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ABSTRACT 

IDENTIFICATION AND CHARACTERIZATION OF STRESS RESPONSIVE GENES 

IN SOYBEAN AND SUNFLOWER 

SURENDRA NEUPANE 

2019 

Stress responsive genes encode proteins involved in plants’ response to abiotic 

and biotic stresses. Among such stress responsive proteins, proteins encoded by 

resistance genes (R genes) or nucleotide binding site-leucine-rich repeats (NBS-LRRs) 

and mitogen-activated protein kinases (MAPKs) are the major groups of proteins 

regulating biotic and abiotic stresses, respectively. Previous studies in Nepal’s lab at 

SDSU identified and characterized coiled coil (CC)-NBS-LRRs (CNLs), resistance to 

powdery mildew8 (RPW8)-NBS-LRRs (RNLs), NBS-LRR (NLs), and MAPK proteins 

in soybean. This study focuses on R and MAPK genes in the recently sequenced genome 

of sunflower as well as the toll-interleukin-1 receptor-like nucleotide-binding site 

leucine-rich repeat (TNL) R genes of soybean.  

This study also uses greenhouse experiments and RNA sequencing (RNA-seq) 

data to characterize stress responsive genes involved in interaction effects of soybean 

aphid (SBA) and soybean cyst nematode (SCN) interactions on soybean. Thus the major 

objectives of this dissertation work were to 1) explore the TNL genes in soybean and R 

(CNL, TNL, RNL) genes in sunflower genomes to assess how they may have evolved 

and their possible role in resistance against pathogens using available transcriptomic data, 

2) identify and characterize MAPK genes in sunflower, and 3) characterize induced 

susceptibility effects of soybean-soybean aphid and interaction effects of soybean-



 

 

xxvii 

soybean aphid-soybean cyst nematode on soybean. In this dissertation, we used in silico 

approaches to report genome-wide identification and characterization of soybean TNL 

proteins as well as sunflower R and MAPK proteins.  

In order to achieve these objectives, numerous bioinformatics tools were utilized: 

hidden markov model (HMM) profilings were performed, and annotation of protein 

domains were conducted. Maximum Likelihood phylogenetic trees were constructed, and 

nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per 

synonymous site ratios (Ka/Ks) as a proxy for selection pressure of R genes were 

calculated. In addition, chromosomal distribution, intron-exon architecture; synteny as 

well as gene expression patterns were assessed. In order to characterize stress responsive 

genes involved in defense responses, we used soybean aphid (Aphis glycines; SBA) and 

soybean cyst nematode (Heterodera glycines; SCN) to infest soybean cultivars. We 

conducted greenhouse experiments to characterize induced susceptibility effects of 

soybean-SBA interaction, and three-way interactions among soybean, SBA, and SCN. 

We utilized both demographic and genetic (RNA-seq) datasets to characterize the genes 

involved in such interactions using biotype 1, biotype 2 soybean aphids and HG type 0 

SCN on soybean. FastQC, Btrim, Trimmomatic, Salmon, iDEP, MapMan tools were used 

to assess the quality, trim, map, assemble, visualize, pathway analysis and biological 

significance of RNA sequencing data to host genome. 

We identified an inventory of 117 of 153 regular TNL genes in soybean, and 352 

NBS-encoding genes (100 CNLs, 77 TNLs, 13 RNLs, and 162 NLs), 28 MPKs and eight 

MKKs in sunflower through in silico analyses. R genes in soybean and sunflower formed 

several gene clusters suggesting their origin by tandem duplications. The selection 



 

 

xxviii 

pressure analysis revealed R genes experiencing purifying selection (Ka/Ks < 1) in both 

soybean and sunflower. Sunflower MAP Kinases revealed within and between clade 

functional divergence, and MKK3 orthologues were highly conserved across the species 

representing diverse taxonomic groups of the plant kingdom.  

Demographic data obtained from greenhouse experiments showed that induced 

susceptibility as initial feeding with virulent SBA (biotype 2) increased the population of 

subsequent avirulent SBA (biotype 1) in both susceptible and resistant cultivars. In the 

three-way interaction among soybean, SBA, and SCN, the number of SCN eggs was 

significantly greater on the susceptible cultivar and there was no effect in the resistant 

cultivar in the presence of SBA. The SBA population density was negatively affected by 

SCN populations. RNA-seq analysis in both studies have revealed differentially 

expressed genes (DEGs) and transcription factor (TF) binding motifs, which were 

enriched for various biological processes and pathways at different time points. The 

DEGs were common and unique in susceptible and resistant cultivars and treatments that 

were enriched for various biological processes and pathways. These DEGs were also 

functionally related to known defense mechanisms previously reported in various host-

aphid and host-nematode systems. The responses to aphid biotype 1 infestation in the 

presence or absence of inducer population (biotype 2) at two time points (day1 and 11 

post inducer infestation) revealed significant differences on the gene enrichment and 

regulation in SBA resistant and susceptible cultivars. For instance, enrichment analysis 

showed ‘response to chitin’, ‘lignin catabolic and metabolic process’, ‘asparagine 

metabolic process’, ‘response to chemical’ unique to treatment with no inducer 

population, whereas, ‘response to reactive oxygen species’, ‘photosynthesis’, ‘regulation 



 

 

xxix 

of endopeptidase activity’ unique to treatment with inducer population. Likewise, 

Soybean-SBA-SCN interaction study showed enrichment of genes in ‘Plant Pathogen 

Interaction’ and ‘cutin, suberine, and wax biosynthesis’ pathways at 5 (days post SBA 

infestation) dpi; ‘isoflavonoid biosynthesis’ and ‘one carbon pool by folate’ pathways 

enriched at 30 dpi in SCN resistant and susceptible cultivars. Overall, the results from 

this study have improved the current understanding of diversity and evolution of MAPK 

and R genes in sunflower and soybean, as well as have first time reported a molecular 

characterization of induced susceptibility effects due to SBA on soybean, and soybean-

SBA-SCN interactions, which has a direct implication in disease and pest management. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Soybean 

Soybean [Glycine max (L.) Merr.], a source of high quality sugar, protein, and oil, 

is one of the most important crops worldwide [1]. Cultivated soybean was domesticated 

from its wild relative, Glycine soja (Sieb. and Zucc.), approximately 5000 years ago in 

Southern China (primary gene center) [2, 3]. Later, cultivated soybean was introduced 

into many Asian countries such as Korea and Japan (2,000 years ago), Indonesia, 

Vietnam, Philippines, Thailand, Malaysia, Burma, Nepal, and India, which are 

considered as the secondary gene centers [2, 4]. Soybean was first introduced to North 

America in 1765 for manufacturing soy sauce and vermicelli (soybean noodles) [5]. In 

1770, Benjamin Franklin sent soybean seeds from London to John Bartram in 

Philadelphia, which were used as a forage and ground cover [5]. In 1915, soybean was 

first used for the production of oil in North Carolina, and thereafter, soybean has been 

considered as the major oilseed crop [2].  

According to the United States Department of Agriculture, soybean is considered 

as the second major crop in terms of production and acreage (USDA NASS-ERS, 2017). 

In 2017, the U.S. produced 119.5 million metric tons (MMT) worth $41.01 billion and 

contributed to 35% of the world soybean production (http://soystats.com). This makes the 

U.S. the lead producer of soybean followed by Brazil (33%), Argentina (14%), China 

(4%), India (3%), Paraguay (3%), and Canada (2%) in 2017, which indicates that 85% of 

the total soybean production in the world is produced in North and South America 

(http://soystats.com). In 2017, South Dakota produced 2.9 MMT (43 Bushels/acre) worth 

of $2,147 Million planting soybean in 5,650 thousand acres (http://soystats.com). 
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1.2. Sunflower 

Sunflower (Helianthus annuus L.), first domesticated in North America, is the 

fourth most important oilseed crop in the world (FAO, 2010). According to USDA 

Reports of 2018, in the U.S., sunflower crop is grown in California, Colorado, Kansas, 

Minnesota, Nebraska, North Dakota, South Dakota, and Texas. Furthermore, South 

Dakota  is often the leading sunflower producing state (with a production of 1.04 billion 

pounds in 2017). In 2017, the sunflower yield was 1,613 pounds per acre, the third 

highest on record even though 118 pounds down from 2016 (as of USDA Jan. 12, 2018; 

http://www.sunflowernsa.com). Since sunflower has the capacity to maintain stable 

yields in different environmental conditions such as drought, it has been a model crop 

species for studying climate change adaptation [6]. The study on diversity analysis of 128 

expressed sequenced tag (EST)-based microsatellites in wild H. annuus has provided 

insights into the ability to adapt salt and drought stress and selective sweeps revealing 

transcription factors as the major group of genes involved in those processes [6]. In 

addition, studies on wild and cultivated relatives of sunflower on disease resistance [7] 

and oil content [8] provide insights into the genetic background for these traits to be used 

in breeding. However, many fungal diseases like charcoal rot (Macrophomina phseolina), 

downy mildew (Plasmopara halstedii), Fusarium rot and stem rots (Fusarium sp.), 

phoma black stem (Phoma macdonaldii), phomopsis stem canker (Diaporthe helianthi, 

D. gulyae), Sclerotinia mid and basal stem rot (Sclerotinia scelerotiorum), Verticillium 

wilt (Verticillium dahlia), leaf blight (Alternariaster helianthi), leaf spot (Pseudomonas 

syringae pv. helianthi), powdery mildew (Erysiphe cichoracearum), rust (Puccinia 

helianthi) and many others have caused crop damage resulting in the loss of yield and oil 
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content [9]. This underlies the growing need of rigorous research into the disease resistance 

in sunflower. 

