
3900 RPM1 

Seita.8G16
1100 

powdery mildew resistance 
protein PM3b 

Seita.2G17
2800 

RGA4 2_6 Seita.7G16
4900 

O2 7_2 Seita.5G07
4500 Yr10/Mla1 

Seita.8G18
7100 RPM1 

Seita.2G17
2800 

Pc protein A 2_6 Seita.7G24
2200 

RGA4 7_3 Si005074m
.g Rp1 

Seita.8G18
7100 RPP13 

Seita.2G17
2800 

Pc protein C 2_6 Seita.7G24
2200 

B0809H07.6 7_3 Si005074m
.g Pi37 

Seita.8G07
7900 RPP13 

Seita.2G17
2800 

pollen signalling protein with adenylyl 
cyclase activity-like 

2_6 Seita.7G24
2200 

XA1 7_3 Seita.5G34
4600 RPS2 

Seita.8G19
8300 RPM1 

Seita.2G17
5200 

RPP13 2_7 Seita.7G24
1500 

B0809H07.6 7_3 Seita.5G34
4600 PIC21 

Seita.8G19
8300 RPP13 

Seita.2G17
5200 

WRKY transcription factor 41 2_7 Seita.7G24
1500 

XA1 7_3 Seita.5G33
7400 At1g50180 

Seita.2G05
6400 BPH14-1 

Seita.2G17
5100 

RPP13 2_7 Seita.7G24
1600 

B0809H07.6 7_3 Seita.5G33
7400 RDL6/RF9 

Seita.2G05
6400 BPH14-2 

Seita.3G10
0200 

BPH14-1 3_1 Seita.7G24
1600 

XA1 7_3 Seita.5G33
7400 RPP8 

Seita.2G05
5800 BPH14-1 

Seita.3G10
0200 

BPH14-2 3_1 Seita.7G24
5900 

RGA4 7_4 Seita.4G28
8900 RPP13 

Seita.2G05
5800 

powdery mildew resistance 
protein PM 

Seita.3G09
9900 

BPH14-1 3_1 Seita.7G24
5900 

NBS-LRR disease resistance 
protein homologue 

7_4 Seita.4G28
8900 

pollen signalling protein with adenylyl 
cyclase activity 

Seita.2G31
5000 RPP13 

Seita.3G09
9900 

BPH14-2 3_1 Seita.7G24
6200 

RGA4 7_4 Seita.4G25
0500 blight resistance protein B149 

Seita.2G05
6600 BPH14-1 

Seita.3G10
7100 

powdery mildew resistance protein PM 3_2 Seita.7G24
6400 

RGA4 7_4 Seita.4G25
0500 blight resistance protein RGA4 

Seita.2G29
4100 

disease resistance protein 
At1g50180 

Seita.3G10
7100 

BPH14-2 3_2 Seita.8G03
9400 

RPM1 8_1 Seita.4G25
0500 blight resistance protein SH20 

Seita.2G29
4100 RPM1 

Seita.3G10
7300 

BPH14-1 3_2 Seita.8G03
9400 

RPP13 8_1 Seita.4G25
0500 Disease resistant protein rga3 

Seita.2G05
0400 Yr10 

Seita.3G10
7300 

BPH14-2 3_2 Seita.8G03
9400 

Nitrate-induced NOI protein 8_1 Seita.4G21
4400 RPP13 

Seita.2G10
3300 MLA6 

Seita.3G24
1400 

RPP13 3_3 Seita.8G03
9500 

RGH1A 8_1 Seita.4G28
4200 RPP13 

Seita.2G06
2100 RPM1 

Seita.3G33
3300 

RPM1 3_4 Seita.8G16
7300 

Pi-b protein 8_10 Seita.7G25
0100 RGA4 

Seita.2G17
6700 RGA2 
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Seita.3G39
3700 

Rp1 3_6 Seita.8G16
6700 

Pi-b protein 8_10 Seita.7G04
3100 RGA4 

Seita.2G17
6700 RGA4 

Seita.3G39
3700 

rust resistance protein 3_6 Seita.8G16
6900 RPM1 

8_10 Seita.7G30
6800 rp3 

Seita.2G17
6700 Pi15 

Seita.3G39
3700 

Rp1-D 3_6 
Seita.8G16
6900 Pib 

8_10 
Seita.7G30
6800 rp3-1 

Seita.2G17
6700 Pi5-1 

Seita.3G39
3500 

Rp1 3_6 Seita.8G16
6900 Pi-b protein  

8_10 Seita.7G01
4800 H0215A08.1 

Seita.2G37
8800 RPM1 

Seita.3G39
3500 

Rp1-D 3_6 Seita.8G16
7500 Pi-b protein  

8_10 Seita.7G18
7000 RPM1 

Seita.2G05
7000 BPH14-1 

Seita.3G39
6300 

RPM1 3_7 Seita.8G16
7100 RPM1 

8_10 Seita.7G31
1300 RGA1 

Seita.2G05
7000 BPH14-2 

Seita.3G39
5700 

RPM1 3_7 Seita.8G16
7100 Pib 

8_10 Seita.7G31
1300 RPP13 

Seita.2G07
6700 Nbs1-Pi2 

Seita.3G39
5700 

RPP13 3_7 Seita.8G16
7100 Pi-b protein  

8_10 Seita.7G04
4200 RGA4 

Seita.2G07
8700 RPM1 

Seita.3G39
6100 

RGA2 3_7 Seita.8G18
2600 

RGH1A 8_11 Seita.7G06
0600 RGA2 

Seita.2G07
8700 MLA6 

Seita.3G39
6100 

NBS-LRR disease resistance protein 
homologue 

3_7 Seita.8G18
1000 

RPM1 8_11 Seita.7G28
8400 RGA1 

Seita.2G07
5000 RPM1 

Seita.3G40
0300 

RGA1 3_8 Seita.8G18
1000 

LRR14 8_11 Seita.7G28
8400 RPP13 

Seita.2G07
5000 MLA6 

Seita.3G40
0300 

BPH14-1 3_8 Seita.8G18
3100 

RPM1 8_11 Seita.6G22
0900 Pi-b protein  

Seita.2G00
9000 MLA6 

Seita.3G40
0300 

powdery mildew resistance protein PM3b 3_8 Seita.8G18
3100 

LRR14 8_11 Seita.6G23
2200 RGA1 

Seita.2G01
1700 Nitrate-induced NOI protein 

Seita.3G40
0200 

Pm3b 3_8 Seita.8G18
1900 

RPP13 8_11 Seita.6G23
2200 NBS3-RDG2A 

Seita.2G17
8600 blight resistance protein SH20 

Seita.3G40
0200 

powdery mildew resistance protein PM3b 3_8 Seita.8G18
1900 

Pib 8_11 Seita.6G23
2200 RDG2A 

Seita.2G17
8600 Pi5-2 

Seita.3G40
6200 

Pm3b 3_9 Seita.8G18
4900 

YNR1 8_14 Seita.6G23
5800 RGA1 

Seita.2G24
6400 putative ATPase 

Seita.3G40
6200 

powdery mildew resistance protein PM3b 3_9 Seita.8G18
4900 

YNR2 8_14 Seita.6G23
5800 NBS3-RDG2A 

Seita.2G24
6400 RPM1 

Seita.3G40
6300 

Pm3b 3_9 Seita.8G18
4900 

YNR3 8_14 Seita.6G02
1300 Lr21 

Seita.2G24
6400 PPR1 

Seita.3G40
6300 

powdery mildew resistance protein PM3b 3_9 Seita.8G18
4900 

YNR4 8_14 Seita.6G02
1300 rust resistance protein Rp1-dp8-like 

Seita.2G24
6400 RXO1 

Seita.4G12
6400 Nbs1-ON 

4_1 Seita.8G18
4900 

YNR5 8_14 Seita.6G09
2200 RPM1 

Seita.2G05
5500 BPH14-1 

Seita.4G12
6400 Nbs3-OP 

4_1 Seita.8G19
2200 

Yr10/Mla1 8_15 Seita.6G09
2200 RPP13 

Seita.2G05
5500 BPH14-2 

Seita.4G12
6400 Nbs7-75 

4_1 Seita.8G19
1900 

Yr10/Mla1 8_15 Seita.6G14
3000 MLA1 

Seita.9G22
4800 RGA3 

Seita.4G12
6400 Nbs1-Pi2 

4_1 Seita.8G19
9600 

Yr10/Mla1 8_16 Seita.1G01
1600 RGA-1 

Seita.9G39
2900 RGA4 

Seita.4G12
6400 Pi9 

4_1 Seita.8G19
9500 

Yr10/Mla1 8_16 Seita.1G01
1100 RGA-1 

Seita.9G39
2900 XA1 

Seita.4G12
6900 

Nbs1-Pi2 4_1 Seita.8G20
1100 

RGA4 8_17 Seita.1G05
3100 RPM1 

Seita.9G29
6900 

blight resistance protein 
RGA4 

Seita.4G12
7000 NBA5 

4_1 Seita.8G20
0400 

Yr10/Mla1 8_17 Seita.1G05
3100 RPP13 

Seita.9G29
6900 blight resistance protein SH20 

Seita.4G24
4000 

RPM1 4_2 Seita.8G20
0100 

Yr10/Mla1 8_17 Seita.1G00
6400 RPP13 

Seita.9G29
6900 blight resistance protein T118 

Seita.4G24
3900 

RPM1 4_2 Seita.8G05
0000 

NBS-LRR disease resistance 
protein homologue 

8_2 Seita.1G00
6400 Yr10 

Seita.9G29
6900 RGA3 

Seita.4G24
4400 

RPM1 4_2 Seita.8G04
9900 

RPH8A 8_2 Seita.1G07
2100 RPM1 

Seita.9G29
8900 RPM1 

Seita.5G23
0900 

RPM1 5_1 Seita.8G04
9900 

RPM1 8_2 Seita.1G07
2100 RPP13 

Seita.9G46
6500 RPS2 

Seita.6G01
4600 

RPM1 6_1 Seita.8G04
9900 

RPP13 8_2 Seita.1G19
1600 RPM1 

Seita.9G41
9800 

disease resistance protein 
At3g14460 
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Seita.6G01
4600 

RGH1A 6_1 Seita.8G04
9900 

RPP8 8_2 Seita.1G19
1600 RPP13 

Seita.9G54
9300 RPP13 

Seita.6G01
4500 

RPM1 6_1 Seita.8G04
9900 

Nitrate-induced NOI protein 8_2 Seita.1G01
0400 RGA-1 

Seita.9G54
9300 

blight resistance protein 
RGA3 

Seita.6G01
4500 

RGH1A 6_1 
Seita.8G24
2600 

Pm3b 8_20 
Seita.J0257
00 RGA2 

Seita.9G54
9300 RGA4 

Seita.6G01
4800 

RPM1 6_1 Seita.8G24
3100 

RPM1 8_20 Seita.J0257
00 B0809H07.6 

Seita.9G18
2800 RGA4 

Seita.6G01
4800 

RGH1A 6_1 Seita.8G24
2800 

Pm3b 8_20 Seita.J0257
00 XA1 

 

  

Seita.6G01
4700 

RPM1 6_1 Seita.8G24
9300 

RGA2 8_21 Seita.3G27
4400 RPP13 

 

  

Seita.6G01
4700 

RGH1A 6_1 Seita.8G24
9300 

RGA4 8_21 Seita.3G38
8700 MLA1 

 

  

Seita.6G01
7100 Nbs1-ON 

6_2 Seita.8G24
9100 

RGA2 8_21 Seita.3G38
8700 Pi36 

 

  

Seita.6G01
7100 Nbs1-Pi2 

6_2 Seita.8G24
9100 

RGA4 8_21 Seita.3G33
8500 RPM1 

 

  

Seita.6G01
7500 

NBS-LRR disease resistance protein 
homologue 

6_2 Seita.8G06
4900 

RPM1 8_3 Seita.3G31
7600 RPM1 

 

  

Seita.6G02
3600 

RPM1 6_3 Seita.8G06
4400 

RPM1 8_3 Seita.3G34
2000 RGC1B 

 

  

Seita.6G02
3600 

RPP13 6_3 Seita.8G06
4700 

RPM1 8_3 Seita.3G35
0300 RPM1 

 

  

Seita.6G02
3600 

RGA1 6_3 Seita.8G06
4300 

RPM1 8_3 Seita.3G27
8200 RGA3 

 

  

Seita.6G02
3500 

RPM1 6_3 Seita.8G06
4300 

LRR14 8_3 Seita.3G27
8200 putative blight resistance protein 

 

  

Seita.6G02
3500 

RPP13 6_3 Seita.8G08
7200 

MLA1 8_4 Seita.3G40
2500 

powdery mildew resistance protein 
PM3b 

 

  

Seita.6G22
9200 RPM1 

6_4 Seita.8G08
8100 

RPM1 8_5 Seita.3G40
2500 Pm3b 

 

  

Seita.6G22
9200 Pib 

6_4 Seita.8G08
8300 

RPM1 8_5 Seita.3G22
1500 RPM1 

 

  

Seita.6G22
9200 Pi-b protein  

6_4 Seita.8G08
8300 

RPP8 8_5 Seita.8G18
4000 YNR1 

 

  

Seita.6G22
9600 

Pi-b protein 6_4 Seita.8G08
9100 

Nitrate-induced NOI protein 8_6 Seita.8G18
4000 YNR2 

 

  

Seita.6G22
9700 

RPM1 6_4 Seita.8G08
8900 

RPM1 8_6 Seita.8G18
4000 YNR3 

 

  

Seita.6G22
9700 

Pi-b protein 6_4 Seita.8G08
9500 

RPM1 8_6 Seita.8G18
4000 YNR4 

 

  

Seita.6G22
9300 

Pi-b protein 6_4 Seita.8G08
9500 

RPP13 8_6 Seita.8G18
4000 YNR5 

 

  

Seita.6G23
3300 

RGA1 6_5 Seita.8G09
0100 

RPM1 8_7 Seita.8G15
5500 RGA4 

 

  

Seita.6G23
3400 

RGA1 6_5 Seita.8G09
0100 

RPP13 8_7 Seita.8G20
2300 RPM1 

 

  

Seita.6G23
3400 

NBS3-RDG2A 6_5 Seita.8G12
4300 

RPM1 8_8 Seita.8G24
4000 Pm3b 

 

  

Seita.6G23
3400 

RDG2A 6_5 Seita.8G16
2700 

RGA4 8_9 Seita.8G18
3400 RPM1 

 

  

Seita.6G23
2800 

RGA1 6_5 Seita.8G16
2600 

RGA4 8_9 Seita.8G18
3400 LRR14 

 

  

Seita.6G23
2800 

NBS3-RDG2A 6_5 Seita.9G37
4900 

RGC1B 9_1 Seita.8G13
3400 Yr10 

 

  

Seita.6G23
2800 

RDG2A 6_5 Seita.9G37
5200 

RGC1B 9_1 Seita.8G04
8800 RGA4     
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CHAPTER 4: GENOME-WIDE IDENTIFICATION OF DISEASE RESISTANCE 

GENES IN AEGILOPS TAUSCHII COSS. (POACEAE) 

This chapter is published in the journal Proceeding of the South Dakota Academy of 

Sciences: 

Andersen, E.J., S.R. Shaw, and M.P. Nepal. 2015. Genome-wide Identification of 

Disease Resistance Genes in Aegilops tauschii Coss. (Poaceae). PSDAOS. 94:281-295 

 
 

ABSTRACT 

 Identification of disease resistance genes (R-genes) and revealing their functions 

are important for understanding a plant’s defense against pathogens. Aegilops tauschii, 

the contributor of wheat’s D-genome, has a recently available complete genome 

sequence, and genome-wide identification of R-genes in this plant would give insight into 

the evolution of wheat resistance genes. The main objectives of this project were to 

identify CNL (Coiled-coil, Nucleotide-binding site, and Leucine-rich region) R-genes 

within the A. tauschii genome, and elucidate their evolutionary relationships within 

Aegilops and across the genome of two model plants--Arabidopsis and rice. In silico 

analyses were conductedin which known CNL genes of Arabidopsis and rice were used 

to search for their orthologs in A. tauschii. A total of 402 CNL resistance genes were 

identified within the A. tauschii genome and recovered three clades (A, B, and C) of A. 

tauschii CNL genes of which CNL C is the largest clade, a single member represents 

clade A, and clade D is entirely absent. Each of these clades was characterized by a 

consistent motif structure. The number of exons varied from 1 to 28 with an average 

number of 4.5. The majority of CNL genes were inferred to have originated by tandem 
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duplications, and the historical gene duplication events perhaps diversified the members 

in response to a unique pathogen pressure. Identification of Aegilops R-genes would help 

us understand the evolution of R-genes, particularly those located in the D-genome of 

wheat, and has a potential implication in creating a durable R-gene in Aegilops, wheat, 

and other crop species in future.  

INTRODUCTION 

 

 Plant defense against pathogens involves complex signaling pathways that trigger 

resistance responses 1. Such responses typically lead to a hypersensitive response, but can 

also include the production of anti-pathogen chemicals or cell wall fortification 2. 

Hypersensitive response, in particular, is a general response that involves the 

programmed cell death of a section of tissue that has been infected by a pathogen to 

quarantine the affected area 2. Disease resistance genes, or R-genes, encode proteins that 

are involved in the detection of pathogen attacks and activation of subsequent 

downstream plant response signaling. The R-genes occur as multigene families, and 

multiple models have been proposed to describe their mechanism of action. The Gene-

for-Gene Model describes plants having specific dominant resistance genes that counter a 

corresponding pathogen avirulence genes in an evolutionary arms-race 3. Introducing 

more molecular details, the Guard Model describes resistance genes bound to plant 

proteins and are activated when that protein is cleaved by a pathogen protein 4,5, while  

the Zig-Zag Model describes the pathogen evolving new avirulence genes that evade 

plant basal immunity 1. Recently R-genes have been classified into eight specific groups 

6.  Among them, the overwhelming majority of the R-genes fall under the NBS-LRR 
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type, the largest class of R-genes 7,8. The NBS-LRR genes can be categorized into two 

major types based upon whether they start with a Toll Interleukin Receptor (TIR-NBS-

LRR or TNL; absent in monocots) or a Coiled Coil (CC-NBS-LRR or CNL; present in all 

plants) 8.  Resistance genes evolve rapidly due to the high selection pressure put onto the 

plant population by pathogen load 9 that causes faster gene diversification 10. This 

diversification is caused primarily by gene recombination and transposable elements’ 

activities 11. Their loss is also possible by deficient duplications and the loss of lineages, 

as evidenced in cucumber and watermelon genomes that contain many fewer resistance 

genes 12. In addition, the evolution of R-genes occurs through a trade-off between 

physical, chemical, and molecular defenses in response to coevolving pathogens 2.   