1.3. Resistance (R) Genes 

In response to various biotic and abiotic stresses, plants involve different gene 

families in signaling networks for the protection [10]. To face different kinds of stresses, 

plants have developed multifaceted mechanisms to percieve and transfer signals from 

various stimuli during the course of evolution [11]. Various efforts have been made to 

study the NBS-LRR group of resistance genes, which are considered as the major disease 

resistance (R) gene family [12, 13, 14, 15]. These R genes are crucial in recognizing and 

binding with the effector molecules and trigger downstream signaling in resistance 

pathways [16, 17]. Two major classes of R genes are toll-interleukin-1 receptor-like 

nucleotide-binding site (NBS) leucine-rich repeat (LRR) proteins or TNL genes, and 

coiled coil (CC)-NBS-LRR or CNL genes. Shao et al. (2016) [18] studied NBS-LRR 

genes of the angiosperms on a large scale,  dividing them into three classes [TNLs, CNLs 

and R (resistance to powdery mildew8) NLs or RNLs]. The NB-ARC [for APAF1 

(apoptotic protease-activating factor-1), R (resistance genes), and CED4 (Caenorhabditis 

elegans death-4 protein)] domain hydrolyzes ATP to induce the conformational change in 

R proteins acting as the nucleotide binding pocket [19]. The LRR domains help in 

activating or deactivating the defense signaling by interacting with the NB-ARC domain 

in the presence or absence of pathogen effectors, respectively [20]. 

1.4. Mitogen Activated Protein Kinase (MAPK) Genes 

Often cross-linked with the disease resistance pathways is the MAPK signaling 

cascade. The MAPK signaling cascade has been the universal module and highly 
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conserved signal transduction component in the eukaryotes [21, 22]. The MAPK cascade 

consists of three main sub families based on the structural features [MAPK 

(MAPK/MPK), MAPK kinase (MAPKK/MKK), and MAPK kinase kinase 

(MAPKKK/MKKK)], and is involved in a series of phosphorylation events contributing 

to signaling [23, 24, 25]. The phosphorylation takes place by adding a phosphate group 

from adenosine triphosphate (ATP) to the downstream substrate proteins [26]. 

MAPKKK, the largest group of the MAPK cascade are typically serine or threonine 

protein kinases that phosphorylate MKKs in the conserved  S/T-X3-5-S/T motif and 

possess K/R-K/R-K/R-X1-6-L-X-L/V/S, MAPK-docking domain [10, 22, 26]. The 

MAPKKK are classified into three subfamilies, MEKK, Raf and Zik on the basis of 

difference of conserved kinase domain: the MEKKs have G(T/S)Px(W/Y/F)MAPEV 

domain, the Rafs have GTxx(W/Y)MAPE, and the Zik have GTPEFMAPE(L/V)Y 

domain [24]. The MEKKs have kinase domain either at C- or N-terminal, the Rafs have 

N-terminal regulatory domain and C-terminal kinase domain, and the Ziks have N-

terminal kinase domain [11]. The MPKs family possess TDY or TEY phosphorylation 

motifs, which provide a protein-binding domain for MPKs activation in between the VII 

and VIII kinase domains and consist of 11 conserved kinase domains [22, 27, 28]. An 

overview of the MAP Kinase signaling pathway and R genes in response to diverse 

abiotic and biotic stresses in plants is represented in Figure 1.1 [25]. 
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Figure 1.1. MAP Kinase signaling pathway in response to abiotic and biotic stresses in 

plants (adapted from multiple studies [29, 30, 31, 32, 33, 34]).  

1.5. Aphis glycines Matsumura 

 

Soybean aphids, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most 

economically important insect pest of soybean [Glycine max (L.) Merr] [37]. It is a 

greenish, pear shaped insect and a size of approximately 1.5mm [38, 39]. It was first 

reported in North America in Wisconsin (USA) in 2000 [40].  

 

1.5.1 Life Cycle of A. glycines 

Aphis glycines has a heteroecious (spends life cycle period parasitizing two very 

different species of host plant) and holocyclic (undergoes sexual reproduction during at 



 

 

6 

least part of its life cycle) life cycle [41]. The life cycle of A. glycines starts on Rhamnus 

spp. in the spring season. It utilizes Rhamnus spp. for sexual reproduction and 

overwintering as an egg [42]. These eggs can withstand temperatures as far as -34 °C 

[43]. The nymphs emerge on the Rhamnus spp. after eggs hatch during spring. These 

nymphs give rise to wingless fundatrices (mature wingless stem mother, which hatches 

from over-wintering eggs) and continue to produce few generations of A. glycines on the 

primary host [37, 44]. After a few generations in the primary host, they develop into 

alates (winged morphs). These alates migrate to soybean plants by late spring or early 

summer. A. glycines becomes almost undetectable on the early season of soybeans as the 

alternate host, soybean plants are prominently available in the late spring and early 

summer [45]. During this process, they deposit the nymphs in the soybean plant and 

reproduce asexually as many as fifteen generations of apterous and alate morphs [46]. 

After generations, winged offspring arise as the population starts to increase and target 

other soybean plants for colonization [44]. The aphid population can double in one and 

half days under favorable conditions, however, doubling time in fields is up to 

approximately seven days [46]. The optimal temperature for the soybean aphid is 27.8 

°C. The reproduction slows down as temperatures increase or decrease and eventually 

stops when temperatures are greater than 34.9°C or less than 8.6°C [38, 43]. The reduced 

temperature and photoperiod in the late summer induce the production of gynoparae 

(winged females). These winged females migrate to the primary host, Rhamnus spp. They 

feed on Rhamnus spp. and produce nymphs and developed into apterous oviparae. During 

the fall season, the male alates, androparae produced in the soybean, start to travel and 

find the oviparae on the Rhamnus spp. These androparae find oviparae to mate, which is 
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the only sexual reproduction stage in the life cycle of A. glycines. The oviparae lay eggs 

on bud shoots of Rhamnus spp. from October to mid-November. They overwinter and 

hatch the eggs in late March until two parthenogenic generations [44].  

Upon an infestation of soybean plants by soybean aphids, they prefer to feed on 

the ventral side of the leaves mainly in young trifoliate leaves [47]. They feed on the 

phloem sap and draw assimilates from soybean plants [46, 48]. This results in plant 

stunting, leaf yellowing and wrinkling with a reduced photosynthesis, poor pod fill, and 

reduced yield (up to 40%), seed size, and seed quality [46, 49, 50]. Soybean aphids 

deposits honeydew on soybean leaves that aids as a vector for various viruses such as 

Soybean mosaic virus, Alfalfa mosaic virus, and Bean yellow mosaic virus [51, 52]. The 

economic loss due to the presence of aphid was estimated at approximately $4 billion 

annually [51]. For an effective management approach to control A. glycines, use of 

soybean lines that are naturally resistant to aphids can prove one of the best options 

without disturbing the natural environment [53].  

1.5.2. Aphid Effectors  

Effector molecules are ejected into the host cells either by type III secretions from 

bacteria, haustorium by the fungus and parasitic plants or by stylets by the nematodes and 

insects [16, 54]. These effector molecules help pests/pathogens colonize on the host plant 

[55]. The survival, growth, and reproduction of pests/pathogens in the host cell depend on 

the ability of pests/pathogens to escape the recognition event during the host innate 

immunity [56]. Thus, these pests/pathogens generate variants of Avr effector molecules 

either by transposon insertions or mutation in effector coding genes or alternative splicing 

in gaining virulence to evade host defense [56, 57]. A. glycines uses two types of saliva, 
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gelling and watery saliva when feeding. The aphid injects the gelling saliva during the 

early stages of feeding to form sheaths around the stylets [58]. Later, it injects effector 

molecules with watery saliva into both the intra- and intercellular spaces of mesophyll 

cells or directly into phloem cells [59]. Since the effector molecules allow each aphid to 

sustain and modulate its host plant’s immune reaction, they are subject to the scrutiny of 

host defense mechanisms and undergo natural selection [60]. Such selection helps 

effectors evade the host defense system, maintain their virulence, and evolve new 

functions [61]. 

Transcriptomic and proteomic studies of the pea aphid (Acyrthosiphon pisum 

Harris) found many salivary proteins undergoing positive selection [62]. Aphid effectors 

are host specific so that they can effectively interact with the host proteins for their 

virulence [63, 64]. For instance, Rodriguez et al. (2017) [63] reported that Mp1, an 

effector molecule produced by the green peach aphid (Myzus persicae Sulzer), 

specifically targets Vacuolar Protein Sorting-Associated Protein 52 (VPS52) proteins in 

their strong hosts. Such interaction is absent in the green peach aphid’s poor-hosts. 

Furthermore, the reproduction of the green peach aphid did not increase in Arabidopsis 

that expressed the orthologs of the pea aphid’s effectors, including C002, PIntO1 (Mp1), 

and PIntO2 (Mp2) [64]. Since the identification and functional characterization of the 

first aphid effector molecule, C002 in the pea aphid [65], significant progress has been 

made in identifying a wide range of effector molecules in different aphids. The 

availability of the whole genome sequences of several aphid species, including the pea 

aphid [66], Russian wheat aphid (Diuraphis noxia Kurdjumov) [67], green peach aphid 

[68], and soybean aphid [69], have allowed the study of various gene families of aphid 
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salivary effectors. Carolan et al. (2011) [70] identified 324 secretory proteins in the 

salivary gland of pea aphid. Some proteins, including Glucose dehydrogenase, 

Glutathione peroxidase, putative sheath protein of aphids, and Angiotensin-converting 

enzyme-like, showed similarity to some known aphid effectors [71, 72, 73], while others 

were more similar to nematode effectors, including M1 zinc metalloprotease, Disulfide 

isomerase, Calreticulin, ARMET, Glutathione peroxidase, and CLIP-domain serine 

protease [70, 74, 75]. The ‘pea aphid effector’ proteins were further expanded to 3,603 

genes expressed in salivary glands, 740 of which were up-regulated in salivary glands 

compared to alimentary tract and belonged to the Cysteine-Rich Protein (CRP), 

Angiotensin-Converting-Enzyme-like (ACE) gene, and Aminopeptidase-N (apN) gene 

families [62]. Thirty-four salivary genes were identified in the Russian wheat aphid that 

were similar to the most commonly expressed genes in other aphids, including glucose 

dehydrogenase and trehalase [67]. An intensive analysis of the genome of the green 

peach aphid, which can infest plant species belonging to 40 families, demonstrated the 

role of multigene clusters in colonizing distant plant species [68]. This study suggested 

the genes belonging to cathepsin B and RR-2 cuticular protein gene families undergo 

rapid transcriptional plasticity so that the aphids can infest a wide range of plant species 

belonging to the Brassicaceae and Solanaceae family. 

RNA sequencing (RNA-seq) has been a standard tool for studying qualitative and 

quantitative gene expression [76, 77]. In the context of the soybean aphid, Bansal et al. 

(2014) [78] studied xenobiotic stress responses in the soybean aphid using RNA-Seq. 

This study reported 914 significantly expressed genes in the soybean aphid, most of 

which were related to stress, detoxification [cytochrome p450s (CYPs), glutathione-S-
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transferases, carboxyesterases], and ABC transporters. Wenger et al. (2017) [69] 

identified 135 putative soybean aphid effector genes, including 68 CYP protein-coding 

genes (detoxification genes), 82 genes belonging to ABC transporter subfamilies, 14 

glutathione-S transferases, and 17 carboxyl and choline esterases. The detoxification 

genes help aphids adapt to host plants [78]. The small number of CYP genes found in the 

soybean aphid, the pea aphid (83 CYP genes), and the Russian wheat aphid (48 CYP 

genes) might explain why these species are adapted to a limited range of hosts, while the 

green peach aphid (115 CYP genes) is adapted to wide host ranges [79]. The availability 

of genome sequences of the soybean aphid might explain the species’ rapid adaptation to 

resistant soybean cultivars despite the lack of both genetic differentiation and selection 

pressure between avirulent and virulent biotypes [80]. 

1.5.3. Aphis glycines Biotypes  

A biotype is an insect population that can reproduce and survive in cultivars 

developed for resistance to that same population [81]. It is a pseudo-taxonomic unit that 

classifies insect populations according to their virulence to specific cultivars and shared 

phenotype (reviewed in [82]). This term has been used for various insect species, 

including Mayetiola destructor Say, Schizaphis graminum, Nilaparvata lugens, and 

Bemisia tabaci [81]. The insect subpopulations capable of surviving in resistant crop 

lines, including wheat, barley, melon, and apple, have been studied (reviewed in [83]). 

Soybean aphids that are avirulent on any soybean plant that contains the Resistance to 

Aphis glycines (Rag) gene are attributed to biotype 1 [83]. Biotype 1 is the predominant 

biotype of A. glycines in North America [84]. Biotype 2 (Rag1 virulent) was discovered 

in Ohio in 2005, five years before the release of commercial Rag1 cultivars [85]. The 
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biotype 2 aphids were thought to be the predominant biotype in eastern North America 

[85], but various field tests found that they were prevalent only in Ohio [86]. Since then, 

two additional biotypes of soybean aphid have been discovered in the U.S., suggesting 

the North American populations possess sufficient genetic variability to adapt to the 

resistant hosts [85]. The biotype 3 aphids discovered in Indiana were able to reproduce on 

Rag2 soybean plants but were poorly adapted to Rag1 soybean plants [87]. Later, biotype 

4 aphids were found in Wisconsin that can reproduce in both Rag1 and Rag2 soybean 

plants [88]. Cooper et al. (2015) [83] studied the geographic distribution of the soybean 

aphid biotypes across 11 states and one Canadian province between 2008 and 2010. The 

frequency of aphid populations belonging to biotypes 2, 3, and 4 was 54%, 18%, and 7%, 

respectively. The aphid populations from Wisconsin, the state where the soybean aphid 

was first reported in the U.S. in 2000, showed higher virulence variability [83]. 

Additionally, Zhong et al. (2014) [89] reported at least four biotypes of soybean aphid in 

China. These biotypes were named as China biotype 1 (virulence on host plants with 

Rag5 or Rag6), China biotype 2 (virulence on host plants with Rag1, Rag3 or Rag5), 

China biotype 3 (virulence on host plants with Rag1, Rag3, or Rag6), and China biotype 

4 (virulence on host plants with Rag1, Rag2, Rag3, or Rag5 genes) [89].  

1.5.4. Soybean Cultivars Exhibiting Antibiosis, Antixenosis, and Tolerance as a 

Resistance Response to Soybean Aphids 

According to Painter (1951) [90], plant resistance mechanisms to insects can be 

grouped into three categories: antibiosis, antixenosis and tolerance. Antibiosis resistance 

affects the biology, including the mortality or fecundity, of the insect. The soybean 

cultivar ‘Dowling’ exhibits antibiosis, and resistance factors are present in the phloem 
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cells [91]. Antixenosis resistance affects the behavior of the insect. The soybean cultivar 

PI200538 exhibits antixenosis [91]. Jesus et al. (2018) [92] studied the physiological 

responses of 14 soybean genotypes to aphid infestation in terms of total protein, 

peroxidase, chlorophyll, and resistance mechanisms. The genotypes UX 2569-1592-01 

(Rag2 gene; PI243540) and UX 2570-171-04 showed the highest and moderate level of 

antibiosis and/or antixenosis, respectively. The chlorophyll content in UX 2569-159-2-01 

was reduced at five and 15 days after infestation. Total protein content remained 

unchanged between the infested and control plants. Peroxidase activity in UX 2570-171-

04 was higher at 5 and 10 days after infestation, and this cultivar showed a moderate 

level of antibiosis and/or antixenosis. Tolerance (experience lower selection pressure than 

antibiosis and antixenosis) is the ability of the plant to endure the presence of the insect 

without significant impacts on the pest’s biology or behavior [93]. The KS4202 cultivar 

is tolerant of aphids [94]. The tolerance effect in KS4202 may be attributable to the quick 

regulation of RuBP (ribulose-1,5-biphosphate) and the upregulation of detoxification 

genes [95].  

1.5.5. Rag Genes in Soybean Cultivars Provide Resistance to A. glycines  

Rag (resistance to Aphis glycines) loci were first discovered in Dowling, PI71506, 

and Jackson cultivars [96], and have since been identified in other soybean lines. The 

mapping and inheritance mechanism of the Rag1 gene have been documented in multiple 

soybean cultivars [97, 98, 99, 100]. Rag1 loci were mapped as a 115 kb interval on 

chromosome 7 using the Dowling (PI548663; donor parent of Rag1) and Dwight 

(PI587386; aphid-susceptible parent) cultivars [101]; Rag2 loci mapped as a 54 kb 

interval on chromosome 13 in the antixenotic PI200538 cultivar [91, 102]; Rag3 loci 
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mapped on chromosome 16 (LG J) using PI567543C  [103]; and the recessive rag4 loci 

were mapped on chromosome 13 (LG F) between markers in PI567541B [104]. The 

authors also mapped rag1 provisional (rag1c) on chromosome 7 (LG M). Rag5 

(proposed) and Rag6 have been identified in PI567301B and PI567598B, respectively 

[105, 106]. Bhusal et al. (2017) [107] identified two major and two minor loci: the major 

loci were located on chromosome 7 (qChrom.07.1) (1Mb distant from Rag1) and 

chromosome 16 (qChrom.16.1) (near Rag3), and the minor loci were located on 

chromosome 13 (qChrom.13.1) (near Rag4) and chromosome 17 (qChrom.17.1). The 

minor loci were associated with aphid resistance in PI603712. Hill et al. (2017) [108] 

characterized multiple A. glycines biotype resistances in five cultivars: PI587663 and 

PI594592 had resistance genes located in the Rag1, Rag2, and Rag3 regions, PI587677 

had resistance genes in the Rag1, Rag2, and rag4 regions, PI587685 had resistance genes 

in the Rag1 and Rag2 regions, and PI587972 had resistance genes only in the Rag2 

region.  

More than half of the genetic diversity has been lost in the cultivated soybean 

[109], but its closest wild relative, Glycine soja Siebold & Zucc., may offer opportunities 

for identifying aphid-resistance genes, studying inheritance patterns, and mapping 

important resistance loci [84]. Hesler and Tilmon (2018) [110] reported PI135624 and 

PI65549 were resistant to aphids, and Conzemius (2018) [111] reported PI101404A and 

PI65549 showed significant high resistance to biotype 4 colonies. Rag6 and Rag3c were 

mapped in 49-kb (42,146,252–42,195,720 bp) and 150-kb intervals (6,621,540–6,771,675 

bp) on chromosome 8 and chromosome 16, respectively, in G. soja [112]. The 49–kb 

interval, where Rag6 was mapped, contained three clustered NBS–LRR genes 



 

 

14 

(Glyma.08g303500, Glyma.08g303600, and Glyma.08g303700) and one amine oxidase 

gene (Glyma.08g303800). The 150-kb interval, where Rag3c was mapped, contained one 

LRR gene (Glyma.16g066800) and other ten genes belonging to lipase, cytochrome 

P450, methyltransferases, hydrolases, and Ku70-binding gene families. All identified Rag 

QTLs in various soybean plant introductions (PI) are presented in Table 1.1. 