Increasing availability of complete genome sequences of plants at various 

taxonomic levels allows us to carry out comparative analyses for identification of R-

genes and understanding of the evolutionary processes involved. CNL R-genes have been 

identified for various plant species such as papaya (6; 13, cucumber (18; 14, rice (159, 149; 

15,16, Arabidopsis (55; 8, poplar (119; 17, Medicago (177; 18, soybean (188, 16,19, potato 

(370; 20, and are yet to be identified in Aegilops tauschii Coss. (Poaceae), the D-genome 

contributor of bread wheat (Triticum aestivum L.).  A. tauschii underwent hybridization 

with Triticum turgidum several thousand years ago, forming bread wheat 21. The 

objectives of this research were to identify A. tauschii CNL resistance genes and 

elucidate their evolutionary relationships within A. tauschii and across the genomes of 

Arabidopsis and rice, two model plant species. 
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MATERIALS AND METHODS 

 

A. tauschii protein sequences were searched in the Ensembl Genomes site 22. 

Previously identified Arabidopsis CNL resistance genes (Meyers et al. 2003) were 

obtained from the Phytozome database 23. First, fifty CNL genes of Arabidopsis were 

aligned in the program ClustalW and used to construct a Hidden Markov Model to search 

for the entire set of A. tauschii protein sequences with a stringency of 0.05. The A. 

tauschii genes were uploaded into the program Geneious 24 and annotated with 

InterProScan 25 to identify NBARCs with the program Pfam (pfam.sanger.ac.uk) that 

allowed the  exclusion of sequences with TIR motifs.   

The protein sequences with NBARCs were used to construct a reiterative HMM 

to search the A. tauschii proteins for species-specific CNL genes at a stringency of 0.001. 

A total of 810 genes were identified through first HMM at a stringency of 0.05. Of these 

genes, 711 were determined to contain NBARCs through domain annotation with 

InterProScan. The reiterative HMM identified 779 genes and after removing gene 

duplicates, 711 of these 779 genes were determined to contain NBARCs, of which only 

544 genes contained both NBARC and “DiseaseResist” domains. The NBARCs of these 

genes were then uploaded to MEME suite to preform MEME analysis 26 and annotate the 

three characteristic domains of the CNL genes, i.e. P-loop, Kinase-2, and GLPL motifs. 

All genes containing these three motifs were aligned using Muscle integrated in the 

program MEGA 6.0 27. Arabidopsis as well as rice sequences were also imported into 

MEGA 6.0 to make two phylogenetic trees (100 bootstrap replicates using the JTT+G 

Model for both trees) to look for evolutionary relationships between the genes.  Exon 
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structure was also determined using exon information and scaffold location data from the 

Ensembl Genomes site. Gene exon coordinates were used in the program Fancygene v1.4 

to visualize the exon-intron structure.  

 

RESULTS AND DISCUSSION 

 

Of the 33,928 A. tauschii protein sequences analyzed, 402 genes (1.2% of the 

genome) were identified as CNL genes. All these genes had P-loop, Kinase-2, and GLPL 

motifs, the characteristic domains of the CNL genes. Phylogenetic relationships of the 

identified CNL genes along with their orthologs in Arabidopsis and in rice are shown in 

Figure 4.1 and 4.2, respectively. The CNL genes were nested in three clades (A, B and 

C). The clade D found in Arabidopsis and other dicot species was completely absent. The 

CNL-A clade was severely reduced to one member in the A. tauschii genome whereas 

Arabidopsis has six CNL-A members. While A. tauschii has a substantially larger 

genome than rice, the number of coding genes for A. tauschii and rice are quite similar, at 

33,929 and 35,679 genes, respectively 15,21. The CNL gene-content in the two genomes is 

not highly divergent, despite a huge difference in genome size between the two species. 

Table 1 shows that the number of CNL genes does not necessarily correlate with genome 

size (G-value paradox; Michelmore et al. 2013).  With the larger genome size (2.7Gb), 

however, the A. tauschii genome contains a higher number of CNL genes. The rice 

genome (420 Mb) contains approximately 150 CNL genes 15.  All CNL clade information 

for the 402 identified genes is summarized in Table 4.2. 
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 This study confirmed through MEME analysis (Figure 4.3) the presence of 

characteristic motifs (P-loop, Kinase-2, and GLPL) in all 402 CNL genes in Aegilops. 

The motif compositions presented here are similar to that in Arabidopsis 28, corresponded 

to the phylogenetic clustering represented in the phylogenetic tree (Figure 4.1, 4.3). For 

instance, Motif 8 (CPxxL) was common in the CNL-C4 clade but only in a few genes in 

the rest of CNL-C (Clades CNL-C1, CNL-C2, and CNL-C3). Since only the most 

prevalent motifs were labeled, and few CNL-A and CNL-B genes were present, it is 

likely that motifs were present but not described by the MEME analysis.  

 Since A. tauschii genes have not been mapped onto their chromosomes, gene 

clustering analysis was not performed in the present study. It is highly likely that the 

genes exist in many clusters throughout the genome (Meyers et al. 2003), particularly in 

the extrapericentromeric regions of the chromosomes as documented in soybean 16,19.  

Further analyses of NBS-LRR disease resistance gene clustering will need to be done 

once this information becomes available. Also not available yet are the alternate 

transcripts for each of the genes. This is evident because the number of protein sequences 

available is equal to the number of coding genes within the genome. In other genomes, 

such as the barley genome, many more protein sequences exist that give information on 

alternative splicing amongst the resistance genes. Alternative splicing would increase the 

possible resistance gene proteins, which would be highly useful while facing a quickly 

evolving pathogen. While information on alternate splicing is not available for the 

Aegilops CNL genes, exon/intron information is available (Figure 4.4).  The average 

exon content of 4.45 exons per gene is higher than previously found in Arabidopsis and 

CNL-C genes in soybean 16,19. The number of exons varied from 1 (F775_00002) to 28 
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(F775_52438). Thirty five CNL genes had one exon, 77 had two, 83 had three, 58 had 

four, 44 had five, 28 had six, 23 had seven, 9 had eight, 14 had nine, 10 had ten, six had 

11, seven had 12, three had 13, two had 14, one had 22 and one gene had 28 exons 

(Figure 4.5).  With the multitude of genes with many exons, it can be hypothesized that 

alternate splicing has a large impact on the protein structure of the resistance genes, since 

multiple exons allow for a higher number of combinations during splicing 29. Alternative 

splicing has been shown to play an important role in resistance gene expression in 

Arabidopsis 29,30.  

 Phylogenetic analysis of A. tauschii CNL genes shows an expansion of the CNL-

C group and a slight reduction of CNL-B members relative to Arabidopsis (Figure 1). 

There is a severe reduction of the CNL-A clade to a single member. These results in the 

Aegilops genome are consistent with the CNL genes in rice, another monocot species 

16,19. There was low interspecific nesting indicating the lower prevalence of segmental 

duplications.  Since chromosome location and gene clustering information were not 

available, instances of tandem versus segmental duplications could not be determined 

with a high degree of certainty. Genes that are nested together within a clade and 

occurring within the same gene clusters are likely to have originated through tandem 

duplications. The current study presented several instances of tandem duplication:  for 

example F775_14065 and F775_14066 which are sister members (Figure 1), and 

subsequently accessioned, it is highly likely that they originated by tandem duplication. 

Other examples of tandem duplications include F775_11136 and F775_11137, 

F775_02795 and F775_02796, F775_10498 and F775_10499, F775_10336 and 

F775_10337, and three genes F775_17386, F775_17388 and F775_17389. 



 172 

 Orthologs of some A. tauschii CNL genes have been previously characterized. For 

example, RPM1 of Arabidopsis thaliana is involved in the resistance response to 

Pseudomonas syringae 31. As shown in Figure 1, the Arabidopsis RPM1 ortholog in 

Aegilops has three paralogs (F775_10347, F775_14260, and F775_13161) indicating an 

expansion of this particular gene.  It could be hypothesized that A. tauschii evolved the 

three genes in response to diversifying P. syringae strains or similar pathogens since the 

split of common ancestors of Arabidopsis and A. tauschii. The diversification of RPM1 

orthologs in Aegilops might have been because of the selection pressure imposed by 

different pathogens in A. taushii’s life history.  Figure 2 shows expansions of several 

Aegilops CNL genes: for example, eleven A. tauschii paralogs (F775_10913, 12507, 

12011, 05946, 06830, 13024, 33089, 06253, 11684, 09360, and 21401) are related to rice 

gene LOC_Os08g10260. This shows that A. tauschii might have evolved as many as 11 

genes in response to the same pathogen as in rice, perhaps diversifying in the Aegilops 

niche.  

Due to the growing problem of Ug99 stem rust in wheat production of East Africa 

and the Middle-East, the CNL resistance gene SR33 has been identified as a possible 

solution 32.  The result determines that accession F775_10122 represents the SR33 gene 

in Aegilops, which could be the gene of interest for developing a durable resistance in 

wheat. Other genes (F775_13548, F775_16813, and F775_18040) closely related to 

SR33 might contain valuable traits as well. Further investigation of these genes, along 

with the splice variants of F775_10122 is warranted if SR33 proves to be useful in 

agricultural production.  In silico analyses of R-genes such as presented here are integral 

stepping-stones toward the use of these identified genes as weapons against evolving 
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pathogens. While further investigation of gene expression data and genomic composition 

is important for understanding functional characterization, the present study provides 

information on the diversity and evolutionary history of the CNL genes in A. tauschii 

genome, and has a potential implication in wheat crop improvement with durable 

resistant genes in the future.  

 

Figure 4.1 Phylogenetic analysis of the CNL genes of A. tauschii and their orthologs 

in A. thaliana.  The tree was constructed using the JTT+G model with 100 bootstrap 

replicates.  CNL clades A, B, C, and D are shown with blue, pink, red, and green 

markers, respectively. 
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Figure 4.2 Phylogenetic analysis of the CNL genes of A. tauschii and their orthologs 

in rice.  The tree was constructed using the JTT+G model with 100 bootstrap 

replicates.  A. tauschii and rice genes are shown with red and blue markers, 

respectively. 
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Figure 4.3 MEME analysis of the 402 A. tauschii genes.  The block diagrams show 

the characteristics three motifs used to identify CNL genes (P-Loop, Kinase-2, and 

GLPL) along with other highly prevalent motifs, split according to clade as shown 

by the tree (lower right) color-coded to represent the domain compositions in Figure 

1.  CNL-B, A, C1, C2, C3, and C4 are colored pink, blue, brown, green purple, and 

red, respectively. 
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Figure 4.4 Exon content of the 402 A. tauschii genes showing splice locations 

between exons (gray bars) and introns (dashed lines).  Genes are listed by accession. 
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Figure 4.5 Number of CNL genes with specific number of exons in A. tauschii  

Table 4.1 Genome size and CNL gene content of selected plant species.  This table 

was modified from Marone et al 33.  Genome size and CNL gene references are both 

listed in the references column. 

Species Genome 
Size 

Number of CNL 
genes 

Reference 

Aegilops tauschii 4.4 Gb 402 21 
Glycine max 1.115 Gb 188 16,19,34 
Solanum tuberosum 844 Mb 370 20,35 
Phaseolus vulgaris 587 Mb 94 16,36 
Vitis vinifera 487 Mb 203 37,38 
Populus trichocarpa 423 Mb 119 17,39 
Oryza sativa 420 Mb 159, 149 15, 16,40 
Medicago truncatula 375 Mb 177 18,41 
Carica papaya 372 Mb 6 13,42 
Brassica rapa 284 Mb 30 43,44 
Brachypodium 
distachyon 

272 Mb 102 45,46 

Cucumis sativus 244 Mb 18 14,47 
Arabidopsis lyrata 207 Mb 21 48,49 
Arabidopsis thaliana 125 Mb 55 8,50 
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Table 4.2 List of all Aegilops tauschii CNL genes according to clade. 

Aegilops gene Clade Aegilops gene Clade Aegilops gene Clade Aegilops gene Clade Aegilops gene Clade 
F775_00002 C3 F775_09061 C2 F775_12934 C2 F775_18513 C4 F775_25567 C4 
F775_00003 C3 F775_09164 C4 F775_12982 C3 F775_18529 C2 F775_25587 C4 
F775_00009 C4 F775_09200 C3 F775_13024 C4 F775_18533 C2 F775_25618 C2 
F775_00012 C1 F775_09247 C4 F775_13028 C1 F775_18542 C4 F775_25651 C2 
F775_00020 C2 F775_09300 C4 F775_13037 B F775_18596 C4 F775_25666 C2 
F775_00028 C4 F775_09360 C4 F775_13161 C3 F775_18633 C2 F775_25677 C2 
F775_00089 C2 F775_09379 C2 F775_13322 C2 F775_18678 C2 F775_25696 C2 
F775_00261 C2 F775_09385 C2 F775_13548 C4 F775_18692 C4 F775_25697 C4 
F775_00279 C3 F775_09416 C1 F775_13556 C3 F775_18745 C2 F775_25723 C4 
F775_00445 C4 F775_09429 C4 F775_13570 C4 F775_18750 C2 F775_25735 C2 
F775_00504 C4 F775_09721 C2 F775_13594 C4 F775_18752 C4 F775_25748 C2 
F775_00542 C2 F775_09754 C1 F775_13630 C2 F775_19013 C2 F775_25761 C2 
F775_00546 C2 F775_09801 C4 F775_13836 C2 F775_19082 C4 F775_25787 C2 
F775_00591 C3 F775_09834 C1 F775_13864 C4 F775_19119 C4 F775_25792 C1 
F775_00649 C1 F775_09885 C3 F775_13876 C2 F775_19175 C4 F775_25799 C2 
F775_01012 C2 F775_09936 C2 F775_13917 C1 F775_19216 C4 F775_25826 C2 
F775_01226 C3 F775_09937 C4 F775_13926 C1 F775_19299 C4 F775_25860 C2 
F775_01227 C3 F775_10024 C3 F775_13948 C3 F775_19382 C2 F775_26631 C4 
F775_01584 C4 F775_10028 C3 F775_13994 C3 F775_19398 C4 F775_29542 C4 
F775_01810 C F775_10030 C1 F775_14051 C2 F775_19512 C4 F775_31118 C1 
F775_02378 C1 F775_10069 C4 F775_14065 C4 F775_19584 C2 F775_31260 C4 
F775_02380 B F775_10122 C4 F775_14066 C4 F775_19672 C2 F775_32992 C4 
F775_02497 C3 F775_10192 C4 F775_14094 C2 F775_19733 C2 F775_33053 C4 
F775_02559 C4 F775_10336 C1 F775_14117 C2 F775_19734 C2 F775_33066 C4 
F775_02729 C2 F775_10337 C1 F775_14170 C2 F775_19740 C4 F775_33089 C4 
F775_02795 C4 F775_10338 C2 F775_14195 C2 F775_19750 C2 F775_33131 C4 
F775_02796 C4 F775_10342 C4 F775_14213 C2 F775_19781 C4 F775_33132 C4 
F775_03255 B F775_10343 C4 F775_14243 C4 F775_19900 C2 F775_33159 C2 
F775_03276 C2 F775_10347 C3 F775_14254 B F775_19909 C4 F775_33179 C4 
F775_03594 B F775_10367 C4 F775_14260 C3 F775_19928 C2 F775_33181 C4 
F775_03781 C4 F775_10383 C3 F775_14262 C3 F775_20047 C4 F775_33215 C4 
F775_03812 C2 F775_10389 C1 F775_14451 C4 F775_20078 C4 F775_33238 C4 
F775_03909 C2 F775_10409 C2 F775_14478 C4 F775_20098 C4 F775_33239 C4 
F775_04060 C2 F775_10413 C2 F775_14484 C4 F775_20113 B F775_33246 C4 
F775_04135 C2 F775_10432 C3 F775_14498 C2 F775_20140 C4 F775_33249 C4 
F775_04483 C3 F775_10464 C1 F775_14564 C1 F775_20226 C4 F775_33281 C4 
F775_04549 C1 F775_10470 C2 F775_15013 C1 F775_20252 C4 F775_52103 C2 
F775_04571 C3 F775_10485 C4 F775_15035 B F775_20381 C2 F775_52265 C1 
F775_04590 C2 F775_10487 C2 F775_15095 C4 F775_20428 C4 F775_52271 C4 
F775_04976 C4 F775_10498 C2 F775_15179 C2 F775_20439 C4 F775_52304 C2 
F775_04978 C3 F775_10499 C2 F775_15186 C4 F775_20802 C1 F775_52483 C4 
F775_04989 C3 F775_10519 C4 F775_15197 C2 F775_20828 C4 F775_52537 C4 
F775_04991 C3 F775_10548 C2 F775_15224 C2 F775_20864 C4   
F775_05010 C4 F775_10570 C2 F775_15316 B F775_20893 C4   
F775_05050 C3 F775_10673 C2 F775_15432 C2 F775_20916 C2   
F775_05085 C3 F775_10845 C3 F775_15460 C4 F775_20940 C4   
F775_05094 C1 F775_10913 C4 F775_15674 C4 F775_20943 C4   
F775_05363 C4 F775_10943 C2 F775_15677 C2 F775_21097 B   
F775_05510 C3 F775_10988 B F775_15785 B F775_21138 C4   
F775_05536 C2 F775_10989 B F775_15841 C4 F775_21246 C4   
F775_05818 C4 F775_11003 C4 F775_15860 C4 F775_21278 C4   
F775_05820 C4 F775_11136 C3 F775_15890 C2 F775_21387 C4   
F775_05946 C4 F775_11137 C3 F775_15918 C2 F775_21401 C4   
F775_06146 C2 F775_11205 C2 F775_15949 C4 F775_21420 C4   
F775_06149 C2 F775_11229 C4 F775_16114 C2 F775_21616 C4   
F775_06253 C4 F775_11298 C4 F775_16168 C2 F775_21742 C2   
F775_06279 C4 F775_11345 C4 F775_16243 C2 F775_21780 C4   
F775_06285 C4 F775_11368 C4 F775_16266 C2 F775_21795 C   
F775_06326 C3 F775_11385 C1 F775_16271 C2 F775_21811 C4   
F775_06411 C4 F775_11502 C2 F775_16379 C4 F775_21857 C1   
F775_06721 C2 F775_11544 C2 F775_16385 C2 F775_22010 C2   
F775_06827 C4 F775_11560 C4 F775_16579 C2 F775_22133 C2   
F775_06830 C4 F775_11646 C2 F775_16654 C4 F775_22416 C2   
F775_06989 C1 F775_11651 C2 F775_16715 B F775_22559 C4   
F775_07053 A F775_11684 C4 F775_16721 B F775_22763 C1   
F775_07156 C1 F775_11767 C3 F775_16774 C4 F775_22887 C4   
F775_07165 C2 F775_11868 C2 F775_16813 C4 F775_22902 C2   
F775_07193 C2 F775_11909 C2 F775_16814 C4 F775_22957 C4   
F775_07248 C2 F775_11949 C1 F775_16933 C2 F775_23072 C4   
F775_07285 C3 F775_12011 C4 F775_16964 C4 F775_23165 C2   
F775_07399 C4 F775_12159 C2 F775_17304 C2 F775_23513 C2   
F775_07702 C4 F775_12184 C2 F775_17322 C4 F775_23649 C2   
F775_07703 C1 F775_12189 C2 F775_17331 C4 F775_23709 C1   
F775_07864 C2 F775_12361 C2 F775_17386 C2 F775_23714 C4   
F775_07949 C4 F775_12408 C4 F775_17388 C2 F775_23783 C2   
F775_08064 C4 F775_12507 C4 F775_17389 C2 F775_23909 C4   
F775_08223 C2 F775_12570 C2 F775_17599 C4 F775_24339 B   
F775_08252 C3 F775_12676 C2 F775_17741 C4 F775_24349 C2   
F775_08345 C4 F775_12681 C2 F775_17804 C1 F775_24493 C4   
F775_08380 C2 F775_12700 C2 F775_17853 C4 F775_24972 C2   
F775_08523 C3 F775_12704 C4 F775_17929 C2 F775_25023 C4   
F775_08534 C3 F775_12720 C1 F775_17949 C4 F775_25345 C4   
F775_08544 C4 F775_12725 C2 F775_17950 C4 F775_25375 C2   
F775_08623 C4 F775_12737 C4 F775_17959 C2 F775_25411 C2   
F775_08715 C1 F775_12747 C2 F775_18040 C4 F775_25442 C4   
F775_08722 C4 F775_12769 C4 F775_18213 C4 F775_25448 C4   
F775_08786 C3 F775_12792 C3 F775_18251 C4 F775_25453 C4   
F775_08856 C2 F775_12834 C3 F775_18334 C2 F775_25512 C1   
F775_08907 C2 F775_12836 C3 F775_18423 C2 F775_25531 C2   
F775_08994 C4 F775_12859 C4 F775_18512 C2 F775_25543 C2   
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CHAPTER 5: RESISTANCE GENES IN WHEAT SHOW EVIDENCE OF TANDEM 

DUPLICATIONS AS A MECHANISM FOR FUNCTIONAL DIVERSIFICATION 

 
ABSTRACT 

 
 Proteins encoded by plant resistance genes (R genes) detect pathogenic effectors 

and initiate immune responses. These proteins generally contain three domains essential 

to their function: Leucine-Rich Repeats, NB-ARCs, and Coiled-Coils. The major 

objectives of this project were to identify NB-ARC-encoding R genes in wheat (Triticum 

aestivum L.) and assess their evolutionary history. Since previous studies have shown that 

many R genes lack some domains associated with receptor function, analysis of all NB-

ARC-encoding genes provides a more comprehensive view of how these genes evolve. 

Similarities between members of gene clusters were identified using the program 

Geneious, gene chromosomal locations were mapped using the program Circa, clustered 

genes were compared through the construction of distance trees using the program 

MEGA, and chromosomes were aligned to assess synteny using the program SyMAP. 

The results showed that the wheat genome contains a total of 2151 NB-ARC-encoding 

genes, of 1298 formed 547 gene clusters. Many of these clusters included highly similar 

genes likely formed through tandem duplications. Of the 2151 NB-ARC-encoding genes, 

1552 encode Leucine-Rich Repeats (LRRs; approximately 72%), 802 of which are 

Coiled-Coil (CC) domain-encoding CC-NBS-LRR (CNL) genes and three are Resistance 

to Powdery mildew 8 (RPW8) domain-encoding RPW8-NBS-LRR (RNL) genes. 

Surprisingly, five of the NB-ARC-encoding genes encoded a Toll/Interleukin-1 Receptor 

(TIR), with no LRR, known as TN genes. CNL clades formed similar phylogenetic 

nesting patterns as those found in previous analysis of close wheat relatives, showing that 
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grasses posses a large expansion of CNL-C genes. Comparisons of the wheat genome 

with those of its close relatives, barley (Hordeum vulgare L.) and Tausch’s goatgrass 

(Aegilops tauschii Coss.), found similar locations for homologous NB-ARC-encoding 

genes. These results indicate that R genes in wheat have diversified through duplication 

to encode receptors that recognize additional pathogenic effectors, which future research 

should seek to characterize.  

 

INTRODUCTION 

 

Wheat (Triticum aestivum L.) provides approximately 20% of the human 

population’s caloric intake 1 and is afflicted by over 100 different diseases caused by 

hundreds of pathogen and pest species 2. Diseases that substantially reduce yield, such as 

biotrophic rusts and necrotrophic leaf spotting diseases, impact global markets and food 

supply. Historically devastating pathogens continue to produce new strains, which 

overcome past sources of resistance (i.e. Ug99) 3-6. Leaf spotting diseases similarly cause 

a high percentage of yield loss under favorable conditions and appear as several forms: 

Septoria tritici blotch, spot blotch, Stagonospora nodorum blotch, and tan spot 7. 

Additional diseases like Fusarium head blight, wheat streak mosaic virus, and powdery 

mildew also plague wheat fields with symptoms that are difficult and costly to manage. 

Disease resistant wheat cultivars, such as those bred by Edgar McFadden and Norman 

Borlaug 8,9, have been a significant contribution to agriculture and the understanding of 

phytopathology. With the help of advanced genetic and genomic technologies, recent 

efforts identified resistance genes (R genes) that confer resistance to strains of various 
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pathogens, such as the recently discovered Ug99 R-genes Sr33 and Sr35 10,11. The 

hexaploid bread wheat genome (AABBDD), a draft of which has recently become 

available 10,11, formed through the hybridization of three separate species: Triticum urartu 

(A), an unknown relative of Aegilops speltoides (B), and Aegilops tauschii (D)12-14. This 

unique polyploidy may have resulted in novel regulatory mechanisms that were necessary 

due to the presence of multiple progenitor resistance signaling pathways. The large and 

redundant nature of wheat’s hexaploid genome makes it a good candidate for studying R 

gene evolution with respect to the recent polyploidization events. Detailed understanding 

of wheat immune system components provides a framework for further attempts at the 

development of durable resistance in cereals necessary for reduced yield loss from biotic 

stress. R genes are generally receptors encoding a Nucleotide-Binding Site and a 

Leucine-Rich Repeat, giving them the alternative names NBS-LRR or NLR. The LRR is 

thought to interact with pathogen effectors, allowing the protein to initiate signaling 

mechanisms (i.e. kinases and transcription factors) that initiate defense responses. The 

primary domain found in the NBS is the Nucleotide-Binding site found in Apoptotic 

protease activating factor 1, R genes, and Caenorhabditis elegans death-4 protein (NB-

ARC). The NB-ARC is associated with ATP/ADP binding, since the molecule uses this 

upon activation.  

The objectives of this research were to conduct genome-wide identification of 

wheat R genes encoding NB-ARC domains and assess their genomic architecture and 

potential functional divergence with respect to those in the genomes of wheat relatives. 

Results showed that tandem duplication can explain many of the events that led to the 

diversification of these genes. Genes encoding NB-ARC domains are likely involved in 
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resistance responses and are of use to breeders as sources of resistance. This research will 

contribute to development of resistance by associating R genes with their homologs 

found in surrounding chromosomal locations. 

 

MATERIALS AND METHODS 

 

 Wheat chromosome, gene, and protein sequences were downloaded from the 

Ensembl Genomes database through the Biomart tool 15. InterProScan 16 was used to 

identify wheat protein sequences with NB-ARC domains (PF00931). Locations for genes 

encoding NB-ARCs were analyzed for clusters as described in Jupe et al. (2012) using 

the criteria that genes be within 200,000 bases of each other with fewer than eight 

addition genes between them 17. NB-ARC domain motifs were also assessed using 

MEME software18, identifying those with P-loop, Kinase-2, and GLPL motifs. Clustered 

genes with the aforementioned motifs were aligned and manually curated using 

ClustalW2 integrated within the program Geneious 19,20. The program MEGA 7 was used 

to construct a neighbor-joining tree with 100 bootstraps 21. The online program iTOL 22 

was used to color tree leaves, allowing easy visualization of which chromosomes each 

gene was found on. Wheat and Aegilops tauschii R gene locations from Ensembl 

Genomes were used to construct a genomic map using the program Circa 

(http://omgenomics.com/circa). Clustered wheat R genes were also compared using the 

program Circoletto 23, creating images that display high similarities between genes. 

Synteny between barley and wheat was determined by aligning chromosome sequences 

in the program SyMAP 24.  
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RESULTS 

 

 Approximately half of wheat’s NB-ARC-containing (NBAC) proteins also 

contained a CC domain, and approximately 75% possessed LRRs (Figure 5.1 and Table 

5.1). Several NBAC proteins contained AP2/ERF, B3, WRKY, and Zinc Finger 

transcription factor domains. The NBAC proteins also contained kinase, lectin, 

thioredoxin, and GRAS domains. Of the 2151 NB-ARC-encoding genes, 1505 had NB-

ARCs with P-loop, Kinase-2, and GLPL motifs. Among the 1552 proteins that had 

Leucine-Rich Repeats (LRRs; approximately 72%), 802 contained Coiled-Coil (CC) 

domains (CNL) and three had Resistance to Powdery mildew 8 (RPW8) domains (RNL). 

Five of the NB-ARC-encoding genes encoded a Toll/Interleukin-1 Receptor (TIR), with 

no LRR (TN proteins). NBAC genes formed 547 gene clusters. Clustered genes from 

each chromosome were compared, resulting in similarity diagrams as shown in Figure 

5.2, illustrating high similarity among clustered genes. Many of the clustered genes 

possessed greater than 75% similarity within each cluster. While chromosomes from each 

of the subgenomes were very similar (e.g. chromosomes 1A, 1B, and 1D), differences 

between the number of clustered genes could have been easily spotted. This was 

especially noticeable for chromosomes 4A, 4B, and 4D, where 4A contained 57 clusters 

(involving 119 genes) and 4B and 4D contained four clusters (of eight genes) and three 

clusters (of seven genes), respectively. It is unknown to whether this diversification of 

NBAC genes in 4A happened prior to the first or second hybridization event in wheat. 

Since Triticum urartu gene locations were not available, a clear understanding of the 

difference between T. urartu chromosome 4 and wheat chromosome 4A could not be 
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reached. Figure 5.3 shows a neighbor-joining tree composed of NBAC sequences, 

specifically those with P-loop, Kinase-2, and GLPL motifs. Nesting patterns in the 

neighbor-joining tree highlighted additional relationships between clustered genes, 

displaying which groups arose through tandem duplication, where clustered genes nested 

together, or segmental duplication, where clustered genes nested separately. Many pairs 

and triplets of genes from the same cluster nest together on the tree. Due to the close 

relationship between barley and wheat, synteny between wheat and barley chromosomes 

was also assessed. Chromosomes of wheat progenitors, such as Aegilops tauschii, align 

with wheat, 1D of wheat matching 1D of A. tauschii, and so on. As is visible from the 

syntenic map (Figure 5.4), the same phenomenon takes place between barley 

chromosomes (1H-7H) and the three subgenomes of wheat. An earlier analysis of wheat 

R genes shows similar syntenic patterns (see Appendix III). 
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Figure 5.1 NBAC gene locations on wheat chromosomes as generated using the 

program Circa. The outer track of lines indicates the locations of NBAC genes. 

Within those are the subset of NB-ARC-containing genes that contain CC and LRR 

domains, respectively. Within the wheat circle are the locations of NBAC genes in 

Aegilops tauschii (contributor of the wheat D subgenome) and Hordeum vulgare 

(close relative of wheat progenitors). 

 
 
 



 192 

Table 5.1 NB-ARC-containing genes and domains found within them. Of the 2151 

genes found in wheat, many contained Coiled-Coil (CC) domains and LRR domains. 

R Protein Domains Genes Proposed Function 
NB-ARC 2151 ATP-Binding 
CC 1126 Signaling 
LRR 1552 Ligand-Binding 
TIR 5 Signaling 
AP2/ERF 3 Transcription Factor 
B3 3 Transcription Factor 
WRKY 3 Transcription Factor 
Zinc Finger 25 Transcription Factor 
Protein Kinase 52 Kinase 
S/T Protein Kinase 46 Kinase 
Jacalin-Like Lectin 7 Signaling 
Kelch repeat 7 Protein Interaction 
Thioredoxin 10 Resistance Response 
GRAS 4 Signaling 

  
 
 
 

 
 
Figure 5.2 Similarity of clustered NBAC genes on each chromosome. Chromosomes 

are shown 1-7 with subgenomes A, B, and D from superior to inferior. Clustered 

genes are arranged in a circle, with lines describing <50% similarity, <75% 

similarity, <99.9999% similarity, and 100% similarity in blue, green, orange, and 

red, respectively.  
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Figure 5.3 Distance relationships among clustered NBAC genes. Sequences were 

included if they contained P-loop, Kinase-2, and GLPL motifs as identified by 

MEME and are found in clusters. This neighbor-joining tree was generated using 

MEGA 7. Color profiles from the chromosomes in Figure 1 were used and can be 

seen the figure legend.  
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Figure 5.4 Synteny between chromosomes of wheat and barley. Barley chromosomes 

were aligned with wheat using the program SyMAP. Barley chromosomes are 

mapped onto the 21 chromosomes of wheat (A) and the inverse image of wheat 

chromosomes mapped on the seven chromosomes of barley (B).  

 
DISCUSSION 

 
 This investigation focused on all genes with NB-ARCs because NLR systems 

have been found that use groups of sensor and helper NLRs to detect and initiate defense 

responses when pathogenic effectors are present 25. Not all functional NLRs have all 

characteristic domains, such as Pb1 26. Excluding genes that do not contain particular 

domains or motifs may not include important genes that assist with resistance responses. 

Therefore, proteins lacking CC or LRR domains may also contribute to resistance 

responses, especially those with additional domains that are involved in signaling 27. The 

A 

B 
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distribution of NBAC genes across wheat chromosomes concurs with previous studies in 

barley and foxtail millet, where R genes were also found in clusters in extra-

pericentromeric regions of chromosomes 28,29. Unequal crossing over between 

chromosomes as a mechanism for duplication likely explains the formation of these 

clusters, which then allows for their diversification. Previous studies have highlighted 

this explanation for the location of the quickly evolving genes 30. A. tauschii and H. 

vulgare share a similar pattern as wheat (Figure 5.1), with a similar number of R genes 

located at the ends of chromosomes. Analyses of the clusters of NLR genes revealed 

many genes with high sequence similarity (Figure 5.2), indicating their origin by tandem 

duplications, especially those that are only a few hundred nucleotides away from each 

other and share >90% similarity. Through tandem duplication, wheat NLR genes may 

have diversified to respond to rapidly evolving and perhaps closely related pathogens. 

Many pathogens possess diverse races, such as the pathogen Pyrenophora tritici-repentis 

with eight races 31, and race-specific (vertical) resistance has been identified to wheat 

pathogens, such as powdery mildew 32. This type of resistance involves one or two genes, 

as opposed to horizontal resistance, which involves multiple genes (quantitative) and 

provides resistance to many pathogens. Horizontal resistance may include other signaling 

factors and types of receptors, relying only partially on NLRs 33. 

 While it can be inferred that similar genes that are close to each other on a 

chromosome are likely due to tandem duplications, several genes were dissimilar and 

close together. This can be seen in Figure 5.3, where, while many clustered genes nest 

together, providing visual evidence of tandem duplications with closely clustered genes 

nesting together, many do not nest together. This phenomenon has two major 
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explanations: 1) the tandem duplication took place long ago in evolutionary history and 

has had time to diversify greatly, or 2) a segmental duplication took place, causing the 

gene to become located next to another R gene or R gene cluster. R genes are highly 

diversified in plants, many plants possessing hundreds of them, indicating that these R 

genes originate from very ancient precursors. Ancient tandem duplications would have 

much time to diversify, especially if particular selective pressures are put upon the 

ancestors of modern species. However, segmental duplications cannot be discounted due 

to the presence of genes in some clusters that are highly similar to genes in other clusters 

34. In these cases, transposable elements may play some role in movement of these genes 

around to other chromosomes or distant locations on the same chromosome 35.  

 Barley and the progenitors of wheat diverged only approximately 8-9 million 

years ago 36. Therefore, barley provides an excellent partner for wheat synergistic 

comparison. Both barley and wheat experienced artificial selection since both have been 

grown for food production since the agricultural revolution approximately 10,000 years 

ago. Wheat differs from barley in that it is an allohexaploid resulting from hybridization 

of three species, each containing seven pairs of chromosomes to total 21 pairs, while 

barley remained diploid with only seven pairs of chromosomes. The wheat genome, 

consisting of A, B, and D subgenomes, maps to the barley genome (H), with wheat 

chromosomes 1A, 1B, and 1D containing much synteny to 1H of barley. The syntenic 

map (Figure 5.4) displays this similarity between genomes. NLR gene clusters in these 

syntenic blocks were investigated to see which duplications took place before the wheat-

barley divergence. Instances exist where barley possesses duplicated genes that remained 

individuals in wheat, and vice versa. The similarity between wheat and A. tauschii is 
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much closer, since A. tauschii contributed wheat’s D subgenome only a few thousand 

years ago. While the A subgenome progenitor, Triticum urartu, has limited genomic 

availability, future studies may be able to assess differences between the NLR gene 

architecture in the two genomes. A. tauschii and barley provide excellent comparisons 

with wheat due to the relatively short period of time since their divergence. The 

similarities between R genes in wheat relatives show that the highly diverse family of R 

genes is necessary for survival, whereas the differences in number and phylogeny point to 

differences in selection pressure that these species each face. 

 

CONCLUSION 

 

 In this study, clustering of R genes in wheat has been described, as compared to 

its progenitors and barley, a close relative. Gene similarities within clusters were 

assessed, showing that tandem duplication explains some of the diversification among R 

genes, along with segmental duplication and possible action by transposable elements. 

Wheat possesses 2151 NB-ARC-encoding genes, with many of those encoding the 

domains associated with functional NLRs that likely function as receptors, detecting 

pathogenic effectors. In wheat’s 21 chromosomes, 547 clusters were found, with many of 

them containing highly similar genes. Future research should seek to functionally classify 

which pathogens these proteins trigger responses to and if duplications can be associated 

with known events in wheat’s evolutionary history. Additional genomic data on Aegilops 

speltoides, a relative to the contributor of wheat’s B subgenome, as well as availability of 
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data for Triticum urartu, contributor of wheat’s A subgenome, will allow for more 

thorough analysis of the evolution of disease resistance genes in wheat. 
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CHAPTER 6: DIVERSIFICATION OF DISEASE RESISTANCE RECEPTORS 
THROUGH INTEGRATED DOMAIN FUSIONS IN WHEAT AND ITS 

PROGENITORS 

 

This chapter has been accepted for publication in the Journal of Botanical Research: 

Andersen, E.J. and M.P. Nepal. In Press. Diversification of Disease Resistance Receptors 

Through Integrated Domain Fusions in Wheat and its Progenitors. Journal of Botanical 

Research. 

 
 

ABSTRACT 
 

Pathogenic effectors inhibit plant resistance responses by interfering with intracellular 

signaling mechanisms. To deal with rapidly evolving effectors, plant Nucleotide-binding, 

Leucine-rich repeat Receptors (NLRs) have evolved highly variable effector-recognition 

sites. While many NLRs utilize variable Leucine-Rich Repeats (LRRs) to bind to 

effectors, some have gained Integrated Domains (IDs) necessary for receptor activation 

or downstream signaling. While a few studies have identified IDs within NLRs, the 

homology and regulation of these genes have yet to be elucidated. A diverse set of wheat 

NLR-ID fusion proteins were identified as candidates for NLR functional diversification 

through ID effector recognition or signal transduction. IDs were compared with 

homologs in wheat progenitors and other grasses, revealing evolutionary conservation of 

>80% amino acid sequence similarity. ID homology indicates that these domains 

originated as functional, non-NLR-encoding genes and were incorporated into NLR-

encoding genes through duplication. Multiple NLR-ID genes encode alternative 

transcripts that include or exclude IDs. Expression of these alternative transcripts can be 

experimentally verified in wheat tissue. This indicates that plants employ alternative 
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splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling 

components. NLR-ID diversity corresponds directly with the various signaling 

components essential to defense responses. NLR-ID fusion proteins greatly expand the 

potential functions for immune receptors, possibly removing the need for intermediate 

signaling factors that are often targeted by effectors. Genomic and expression data 

support the hypothesis that wheat uses alternative splicing to include and exclude IDs 

from NLR proteins. Based on their homology, IDs are evolutionarily conserved in non-

NLR sequences of distantly related species, indicating retention of functionality. Future 

studies should aim to characterize NLR-ID fusion protein structures, demonstrate ID 

function (e.g. kinase activity), and associate alternative splicing with specific conditions.  