All 1,691 non-redundant genes assessed from the Rag QTLs, including 

Rag1[101], rag1b [106], rag1c [104], Rag2 [113], Rag3 [103, 114] , Rag4 [114], rag3 

[106] , rag3b [115], Rag3c [112], rag4 [104], Rag5 [105] , Rag6 [112]; qChrom.07.1, 

qChrom.16.1, qChrom.13.1, and qChrom.17.1 [107] are significantly associated with 

‘nutrient reservoir activity’ (GO:0045735) and ‘binding’ (GO:0005488). The ‘nutrient 

reservoir activity’ molecular function is important in protecting plant tissues that produce 

surface waxes [116]. Similarly, the ‘binding’ molecular function occurring at a higher 

proportion suggests their important roles in signaling and stress responses. The genes 

engaged in the process of binding (GO: 0005488) belong to binding to ADP (GO: 

0043531), adenyl ribonucleotide (GO: 0032559), calcium-dependent phospholipid (GO: 

0005544), adenyl nucleotide (GO: 0030554), purine nucleoside (GO: 0001883), 

nucleoside (GO: 0001882), pattern (GO: 0001871), and polysaccharide (GO: 0030247) 

binding gene families (Figure 1.2). 
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Figure 1.2. Significantly enriched GO molecular function terms of non-redundant 1,691 

genes in the Rag QTLs: Rag1 [101], rag1b [106], rag1c [104], Rag2 [113], Rag3 [103, 

114], Rag4 [114], rag3 [106] , rag3b [115], Rag3c [112], rag4 [104], Rag5 [105] , Rag6 

[112]; qChrom.07.1, qChrom.16.1, qChrom.13.1, qChrom.17.1 [107] as determined by 

Fisher’s exact test using AgriGO [117]. The same gene can be associated with multiple 

GO annotations. Only significantly (P < 0.05) over-represented GO categories are shown. 

The stronger color represents the lower P value. Information in the box includes GO 

term, adjusted P value in parentheses, GO description, a number of query list/background 

mapping GO, and a total number of query list/background. 
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Table 1.1. Soybean cultivars for mapping Rag genes with the information on 

chromosome location, markers associated, and type of resistance. (γ = Marker positions 

are based on Glyma 2.0 [114])  

 

QTLs 

Soybean Plant 

Introductions 

Chromosome 

(Linkage 

group) Markers associated (Locationγ) Type of resistance  References 

Rag1 
Dowling 

(PI548663) 7 (M) 

46169.7and  21A (5,529,532-

5,770,718 bp) 
Antibiosis 

[97] 

 PI71506 7 (M)  Antixenosis 
[96] 

 

PI548663 (cultivar 

Dowling) 7 (M) Satt435 and Satt463  

[95] 

 

PI548657 (cultivar 

Jackson) 7 (M) Satt435 andSatt463   

 
PI587663  

7 (M) Satt567 and Satt245 
Antibiosis 

[104] 

 
PI587677  

7 (M) Satt540 
Antibiosis 

[104] 

 
PI587685 

7 (M) Satt540 
Antibiosis 

[104] 

 
PI594592 

7 (M) Satt540 
Antibiosis 

[104] 

rag1c PI567541B 7 (M) 

sat229-satt435 (2,434,259-

8,234,168 bp)  [100] 

rag1b PI567598B 7 (M) 

Satt567 and Satt435 (5,523,128-

5,909,485 bp)  [102] 

Rag2 
PI243540 

13 ( F) 

Satt334 and Sct_033(28,415,888–

30,739,587 bp) 
Antibiosis [109] 

 

PI200538 

13 ( F) 

Satt510, Soyhsp176, Satt114, and 

Sct_033 

(29,609,521– 31,802,676 bp) 

Antibiosis [98] 

 

 

PI587663, 

PI587685 13 ( F) 
Satt114, SNP2, Satt335 

 [104] 

 PI587677 13 ( F) Satt335  [104] 

 PI587972 13 ( F) Satt114, Satt510  [104] 

 PI594592 13 ( F) Satt114  [104] 

Rag3 
PI567543C  

16 (J) 

Sat_339 and Satt414 (4,964,852- 

7,212,164 bp) 
Antixenosis [99] 

 PI587663 16 (J) Satt285 Antibiosis [104] 

 PI594592 16 (J) Satt654 Antibiosis [104] 

 PI567543C 16 (J) ss715625290 and ss715625308 (6,314,060-6,571,305 bp) [110] 

rag3 PI567598B 16 (J) 

Satt285 and Satt414 (6,314,120- 

6,570,336 bp)  [102] 

rag3b PI567537 16 (J) 4,964,852- 7,957,026 bp Antibiosis [111] 

Rag3c E12901 16 (J) 

Gm16-3 and Gm16-5 (6,621,540–

6,771,675 bp)  Antibiosis [108] 

rag4 PI567541B 
13 (F) 

Satt649-Satt343 (1,225,665- 

16,340,514 bp) 
Antibiosis [100] 

 PI587677 13 (F) Satt586  [104] 

Rag4 PI567543C 13(F) MSUSNP13-29-ss247923149 (13,691,537-13,626,971 bp) [110] 

Rag5 

Proposed 
PI567301B 

13 

4 SSR markers (30,236,183- 

30,749,047 bp) Antixenosis [101] 

Rag6 E12901 8 

Gm08-15 and Gm08-17 

(42,146,252–42,195,720 bp)  Antibiosis [108] 

qChrom.07.1 PI603712 7(M) 

ss715598483-ss715598534 

(6,444,246-6,819,959 bp)  [103] 

qChrom.16.1 PI603712 16(J) 

ss715625261-ss715625278 

(6,105,250-6,222,257 bp)  [103] 

qChrom.13.1 PI603712 13(F) ss715613721-ss715617240 (13,691,537-13,626,971 bp) [103] 

qChrom.17.1 PI603712 17(D2) ss715627556-ss715627637 (39,019,814-39,521,449 bp) [103] 
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1.5.6. GWAS Studies on A. glycines Resistance in Soybean Expanding to a 

Number of QTLs 

Genome-Wide Association Studies (GWAS) have been an important alternative 

to classical bi-parental QTL mapping [119] for understanding the genetic basis of 

diseases linked to complex, polygenic traits. While classical QTL mapping is limited in 

its ability to identify allelic diversity and resolve genomes [120], GWAS can capture all 

the recombination events occurred during the evolution of sampled genotypes [121]. 

Different kinds of phenotypes, including quantitative, binary, and ordinal phenotypes, can 

be studied using GWAS [122] and can be correlated with genotypes using mixed linear 

models [123]. Chang and Hartman (2017) [124] reported the first GWAS study for aphid-

resistance using USDA soybean germplasms. The authors suggested that ss715596142 

may be a significant SNP marker and identified three LRR domain containing genes 

(Glyma07g13440, Glyma07g14810, and Glyma07g14791) along with one MYB 

transcription factor (Glyma07g14480). This marker is close to the rag1c gene that was 

reported in PI567541B [104], but not the Rag1 locus that contains the candidate LRR 

genes (Glyma07g06890 and Glyma07g06920) [101]. Hanson et al. (2018) [118] reported 

significant SNPs on chromosomes 7 (close to Rag1 and rag1b within rag1c for biotype 2 

resistance), 8 (424 kbp from Rag6 for aphid biotype 3 resistance), 13 (within range of 

Rag2 and Rag5 for aphid biotype 2 resistance), and 16 (for aphid biotype 1 resistance), 

where Rag genes have been mapped previously, for multiple aphid biotypes. 

Additionally, they reported markers on chromosomes 1-2, 4-6, 9-11, 12, 14, and 16-20 

where Rag genes had not been previously reported. 
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1.5.7. Rag Gene Pyramiding Provides Resistance to all A. glycines biotypes 

The presence of fitness costs associated with aphid virulence in the Rag soybean 

cultivars could be used to preserve the efficacy of resistance genes in Rag soybean 

cultivars [125, 126]. In addition, the use of refuge susceptible soybean plants might limit 

the frequency of virulent biotypes [125]. It has been proven that soybean aphids are more 

virulent in cultivars with a single Rag gene than those with pyramided genes [53]. The 

pyramiding of resistance genes in the soybean cultivars protects the plants from the 

various aphid biotypes [127, 128]. The first soybean cultivar with both Rag1 and Rag2 

loci  became commercially available in 2012 and was resistant to aphid biotypes 2 and 3 

[129]. After aphid Biotype 4 was found, the need for pyramiding more genes became 

imminent. The pyramiding of Rag1, Rag2, and Rag3 resistance genes may provide 

resistance to all known aphid biotypes [126, 128]. 

1.5.8. Transcriptomic Studies on Soybean-A. Glycines Interaction: Jasmonic Acid 

(JA) and Abscisic Acid (ABA) Signaling Pathway Plays a Crucial Role in Plant 

Resistance 

Several studies have described differential changes in phytohormones that occur 

during aphid-feeding in resistant, tolerant, and susceptible cultivars [130, 131, 132, 133, 

134]. Cyclical expression patterns of the different marker and responsive genes for 

salicylic acid observed in aphid-infested plants suggests these hormones play a key role 

in soybean resistance to aphid feeding [131]. Furthermore, an application of methyl 

jasmonate (MeJA) on infested plants significantly decreased soybean aphid population, 

but a similar salicylic acid application did not affect the aphid population; this suggests 

MeJA may be the elicitor to induce plant defenses [131]. Thus, the JA signaling pathway 
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that assists the induction of other enzymes, including polyphenol oxidase (PPO), 

lipoxygenases, peroxidases, and proteinase inhibitors, appears to play a crucial role in 

aphid-resistance against susceptible soybean cultivar [131, 135].  