 

INTRODUCTION 

 

 Plant innate immune systems utilize specialized receptor proteins to detect 

pathogens 1. Nucleotide-binding, Leucine-rich repeat Receptor (NLR) proteins detect 

pathogen effectors that would otherwise inhibit host resistance responses 2. In order to 

detect the hundreds of pathogens and pests, immune receptors must be able to respond to 

many elicitors. To accomplish this, NLRs have radiated to form a diverse family of 

resistant genes in plants 3. Much of this diversity is accomplished by gene duplication and 

variation in NLR Leucine-Rich Repeats (LRRs), which allow NLRs to bind to new 

effectors 4. Diversification has led to the formation of networks of sensor and helper 

NLRs, with some NLRs dimerizing to initiate signaling 5-8. As another form of 

diversification, some NLRs have gained extra domains that may assist the receptor in 
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pathogen recognition or in resistance signaling. These domains, called Integrated 

Domains (IDs), resulted from a fusion of NLR and functional domains also involved in 

resistance, as outlined by the integrated decoy/sensor model 9,10. ID diversity has been 

probed across many plant genomes, revealing a diversity of domains associated with 

potential roles in resistance 11.  

The major objectives of this study are to identify wheat NLR-ID fusion proteins, 

infer their function, and assess their homology in wheat relatives and other selected 

monocot species. A method is also proposed to describe how plants utilize for NLR-ID 

regulation, which became apparent while manually assessing the transcript and protein 

sequences. Understanding the evolution of NLR-ID fusions provides a unique perspective 

on NLR diversification, which often gets ignored by large-scale analyses of NLR gene 

family evolution. These findings will improve the understanding of how NLRs diversify 

to oppose various pathogenic molecular weapons.  

 

METHODS 

 

 Triticum aestivum protein sequences were downloaded using the Biomart 

application within the Ensembl Genomes 40 and Phytozome 41 databases. InterProScan 

annotations 42 were compiled and proteins containing NB-ARC domains (PF00931) were 

investigated. Pfam annotations not inherently part of NLR structure were assembled. 

Amino acid sequences and corresponding annotations were uploaded to the program 

Geneious 43 for  sequence alignment, homology assessment and motif visualization. The 

IDs were manually investigated to assess protein location, potential function, homology 
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to proteins other species, and presence in variant transcripts. Function was assessed 

partially through domain descriptions available through the Pfam database 44, allowing 

for inferences about domain activity. Genomes investigated for homology include: 

Aegilops tauschii, Amborella trichopoda, Arabidopsis thaliana, Brachypodium 

distachyon, Hordeum vulgare, Musa acuminata, Oryza sativa, Setaria italica, Triticum 

urartu, and Zea mays. Genomic data was not available for Aegilops speltoides, which is 

believed to be the contributor of wheat’s B genome. The Gene Structure Display Server 

2.0 45 was used to visualize alternative splicing of NLR-IDs. Wheat expression data was 

generated from datasets in NCBI and Wheat Gene Expression Atlas data 38. 

 

RESULTS 

 

IDs in Wheat 

 I have identified wheat NLR proteins with IDs that potentially function as 

molecular baits, decoys, or signal transduction factors. Wheat NLRs possess a diverse set 

of IDs, the most commonly occurring are kinase and DNA-binding domains. Figure 6.1 

shows the average location of these domains relative to protein length, averages 

calculated from every NLR-ID occurrence of that domain. Kinase domains are generally 

located in the N-terminal half of the protein with tyrosine kinase domains generally in the 

middle of the protein sequence. The more diverse class of DNA-binding domains vary by 

domain type, present in both the N- as well as C-termini. For example, Myb-like and 

BED zinc finger domains are generally at the N-terminus, while B3 and WRKY domains 

are at the C-terminus. Many other IDs located at the C-terminus have potential roles in 
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signaling, such as calmodulin-binding, jacalin-like lectin, thioredoxin, and ubiquitin-

conjugating.  

 

 
Figure 6.1 Integrated Domain (ID) locations, indicated by black rectangles, are 

shown within NLRs relative to protein length (0-1). IDs were grouped into 

functional categories, based on their potential involvement in kinase, DNA-binding, 

or other signaling activities (shown in purple, blue, and red, respectively). Schematic 

diagrams representing potential functions for these NLR-IDs are included with 

pathogenic effectors represented by black circles (labeled as ‘E’) and NLR-ID 

proteins as ovals color coded by ID type (i.e. ‘Kinase’, ‘DNA-Binding’, or ‘Other 

Signaling’). The diagram includes representations of both effector-bait interaction 

(left) and NLR-ID signaling (right) that these domains may be involved in. Red 

circles at the sides of NLRs indicate activated NLR proteins. 

 
ID Homology 
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 Many Triticum aestivum (TA) IDs share homology with proteins in distantly 

related monocots. Figure 6.2 shows the wheat accessions with high percent identity 

(above 70%), grouped by ID type and homolog species. The vast majority of these 

homologs do not contain NB-ARC domains, indicating a recent fusion. ID homologs in 

distant relatives generally were not NLR proteins. While other plants also possess NLR-

ID fusions, many are lineage specific and are not conserved across diverse species. 

Barley, a close relative of wheat, possessed many of the same NLR-ID fusion proteins as 

in wheat, with 68.5% of ID homologs in barley also possessing NLRs. The two 

progenitors of wheat with sequenced genomes, T. urartu and A. tauschii, also possess 

wheat’s NLR-ID fusions. Of these progenitor homologs, 40.8% matched the subgenome 

expected based upon the known progenitor-subgenome relationships. Genomes 

investigated for homology include: Aegilops tauschii (AT), Amborella trichopoda 

(AmT), Arabidopsis thaliana (ArT), Brachypodium distachyon (BD), Hordeum vulgare 

(HV), Musa acuminata (MA), Oryza sativa (OS), Setaria italica (SI), Triticum urartu 

(TU), and Zea mays (ZM). Genomic data was not available for Aegilops speltoides (AS). 
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Figure 6.2 Wheat IDs and their homologs in wheat progenitors and other divergent 

monocot species are shown, including Arabdopsis (model plant species) and 

Amborella (basal known Angiosperm). (A) Sequence similarities above 70% are 

shown between wheat IDs and their homologs in Brachypodium (BD), rice (OS), 

foxtail millet (SI), maize (ZM), banana (MA), Arabidopsis (Art), and Amborella 

(AmT). Wheat accession names are shortened to only include the chromosome arm 

and the last digits unique to each transcript. (B) Barley ID homologs possessing and 

lacking NLR domains are compared. (C) Mapping of homologs among wheat and 
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wheat progenitors is displayed – a match between the progenitor and subgenome 

(labeled ‘Match’);  subgenome A protein was more similar to an Aegilops tauschii 

sequence (labeled ‘A’);  subgenome D protein was more similar to a TU sequence 

(labeled ‘D’); sequence was from the B subgenome with the unavailable AS 

progenitor (labeled ‘B’), or the accession subgenome is unknown (labeled ‘U’). Also, 

the level of homology between the pairs is demonstrated for ‘Match’, ‘A’, and ‘D’, 

with dark red corresponding to the proportion of sequences with high similarity 

(>90%) and lighter red corresponding to lower similarity (<70%). 

 
NLR-ID Regulation 

 Some NLR-ID genes encode alternative transcripts that omit IDs or other 

domains, such as transmembrane helices. Figure 6.3 illustrates a consolidation of all 

wheat NLR-IDs in which another transcript of the same gene excluded the ID. 

Alternative splicing of this kind would allow plants to regulate the use of IDs by 

including or excluding exons containing them. Similar characteristics were also observed 

in barley transcripts, indicating a conserved use of alternative splicing. Alternative 

transcripts may also be found in wheat progenitors, which currently lack available data. 

Expression data from the Wheat Gene Expression Atlas and NCBI shows differential 

expression between these alternative transcripts, which are shown in Supplementary 

Figure 6.1 and Supplementary Table 6.1. 
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Figure 6.3 Wheat NLR-ID genes that encode alternative transcripts excluding or 

truncating IDs or other NLR domains are shown. Grey bars span the exon length in 

base pairs, black bars represent NB-ARC domains. Color segments annotate ID 

locations by domain type, which are defined in the integrated domain key. The 

scale, in base pairs, is shown along the bottom of the figure and black bars separate 

each set of transcripts. Wheat accession names are shortened to only show the 

chromosome arm, last code of gene name, and transcript number.  
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DISCUSSION 

 

IDs Augment NLR Function Through Signaling and Recognition 

Kinase and DNA-binding IDs likely function as signaling domains that help 

NLRs initiate defense responses. Current models of NLR function describe a 

conformational shift triggered when pathogenic effectors bind to the C-terminal LRR, 

causing the NB-ARC to exchange ADP for ATP, opening the protein up for the N-

terminus to initiate further signaling 12-14. LRRs, as highly variable domains of repeating 

Lxx amino acid residues, allow defense receptors to bind to diverse elicitors. The NB-

ARC, as a P-loop-containing nucleoside triphosphate hydrolase, functions in hydrolysis 

of beta-gamma phosphate bonds in ATP, binding to phosphates using the Walker A (P-

loop) motif and to magnesium ions necessary for catalysis by Walker B motifs 15. This 

release of energy from ATP hydrolysis drives protein conformational change, allowing 

N-terminal domains (i.e. TIR or CC) to trigger downstream signaling. Kinase IDs found 

in wheat NLRs could initiate signaling through phosphorylation of transcription factors 

or other kinases (i.e. MAPK). Sarris et al. (2016) also found an abundance of NLR-kinase 

fusions, which possibly retain their biochemical activity 11. DNA-binding domains could 

move directly to the nucleus upon activation, binding to promoters of pathogenesis-

related (PR) genes to recruit transcription machinery. IDs that likely bind to DNA 

include: AP2, B3, Zinc Finger, Myb, and WRKY domains, which have been shown to 

play roles in pathogen resistance 16,17. The Arabidopsis NLR gene AT4G12020 has been 

identified both as MAPKKK11 18 and a TNL resistance gene 19, containing WRKY 

DNA-binding sites and a protein kinase domain. This gene is a homolog of SLH1, which 



 212 

has been associated with hypersensitive response, possibly guarding a pathogen effector 

target 20. Many NLR-ID fusion proteins contain transmembrane (TM) domains or nuclear 

localization signals (NLSs). Several proteins have multiple transmembrane domains, with 

proteins like 3B_AA0787000 containing seven, characteristic of other transmembrane 

proteins. NLSs indicate that DNA-binding domains may functionally interact with DNA 

as transcription factors. 

In addition to signaling, some IDs may play direct roles in effector recognition as 

effector-binding domains or bait domains that mimic effector targets (Figure 6.1). 

Jacalin-like lectin domains, for example, bind to carbohydrates and can recognize 

carbohydrates that originate directly from pathogens or from damage incurred during 

infection 21-23. Mannose-binding lectin domains were also found in NLRs, associated with 

disease resistance 24, along with “Wall-associated receptor kinase galacturonan-binding” 

and “Cleavage site for pathogenic type III effector avirulence factor Avr” domains. 

Lectin domains may distinguish proteins as helper NLRs, with carbohydrates acting as 

signals to initiate NLR activation. Other domains may play roles in effector recognition 

as bait domains that resemble effector targets. The resistance protein RRS1 becomes 

activated when an integrated WRKY domain interacts with Ralstonia solanacearum 

effector PopP2 and Pseudomonas syringae pv. pisi effector AvrRps4, effectors that 

otherwise target WRKY transcription factors 25,26. Wheat NLR-WRKY fusions share 

homology with WRKY16, WRKY19, WRKY46, and WRKY54/70, with potential roles 

as targets, especially WRKY46, which is associated with bacterial resistance 11. 

Accession 5DL_AA1436530 contains two variants of WRKY domains (WRKY and 

WSKY), possibly providing diverse baits for effectors. Accession 2BL_AA0441310 
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encodes a protein with separate AP2 and BED zinc finger domains, either allowing it to 

bind to separate promoters or as bait for more than one effector. Some bait proteins, such 

as PBS1, are kinases that pathogen effectors target for degradation, increasing the utility 

of NLR-kinase fusions. The Rosetta stone theory describes this association between 

fusions and linkage between protein function 27. Several proteins with IDs and NB-ARCs 

do not contain LRRs, which would not be required for activation since baits have 

replaced LRRs in function.  

The activity of IDs as baits is further supported by ID diversity, which 

corresponds to the diversity of defense regulatory components. IDs found in NLRs are 

also found in proteins that effectors target to interfere with defense. Several domains 

correspond to proteins involved in resistance signaling: calmodulin-binding (calcium 

signaling), Gibberellic acid insensitive (GAI) Repressor of GAI And Scarecrow (GRAS; 

gibberellin signaling), and ethylene responsive element binding (ethylene signaling). 

Several different domains contain IDs associated with the proteasome or ubiquitin, also 

involved in regulating resistance: protease subunit, proteasome component signature, 

cullin-repeat, RING/U-box, ubiquitin conjugating enzyme, and WD domains. Some IDs 

contain domains associated with regulation of DNA expression: core histone and 

chromatin organization modifier. Other IDs correspond to proteins involved in resistance 

responses: ribosome inactivating and ricin domains (disrupt ribosome activity), 

thioredoxin and kelch (oxidase activity in reactive oxygen species production), alpha 

subunit of tryptophan synthesis (synthesis of antiherbivory and antimicrobial 

compounds), Exo70 exocyst complex subunit (transport of antimicrobial compounds out 

of the cell), and DDE endonuclease (apoptosis). A few other domains are likely 
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associated with pathogen components: major sperm protein (nematode sperm function, 

targeted by plant RNA interference), FNIP (found in Dictyostelium discoideum), and 

reverse transcriptase (inhibition of viral infection). Additional viral IDs include: RNA-

binding/recognition, retrovirus zinc finger-like domain, and integrase domains. IDs may 

also be associated with pathogen-derived resistance and RNAi that plants use to inhibit 

viruses and other pathogens. Other studies support this diversity in IDs, showing similar 

results in other plant species 11,28. 

 

IDs Originate as Functional Domains and Close Relatives Share NLR-IDs 

Bread wheat is an allohexaploid species resulting from two separate hybridization 

events and substantial artificial selection 29. As a monocot, wheat shares distant 

relationships with other members of the family Poaceae (i.e. BD, ZM, SI, and OS). 

Naturally, much strong similarities exist between wheat and other members of the 

Triticeae tribe, including HV and wheat progenitors TU, AS, as well as AT (Figure 6.2). 

ID homologs in distant relatives generally do not contain NB-ARCs, indicating relatively 

recent origin of NLR-ID fusions. IDs with high percent similarity to homologs, indicative 

of functional retention, include: proteasome subunit, B3 DNA-binding, WRKY DNA-

binding, core histone, protein kinase, and kelch motif. Other domains with moderate 

similarity include: jacalin-like lectins, ribosome inactivating protein, BED zinc finger, 

SWIM zinc finger, ZF-HD protein dimerization region, zinc knuckle, protein phosphatase 

2C, tyrosine kinase, thioredoxin, major sperm protein, reverse transcriptase, and DDE 

endonuclease. Homologs may be obscured since mutations accumulate in regions not 

essential for function or effector-bait interaction, causing divergence from the original 
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sequences and making homology difficult to assess. Some mutations may increase 

functionality of NLR-IDs, since the original ID sequence was functionally optimized 

within a different protein. Some IDs may serve as baits for multiple targets, if targets 

possess similar modification/cleavage sites (e.g. similar WRKY domains).  

 Many IDs showed high homology in distant relatives. Kinase domains of up to 

300 amino acids in length were over 80% similar to homologs. DNA-binding domains 

also had high homology in distant relatives. WRKY DNA binding domains present in 

wheat and progenitors have 90.5% similarity to several non-NLR genes in AT, BD, MA, 

OS, SI, and ZM. Many other IDs in wheat and its progenitors share >80% similarity with 

homologs in SI, ZM, BD, OS, AT, MA, and AmT. These results concur with previous 

investigations into IDs, where conserved IDs were identified in diverse plant species 11,30. 

Some wheat proteins are very similar to their homologs in TU and AT, whereas others 

provide examples of one species diversifying from the other two. The histone ID in wheat 

protein 5BL_AA1325840 (approximately 100 amino acids) shares strong homology 

(>80%) with proteins in MA, BD, OS, SI, ArT, AmT, and ZM, a recent fusion not 

present in wheat relatives. Greater than 90% similarity was observed between the 182 

amino acid long F775_12304|EMT01588 proteasome subunit domain and proteins in BD, 

OS, SI, and ZM. While this indicates that these accessions are close homologs, none of 

the other accessions have NB-ARCs, only peptidase, proteasome subunit, and 

nucleophile aminohydrolase domains. HV, TU, and TA homologs to this domain, while 

matching the sequence 100%, do not have NB-ARCs, indicating a very recent duplication 

and then fusion, after the hybridization of hexaploid wheat. Kelch motif IDs were found 

in one TU, three AT, and six TA proteins. Interestingly, only one of the TA proteins is in 



 216 

the D subgenome and 5 in the A subgenome, when the opposite would be expected based 

upon subgenome origin. 

While domain homology in distantly related species indicates functional origins 

of IDs, homologs identified in close relatives (i.e. HV) and wheat progenitors (TU and 

AT) indicate recent fusions and duplications. Unlike distant relatives, barley shares many 

NLR-ID fusions with wheat. This indicates that many of wheat’s NLR-IDs happened 

before the divergence of barley and wheat progenitors. Since this divergence, wheat and 

barley have independently gained and lost NLR-ID proteins. Many TU and AT proteins 

are almost identical to proteins encoded by TA genes within the A and D subgenomes. 

IDs within wheat’s B subgenome often originate from AS and do not have 100% 

homologs in TU and AT. In select cases, similarity was found between NLR-IDs and 

functional domains from non-NLR proteins, indicating potential NLR-ID fusions since 

the formation of wheat. Conversely, some close wheat relatives share homology with 

distantly related NLR-ID fusions, such as F775_00546|EMT17242 and Si008625m, with 

an 84.6% similarity (991 identical sites) between their whole sequences, both with NB-

ARCs and kinase domains. Unexpectedly, many proteins were found in wheat but not a 

relative, or vice versa. These domains include: histone, ribosome inactivating protein, 

calcium signaling, cleavage for type III effectors, RNase H type, P450, antibiotic 

synthesis, and ubiquitin conjugating enzyme. Other domains were found in greater or 

lower numbers in wheat compared to its progenitors, such as DDE endonuclease and 

reverse transcriptase, indicating loss or duplication in one genome. 
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Plants Use Alternative Splicing to Regulate NLR-IDs  

Many NLR-ID protein-encoding genes possess multiple transcripts, some of 

which lack IDs or truncate domains within protein. Examples found in wheat are 

displayed in Figure 6.3. This indicates that plants may use alternative splicing to regulate 

the use of IDs within a network of NLR proteins. Previous studies have shown that 

resistance to some pathogens requires alternative splicing 31,32, such as RPS4 in 

Arabidopsis 33; and splicing is used to truncate proteins like RCT1 in Medicago 

truncatula 34. Wheat has also shown evidence of alternative splicing of important 

resistance genes Lr10 and Sr35 35,36. Splicing patterns between wheat paralogs resulting 

from duplication also appear to be conserved. Stop codon-containing inter-exon regions 

can be included in the transcript to force a truncation of the protein. Truncated NB-ARCs 

may result in decoy proteins, where signaling function is lost but IDs ‘distract’ 

pathogenic effectors from functional target proteins. The potential involvement of 

alternative splicing is shown in Figure 6.4, integrated into the varied use of IDs in NLR 

proteins. In concurrence with the results, Yang et al. (2014) describe NLR alternative 

splicing as useful for regulating NLR autoinhibition or function in signal transduction, 

also detailing potential transcription factor activity 31. Genes that have multiple copies of 

an ID can also regulate the number of copies in the protein through alternative splicing. 

Accession 7BL_AA1863630 encodes two transcripts, one with three WD domains (G-

beta repeat) and the other with two, along with Coils and NB-ARCs. Accession 

3B_AA0740740 encodes five transcripts that all contain two separate ribosome 

inactivating protein domains, four of which also have NB-ARCs. Alternative splicing 

may also allow the plant to select different localization for a gene product. For example, 
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4AL_AA0961460, encodes three transcripts, one with multiple transmembrane helices 

and a BED zinc finger ID, one lacking the transmembrane helices, and another lacking 

the transmembrane helices and the ID. The transmembrane-containing transcript is 

encoded by one and a half extra exons at the beginning of the transcript, with a total of 

five exons making up the gene. 

 

 
Figure 6.4 Potential roles of IDs in functional diversification of NLRs in pathogen 

resistance are illustrated. (A) The NLR-ID gene is alternatively spliced during 

transcription to include or exclude IDs. The NLR and ID sequences are shown in 

black and blue, respectively. (B) The NLRs without IDs function through effector-

LRR binding to activate the protein, and trigger downstream signaling. Effectors 

are shown in red. (C) When IDs are used as baits, they mimic pathogen targets, and 
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cause NLR activation after they are modified. (D) When IDs are used as decoys, 

they mimic pathogen targets to reduce effector interference in resistance signaling. 

The targets are shown in purple. (E) When IDs are used in signaling, they allow 

NLRs to act as signal transduction factors, less reliant on downstream signaling 

utilized by other NLRs. (F) Finally, transcription factor activity directly involving or 

triggered by NLRs causes PR genes to be expressed, leading to a resistance 

response. 

 
Wheat expression data shows that there are differences in the expression of these 

alternative transcripts shown in Figure 6.3. The expression values for the 54 transcripts 

present in Figure 6.3 were mined from datasets present in the Wheat Gene Expression 

Atlas and NCBI databases. Expression data from Salcedo et al. (2017) shows that 

alternative splicing may result from different conditions 37. At very least, these data 

provide support for Figure 6.3 accessions as actual alternative transcripts that can be 

measured experimentally. This data is present in Supplementary Figure 6.1 and 

Supplementary Table 6.1. In the Wheat Gene Expression Atlas data 38, several 

transcripts with different ID contents show differential expression in wheat tissues. For 

instance, both transcripts of 5AL_AA1195550 were expressed, much more for the 

WRKY-containing first transcript. Similar examples include 5AL_AA1200550 (kinase), 

5BL_AA1321240 (kinase), 5BS_AA1380910 (LRR), 5DS_AA1479690 (kinase and 

coil), 7AS_AA1808020 (zinc finger), and 7DS_AA2051850 (B3). Accession 

3B_AA0740740 shows evidence of higher expression of a truncated NLR-ID, lacking an 

NB-ARC. Several of these genes were more strongly expressed in the leaves, shoots, and 

spikes. One exception is 7DS_AA2051850, where the second B3-containing transcript is 
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expressed much more in the roots than in any other tissue, and much higher than the other 

B3-lacking transcript in the roots. This gene may be involved in resistance to soil-borne 

pathogens. More data is required to conclusively show differential expression based upon 

certain treatments and conditions.  

While wheat shows evidence of NLR-ID alternative splicing, barley may have 

evolved a more diverse set of transcripts for NLR-IDs. Several barley NLR-ID proteins 

have dozens of transcripts, with several of those allowing for alternative use of IDs in 

NLR proteins. Many barley genes have alternative transcripts that encode NLR-ID, just 

NLR, just ID, or lack both. For example, barley gene HORVU3Hr1G010980 encodes 16 

transcripts, many of which contain NB-ARCs and two separate ribosome inactivating 

domains, one with just the NB-ARC, one just the ribosome inactivating domain, and one 

short transcript without any domains. Previous studies have identified barley Mla genes 

as utilizing alternative splicing for resistance 39. Barley genes can also encode multiple 

IDs. HORVU3Hr1G037800 and HORVU7Hr1G000320 can encode NB-ARC transcripts, 

Kelch motif transcripts, a Glutaredoxin transcripts, or a short transcript with none of 

those domains. HORVU1Hr1G079170 contains dozens of transcripts that can either 

encode NB-ARC and LRR protein or proteins with Glycoside hydrolase family 28 and 

TM helix proteins, potentially involved in two different regulatory pathways. 

HORVU7Hr1G120020 encodes 17 transcripts with NB-ARC, Coil, and Cleavage site for 

pathogenic type III effector avirulence factor Avr, with some transcripts only encoding 

the cleavage site with no NB-ARC, a possible decoy for pathogenic effectors. Barley 

gene HORVU5Hr1G085900 encodes 20 transcripts, some as NB-ARC-WRKY, just 

WSKY, and NB-ARC-WRKY-WSKY. Since some transcripts just contain the 
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transcription factor domain, either this is functioning as a transcription factor, or it is a 

non-receptor decoy that reduces effector interference in WRKYs necessary for resistance 

response. This protein also contains a probable nuclear localization signal between the 

NB-ARC and the WRKY domains. This data supports a previous prediction that 

alternative splicing may allow for differential cellular localization 31. 

 

CONCLUSIONS 

 

I found that the diversity of integrated domains in NLRs corresponds directly to 

the multiple components utilized by plant cells to initiate resistance responses, such as 

kinases, transcription factors, hormone signaling receptors, and proteins involved in 

antimicrobial compound production. NLR-ID fusions give these immune receptors the 

potential to function as effector baits, decoys, and signal transduction factors. This 

functional diversification would allow plants to stop using intermediate signaling factors 

that effectors often target to inhibit resistance. Sequence homology both indicates that 

some IDs retain functionality and provides an explanation for ID origins as functional 

non-NLR proteins before their integration into NLRs. Using both genomic and 

expression data, these results showed that plants likely utilize alternative splicing to 

regulate the inclusion or exclusion of IDs in NLR proteins and have compiled a list of 

experientially verified alternative transcripts that truncate or exclude these domains. This 

optional deployment of NLR-IDs constitutes an important defense strategy to deal with 

rapidly evolving pathogen effectors. Future studies should aim to characterize the 
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structure of NLR-ID fusion proteins, demonstrate which IDs have retained enzymatic 

activity, and associate the expression of alternative transcripts with specific conditions. 

 
 

SUPPLEMENTARY DATA 
 

 

 
Supplementary Figure 6.1 Expression of wheat NLR-ID alternative splicing 

candidate genes from Wheat Gene Expression Atlas. The 54 transcripts shown in 

Figure 3 were used to generate this heatmap visualization within the Wheat Gene 

Expression Atlas database. Visualization layout was made based upon expVIP 

within the database. 
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Supplementary Table 6.1 Expression of wheat NLR-ID alternative splicing 

candidate genes available in Wheat Gene Expression Atlas and NCBI databases. 

The 54 transcripts shown in Figure 3 were acquired from the GSE106397 dataset in 

NCBI and the Wheat Gene Expression Atlas. Cells are colored by expression level, 

showing differential expression between alternative transcripts of the same gene.  

Supplementary Table 6.1 can be accessed from the following link: 

https://figshare.com/s/0bdc5fd44ff6a5e94bcd 
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CHAPTER 7: NECROTROPHIC FUNGUS PYRENOPHORA TRITICI-REPENTIS 

TRIGGERS EXPRESSION OF MULTIPLE RESISTANCE COMPONENTS IN 

RESISTANCE AND SUSCEPTIBLE WHEAT CULTIVARS 

 

ABSTRACT 

 Tan spot (TS) of wheat, caused by the pathogen Pyrenophora tritici-repentis 

(Ptr), results in a yield loss by causing chlorosis and necrosis of healthy leaf tissue. 

Recent advancement in molecular tools and techniques has allowed wheat pathologists to 

elucidate genetics of Ptr infection, revealing three main host-selective toxins produced by 

Ptr, and three susceptibility genes in wheat. The major objective of this study was to 

compare gene expression in resistant and susceptible wheat cultivars after infection with 

Ptr ToxA-producing race 2 and direct infiltration with Ptr ToxA proteins. Greenhouse 

experiments included exposure of susceptible Glenlea and resistant Salamouni wheat 

cultivars to pathogen inoculum or direct infiltration of leaf tissue of Ptr ToxA protein 

isolate. Samples from the experiments were utilized for RNA sequencing to infer gene 

expression among the samples through RNA sequencing. Results showed that, upon Ptr 

contact with wheat tissue, Ptr started expressing ToxA. Resistant wheat, in response to 

Ptr inoculum, expressed genes associated with plant resistance responses, genes of 

interest including five chitinases, eight transporters, five pathogen-detecting receptors, 

and multiple classes of signaling factors. Resistant and susceptible wheat cultivars 

differed in expression among several groups of genes. Plants exposed to Ptr inoculum 

expressed transcription factors, kinases, receptors, and peroxidases, which are not 

expressed as highly as in the control samples or samples infiltrated with ToxA. Several of 
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these genes can be found in tan spot resistance QTLs on chromosomes 1A, 2D, 3B, and 

5A. These results show that resistance to Ptr is likely due to the expression of many 

individual genes. Future studies should elucidate the specific roles these genes play in the 

wheat response to Ptr. 

INTRODUCTION 

Pathogenic fungi negatively impact crop production through qualitative and 

quantitative reduction in yield, through mycotoxin production and tissue necrosis 1. 

Necrotic leaf spotting diseases are especially damaging to wheat crops 1, causing leaf 

tissue death reducing photosynthetic capacity and carbohydrate production. Wheat 

supplies a large portion of the calories for human nutrition 2, and fungal pathogens like 

Pyrenophora tritici-repentis (Ptr), cause some of the most devastating yield-limiting crop 

diseases 3. Tan spot (TS) of wheat is caused by Ptr and results in up to 50% yield loss in 

wheat 4. Pathogens like Ptr have evolved ways to hijack plant resistance signaling 

pathways, facilitating their infection and reproduction 5. Ptr possesses a unique repertoire 

of toxins (namely Ptr ToxA, Ptr ToxB and Ptr ToxC) that rely on host susceptibility 

genes for infection 6. Ptr ToxA moves into wheat mesophyll cells to disrupt chloroplast 

activity and Ptr ToxB acts extracellularly 7. Recognized by brown necrotic lesions 

surrounded by yellow chlorotic halos as symptoms, Ptr overwinters as pseudothecia on 

wheat residue, dispersal of spores facilitated by wind and periods of prolonged moisture 

8. Ptr host-selective toxins (HSTs) cause necrosis and chlorosis in susceptible varieties 

9,10. Variation in Ptr races and wheat cultivar susceptibility has been documented 9,10, 

with findings shown in Table 7.1 (shown below). Instead of resistance genes (R genes), 

wheat variation has been attributed to the presence of susceptibility genes present in 
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many cultivars 6. Key details regarding the molecular interactions between HST and 

wheat proteins have emerged in recent years 6,11-14, stimulating the further elucidation of 

this host-pathogen interaction.  

Table 7.1 Toxin production and sensitivity information for selected Ptr isolates and 

wheat cultivars, respectively (S=Sensitive, I=Insensitive). 

Ptr 
Race 

Ptr 
Effectors 

Reference Wheat 
Cultivar 

ToxA ToxB ToxC Reference 

1 A, C  
 

15 

Glenlea S I I  
 

9 
2 A Salamouni I I I 
3 C Katepwa S S I 
4 - 6B365 I I S 
5 B 16 ND495 S I I 
6 B, C 17 6B662 I S I 10 
7 A, B 18      
8 A, B, C      

 

Host-selective toxins (HSTs) are fungal effectors that facilitate infection and 

access to nutrients. Many HSTs have been identified in species of the Alternaria and 

Cochliobolus genera, with additional HSTs likely to be found in future research 19. To 

facilitate infection and nutrient extraction, Ptr produces three HSTs: Ptr ToxA, Ptr ToxB, 

and Ptr ToxC (see Faris et al. 2013 for review 6). Ptr ToxA causes necrosis in wheat 

tissue and evidence supports the hypothesis that the Ptr ToxA gene was horizontally 

transferred from Parastagonspora nodorum, another pathogenic fungus of wheat that 

causes Septoria/Stagonospora nodorum blotch 20. Ptr ToxA has been shown to move into 

wheat mesophyll cells, possibly as a homodimer, where it localizes to chloroplasts and 

binds to the ToxA-binding protein-1 (ToxABP1) and a plastocyanin (PCN), leading to 

chloroplast disruption, production of reactive oxygen species (ROS), and cell death 

13,21,22. Ptr ToxA contains an RGD-motif that is involved in target-binding and movement 
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into wheat mesophyll cells, likely by receptor-mediated endocytosis23. In contrast to Ptr 

ToxA, Ptr ToxB and Ptr ToxC are both native to Ptr and associated with tissue chlorosis 

24. Ptr ToxB acts extracellularly 7, likely through a ligand-receptor interaction that 

triggers plant signaling and leads to chlorosis. Ptr ToxC is a small, nonpolar, non-

proteinaceous secondary metabolite 25 that has yet to be characterized. Both Ptr ToxA and 

Ptr ToxB lead to interference with photosynthesis and ROS accumulation, indicating 

similar mechanisms of action even though they differ in structure 14. Several Ptr races 

have been identified to possess various combinations of the three toxins, and various 

wheat cultivars have shown sensitivity to individual toxin isolates. Integrated disease 

management of tan spot may include the use of resistant varieties, fungicide applications, 

crop rotation, and residue removal to limit overwintering of inoculum 8. Fungicide 

applications and crop rotations, while effective, are expensive and inconvenient for 

farmers. Determination of how tan spot causes disease symptoms, followed by 

deployment of cultivars with durable resistance will provide an economical solution to 

yield loss 4.  

The main objective of this study was to compare gene expression of resistant and 

susceptible wheat cultivars after infection with Ptr ToxA-producing race 2 and direct 

infiltration with Ptr ToxA. Identification of genes triggered by Ptr HSTs will provide 

candidates for assessing why some wheat cultivars resist TS symptoms and others 

develop necrotic lesions. These results will impact the development of tan spot-resistant 

wheat by informing breeding decisions that ultimately influence farmer variety selection. 

This will allow us to assess the molecular mechanism that involves Ptr effectors in wheat 

cells, and understand which signaling mechanism(s) may lead to the disease. In-depth 
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understanding of the molecular basis of the wheat-Ptr pathosystem will be useful in the 

development of wheat cultivars that possess durable resistance to Ptr and other necrotic 

leaf spotting diseases caused by similar pathogens, such as Parastagonspora nodorum.  

 

MATERIALS AND METHODS 

 Two cultivars of wheat were grown, TS resistant Salamouni and TS susceptible 

Glenlea, selected due to their well-established insensitivity and sensitivity to Ptr ToxA, 

respectively. Seeds were germinated in petri dishes on damp filter paper and transferred 

to 3 x 9 cm plastic containers (Stuewe & Sons Inc., Tangent, OR, USA) filled with 

Sunshine Mix 1 soil (Sun Gro Horticulture, Agawam, MA, USA). Plants were uniformly 

watered daily with greenhouse conditions of 16 hour light and 8 hour dark cycles at 22°C 

for 14 days prior to inoculation/infiltration. Four treatments were used: spray Ptr race 2 

inoculum, spray water (control), Ptr ToxA injection, and water injection (control). 

Inoculum was prepared following methods described in Abdullah et al. (2017) 26. A 

culture of Ptr Race 2 isolate 86-124 was initiated using an agar plug and V8-PDA 

medium plates (agar = 10 g; potato dextrose agar (PDA) = 10 g; CaCO3 = 3 g; V8 Juice = 

150 mL and 850 mL distilled water) 27. Plates were incubated in darkness for 5 days and 

colonies were flooded with distilled water and disrupted. Plates were then incubated for 

24 hours at 22C in light and then for 24 hours at 16C to cause production of conidia. The 

spore suspension at 3000 spores/mL was used to inoculate plants with a Preval CO2 

pressurized sprayer (www.preval.com) 28,29. A sprayer containing only sterile water was 

used as a control. Toxin infiltration was accomplished using a 10 µg/mL solution of Ptr 

ToxA, kindly provided by Dr. Timothy Friesen (USDA-ARS, North Dakota State 
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University), and directly infiltrating leaf tissue using a needle-less syringe 30, similarly 

using sterile water infiltration as a control. Inoculated plants were then placed in an 

automated humidity chamber at 100% humidity (misting 16 seconds/10 minutes). 

Samples were collected at three timepoints: 0 hr, 8 hr, and 16 hr. Liquid nitrogen was 

used to freeze the samples, stored at -80°C until RNA extraction could be completed 

using the Ambion PureLink RNA extraction kit with Trizol reagent. RNA was then 

purified using DNase to remove any DNA contamination and sequenced at Iowa State 

University using Illumina HiSEQ 3000 set at 100 base pairs with single reads.  

Resulting FASTQ files were checked for quality using FASTQC 31, trimmed 

using Btrim 32, and mapped to the reference wheat genome using Hisat 33 and Htseq 34. 

Genomic data was accessed from the Ensembl Genomes database 35. The Pyrenophora 

tritici-repentis genome was also accessed from Ensembl Genomes in order to map any 

pathogen RNA reads that would not map to the wheat genome. The program R 36 with the 

Bioconductor package and DESeq2 37 were used to assess differential expression of genes 

between samples. Genes differentially expressed between cultivars, treatments, or time 

points were compiled and assessed based on their sequence annotations and homology in 

Gene Ontology (GO), InterProScan 38, and BLAST 39 , used to predict the general 

functions and roles in stress response, metabolism, development, and various other 

cellular processes. The iDEP program was also used to assess differentially expressed 

genes in wheat tissue 40. 
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Figure 7.1 Workflow diagram of methods for greenhouse RNA sequencing 

experiment. Experiment was conducted at South Dakota State University Young 

Brothers Seed Technology Laboratory. 