Brechenmacher et al. (2015) [93] used two Rag2 and/or rag2 near-isogenic lines 

of soybean to identify 396 proteins and 2,361 genes that were differentially regulated in 

response to soybean infestation. Several genes mapped within the Rag2 locus, including a 

gene of unknown function (Glyma13g25990), a mitochondrial protease 

(Glyma13g26010), and an NBS-LRR (Glyma13g25970), were significantly upregulated 

in the presence of aphids. Prochaska et al. (2015) [94] identified three and 36 

differentially expressed genes (DEGs) at five and 15 days after infestation, respectively, 

in the resistant (tolerant) KS4202 cultivar but found only zero and 11 DEGs at five and 

15 days after infestation, respectively, in the susceptible K-03-4686 cultivar. Most of the 

DEGs were related to WRKY transcription factors (such as WRKY60), peroxidases 

[Peroxidase 52 (PRX52) and Ascorbate peroxidase 4 (APX4)], and cytochrome p450s. 

Aphid-tolerance mostly depended on the constitutive levels of abscisic acid (ABA) and 

jasmonic acid (JA) and the basal expression of ABA (NAC19 and SCOF-1) and JA 

[LOX10, LOX2 (a chloroplastic-like linoleate 13S-lipoxygenase 2), OPDA-REDUCTASE 

3 (OPR3)]-related transcripts [130]. In addition, the genes PRX52, WRKY60, and 

PATHOGENESIS-RELATED1 (PR1; SA-responsive transcript) were found to be induced 

by aphid infestation in the tolerant KS4202 cultivar [130]. Lee et al. (2017) [136] 

evaluated the transcriptomic dynamics of soybean near-isogenic lines (NILs) with either 

the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid biotype 2. 

Three genes located near the Rag5 locus, including Glyma.13 g190200, Glyma.13 
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g190500, and Glyma.13g190600, were reported to be good candidate genes for imparting 

soybean aphid resistance. Li et al. (2008) [133] studied soybean responses to aphid 

infestation by using cDNA microarrays to generate transcript profiles and identified 140 

genes related to the cell wall, transcription factors, signaling, and secondary metabolism. 

Studham and MacIntosh (2013) [134] utilized oligonucleotide microarrays to study 

soybean-aphid interactions in the aphid-resistant cultivar LD16060 with Rag1 gene and 

aphid-susceptible cultivar SD01-76R. They identified 49 and 284 differentially expressed 

genes (DEGs) at one and seven days after infestation, respectively, in the susceptible 

cultivar and found only 0 and 1 DEGs at 1 and 7 days after infestation, respectively, in 

the resistant cultivar. They suggested that the expression of defense genes in resistant 

plants is constitutive, whereas the defense genes in susceptible plants are expressed only 

after aphid infestation.  

1.6. Heterodera glycines Ichinohe 

Soybean cyst nematode (Heterodera glycines Ichinohe) (SCN) is the most 

distressing pest in the production of soybean (Glycine max (L.) Merr.) [137]. SCN 

belongs to Kingdom Animalia, phylum Nematoda, class Chromadorea, order Tylenchida, 

and family Heteroderidae. All Heterodera species belong to the nematodes that form the 

cysts, thick walled dead female shielding eggs, on the roots [138]. Also, this genus is 

considered as the most economically important group of the plant parasitic nematodes 

[139]. It is an obligate, sedentary endoparasitic, soilborne nematode causing $1.3 billion 

losses in soybean yield annually in the United States [140, 141]. Soybean yield losses 

were approximately 3.4 million metric tons (125 million bushels) worth approximately 

$1.6 billion in 2014 [142]. More than 30% yield loss caused by SCN remains unnoticed 
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because of the unnoticeable aboveground symptoms and sometimes confused with the 

symptoms caused by viral pathogens [142]. SCN remained on top among ten most 

destructive diseases in the northern United States and Ontario though 2010 (110 million 

bushels) to 2014 (108 million bushels) [142]. Thus, SCN is an important pest which 

unceasingly threatens soybean production [143]. 

1.6.1. Origin and Distribution of SCN 

After SCN being first reported in Japan in 1915 [144], it was later reported in 

Korea [145], China [146], and U.S. [147]. In the United States, it was first reported in 

Hanover County of North Carolina in 1954 [147]. The source for the first SCN to arrive 

in the United States is unknown but believed to have imported via plant or soil material 

[148]. SCN was reported in Missouri and Tennessee in 1956, Arkansas, Kentucky and 

Mississippi in 1957, and Virginia in 1958 [149]. Since the detection of SCN in Union 

County in South Dakota in 1995, it has spread to 30 counties of South Dakota [150]. 

Now, SCN has been detected in 90% of the soybean producing states in the U.S. [151]. 

This has caused an estimated yield loss of 1.9 Metric tons annually in South Dakota 

(https://www.sdsoybean.org.). 

1.6.2. Life Cycle of SCN 

SCN completes its life cycle mainly in three main stages, the egg, juvenile, and 

the adult upon parasitizing the soybean roots [148]. The embryogenesis and molting 

undergo in the egg stage resulting J1, the first juvenile stage in the egg [152]. The J1 

stage undergoes molting, and results in the second-stage juveniles (J2) hatched from the 

eggs under optimal soil conditions near the roots of the soybean plants. Several factors 

are responsible for egg hatching: soil temperature of approximately 25°C, suitable host 
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plant, and soil conditions [152]. Soil moisture, soil fertility, and soil type play an 

important role in the life cycle of the nematode. The light sandier soil allows nematode to 

move more freely in the soil than in the compact soil that restricts the movement of the 

nematode. Nonetheless, SCN are reported in all kinds of soil [148, 152]. Other factors 

can be host root exudates, pH and sometimes age dependent egg hatching [152, 153, 

154]. The host plant also plays a major role in the process of egg hatching and releasing 

J2 in the soil. The organic molecules such as eclepsins, and glycinoeclepin A produced 

by the host plant assist in egg hatching, which is known as root diffusate based egg 

hatching [148, 155, 156]. Some other compounds such as solanoeclepin A in tomato and 

potato, and chemicals such as picloronic acid, sodium thiocyanate, alpha-solanine, and 

alpha-chaconine help in the hatching process [157, 158]. Gro-nep-1 has been recently 

identified as the first gene to be upregulated in eggs treated with host root exudate in 

Globodora rostochiensis [159]. The exudates help J2 find the host plant’s root using a 

form of chemotaxis and infect the root cells using hollow mouth spear called stylet [143, 

160]. Inability or failure of J2 in finding the host plant leads to starvation and death [161]. 

The secretion of the digestive enzymes such as cellulase helps advancing through the 

epidermal and cortical cells toward the vascular cylinder [143, 162]. The penetration site 

of the J2 depends on the water status of the soybean plant [163]. Because of their 

sedentary nature, J2 selects a single cell that undergoes morphological changes and forms 

the permanent feeding site called syncytium [143, 162]. Syncytium remains intact 

throughout the remaining time of the life cycle of nematode and draws essential nutrient 

from the host plant until reaching reproductive maturity [143]. The juveniles molt into a 

third juvenile state (J3) and undergo sexual differentiation [164]. The ratio of the female 
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and male remains 1:1 but this is sometimes affected by the milieu and resistance of the 

host plant [165]. The feeding site swells longitudinally throughout the root dissolving and 

incorporating numerous cells with dense cytoplasm, hypertrophied nuclei, increased 

organelle content [143]. During this J3 male metamorphoses to vermiform shape, leaves 

the root in search of females using sex pheromone, and dies after mating [166, 167]. 

Concurrently, J3 juvenile molts into J4 stage forming adult females, and changes into 

lemon-shaped cyst extruding the root surface. Each female in a cyst produces 40-600 

eggs with an average of approximately 200 eggs and sometimes eggs are outside in the 

gelatinous secretions [168, 169]. The cyst produces compounds such as chitinase and 

polyphenol oxidase in order to save eggs from desiccation and microbial infection [141]. 

Thus eggs can remain viable up to nine years [141]. Naturally, a SCN completes its life 

cycle in 3 to 4 weeks,  and highly depends on the soil temperature of approximately 

25°C, suitable host plant as well as soil conditions [152]. However, the SCN can 

complete its life cycle in 21 days under controlled conditions with a temperature of 25°C 

[160]. Depending upon the maturity group of the soybean planted, the SCN completes up 

to four life cycles during  a single soybean growing season [150]. 

1.6.3. SCN Effectors  

Nematode effector molecules are produced in a nematode’s esophageal gland 

before being released into the stylet [170]. The effectors evade and suppress the host 

plant’s defense and reprogram the host cell nucleus, as well as a various cellular process 

for their suitability [171, 172]. These effector molecules reach into the host cell after 

dissolving the cell wall through various enzymes and proteins that bind to the 

components of the cell wall such as cellulose binding proteins and expansins [171]. The 
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successful parasitism of the nematodes to the plants involves direct or indirect interaction 

with the host plant targets or immune regulators, cell wall modifications, mimicry of 

plant peptide hormones, or manipulating hormone transport [reviewed in [173]]. Various 

nematode effector molecules, including Gr-SPRYSEC (-4,-5, -8, -15, -18, -19), Gp-RBP-

1, Gr-VAP1, Hg30C02, Hs10A06, Hs4F01, and Mi-CRT, have been already 

characterized in different nematodes and hosts [174, 175, 176, 177, 178, 179, 180, 181]. 

These effectors affect the host immune system by enhancing susceptibility or resistance.  