 

 

RESULTS 

Pathogen Expression 

 ToxA encoding RNA sequences, gathered using the workflow in Figure 7.1 

mapped to the Ptr genome, showed that Ptr genes were found in the expression data in 

inoculated samples confirming that Ptr produces ToxA in wheat tissue upon the pathogen 

exposure (Figure 7.2). RNA sequencing data files are available from NCBI 

1.  Tan	Spot	Suscep/ble	Glenlea	and	Resistant	
Salamouni	Wheat	Germinated	for	2	Weeks		

2.	Quality	–	FASTQC		

3.	Filtering/Trimming	–	Btrim		

4.	Mapping	–	Hisat		

5.	Assembly	–	Htseq		

6.	Expression	Analysis	–	DESeq2	(R	package)	

2.	Sprayed	with		
Ptr	Race	2	spores	
or	water	(control)	

2.	Injected	with	
Ptr	ToxA	or		
water	(control)	

1.	Tissue	stored	at	-80°C	
2.	Tissue	disrupted	in	liquid	nitrogen	

3.	Trizol	and	Ambion		
Purelink	RNA	extrac/on	kit	

4.	DNase	treatment	

5.	Sequencing	at	Iowa	State	University	

1.	FASTQ	files	received	from	ISU	

3.	Plants	transferred	to	Humidity	Chamber	

4.	Leaf	Samples	taken	at	0,	8,	and	16	hours	

RNA	Extrac+on	

Data	Analysis	

Experiment	

5.	Samples	collected	in	tubes	and	stored	in	
liquid	nitrogen	un/l	transferred	to	-80°C	 7.	Visualiza/on	using	iDEP	
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(https://dataview.ncbi.nlm.nih.gov/object/PRJNA529906?reviewer=3qsuo5i095ic5v1k7f

upmmmsbj) and are listed in Supplementary Table 7.1. Many of the other transcripts 

found from Ptr do not have a direct role in pathogenesis and are likely involved general 

cellular function. ToxA was not expressed in 0 hr samples, with the highest level of 

expression in a 0 hr sample being 3 counts. The 8 and 16 hr samples showed Tox A 

levels between 65 and 356 counts per sample. This indicates that Ptr does not express 

Tox A until it comes in contact with wheat tissue. No Ptr genes were significantly 

differentially expressed between the two cultivars, indicating that the difference in 

disease response resides mainly in wheat’s response to Ptr and not Ptr’s response to 

different cultivars of wheat. ToxA expression was found to be higher in Salamouni 

samples than in Glenlea. Other Ptr genes may possess involvement in pathogenesis. 

Elongation factor is likely initiated once contact with wheat is sensed, along with 

peroxisomal enzymes. Proteins related to damage, such as heat shock proteins, could be 

expressed in response to enzymes wheat uses to defend itself during infection. Reads 

mapped to the wheat genome resulted in many differentially expressed genes, in wheat, 

as visualized in the heat map (Figure 7.3) where many genes either increased or 

decreased in expression, shown in red and green, respectively. The Weighted Correlation 

Network Analysis (WGCNA) and Principal Component Analysis (PCA) of the data 

(Figure 7.4) show that several groups of differentially expressed genes associate with 

particular functions and expression differs between the two cultivars. Wheat samples at 8 

and 16 hours expressed many genes associated with response to stress and biosynthetic 

processes not expressed at 0 hours. 
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Figure 7.2 Experimental design to show that wheat Ptr genes are expressed upon Ptr 

exposure. (A) Wheat cultivars and Ptr races possess various susceptibility genes and 

effectors, respectively. Ptr Race 2 resistant and susceptible cultivars were selected to 

investigate the effect of Ptr ToxA on wheat tissue. (B) Samples were inoculated with 

Ptr Race 2 or infiltrated with ToxA. (C) Ptr genes expressed in inoculation samples 

included ToxA, a major cause of necrosis, showing that Ptr was expressing ToxA 

after inoculation. 
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Figure 7.3 Heatmap visualization of expression data was constructed using 

integrated Differential Expression and Pathway analysis (iDEP). Sample names 

include cultivar (G and S for Glenlea and Salamouni, respectively), treatment (P, T, 

Cntrl1, Cntrl2 for Pathogen inoculation, Toxin infiltration, Inoculation Control, and 

Infiltration Control, respectively), and timepoint (0 hrs, 8 hrs, and 16 hrs). Samples 

that increased or decreased in expression were colored red and green, respectively, 

with little change shown in black. 
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Figure 7.4 Analysis of expression data, including (A) Weighted Correlation Network 

Analysis (WGCNA) of the three timepoints (0, 8, and 16 hours); (B) principal 

component analysis comparing the two cultivars; and (C) Functional pathways in 

which genes from 0, 8, and 16 hours were associated as determined from the 

WGCNA. 

 

 

Resistant and Susceptible Cultivar-Specific Expression 

Many genes were differentially expressed between Glenlea and Salamouni wheat, 

with many possessing potential involvement in defense response (Figure 7.5). Several of 

these genes that were expressed highly in either Glenlea or Salamouni were expressed not 

at all or only slightly in the other. For example, TraesCS5B02G417500.1 encodes an NB-

A	 B	

C	
0	hrs	 8	hrs	 16	hrs	

adj.	P-value	 Genes	 Pathways	 adj.	P-value	 Genes	 Pathways	 adj.	P-value	 Genes	 Pathways	
2.40E-12	 18	 Photosynthesis	 6.20E-12	 34	 Carboxylic	acid	metabolic	process	 1.80E-08	 18	 Photosynthesis	

2.70E-11	 25	 GeneraBon	of	precursor	metabolites	and	energy	 1.90E-11	 42	 Small	molecule	metabolic	process	 9.40E-08	 27	 GeneraBon	of	precursor	metabolites	and	energy	

3.40E-11	 13	 Photosynthesis,	light	reacBon	 3.80E-11	 30	 Drug	metabolic	process	 2.20E-07	 47	 Organonitrogen	compound	biosyntheBc	process	

1.40E-07	 8	 Photosynthesis,	light	harvesBng	 5.80E-11	 13	 AromaBc	amino	acid	family	metabolic	process	 9.00E-07	 44	 Small	molecule	metabolic	process	

1.10E-06	 5	 Protein	repair	 6.50E-10	 17	 Alpha-amino	acid	metabolic	process	 3.90E-06	 42	 Response	to	stress	

9.00E-05	 15	 Response	to	abioBc	sBmulus	 4.30E-09	 24	 Small	molecule	biosyntheBc	process	 8.50E-06	 31	 Organic	acid	metabolic	process	

8.40E-04	 3	 Photosystem	II	repair	 5.30E-09	 21	 Cellular	amino	acid	metabolic	process	 5.10E-05	 29	 Carboxylic	acid	metabolic	process	

8.40E-04	 5	 Protein-chromophore	linkage	 8.70E-09	 21	 Organic	acid	biosyntheBc	process	 5.70E-05	 20	 Response	to	abioBc	sBmulus	

8.40E-04	 2	 Aldonate	transmembrane	transport	 3.10E-08	 32	 Catabolic	process	 6.90E-05	 16	 Electron	transport	chain	

8.40E-04	 6	 Chloroplast	organizaBon	 4.20E-08	 23	 Cofactor	metabolic	process	 1.10E-04	 9	 Photosynthesis,	light	reacBon	

1.00E-03	 3	 Response	to	red	light	 5.30E-08	 18	 Drug	catabolic	process	 2.90E-04	 15	 Cellular	carbohydrate	metabolic	process	

1.00E-03	 8	 Response	to	light	sBmulus	 1.70E-07	 34	 Response	to	stress	 3.10E-04	 18	 Cellular	amino	acid	metabolic	process	

3.10E-04	 11	 Purine	nucleoside	monophosphate	metabolic	process	

A	 B	
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ARC-containing protein and hundreds of reads from each of the Salamouni samples 

mapped to this gene, whereas not a single read was found in all Glenlea samples. For 

genes that are not expressed at all in one of the two cultivars, questions can be raised 

about if that cultivar even contains a functional version of that gene. Other genes were 

only associated with a single read in one cultivar. This could be a false positive. Groups 

of genes that are differentially expressed between the two cultivars fit into two 

categories: 1) groups that are mainly expressed in one cultivar, and 2) groups where 

approximately half of the genes are expressed in one cultivar and half expressed in the 

other.  

 Glenlea and Salamouni do not show the same expression of chitinase/chitin-

binding, major sperm protein, MLO, permease, ubiquitin, WAK, wound-induced, and 

xylanase inhibitors. Each of these, with the exception of major sperm protein, were 

expressed almost exclusively in Salamouni. Salamouni also expressed a homolog of 

Snn1, which is a SnTox1 sensitivity gene that contains the domains of a calcium-binding  

and galacturonan-binding wall-associated kinase. While many genes were only expressed 

in Glenlea, groups of genes with similar domains were not exclusively expressed in 

Glenlea like they were in Salamouni. Glenlea and Salamouni express different NLRs, 

kinases, LRRs, LRR-Kinases, cytochrome P450 enzymes, F-box proteins, Lectins, 

Peptidases, Peptidase inhibitors, Peroxidases, UDP-glucosyltransferases, Thaumatins, 

and Transcription Factors. For each of these groups of genes, Glenlea or Salamouni 

express all or the vast majority of each gene, indicating that breeders should target those 

only expressed in Salamouni for breeding resistance into wheat lines. These are the 

categories that possess functions associated with pathogen resistance, not including the 
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many other genes differentially expressed between the cultivars that do not have possible 

resistance functions.  

 

 

Figure 7.5 Gene expression distinction between Glenlea and Salamouni cutivars. 

Several genes were only expressed in Glenlea or Salamouni, with a few more 

showing only one read in one of the two cultivars. 
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Figure 7.6 NLR-encoding genes that were significantly differentially expressed 

between cultivars. NLR accession names are listed on the left and the proportion of 

reads found in either of the two cultivars are shown to the right of each name. 

Glenlea and Salamouni expression data are indicated by blue and red lines, 

respectively.  
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Of the significantly differentially expressed genes, 125 NLRs were expressed 

mostly or entirely in one of the two cultivars (Figure 7.6). Unlike genes listed in Figure 

7.5, where all or most of the genes of one type were expressed by one cultivar, NLRs 

were divided in expression between the two cultivars, with many expressed exclusively 

in one cultivar. Salamouni did show expression of more NLRs than Glenlea. However, 

the number of NLR-encoding genes expressed does not necessarily correlate with 

resistance, especially since it is not currently possible to associate individual NLRs with 

particular pathogens on a large scale.  

Pathogen Inoculation and Toxin Infiltration Expression 

 Many groups of genes were expressed in both cultivars, but differed greatly 

between control samples and those treated with Ptr inoculum or ToxA (see Figure 7.7 

gene groups). While this figure also highlights some differences between the two 

cultivars, the primary focus of this data was the differences between treatments with 

similar patterns in both cultivars. Many genes expressed much more in samples treated 

with Ptr inoculum that were not highly expressed in controls or ToxA infiltrated samples 

(Figure 7.7). These included osmotin/thaumatin-like genes (e.g. 

TraesCS7B02G483400.1, TraesCS7D02G551400.1, and TraesCS7A02G558500.1) and 

cell wall synthesis genes such as TraesCS2B02G040600.1, TraesCS2B02G040500.1, 

both of which are associated with disease resistance. Other genes (see Figure 7.7) were 

expressed minimally or not at all in 0 hour samples and controls at 8 hrs, but highly 

expressed in 8hr pathogen or toxin exposure (Figure 7.7). These genes are likely 

expressed in response to Ptr or ToxA. Several genes (e.g. TraesCS2B02G553700.1, 

TraesCS6B02G170000.1, and TraesCS7D02G058600.1) showed significant differential 
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expression between treatments and cultivars, but did not share homology with any 

characterized genes, nor did they possess InterProScan domains. These genes are likely to 

play a role in pathogenesis, therefore their functional characterization is warranted and 

many were found in locations associated with QTLs that likely play a role in TS 

resistance (Figure 7.8).  

 

Figure 7.7 Genes expressed highly when exposed to Ptr or ToxA, but minimally in 

0hr samples and other control samples. Ptr triggered expression of several genes 

that were minimally expressed at 0 hrs, regardless of treatment. Grey, green, red, 

and blue indicate control inoculation, control infiltration, Ptr inoculation, and Ptr 

ToxA infiltration, respectively, as shown in the legend at the top of the figure.  
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Figure 7.8 Differentially expressed genes located within QTLs associated with 

resistance to tan spot, as described in Kariyawasam et al. (2016), and their proposed 

biological function. Functions are grouped by the following categories: pathogen 

detection (purple arcs), signaling (orange triangles), and defense response (red 

ovals).  

 

DISCUSSION 

Ptr Triggers Expression of Resistance Components in Wheat 

The data indicates that Ptr Race 2 produces Ptr ToxA after contact with wheat 

tissue (Figure 7.2). Even though Race 2 does not produce ToxB and ToxC, other factors 

likely elicit response to Ptr, such as chitin and other Pathogen-Associated Molecular 

Patterns (PAMPs) 41. PAMPs and catalysis of the plant cell wall by fungal enzymes 

trigger the activation of Pattern-Recognition Receptors (PRRs) and Wall-Associated 

Kinases (WAKs), respectively 42. PRRs generally possess Leucine-Rich Repeat (LRR) 
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and Kinase domains, with an extracellular LRR initiating intracellular kinase activity 42. 

WAKs possess galacturonan-binding domains and kinase domains, with kinase activity 

initiated by cell wall fragments. Several kinases, including LRR-kinases and WAKs, 

were expressed more highly in plants sprayed with inoculum or injected with the toxin. 

Kinases then phosphorylate additional signaling molecules, eventually triggering 

transcription factor activation. Several transcription factors were expressed more highly 

when exposed to the pathogen. Expression of transcription factors of the AP2/ERF, 

bHLH, and WRKY classes were triggered by Ptr. While further functional 

characterization is required to know how these kinases and transcription factors are 

directly involved in response to Ptr, this analysis highlights which signaling factors may 

be involved. These kinases and transcription factors would not necessarily be the same 

signaling factors initiated by receptor detection of Ptr, since RNA-seq only measures 

changes in expression. These would be the kinases and transcription factors that are 

expressed as the result of initial receptor/signaling activity. Therefore, the initial 

detection is not captured in this experiment, only the genes expressed as a result of the 

initial detection of Ptr. As a direct result of pathogen detection, the first line of defense 

detectable through RNA-seq would be the defense response genes expressed more highly 

in the hours following inoculation. The heatmap (Figure 7.3), shows that many genes 

increased or decreased in expression through the course of the experiment with many 

genes differing between the two cultivars, as shown in the principal component analysis 

(Figure 7.4). The WGCNA (Figure 7.4) shows that many genes expressed at 8 and 16 

hours may play roles in defense, particularly those in the pathways associated with stress 
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response (34 and 42 genes at 8 and 16 hours, respectively), small molecule metabolic 

process (42 and 44 genes), and small molecule biosynthesis process (24 at 8 hours). 

Plants respond to fungal pathogens by producing several types of proteins. Some 

response proteins possess more definite functions in response to Ptr, such as chitinases, 

thaumatins, terpene synthases, purine permeases, and peroxidases. Each of these 

possesses likely functions in the breakdown of pathogen components or the production of 

compounds that deter pathogen growth and development. Some proteins break down 

components of fungal cell walls. Chitinases, for example break down chitin in fungal cell 

walls and inhibit fungal development and reproduction. Chitinases were expressed more 

by Salamouni than by Glenlea (Figure 7.5). Given that Ptr is a fungal pathogen, this 

production of chitinase may play a significant role in the resistance Salamouni possesses. 

WAK-encoding genes were also found to be expressed more in Salamouni, possibly 

initiating defense responses when damage to the cell wall takes place. Pandelova et al. 

(2009) also found differential expression of several signaling genes (i.e. MAPKs and 

transcription factors) along with response protein-encoding genes like chitinase 43. NLRs, 

commonly described as major resistance factors, were largely or entirely either expressed 

in one cultivar or the other, with the majority of them expressed in Salamouni (Figure 

7.6). This data does not necessarily indicate that NLRs not expressed in one cultivar are 

not in that cultivar’s genome. However, this data does indicate that cultivars do not 

equally express NLRs. As with signaling factors, these are not necessarily the same 

receptors that initiated resistance mechanisms, since those receptors cannot be measured 

through RNA-seq. 
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Thuamatin-like proteins are permatins that make the fungal membranes more 

permeable, disrupting cellular activity. These defensive proteins were among the many 

types that expressed more highly in plants inoculated with Ptr spores (Figure 7.7). Other 

enzymes do not directly act against fungal cells, but catalyze the production of chemicals 

that inhibit fungal development. Benzoxazinoids, such as DIMBOA, are produced as a 

defense against pests and are synthesized through the activity of several BX enzymes. 

BX1 catalyzes the production of indole from indole-3-glycerolphosphate. Cytochrome 

P450 enzymes Bx2-Bx5 convert indole to DIBOA. BX6 catalyzes DIBOA-glucoside into 

TRIBOA-glucoside, which then is acted upon by BX7, converting it to DIMBOA-

glucoside, the main benzoxazinoid for wheat 44. UDP-glucosyltrasferases like Bx8 and 

Bx9 reduce autotoxicity of benzoxazinoids. This data indicates that several Cytochome 

P450, DIBOA-glucoside dioxygenase (BX6)-like, and UDP-glucosyltransferase proteins 

were more heavily expressed in race 2-inoculated samples. Since DIMBOA is known to 

possess antifungal properties, up-regulation of enzymes in its synthetic pathway fit 

expectations. Indole-3-glycerolphosphate can be converted into either DIMBOA-

glucoside or tryptophan, with DIMBOA-glucoside then being coverted to 6-methoxy-2-

benzoxazolinone (MBOA) and tryptophan being converted into serotonin. Fall and 

Solomon (2013) showed that in response to SnToxA from Stagonospora nodorum, wheat 

produces secondary metabolites serotonin and MBOA to inhibit S. nodorum sporulation 

and disrupt metabolism, respectively 45. Therefore, the up-regulation of DIMBOA 

pathway enzymes may be to use serotonin and MBOA to inhibit Ptr. Fall and Solomon 

suggest that S. nodorum uses other effectors to suppress the response triggered by 

SnToxA. 
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Response proteins may work together in other ways to defend wheat from Ptr 

infection. Four groups of genes uniquely expressed in race 2-inoculated samples share a 

common defense pathway: UDP-glucosyltransferases, cytochrome P450s, beta-

glucosidases, and alpha/beta hydrolases. These proteins lead to the production of 

hydrogen cyanide as a defense mechanism in Sorghum bicolor. The cyanogenic glucoside 

dhurrin is synthesized by UDP-glucosyltransferase and cytochrome P450. Dhurrinase, a 

beta-glucosidase, releases p-hydroxymandelonitrile from dhurrin, which is acted upon by 

p-(S)-hydroxymandelonitrile lyase, an alpha/beta hydrolase, to make hydrogen cyanide, 

as reviewed in Ordonio et al. (2016) 46. Like S. bicolor, wheat also produces cyanogenic 

glucosides 47. Genes encoding all four of these proteins were expressed more highly in 

samples inoculated with Ptr than other samples.  

Many of the genes expressed more highly when wheat was exposed to Ptr 

inoculum possess additional functions in resistance systems. Pyridoxal phosphate-

dependent decarboxylases (aromatic-L-amino-acid decarboxylases) were differentially 

expressed and play roles in GABA signaling. Wang et al. have proposed a self-defense 

model in Fusarium graminearum, where MFS transporters export DON and GABA 

promotes production of DON and self-defense 48. Other response proteins counter Ptr 

proteins, such as proteinase inhibitors, which can be expected, since pathogens produce 

several enzymes that degrade host barriers to infection. Polyphenol oxidases are defense 

compounds known to reduce the digestibility of plant tissue. Phenylalanine ammonia-

lyase (PAL) is another common defense protein plants use. Wheat dirigents have been 

shown to increase pathogen resistance and lignin biosynthesis 49, which would be used to 

made infection more difficult. Ornithine decarboxylase catalyzes the conversion of 
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ornithine to putrescine, which can then be converted to spermidine and spermine, a 

response to biotic stress caused by a broad range of pathogens 50. Lipoxygenases aid in 

the synthesis of signaling molecules, such as jasmonates, which are important signaling 

factors in defense responses 51. Signaling and response genes that were found to be 

mostly expressed in the samples inoculated with Ptr race 2 indicate that Ptr is initiating 

responses based upon receptor activity. Several lectins, lectin-kinases, kinases, and LRR 

receptors were mainly expressed in Race 2-inoculated samples. These proteins likely 

work together to transmit the signal that the fungal pathogen is present. The expression of 

several transcription factors commonly associated with biotic stress resistance was 

triggered by inoculation by Ptr.  

 

Resistance Components Exist Within Identified TS Resistance QTLs 

Additional research targeting tan spot has associated Ptr resistance with various 

QTLs throughout the wheat genome. Kariyawasam et al. (2016) identified QTLs 

involved in tan spot resistance 52. While cultivar Penawawa is resistant to several races of 

Ptr, application of ToxA causes necrosis, the same reaction found in the susceptible 

cultivar Louise. One major QTL associated with non-race-specific resistance exists on the 

long arm of chromosome 3B, called QTs.zhl-3B, which may be the same as QTs.fcu-3BL 

53, similar in location to other genes associated with tan spot resistance (tsr2 and tsr5). 

Additional QTLs were found on chromosomes 1A, 2D, and 5A, the latter conferring 

resistance to all tested races of Ptr 52. Many differentially expressed genes have locations 

within these QTLs (Figure 7.8). Several of these genes possess possible roles in 
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resistance, either as receptors (NLRs, other LRR-containing receptors), signal 

transduction factors (kinases, transcription factors), or response proteins (peroxidases, 

hydrolases). The genes found within these QTLs represent the same types of genes 

discussed in the previous sections, those that differ in expression between cultivars and 

inoculation treatments.  

Ptr isolate 86-124 penetrates wheat tissue within 3 hours after inoculation and 

continues infection in the hours following 54, indicating that the 8 hour time point 

provides a view of expression after Ptr has had a chance to initiate the expression of 

defense genes. The humidity chamber provided the moisture required for Ptr infection. 

Ptr uses an appressorium and penetration peg to access wheat epidermal cells 55. Both 

resistant and susceptible host plants experience penetration 55, explaining why many 

similarities may exist between the two cultivars in expression. If Ptr was not able to 

penetrate the resistant cultivar, more diverse expression may have resulted. Since 8 hours 

after inoculation shows wheat responding to Ptr through the production of defense 

proteins and chemicals, it is likely that some of the genes expressed by Ptr at this point 

are also in response to wheat. Gene expression in a pathogen changes in response to the 

host just as the host changes gene expression after the pathogen has been detected. Some 

of the stress-response genes expressed by Ptr, such as those listed in Figure 7.2, are 

likely involved in responding to wheat defense mechanisms.  
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Ptr Pathogenicity Likely Involves Multiple Factors with Unique Evolutionary 

Histories 

Wheat lines with the specific susceptibility genes Tsn1, Tsc2, and Tsc1 are 

vulnerable to Ptr ToxA, Ptr ToxB, and Ptr ToxC, respectively 6. Wheat lines with the 

mutant alleles tsn1, tsc2, and tsc1 are not sensitive to the respective toxins 25,56,57, 

indicating that susceptibility genes play a major role in tan spot infection. Liu et al. 

(2017) used recombinant inbred lines (RILs) with various combinations of homozygous 

dominant, heterozygous, and homozygous recessive genotypes of Tsn1 and Tsc1, to show 

that the plants that lack the tsn1 and tsc1 alleles experienced toxin-induced necrosis and 

chlorosis, respectively 12. It is not completely understood how these susceptibility genes 

cause wheat lines to be sensitive to particular toxins or effectors. Similar to the 

Cochliobolus victoriae susceptibility gene LOV1 in Arabidopsis thaliana 58, Tsn1 

encodes a cytoplasmic NBS-LRR protein, belonging to a large family of R-proteins that 

generally function as cytoplasmic receptors for the detection of pathogenic effectors. The 

recently available nucleotide and protein sequences of Tsn1 and Tsn1, respectively, 

suggest that Tsn1 is the result of a gene-fusion that took place in the progenitor of 

wheat’s B-genome, a close relative of Aegilops speltoides 11. Early analysis of tan spot 

described the Ptr toxins as necessary for the development of disease symptoms, however, 

a recent study has confirmed that even non-toxin-producing Ptr races still cause necrosis 

and chlorosis 59. Wheat cultivars may even show necrosis when inoculated with Ptr races 

that only produce Ptr ToxB 10. Taken together, these details show that both Ptr virulence 

and wheat resistance are multifaceted.  
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CONCLUSIONS 

Pyrenophora tritici-repentis (Ptr) provides a complex example of a pathogen that 

has evolved the ability to hijack resistance components to cause infection. The results 

showed that, upon Ptr contact with wheat tissue, Ptr started expressing ToxA. Wheat, in 

response to Ptr inoculum, expresses many genes associated with plant resistance 

responses, including chitinases, transporters, pathogen-detecting receptors, and signaling 

factors. Resistant and susceptible wheat cultivars differed in expression between several 

groups of genes and plants exposed to Ptr inoculum expressed several groups of genes 

not expressed as highly in control samples, such as transcription factors, kinases, 

receptors, and peroxidases. Several of these genes can be found in tan spot resistance 

QTLs on chromosomes 1A, 2D, 3B, and 5A. These results show that resistance to Ptr is 

likely the result of many individual genes being expressed. Elucidating genes involved in 

resistance to Ptr will provide researchers and breeders specific target factors for 

developing cultivars that possess these components, with the goal of establishing durable 

Ptr resistance. Gaining a more complete molecular picture of Ptr infection may also 

elucidate why Ptr has become a major disease of wheat in recent years. 

  



 254 

 
SUPPLEMENTARY DATA 

 
Supplementary Table 7.1 FASTQ files generated from RNA sequencing of samples 

are available from the Sequence Read Archive (SRA) data repository of NCBI 

(Submission: SUB5368694, BioProject: PRJNA529906, Data Archive: BioSample). 

Metadata for this information can be accessed from the following link: 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA529906?reviewer=3qsuo5i095ic5v1

k7fupmmmsbj 

 
Accession	 Sample	Description	 File	Name	 SRA	
SAMN11289175	 Glenlea_Control1_0hr_R1_S1	 GC10-1_S1_L007_R1_001.fastq.gz	 SRR8816284	

SAMN11289176	 Glenlea_Control1_0hr_R2_S2	 GC10-2_S2_L007_R1_001.fastq.gz	 SRR8816283	

SAMN11289177	 Glenlea_Control1_16hr_R1_S3	 GC116-1_S3_L007_R1_001.fastq.gz	 SRR8816286	

SAMN11289178	 Glenlea_Control1_16hr_R2_S4	 GC116-2_S4_L007_R1_001.fastq.gz	 SRR8816285	

SAMN11289179	 Glenlea_Control1_8hr_R1_S5	 GC18-1_S5_L007_R1_001.fastq.gz	 SRR8816288	

SAMN11289180	 Glenlea_Control1_8hr_R2_S6	 GC18-2_S6_L007_R1_001.fastq.gz	 SRR8816287	

SAMN11289181	 Glenlea_Control2_0hr_R1_S7	 GC20-1_S7_L007_R1_001.fastq.gz	 SRR8816290	

SAMN11289182	 Glenlea_Control2_0hr_R2_S8	 GC20-2_S8_L007_R1_001.fastq.gz	 SRR8816289	

SAMN11289183	 Glenlea_Control2_16hr_R1_S9	 GC216-1_S9_L007_R1_001.fastq.gz	 SRR8816282	

SAMN11289184	 Glenlea_Control2_16hr_R2_S10	 GC216-2_S10_L007_R1_001.fastq.gz	 SRR8816281	

SAMN11289185	 Glenlea_Control2_8hr_R1_S11	 GC28-1_S11_L007_R1_001.fastq.gz	 SRR8816274	

SAMN11289186	 Glenlea_Control2_8hr_R2_S12	 GC28-2_S12_L007_R1_001.fastq.gz	 SRR8816273	

SAMN11289187	 Glenlea_Pathogen_0hr_R1_S13	 GP0-1_S13_L007_R1_001.fastq.gz	 SRR8816272	

SAMN11289188	 Glenlea_Pathogen_0hr_R2_S14	 GP0-2_S14_L007_R1_001.fastq.gz	 SRR8816271	

SAMN11289189	 Glenlea_Pathogen_16hr_R1_S15	 GP16-1_S15_L007_R1_001.fastq.gz	 SRR8816278	

SAMN11289190	 Glenlea_Pathogen_16hr_R2_S16	 GP16-2_S16_L007_R1_001.fastq.gz	 SRR8816277	

SAMN11289191	 Glenlea_Pathogen_8hr_R1_S17	 GP8-1_S17_L007_R1_001.fastq.gz	 SRR8816276	

SAMN11289192	 Glenlea_Pathogen_8hr_R2_S18	 GP8-2_S18_L007_R1_001.fastq.gz	 SRR8816275	

SAMN11289193	 Glenlea_Toxin_0hr_R1_S19	 GT0-1_S19_L007_R1_001.fastq.gz	 SRR8816280	

SAMN11289194	 Glenlea_Toxin_0hr_R2_S20	 GT0-2_S20_L007_R1_001.fastq.gz	 SRR8816279	

SAMN11289195	 Glenlea_Toxin_16hr_R1_S21	 GT16-1_S21_L007_R1_001.fastq.gz	 SRR8816295	

SAMN11289196	 Glenlea_Toxin_16hr_R2_S22	 GT16-2_S22_L007_R1_001.fastq.gz	 SRR8816296	

SAMN11289197	 Glenlea_Toxin_8hr_R1_S23	 GT8-1_S23_L007_R1_001.fastq.gz	 SRR8816293	

SAMN11289198	 Glenlea_Toxin_8hr_R2_S24	 GT8-2_S24_L007_R1_001.fastq.gz	 SRR8816294	

SAMN11289199	 Salamouni_Control1_0hr_R1_S25	 SC10-1_S25_L008_R1_001.fastq.gz	 SRR8816299	

SAMN11289200	 Salamouni_Control1_0hr_R2_S26	 SC10-2_S26_L008_R1_001.fastq.gz	 SRR8816300	



 255 

SAMN11289201	 Salamouni_Control1_16hr_R1_S27	 SC116-1_S27_L008_R1_001.fastq.gz	 SRR8816297	

SAMN11289202	 Salamouni_Control1_16hr_R2_S28	 SC116-2_S28_L008_R1_001.fastq.gz	 SRR8816298	

SAMN11289203	 Salamouni_Control1_8hr_R1_S29	 SC18-1_S29_L008_R1_001.fastq.gz	 SRR8816291	

SAMN11289204	 Salamouni_Control1_8hr_R2_S30	 SC18-2_S30_L008_R1_001.fastq.gz	 SRR8816292	

SAMN11289205	 Salamouni_Control2_0hr_R1_S31	 SC20-1_S31_L008_R1_001.fastq.gz	 SRR8816264	

SAMN11289206	 Salamouni_Control2_0hr_R2_S32	 SC20-2_S32_L008_R1_001.fastq.gz	 SRR8816263	

SAMN11289207	 Salamouni_Control2_16hr_R1_S33	 SC216-1_S33_L008_R1_001.fastq.gz	 SRR8816266	

SAMN11289208	 Salamouni_Control2_16hr_R2_S34	 SC216-2_S34_L008_R1_001.fastq.gz	 SRR8816265	

SAMN11289209	 Salamouni_Control2_8hr_R1_S35	 SC28-1_S35_L008_R1_001.fastq.gz	 SRR8816268	

SAMN11289210	 Salamouni_Control2_8hr_R2_S36	 SC28-2_S36_L008_R1_001.fastq.gz	 SRR8816267	

SAMN11289211	 Salamouni_Pathogen_0hr_R1_S37	 SP0-1_S37_L008_R1_001.fastq.gz	 SRR8816270	

SAMN11289212	 Salamouni_Pathogen_0hr_R2_S38	 SP0-2_S38_L008_R1_001.fastq.gz	 SRR8816269	

SAMN11289213	 Salamouni_Pathogen_16hr_R1_S39	 SP16-1_S39_L008_R1_001.fastq.gz	 SRR8816262	

SAMN11289214	 Salamouni_Pathogen_16hr_R2_S40	 SP16-2_S40_L008_R1_001.fastq.gz	 SRR8816261	

SAMN11289215	 Salamouni_Pathogen_8hr_R1_S41	 SP8-1_S41_L008_R1_001.fastq.gz	 SRR8816301	

SAMN11289216	 Salamouni_Pathogen_8hr_R2_S42	 SP8-2_S42_L008_R1_001.fastq.gz	 SRR8816302	

SAMN11289217	 Salamouni_Toxin_0hr_R1_S43	 ST0-1_S43_L008_R1_001.fastq.gz	 SRR8816303	

SAMN11289218	 Salamouni_Toxin_0hr_R2_S44	 ST0-2_S44_L008_R1_001.fastq.gz	 SRR8816304	

SAMN11289219	 Salamouni_Toxin_16hr_R1_S45	 ST16-1_S45_L008_R1_001.fastq.gz	 SRR8816305	

SAMN11289220	 Salamouni_Toxin_16hr_R2_S46	 ST16-2_S46_L008_R1_001.fastq.gz	 SRR8816306	

SAMN11289221	 Salamouni_Toxin_8hr_R1_S47	 ST8-1_S47_L008_R1_001.fastq.gz	 SRR8816307	

SAMN11289222	 Salamouni_Toxin_8hr_R2_S48	 ST8-2_S48_L008_R1_001.fastq.gz	 SRR8816308	
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APPENDIX I: EVOLUTIONARY CONSERVATION OF DISEASE RESISTANCE 

COMPONENTS ACROSS MULTIPLE GRASS SPECIES 

 

Plant pathogens utilize effectors to interfere with host resistance responses as a way 

to facilitate infection. Many targets of these effectors regulate the expression of genes 

associated with defense system. Plants initiate responses when pathogen effectors cleave 

critical target proteins. Pseudomonas syringae cysteine protease effector Pseudomonas 

phaseolicola B (AvrPphB) cleaves the Arabidopsis thaliana cytoplasmic kinase protein 

AVRPPHB SUSCEPTIBLE1 (PBS1) and other PBS1-like (PBL) kinases to interfere 

with immune signaling. The resistance protein RESISTANCE TO PSEUDOMONAS 

SYRINGAE5 (RPS5) recognizes the cleavage of PBS1 and initiates a response to the 

bacterial pathogen. While elucidated in Arabidopsis thaliana, recent literature suggests 

that grasses, such as wheat, also possess PBS1 homologs that share the cleavage domain 

utilized by AvrPphB. The objectives of this study were to sequence and compare the 

region directly downstream of the cleavage site in PBS1 homologs of both cultivated and 

wild grass family members. DNA was extracted from leaf tissue and PCR was used to 

amplify a conserved region of PBS1 homologs. These results show that PBS1 has been 

evolutionarily conserved throughout Poaceae lineages, specifically the region coding for 

the cleavage site of the AvrPphB effectors. While the role of PBS1 as a regulator of 

resistance response may not have been retained among these species, a selective 

advantage was likely present to preserve the function of PBS1 as a decoy for bacterial 

effectors.  
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Plant pathogens use effectors to inhibit plant defense responses, thereby facilitating 

infection 1. Effectors are diverse molecules that are often proteins, although non-

proteinaceous effectors also can be produced. Method of effector delivery also varies, 

some exogenously applied to the host tissue and others directly injected into host 

cytoplasm through type III secretion systems 2. Plants have evolved to detect these 

effectors by producing receptor proteins that initiate defense responses upon activation 1. 

These receptors can directly bind to effector proteins or become activated upon 

interaction with a modified effector target. In the latter case, the pathogen effector 

typically cleaves a target protein that is then recognized by the receptor. Effector targets 

generally act as regulators of resistance responses, cleavage then leading to inhibited 

response 3,4. The Arabidopsis thaliana protein AVRPPHB SUSCEPTIBLE1 (PBS1) acts 

as a target protein for the Pseudomonas syringae cysteine protease effector Pseudomonas 

phaseolicola B (AvrPphB) 5. This cleavage of PBS1 is recognized by RESISTANCE TO 

PSEUDOMONAS SYRINGAE5 (RPS5), initiating a resistance response. Recently 

discovered in 2017, grasses, such as wheat, also possess PBS1 homologs that share 

cleavage domains utilized by AvrPphB 6. The objectives of this project are to sequence 

PBS1 homologs in multiple crop and wild grass species and assess PBS1 homologs for 

AvrPphB cleavage sites and other conserved features. 

PBS1 homolog sequences were accessed from Sun et al. (2017) and the National 

Center for Biotechnology Information (NCBI) 6. Sequences were aligned and used to 

construct a maximum-likelihood phylogenetic tree using the program MEGA 7 with 100 

bootstrap replicates. Based on aligned PBS1 homolog sequences, primers were designed 

to amplify an approximately 700 base pair long region of PBS1. Plants were grown until 
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enough biomass was available, tissue was harvested, and DNA was extracted. 

Polymerase Chain Reaction (PCR) was used to amplify the PBS1 region after 

optimization for annealing temperature and magnesium chloride concentration. 

Amplification was confirmed through gel electrophoresis, amplicons were purified, and 

samples were sent to Iowa State University for sequencing. Sequences were assessed for 

quality and contigs were assembled using the program Sequencer. Sequences were 

aligned to assess structural conservation 

PBS1 homologs were successfully sequenced in 11 of the species in which 

successful amplification was observed (see Figures I.1 and I.2). Variation between 

species was not only observed in the nucleotide sequences of PBS1 (Figure I.1), but also 

in the overall length of amplicons (Figure I.2). Based on more complete phylogeny using 

sequences from NCBI (Figure I.3), PBS1 homologs show a similar phylogeny to the 

expected nesting of taxa based on current classification. Data on wild grasses (Table I.1) 

was not available in NCBI, thus prompting this study to assess the evolutionary 

conservation of PBS1. Presence of clear bands after gene amplification indicates that 

each of the species in Table 1 possess homologs of PBS1. The region amplified appears 

to have variable lengths due to the difference in size of the amplicons. This indicates that 

PBS1 will show variation in its sequence between the species, which was observed in the 

those that yielded sequences (Figure I.1). Alignment of the PBS1 homologs delivered an 

explanation for the diversity in amplicon lengths: unique insertions exist in many of the 

species, especially in barley, rice, and maize. The first ~200 bases of the amplicons 

correspond to one of the PBS1 exons, followed by a ~400 base intron, and ending in ~50 

bases of the next exon. This region was chosen due to the presence of the cleavage site 
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for AvrPphB and sequence conservation allowing for multi-species amplification. 

AvrPphB cleaves PBS1 immediately following the GDK motif (amino acids: GDK, 

nucleotides: GGTGACAAG, downstream: TCTCATGTCTCTACACGTGTGATGGG). 

As shown in the alignment, this region is conserved among wild grass species. This 

indicates that P. syringae effector AvrPphB can cleave PBS1 homologs in wild grasses, 

as well as crops. Future research should focus on adding sequence data by re-sequencing 

unavailable taxa and sequencing this region in additional species. Primers should be 

designed for additional components of disease resistance in grass species. With such data, 

comparison in evolutionary rate of various component genes could be assessed to 

determine which groups evolve more quickly in response to pathogen pressures. 
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Figure I.1 Alignment of PBS1 homologs in Oryza sativa (OS), Andropogon gerardii 

(AG), Zea mays (ZM), Hordeum vulgare (HV), Agropyron desertorum (AD), Elytrigia 

intermedium (EI), Thinopyrum ponticum (TP), Aegilops tauschii (AT), Triticum 

uruartu (TU), Dactylis glomerata (DG), and Festuca pratensis (FP).  
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Figure I.2 Electrophoresis gel (agarose, 1.5%) used to confirm the presence of PBS1 

amplicons in various grass species. 
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Table I.1 Species selected for analysis based on their status as crop species or wild 

grasses used for forage in the Great Plains. 