The characteristic cyst nematode effectors, including those found in SCN, are 

presented in Table 1.2. Gao et al. (2003) [182] identified 51 effector molecules from the 

esophageal gland of the H. glycines. Most of the effector molecules belonged to cellulose 

genes, pectate lyases, an enzyme in the shikimate pathway, and ubiquitin proteins. The 

ortholog of H. glycines cellulose binding protein (HgCBP) in H. schachtii (HsCBP) 

interacts with pectin methyltransferase protein (PME3) of Arabidopsis during the early 

feeding stage, and exhibits enhanced susceptibility [183]. The function of an ortholog of 

25A01-like effector family was studied in H. schachtii (Hs25A01) in Arabidopsis system 

[184]. Hs25A01 interacts with Arabidopsis F-box-containing protein, chalcone synthase 

and the translation initiation factor eIF-2 b subunit to increase both root length and 

susceptibility to H. schachtii. Further, 18 more effector molecules showed high similarity 

to N-acetyltransferases, β-fructofuranosidases, serine proteases, cysteine proteases, an 

effector for protein degradation in the syncytium, cellulose binding protein, chorismate 

mutase, and glycosyl hydrolase [173]. Among them, HgGLAND18 secreted in the dorsal 

gland cell, suppresses basal and hypersensitive cell death innate immune responses in 

Nicotiana benthamiana [185]. The similarity of the N-terminal domain of HgGLAND18 
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to the domain of effector of Plasmodium spp. strongly suggests the role of convergent 

evolution of the effector molecules in diverse parasites [185]. Another effector, biotin 

synthase (HgBioB) and protein containing protein SNARE domain (HgSLP-1) effector 

molecules were reported recently employing allelic imbalance analysis to associate SCN 

SNPs [186]. HgSLP-1 interacts with Rhg1 α-SNAP evading the host defense [186]. 

However, the host defense is evaded on the absence of the HgSLP-1 because of its 

avirulence nature like map-1 protein and Mj-Cg-1 effectors [186, 187, 188]. Until 

effectors were searched through de novo transcriptome assembly of the second stage 

juvenile H. glycines [57], only 71 effector molecules were reported that were secreted 

only from the esophageal glands. Upon use of the joint pipeline that utilizes presence or 

absence of signal peptides, altogether 944 effector candidates were predicted, many of 

which were homologs to glutathione synthetase, C-type lectins, plants RING/U-box 

superfamily, arabinosidase, fructosidase, glycoside hydrolase, expansin and SPRYSEC 

family [57]. 
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Table 1.2. Characterized cyst nematode effectors in different plant systems with their 

targets and susceptibility/resistance effects. 

 
CN effectors Cyst 

Nematode 

Targets Host Susceptibility/Resistance References 

HsCBP H. schachtii pectin methyltransferase 

protein (PME3) 

Arabidopsis 

thaliana 

susceptibility [183] 

Gp-Rbp-1 G. pallida Gpa2 Nicotiana 

benthamiana 

hypersensitive 

response (HR) 

[180] 

Gr- SPRYSEC 

(4,5,8,15,18,19) 

G. 

rostochiensis 

NB-LRR proteins Nicotiana 

benthamiana 

Suppress host defense [181] 

Hs19C07 

 

H. schachtii auxin influx transporter LAX3 Arabidopsis 

thaliana 

susceptibility [189] 

Gr-VAP1 G. 

rostochiensis 

apoplastic cysteine protease 

Rcr3pim 

Solanum 

lycopersicum 

programmed 

cell death 

[179] 

Hg30C02 H. schachtii β-1,3-endoglucanase Arabidopsis 

thaliana 

susceptibility [175] 

Hs4D09 H. schachtii 14-3-3ε Arabidopsis 

thaliana 

resistance [190] 

Hs10A07 H. schachtii interacting plant kinase (IPK) 

and IAA16 transcription factor 

Arabidopsis 

thaliana 

hypersusceptible [191] 

Hs25A01 H. schachtii F-box-containing protein, a 

chalcone synthase and the 

translation initiation factor 

eIF-2 b subunit (eIF-2bs) 

Arabidopsis 

thaliana 

susceptibility [184] 

Hs30D08 H. schachtii SMU2 (homolog of suppressor 

of mec-8 and unc-52 2) 

Nicotiana 

benthamiana 

susceptibility [192] 

Hs10A06 H. schachtii Spermidine Synthase2 

(SPDS2) 

Arabidopsis 

thaliana 

susceptibility [176] 

HgGLAND18 H. glycines --- Nicotiana 

benthamiana 

suppresses both 

canonical basal and HR 

immune responses 

[185] 

HgSLP-1 H. glycines Rhg1 α-SNAP Glycine max avirulence protein [186] 

 

 

1.6.4. Rhg1 and Rhg4 as Major QTLs for SCN Resistance 

SCN can enter into the roots of susceptible and resistant soybean cultivars equally 

[193]. Resistant cultivars prevent SCN infection by disrupting syncytium formation 

interfering its life cycle. Histological experiments have unraveled that syncytia forming 

in resistant plants undergo a hypersensitive-like response [194]. The sources for the SCN 

resistance in the commercial soybean cultivars are predominantly Peking (PI548402), 

PI88788, and PI437654 that carry resistance loci effective against various races of SCN 

[195, 196]. Up to now, 40 QTLs have been reported in a diverse group of resistant 

cultivars, which are mapped in 17 of 20 chromosomes [196]. Three recessive resistance 

rhg1-rhg3 were initially assigned in the Peking plant introduction [197]. The rhg1 gene 

confers resistance to SCN in all germplasms with resistance to SCN  and is regarded to be 
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a significant resistance gene to SCN in soybean cultivars [196]. Moreover, PI437654 and 

PI88788 each have a different functional SCN resistance allele at or close to rhg1 [195]. 

The rhg1 gene was initially reported as the recessive locus, however, recent studies have 

reported the occurrence of incomplete dominance [198]. The rhg1 locus has been present 

in various resistance plant introductions PI209332,  PI437654, PI90763, PI209332, 

PI89772, PI90763, including Peking (PI548402), PI88788, and PI437654 [196]. Rhg1 

locus has been mapped to chromosome 18’s subtelomeric region [199, 200, 201, 202]. 

Rhg4, a dominant locus, is present in PI54840 (Peking) and PI437654 but not in PI88788 

or PI209332 [195, 196, 203]. Rhg4 locus has been mapped to on chromosome 8 (linkage 

group A2) for SCN resistance [196, 204].  

1.6.5. LRR-RLK Genes were Considered as the Resistance Genes against H. 

glycines 

Rhg1 and Rhg4 genomic regions in the soybean, and two leucine-rich repeat 

transmembrane receptor-like kinase (LRR-RLK) genes were patented by two groups 

[199, 200, 205, 206]. Such claims were based on the similarity of the genes with rice 

bacterial blight resistance gene Xa21 [207]. Their claims were accepted by the soybean 

communities, but their functional assessment was not conducted until 2010. Melito et al. 

(2010) [198] used artificial microRNA (amiRNA) to study the function of 

Glyma18g02680.1 gene (LRR-RLK) at the Rhg1 locus. The amiRNA used for the 

reduction of expression of Glyma18g02680.1 gene from the Rhg1 locus of Fayette 

(PI88788 source of Rhg1) did not alter the resistance to SCN but instead affected the root 

development. Later Liu et al. (2011) [208], used the Targeting Induced Local Lesions In 

Genomes (TILLING) approach to study the role LRR-RLK at the Rhg4 locus developing 
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EMS-mutants from the SCN-resistant soybean cultivars Forrest and Essex. The TILLING 

tool is the reverse genetic tool to the function of the gene [209]. They concluded that the 

Rhg4 LRR-RLK gene is not a gene for SCN resistance. After the availability of the 

complete genome sequence of soybean, it has been easier to narrow down these genomic 

regions and characterize specific candidate genes that can potentially be involved in the 

SCN resistance [210].  

1.6.7. Role of GmSNAP18 (Rhg1) and GmSHMT08 (Rhg4) Uncovered for SCN 

Resistance 

The study by Kim et al. (2010) [211] showed rhg1-b within a 67-kb region in 

PI88788 genotype. Because of the existence of allelic variants of rhg1 in the different 

soybean genotypes, the rhg1 in PI88788 was named as rhg1-b [195, 211]. This 67-kb 

interval from PI88788 does not include the LRR-RLK gene candidate for rhg1 from 

Peking cultivar that was previously patented. Matsye et al. (2011) [212] studied the 

expression of the genes within the 67 kb interval of the rhg1-b locus. Amino acid 

transporter (Glyma18g02580) and a soluble NSF attachment protein (α-SNAP; 

Glyma18g02590) genes were specifically expressed in syncytia during the SCN defense 

in both Peking (PI548402) and PI88788 genotypes. The α-SNAP coding regions are 

identical in resistant genotypes Peking (PI548402) and PI437654, but they differ by 

numbers in single nucleotide polymorphisms (SNPs) in Williams 82 (PI518671) 

genotype [213]. Later, in a 31-kilobase (kb) segment at rhg1-b loci, genes 

Glyma.18G022400 formerly Glyma18g02580, Glyma.18G022500 formerly 

Glyma18g02590, Glyma.18G022700 formerly Glyma18g02610 that encodes an amino 

acid transporter, an α-SNAP (soluble N-ethylmaleimide–sensitive factor attachment 
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protein) protein, and a WI12 (wound-inducible domain) protein, respectively were 

identified that play a significant role in SCN resistance [214, 215]. The WI12 protein may 

involve in producing phenazine like compounds that can be toxic to the nematodes [214, 

216]. The α -SNAP protein involves in vesicle trafficking that affects the exocytosis of 

food in the syncytium, which in turn affects the nematode physiology [214]. The plant 

transporter protein, Glyma18g02580 consists of a tryptophan/tyrosine permease family 

domain [214]. Tryptophan upon catalysis by Trp aminotransferases such as AtTAA1 and 

PsTAR1 and subsequent flavin mono-oxygenase such as YUC forms indole-3-acetic 

acid, which is a precursor of the hormone auxin [217]. This suggests that 

Glyma18g02580 may affect the auxin distribution in the soybean plants [214]. Based on 

Glyma18g02590 (GmSNAP18) gene, the cultivars Peking-type and PI88788 type can be 

differentiated upon selecting the rhg1 resistance alleles using two specific KASP 

(kompetitive allele-specific PCR) SNP markers. [218]. The 31 kb segment is present as a 

single copy in the susceptible cultivar, whereas, the resistant variety, PI88788, and 

Peking (PI548402) possess 10 and three tandem copies, respectively [214]. Additionally, 

Cook et al. (2014) [219] tested Rhg1 across 41 diverse soybean cultivars using whole-

genome sequencing technique called fiber-FISH (fluorescence in situ hybridization). The 

study showed seven Rhg1 copies in PI548316, nine copies in PI88788, and 10 copies in 

PI209332 whereas, both PI437654 and PI548402 (Peking), which show a high level of 

SCN resistance, contain three copies of the Rhg1 with α-SNAP allele [219]. Lee et al. 

(2015) [220] genotyped the Rhg1 locus in 106 SCN-resistant G. max and G. soja 

genotypes developing genomic qPCR assay for the identification of copy number of Rhg1 

locus and found 2–4, 6, 7, 9 and 10 copies in G. max and one three-copy variant in a G. 
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soja genotype. Fayette, derived from PI88788, has ten copies of the repeat that suggested 

an increased copy number by a single unit during the process of selection.  

The use of forward genetics and functional genomics approaches showed the 

Peking-type rhg1 resistance in Forrest cultivar depends on the Rhg4 (GmSHMT08) gene, 

SCN-resistant allele [221]. Such resistance in Forrest cultivar (resistance to SCN requires 

both rhg1 and Rhg4) differs from the PI88788-type of resistance that only requires rhg1 

[204, 221]. GmSHMT08 gene was emerged because of the artificial selection during the 

soybean domestication process accumulating a higher number of non-synonymous 

mutations [222]. A recent study by Liu et al. (2017) [223] narrowed down the interval to 

~14.3 kb in the recombinant lines of Forrest cultivar that contained three genes in three 

tandem repeats with in rhg1-a locus. These genes encode armadillo/β-catenin-like repeat, 

amino acid transporter (AAT), and soluble N-ethylmelaimide sensitive factor (NSF) 

attachment protein (GmSNAP18). The mapping results and based on SNPs and InDels in 

Forrest, Peking, and PI88788 cultivars, GmSNAP18 was identified as an rhg1 candidate 

gene for SCN resistance. Additionally, genetic complementation analyses of GmSNAP18 

revealed its different role in PI88788-type GmSNAP18 and Peking type GmSNAP18. 

Thus both Peking type GmSHMT08 (Rhg4) and GmSNAP18 (Rhg1) play a different role 

from PI88788-type GmSHMT08 and GmSNAP18. Bayless et al. (2016) [215] confirmed 

the presence of a dysfunctional variant of resistance-type α-SNAP in the resistant 

cultivars that impairs the NSF function reducing its interaction during 20S complex 

formation. This leads to disruption in vesicle trafficking causing an abundance of NSF 

protein in the syncytium, which is cytotoxic. However, because of the two duplication 

events that occurred 13 and 59 million years ago (mya) in William 82 soybean genome 
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[210], soybean encodes other four α-SNAPs GmSNAP02, GmSNAP09, GmSNAP11, and 

GmSNAP14, known as wild-type α-SNAPs [215, 224]. Among them, GmSNAP11 is a 

minor contributor to SCN resistance but not GmSNAP14 and GmSNAP02 [224]. These 

wild-type α-SNAPs counteract cytoxicity for the viability of soybeans that carry 

haplotypes of Rhg1 for the SCN resistance [215]. In the presence of SCN, the ratio of 

resistance-type to wild-type α-SNAP increases leading to the hyperaccumulation of 

resistance-type α-SNAP that reduces the viability of the syncytium [215] (Figure 1.3). 

Also, some other genes such as ascorbate peroxidase 2, β-1,4-endoglucanase, soybean 

momilactone A synthase-like, cytochrome b5, DREPP membrane protein-family, 

plastocyanin –like including serine hydroxymethyltransferase decreased female index of 

SCN by 50 % or more in SCN susceptible cultivar William 82 upon overexpression 

[225]. 
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Figure 1.3. Role of α-SNAP in vesicular trafficking. A) Wild-type α-SNAPs counteract 

the cytoxicity for the viability of soybeans that carry haplotypes of Rhg1 for SCN 

resistance. B) In the presence of SCN, the ratio of resistance-type to wild-type α-SNAP 

increases leading to the hyperaccumulation of resistance-type α-SNAP. The presence of 

high RT α-SNAPs dysfunctional variants in the resistant cultivars impair the NSF 

function reducing its interaction during 20S complex formation. This leads to a disruption 

in vesicle trafficking causing an abundance of NSF protein in the syncytium, which is 

cytotoxic (Concept adapted from [215] and [226]). 

 

 Liu et al. (2012) [227] used two recombinants that carry resistance allele at the 

rhg1 and Rhg4 loci, to study a gene at the Rhg4 loci. The cultivars used in the study were 

double recombinants for an 8-kilobase (kb) interval carrying the Rhg4 resistance allele 

that carries two important genes serine hydroxymethyltransferase (SHMT) and the other 

a subtilisin-like protease (SUB1). SHMT (GmSHMT08 ) gene was confirmed as the 

resistance gene at the Rhg4 locus that catalyzes methylene carbon of glycine to 

tetrahydrofolate (THF) to form methyleneTHF, that reacts the second glycine to form L-

Ser in the glycolate pathway [228]. This reaction produces S-adenosyl-Met (SAM), 

which is the precursor for the polyamines and plant hormone ethylene [221]. GmSHMT08 
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changes its enzymatic properties because of the changes in two amino acids (P130R and 

N385Y) in the resistant allele that negatively affects the folate homeostasis in the 

syncytium resulting hypersensitive responses (HR) leading to programmed cell death 

(PCD) [222, 227] (Figure 1.4). The alleles of GmSHMT08 are different between resistant 

and susceptible plants [227].  

 

 

Figure 1.4. Schematic overview of GmSHMT08 function and C1 metabolism. SHMT, 

GLDC, and degradation of histidine feed into the pool of C1 units bound by THF. 

GmSHMT08 with changes in two amino acids (P130R and N385Y) in Forrest cultivar 

negatively affects the folate homeostasis in the syncytium resulting in hypersensitive 

responses (HR) leading to programmed cell death (PCD). dTMP, deoxythymidine 

monophosphate; dUMP, deoxyuridine monophosphate; GLDC, glycine decarboxylase; 

SAM, S-adenosyl methionine; SHMT, serine hydroxymethyltransferase; THF, 

tetrahydrofolate (Concept adapted from [222, 227] and pathway modified from [229]).  
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1.6.8. Minor QTLs/Genes for SCN Resistance 

Apart from the major QTLs identified in Rhg1 and Rhg4 loci, there are some 

minor genes or QTLs identified such as qSCN10 on chromosome 10 in PI567516C 

cultivar [230]. PI567516C cultivar lacks two major loci Rhg1 and Rhg4 and is SCN 

resistant that implies the importance of other minor genes for SCN resistance [231]. The 

resistance acquired by the major genes is sometimes not durable and necessitates the use 

of horizontal or quantitative resistance acquired from the minor genes [232]. Other minor 

QTLs are qSCN-003 in PI88788 [233], qSCN-005 in Hartwig, which has SCN resistance 

from PI437654 and Peking [234], and qSCN-11 in PI437654 and  PI90763 [235, 236]. 

The most recent QTLs reported are cqSCN-006 and cqSCN-007 in G. soja PI468916 

[237], which was mapped finely by Yu and Diers 2017 [238] where cqSCN-006 was 

mapped into a 212.1 kb interval and cqSCN-007 to a 103.2 kb interval on the Williams 82 

reference genome in chromosome 15 and 18, respectively. The cqSCN-006 QTL consists 

of three major potential candidate genes: Glyma.15g191200 (Soluble NSF attachment 

protein), Glyma.15g191300 (BED-zinc finger related), Glyma.15g191400 (BED-zinc 

finger related). Glyma.15g191200 is predicted to encode soluble N-ethylmaleimide–

sensitive factor attachment protein (γ-SNAP) that involves in the same function as α-

SNAP, which is one of the important genes in Rhg1 mediated SCN resistance. Likewise, 

the potential genes identified in region of cqSCN-007 are: Glyma.18g244500 (Lecithin-

cholesterol acyltransferase), Glyma.18g244600 (Apetala 2 transcription factor), 

Glyma.18g244700 (Calcineurin-like phosphoesterase), Glyma.18g244800 (Chromatin 

assembly factor 1 subunit A), Glyma.18g244900 (p-Nitrophenyl phosphatase), 

Glyma.18g245000 (Rad21/Rec8-like protein), Glyma.18g245200 (LETM1-like protein), 
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which are mainly involved in signaling pathways, such as transcription, euchromatin 

expression, and membrane receptor detection. These identified potential candidate genes 

might be novel SCN resistance genes that should be functionally characterized in the 

coming future [238]. 

Table 1.3. SCN resistance QTLs in soybean cultivars with information on chromosome 

location, markers associated against SCN HG types or races and refrences. 