 

 

 

 

Species Common Name Type Native 
Aegilops tauschii Tausch’s Goatgrass Crop Progenitor 
Agropyron desertorum Crested Wheatgrass Wild 
Andropogon gerardii Big Bluestem Wild Yes 
Avena sativa Oat Crop 
Bromus inermis Smooth Bromegrass Wild 
Dactylis glomerata Orchardgrass Wild 
Elymus dahuricus Duharian Wildrye Wild 
Elytrigia intermedium Intermediate Wheatgrass Wild 
Festuca pratensis Meadow Fescue Wild 
Hordeum vulgare Barley Crop 
Nassella viridula Green Needlegrass Wild Yes 
Oryza sativa Rice Crop 
Panicum virgatum Switchgrass Wild Yes 
Pascopyrum smithii Western Wheatgrass Wild Yes 
Phalaris arundinacea Reed canarygrass Wild Yes 
Phleum pretense Timothy Wild Yes 
Thinopyrum ponticum Tall Wheatgrass Wild 
Triticum aestivum Common Wheat Crop 
Triticum urartu Red Wild Einkorn Wheat Crop Progenitor 
Zea mays Maize/Corn Crop 
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Figure I.3 Maximum-likelihood phylogenetic tree (MEGA 7, 100 bootstraps) using 

PBS1 homologs accessed from NCBI. Sequence alignment was used to design 

primers for amplification shown in Figures 1 and 2. 
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APPENDIX II: EVOLUTION OF THE NB-ARC PROTEIN DOMAIN AS A MAJOR 

SIGNALING COMPONENT OF THE PLANT DEFENSE RESPONSE 

Conserved cellular signaling mechanisms in diverse species point to the utility of 

these complexes throughout evolutionary history. Plants, animals, fungi, and bacteria all 

share proteins containing a highly conserved domain that causes conformational shifts 

after protein activation and exchange ADP for ATP 1. This domain is named after its 

constituent motifs and the identified proteins that it is found in: Nucleotide-Binding, 

Apoptotic protease activating factor 1, plant R-protein, Caenorhabditis elegans Death 

protein-4 (NB-ARC) 2. This domain is generally associated with planned cell death in the 

form of apoptosis in animal systems and hypersensitive response in plants 2. In plants, 

these proteins are immune system receptors that detect pathogenic effectors in order to 

initiate a response. In order for plants to resist devastating diseases, they make use of the 

NB-ARC by having it flanked by a C-terminal Leucine-Rich Repeat (LRR) and either an 

N-terminal Toll/Interleukin Receptor (TIR) or Coiled-Coil (CC), TNL and CNL, 

respectively 1. TNL and CNL genes have been identified in dicot plants, but TNL genes 

are rare in  monocots 3. These genes have become a major focus of research due to the 

economic importance of cereal crop production in the maintenance of the global food 

supply 4,5. The exponentially increasing availability of genomic and other biological data 

provides insight into how gene families evolve, through the identification and comparison 

of conserved sequences 3. The number and variety of sequences containing NB-ARCs in 

plants have expanded voluminously in comparison to similar sequences in other 

organisms 1. Understanding why the NB-ARC became such a large player in the plant 

immune system may provide information as to the advantages organisms gain through the 
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use of NB-ARC signaling mechanisms. The main objectives of this project are to identify 

NB-ARC protein sequences in diverse genomes that represent many phylogenetic groups, 

elucidate the evolutionary relationships between NB-ARCs in early and higher plants, 

and predict alternative functions for NB-ARC-containing sequences that may not be 

involved in pathogen resistance responses. 

Genomic data from Phytozome and Ensembl Genomes was accessed and all 

proteomes were downloaded for species of interest. R-gene identification was run with 

two Hidden Markov Models using Arabidopsis thaliana NB-ARC reference sequences. 

MEME software was then used to isolate genes that contained P-loop, Kinase-2, and 

GLPL motifs. Sequences were then analyzed using BLAST to identify homologs and 

predict gene function. MEGA 7, Biomart, InterProScan 5, and DnaSP 5.10.1 were used to 

generate phylogenetic trees, sequence annotations, and selection pressure information. 

NB-ARCs were identified through InterProScan annotation using the Pfam Family 

PF00931. Since the focus of this study is the identification of NB-ARCs in a wide range 

of species, this was a more inclusive method than only identifying sequences with all 

conserved motifs. Biomart was also used to search candidate genomes for any sequences 

that contained the PF00931 annotation. 

The expansion of genes encoding proteins with NB-ARCs can be seen in Figure 

II.1. Earlier plant species and non-plants generally have only a few to a few dozen NB-

ARC proteins. This massive expansion is likely caused by the important role that these 

receptor proteins play. Acting as a necessary component of pathogenic effector receptors 

makes these proteins highly involved in the survival of plants when pathogen pressure is 

present. Also, with some plants, such as wheat and soybean, hybridization and whole 
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genome duplications, respectively, cause a large increase in the number of genes 

encoding these proteins. Number of CNL resistance genes identified based upon 

conserved motifs within the NB-ARC can be seen in Table II.1. The single celled green 

algae Chylamydomonas reinhardtii contained no NB-ARC sequences at all, at least none 

that InterProScan could annotate as containing an NB-ARC. The same follows for other 

members of the Chlorophyte group: Dunaliella salina, Volvox carteri, Coccomyxa 

subellipsoidea, Micromonas pusilla, and Ostreococcus lucinmarinus. Only looking at the 

plant lineage, it would be assumed that NB-ARCs arose in early plants. However, since 

NB-ARC sequences have been identified in animals, fungi, and bacteria 6, it would 

appear that many Chlorophytes lost NB-ARC containing sequences, possibly through 

pseudogenization or deletion. Availability of the Chromochloris zofingiensis genome 7 

allows for the identification of NB-ARCs that are more closely related to the Chlorophyte 

group, used to search for similar sequences in the Chlorophyte genomes. When C. 

zofingiensis NB-ARC-containing sequences are used to BLAST C. reinhardtii proteins, it 

can be seen that some C. reinhardtii proteins possess amino acids similar to NB-ARC-

containing proteins after the GLPL motif, including the Leucine-rich repeats (Figure 

II.2). 

The red algae Chondrus crispus has 58 NB-ARC-containing sequences in its 

genome. This indicates that red algae may have experienced an expansion in these genes 

independent of the expansion seen in green plants. Also, in contrast to some green algae, 

cyanobacteria possess several NB-ARC containing sequences, although the number 

varies greatly with the species of cyanobacteria. Several fungi protein sequences possess 

NB-ARCs, for instance, Fusarium oxysporum has four proteins with NB-ARCs. Several 
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other fungal species for which genomes were available also showed similar numbers of 

NB-ARC-containing genes. While these genes have not diversified nearly to the extent 

that they have in plants, they may serve in important roles, like APAF1 in humans. Ten 

genes within the Streptomyces coelicolor genome contain NB-ARCs. Submitting these 

sequences to NCBI BLAST results in ATP-binding protein similarity, which does not 

give much information as to their function. Accessions CAB88433 and CAB38588 are 

most similar to a regulatory protein that is involved in antibiotic production 8. This could 

be expected since the NB-ARC in plants does not directly carry out defense responses, 

but rather is involved in the signaling that leads to such responses. Because of this, the 

signaling function of the NB-ARC could have many applications in different cellular 

systems. It can be hypothesized that NB-ARC receptors, initially used for recognition of 

pathogen effectors could evolve to become receptors for other proteins to initiate entirely 

different cellular responses, or vice versa.  

Overall, the NB-ARC sequences of even highly divergent species showed 

multiple conserved regions (Figure II.3). The NB-ARC proteins in C. zofingiensis all 

possessed TIR domains, possibly indicating that TNL genes may have been ancestral to 

CNL genes. This would mean that TNL genes were lost from the genomes of grasses, 

instead of TNL genes independently arising in dicot genomes. Future studies should 

focus on characterizing the exact functions of early NB-ARC-containing proteins to 

determine if they are involved in pathogen resistance responses or if these organisms 

have evolved to utilize them for some other purpose. Knowledge about the NB-ARC and 

associated domains will become more important as more studies work to elucidate plant 
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resistance pathways and as genome editing becomes sophisticated enough to engineer 

plants with novel resistance mechanisms for devastating pathogens. 

 

 

 

 

Figure II.1 Unique proteins containing NB-ARC amino acid domain sequences per 

species, arranged based upon phylogeny with selected groups labeled. These 

numbers do not include the various alternative transcripts available for many of the 

proteins found, with alternative splicing a possible mechanism for further variation 

in the proteins with these domains. The phylogeny shown here is based on the NCBI 

Taxonomy Browser. 
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Table II.1 CNL genes for selected species. These numbers are lower than the overall 

amount of NB-ARC-containing sequences since not all NB-ARCs contain the 

conserved domains used to categorize CNL sequences. 

 

 

 

 

 

Figure II.2 Example InterProScan annotation comparison of C. zofingiensis and C. 

reinhardtii homolog sequences. The C. zofingiensis NB-ARC-containing gene above 

contains TIR, NB-ARC, and LRR domains, appearing very similar to a dicot TNL 

gene in species such as Glycine max. The C. reinhardtii sequence contained mostly 

LRR annotations, with strong similarity to the LRR of the above gene. Dashed lines 

represent 100 amino acids. 

Species	 CNL	 Species	 CNL	
Aegilops	tauschii	 392	 Physcomitrella	patens	 9	

Amborella	trichopoda	 46	 Selaginella	moellendorffii	 7	
Ananas	cosmosus	 126	 Setaria	italica	 278	

Arabidopsis	thaliana	 52	 Sorghum	bicolor	 177	
Brachypodium	distachyon	 223	 Spirodela	polyrhiza	 60	

Hordeum	vulgare	 183	 Triticum	aestivum	 609	
Musa	acuminata	 64	 Triticum	urartu	 318	

Oropetium	thomaeum	 4	 Zea	mays	 75	
Oryza	sativa	 301	 Zostera	marina	 26	
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Figure II.3 Alignment of selected NB-ARC regions: P-loop, Kinase-2, GLPL motifs. 

Above the selected alignment sections are the Multiple Expectation Maximization 

for Motif Elicitation (MEME) diagrams representing the prevalence of amino acids 

at each given location. 
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APPENDIX III: SHORT COMMUNICATION: INITIAL INVESTIGATION INTO 

DISEASE RESISTANCE GENES IN WHEAT (TRITICUM AESTIVUM L.; POACEAE) 

Crop diseases pose a major threat to farmers around the globe. Given the correct 

environmental conditions, pathogens can cause the loss of an entire field, severely 

reducing income from yield as well as impacting prices paid by consumers. Due to the 

major role wheat (Triticum aestivum L.) plays in the global food supply, diseases 

impacting its production have been the topic of much research. Epidemics of stem rust 

(Puccinia graminis) in the early 20th century promoted the development of resistant 

cultivars, such as Hope Wheat developed by Edgar McFadden 1. It was later discovered 

that the resistance gene (R-gene) Sr2 allowed Hope Wheat to resist infection by stem rust 

2. R-genes encode proteins that detect pathogen effectors and initiate defense responses 3. 

A major component of an R-protein is the NB-ARC, a highly conserved amino-acid 

sequence that is flanked by a Leucine-Rich Repeat (LRR) on the C-terminal end and 

either a Toll/Interleukin Receptor (TIR) or Coiled-Coil (CC) at the N-terminal end 

(altogether named TNL and CNL, respectively) 3. Dicot plants generally possess both 

TNL and CNL genes, whereas monocots only posses CNL genes 4. CNL genes have been 

shown to confer resistance to the devastating Ug99 strain of stem rust that has recently 

become a major issue for farmers in Africa and parts of Asia 5,6. The hexaploid bread 

wheat genome was formed through the hybridization of three different species, typically 

represented as AABBDD for the A, B, and D genomes 7.  The complete wheat genome 

sequence was recently made available, along with two of wheat’s progenitors, Triticum 

urartu and Aegilops tauschii, contributors of the A and D genomes, respectively 7-9. This 

enables the study of gene families, such as NB-ARC-containing CNL genes, and the 
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comparison of the three genomes. The main objectives of this project are to identify CNL 

R-genes in T. aestivum, T. urartu, and A. tauschii genomes using the most recent 

genomic data and predict functionality of the R-genes based upon homology and 

elucidate sequence patterns existing among these three species. 

Protein sequences were accessed from Phytozome and two Hidden Markov 

Models were constructed to identify NB-ARC sequences. MEME software was then used 

to isolate genes that contained P-loop, Kinase-2, and GLPL motifs. Sequences were then 

analyzed using BLAST to identify homologs and predict gene function. NB-ARC 

sequences were aligned using Clustal Omega. MEGA 7 was then used to generate a 

Neighbor-Joining tree with 100 bootstrap replicates and the JTT+G model. Exon-intron 

variation, genome location, syntenic maps, selection pressures, and duplications/losses 

were determined using data from the Phytozome Biomart and the Gene Structure Display 

Server 2.0, Geneious 8.1, SyMAP 4.2, DnaSP 5.10.1, and Notung programs, respectively. 

Synteny between wheat and selected other monocot genomes was visualized, with 

wheat-barley, wheat-rice, and wheat-maize synteny displayed in Figure III.1. In the most 

current T. aestivum, T. urartu, and A. tauschii genomes, 609, 318, and 392 CNL R-genes 

were identified. Homologs of the 609 wheat sequences showed a large number of RPM1, 

RPP13, and RGA homologs (Table III.1). Duplication-loss analysis showed many 

duplications in wheat and its progenitors, but an even larger number of losses (Figure 

III.2 and Figure III.3). Wheat, barley, and wheat progenitors are all members of the 

Triticeae tribe, sharing very similar genomic organization. This can be seen in the 

syntenic map (Figure III.1). All seven chromosomes of wheat’s A, B, and D genomes 

shares a majority of synteny to barley’s seven chromosomes, respectively. One major 
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difference is that barley chromosomes are much larger than individual wheat 

chromosomes, wheat possessing a 17 billion base genome spread amongst 21 

chromosome pairs. Barley contains a 5.1 billion base genome spread amongst seven 

chromosome pairs, likely the result of chromosomal duplications within the barley 

lineage. The largest contributor of the wheat genome, a relative of Aegilops speltoides, 

has yet to be confirmed in wheat literature [7]. Neither has the genome of Aegilops 

speltoides been sequenced. This elusive progenitor has contributed much in terms of 

pathogen resistance and the 3B chromosome has been studied for its R-gene content 10. A 

neighbor-joining tree (100 bootstrap replicates; model: JTT+G) comparing the 1319 R-

protein NB-ARCs between wheat and its progenitors was excluded due to size 

constraints. Interspecific nesting was consistent throughout the tree. This was expected 

since the hybridization events that led to the formation of bread wheat happened recently, 

only in the last few thousand years, and has not given the wheat progenitors enough time 

to diversify, while wheat undergoes artificial selection through breeding for economically 

valuable traits. In many cases, the T. urartu and A. tauschii genes nest with their homolog 

in wheat. In several cases, wheat contains multiple homologs of single genes in the 

progenitors, indicating tandem duplications that took place since the two diverged, or the 

specific progenitor population of A. tauschii or T. urartu contained the duplication that is 

not represented in their respective genomes. As with previous analyses of monocot CNL 

genes, the CNL-C clade, as defined in Meyers et al. (2003), has greatly expanded through 

duplication early in the monocot lineage. Along with this expansion in CNL-C, there is a 

reduction in CNL-A, CNL-B, and complete absence of CNL-D, as observed across other 

grasses.  
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Implementation of a duplication-loss model allows for the visualization of where 

duplications and losses took place in the context of a phylogenetic tree. Many losses were 

found for each of the three genomes studied, with many more losses present in wheat 

progenitors than wheat itself. Also, several characteristics were consistent with previous 

monocot CNL gene analyses. These R-genes were composed of multiple exons, 

indicating a possible mechanism of alternative splicing to regulate resistance responses 

and diversification of protein function. Purifying selection shown among the coding 

sequences indicates that the sequences are not undergoing positive selection, but are 

retaining key sequences necessary for their function. Future research should focus on 

improved genomic annotation of the three wheat genomes in this study. Genomic data 

should be compiled for Aegilops speltoides, the closest proposed relative of the wheat B 

genome progenitor. Building on the functional prediction of R-genes, expression data 

should be gathered from resistant and susceptible varieties for various pests in order to 

characterize R-genes. Cultivar-specific sequences could provide insight into how resistant 

and susceptible varieties differ in their defense responses, leading to the development of 

cultivars with durable resistance. 

 



 284 

 

Figure III.1 Genomic synteny between wheat, barley, rice, and maize. Black lines 

represent the 21 wheat chromosomes with colors used to represent similar regions 
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corresponding to the labeled chromosomes of barley, rice, and maize. The CIRCOS-

style figures show a different view of the same data, with the 21 wheat chromosomes 

located below the barley, rice, and maize chromosomes, respectively. Colors for the 

non-wheat chromosomes are not representative of the CIRCOS-style figures. 

 

Figure III.2 Selected section of the neighbor-joining tree inferred using a 

duplication loss model, with red squares representing locations where proposed 

duplications might have occurred and grey accession names where proposed losses 
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have taken place. The N-J tree was constructed using the JTT+G model with 100 

bootstrap replicates. 

 

Figure III.3 Predicted CNL gene losses and duplications in the genomes of wheat 

and its progenitors. Species are arranged in order of their phylogenetic 

relationships, and gene duplication losses were determined using the program 

Notung 2.9.  
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Table III.1 Number of wheat homologs of various characterized R-proteins as 

identified using BLAST search. Conferral of pathogen resistance was noted in the 

second column if the pathogen was known and if the R-protein plays a major role in 

resistance to the pathogen. The number of wheat homologs is out of the total 609 

wheat CNL genes identified. 

 

 

 
 
 
 

 

Homolog	 Pathogen	(if	known)	 Wheat	Homologs	
RPM1	 Pseudomonas	syringae	 198	
RPP13	 Peronospora	parasitica	 88	
RGA4	 Magnaporthe	oryzae	 38	
RGA3	 --	 37	
RGA2	 Phytophthora	infestans	 33	
RPP8	 Peronospora	parasitica	 22	
RGA1	 --	 21	

NBS2-RDG2A	 Pyrenophora	graminea	 7	
RPS2	 Pseudomonas	syringae	 6	

RXW24L	 --	 5	
SKIP11	 --	 4	
APAF1	 NA:	apoptosis	factor	 3	
Pm3b	 Blumeria	graminis	f.	sp.	tritici	 3	
PM	 Blumeria	graminis	f.	sp.	tritici	 3	

R1B-14	 Phytophthora	infestans	 3	
RDL5/RF45	 --	 2	

R1A-6	 Phytophthora	infestans	 2	
RDG2A	 Pyrenophora	graminea	 2	
RPS5	 Pseudomonas	syringae	 2	
MLA	 Blumeria	graminis	f.	sp.	tritici	 1	
NRC1b	 --	 1	
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