 

QTLs Chromosome and markers 

associated 

SCN HG type  or races  Soybean Plant 

Introductions 

References 

cqSCN-001 

(Rhg1) 

18 Race 3 PI437654 [239] 

Race 1a, 3a, 3b, 1b, 6 PI209332 [240] 

Races 2, 3 and 5 PI90763 [236, 241] 

Races 1, 3, and 6  PI88788 [241] 

Races 1, 2, were verified in Peking 

conditioning resistance to SCN 

3, 5 

PI89772 [242] 

Races 2, 3 and 5 PI404198A [243] 

rhg1-b 18 PA3 (HG type 7) and TN14 (HG type 

1.2.5.7) 

PI88788 [195]  

18; 67-kb region of the 

‘Williams 82’ genome between 

BARCSOYSSR_18_0090 and 

BARCSOYSSR_18_0094 

PA3, which 

originally had an HG type 0 phenotype 

PI88788 [211] 

cqSCN-002 

(Rhg4) 

8 Race 3 Peking [193, 204] 

 

  Race 3 PI437654 [239] 

 

cqSCN-003 16 PA3 (HG type 7, race 3) and PA14 

(HG type 1.3.5.6.7, race 14) 

PI88788 

 

[233] 

cqSCN-005 17 HG Type 1.3  (race 14) and HG Type 

1.2.5  (race 2) 

Hartwig (PI437654 

and Peking) 

 

[234] 

cqSCN-006 15; (803.4 kb region between 

SSR markers 

BARCSOYSSR_15_0886 

And BARCSOYSSR15_0903)  

 

HG type 2.5.7 (SCN isolate PA5) G. soja PI468916 [237] 

 15; 212.1 kb interval between 

ss715621232 and ss715621239. 

HG type 2.5.7 (SCN isolate PA5) G. soja PI468916 [238] 

cqSCN-007 18; (146.5 kb region 

between the SSR markers 

BARCSOYSSR_18_1669 and 

BARCSOYSSR_18_1675) 

HG type 2.5.7 (SCN isolate PA5) G. soja PI468916 [237] 

 18; 103.2 kb interval between 

BARCSOYSSR_18_1669 

and ss715631888. 

HG type 2.5.7 (SCN isolate PA5) G. soja PI468916 [238] 

cqSCN 10 10 (Satt592, Satt331, and 

Sat_274) 

LY1 nematode from a mass mating of 

SCN Race 2 (HG Type 1.2.5) females 

with Race 5 (HG Type 2.5) 

PI567516C [230] 

cqSCN11 11 HG types 0, 2.7, and 1.3.5.6.7 (race 3, 

5, and 14) 

PI437654 [235] 

Races 2 (HG type 1.2.5.7), 3 

(HG type 0 ) and 5 (HG type 2.5.7 ) 

PI90763 [236]  
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1.6.9. GWAS Study in SCN Resistance Expands other QTLs on SCN 

The GWAS technique has been also used in revealing candidate genes for SCN 

resistance relatively in less time and simultaneously verifying QTLs identified by 

classical bi-parental mating [119, 120, 121, 244, 245, 246, 247]. Wen et al. (2014) [245] 

reported 13 GWAS QTLs for SCN resistance associated with the sudden death syndrome 

(SDS) QTLs spanning a physical region of 1.2 Mb (1.2-2.4 Mb) around three Rhg1 

genes. This might be because of the close linkage of Rfs2 and Rhg1 genes that provide 

resistance to SDS and SCN resistance, respectively [248]. Han et al. (2015) [247] 

reported 19 significant QTLs related to resistance to both SCN HG Type 0 (race 3) and 

HG Type 1.2.3.5.7 (race 4) using 440 soybean cultivars. Of the reported SNPs, eight 

overlapped to QTLs with Rhg1 and Rhg4 genes, eight to other known QTLs and three 

were the novel QTLs (on chromosome 2 and 20). The gene, Glyma.02g161600, which 

encodes the RING-H2 finger domain nearest to the novel loci could be the new source of 

SCN resistance. Vuong et al. (2015) [120] utilized 553 soybean PIs and SoySNP50K 

iSelect BeadChip (with 45,000 SNP markers) to detect the QTL or genes for HG Type 0 

SCN resistance using GWAS study. Fourteen loci with 60 SNPs were significantly 

associated with the SCN resistance. Of the 14 detected loci, six QTL that was identified 

using bi-parental mapping including Rhg1 and Rhg4 were also verified. These GWAS 

QTLs contained 161 candidate genes located at significant GWAS loci for SCN 

resistance in soybean. Among them, 26 genes were NBS encoding genes. Chang et al. 

(2016) [121] reported significant loci to multiple races of SCN using GWAS, of which 

one SNP was within Rhg1 locus for SCN races 1, 3 and 5. Among the five LRR-RLK 

genes, Glyma18g02681 and Glyma20g33531 were nearest to two significant SNPs 
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s715629308 and ss715638409, respectively. Additionally, they reported significant SNPs 

on chromosomes 4, 7, 10, 15, 18, and 19 for SCN races 1 and 5 (HG type 2). However, Li 

et al. (2016) [244] employed joint linkage mapping and association mapping using 585 

informative SNPs across recombinant inbred lines (RILs) bred from the cross 

Zhongpin03-5373 (ZP; resistant to SCN) × Zhonghuang13 (ZH; susceptible to SCN) to 

detect alleles associated with SCN race 3. Association mapping revealed three 

quantitative trait nucleotides (QTNs): Glyma18g02590 (belonged to locus rhg1-b), 

Glyma11g35820 and Glyma11g35810 (an rhg1-b paralog); whereas, linkage mapping 

revealed two QTLs (one mapping to rhg1-b and another to rhg1-b paralog). Upon 

combining both linkage and association mapping, six significant markers were detected. 

Among them, four (Map-5118, Map-5255, Map-5431, and Map-5432) of the significant 

markers were not identified by an independent study. Map-5431 lies between rhg1-a and 

rhg1-b (Glyma18g02650), and Map-5432 lies adjacent to rhg1-a (Glyma1802690) [248].  

 Zhang et al. (2016) [246] utilized 235 wild soybean (G. soja Sieb. & Zucc.) 

accessions to unravel the genetic basis for HG Type 2.5.7 (race 5). GWAS revealed 10 

significant SNPs associated with SCN resistance, among which four SNPs were linked to 

known QTL, rhg1 on chromosome 18. Four others were linked to race 5 resistance QTL 

[249] and remaining two to the 35.5 to 37.8Mb region that overlaps some region 

identified by Vuong et al. (2015) [120]. Additionally, 58 potential gene candidates were 

suggested, which included genes encoding NBS-LRR proteins (Glyma.18G078000, 

Glyma.18G077900), MAPK proteins (Glyma.18G106800), RLPs (Glyma.18G193800), a 

RING/U-box protein (Glyma.18G063500), and MYB family transcription factors 

(Glyma.19G119300). Recently, Zhang et al. (2017) [119], performed GWAS in 1032 on 
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G. soja with 42,000 SNPs to dissect the genetic basis for resistance to race 1. Ten 

significant SNPs were identified on chromosomes 2, 4, 9, 16 and 18, among which two 

were within the previously identified QTLs (SCN 18-5 and SCN 19-4; [249] on 

chromosome 4, and one within QTL SCN 37-2 [231]). This study strongly suggests R 

gene, Glyma.18G102600, to be the promising candidate gene for the SCN resistance 

because of its location in a strong linkage disequilibrium block. 

The non-redundant 249 genes assessed from the GWAS SCN QTLs [119, 120, 

121, 244, 245, 246, 247] showed most of the genes enriched to binding (GO: 0005488), 

and catalytic activity (GO: 0003824). The binding category includes binding to 

nucleoside (GO: 0001882), nucleotide (GO: 0000166), purine ribonucleotide (GO: 

0017076), purine nucleoside (GO: 0001883), ribonucleotide (GO: 0032553), adenyl 

nucleotide (GO: 0030554), adenyl ribonucleotide (GO: 0032559), ATP (GO: 0005524), 

and ADP (GO: 0043531). Similarly, the catalytic category includes transferase activity 

(GO: 0016740), transferase activity-transferring phosphorus-containing groups (GO: 

0016772), phosphotransferase activity- alcohol group as acceptor (GO: 0016773), kinase 

(GO: 0016301), protein kinase (GO: 0004672), exopeptidase (GO: 0008238), and serine-

type exopeptidase (GO: 0070008) activities (Figure 1.5).  
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Figure 1.5. Significantly enriched GO molecular function terms of non-redundant 249 

genes in the GWAS SCN QTLs [119, 120, 121, 244, 245, 246, 247] as determined by a 

hypergeometric test using AgriGO [117]. The same gene can be associated with multiple 

GO annotations. Only significantly (P < 0.01) over-represented and Bonferroni adjusted 

GO categories are shown. The stronger color represent the lower P value. Information in 

the box includes GO term, adjusted P value in parentheses, GO description, a number of 

query list/background mapping GO, and a total number of query list/background.  

1.7. Plant-aphid Interactions 

 

A series of cell signaling events such as plasma membrane potential variation, 

calcium signaling, and generation of reactive oxygen species leads to the production of 

hormones and metabolites during plant-aphid interactions [250]. In most cases, a 

hormone release is specific to a stimulus. For example, jasmonic acid (JA) is released in 

response to chewing herbivores, cell content feeders and necrotrophic pathogens whereas, 
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salicylic acid (SA) is released in response to piercing-sucking herbivores [251]. However, 

ethylene (ET) is produced synergistically with JA, and modulate JA and SA signaling 

pathways [252]. The change in metabolite products during the herbivore feeding occurs 

both in local and systemic tissues [253]. 

Approximately, half of one million known insect species along with aphids get 

their nutrition from plants [254]. These insects are grouped into the family Aphididae of 

the order Hemiptera. Over 4,000 aphid species are identified as harmful to plants [255, 

256]. Many aphids are specific to their host, and attack plants of a single family, for 

example, Acyrthosiphon pisum attacks hosts belonging to Fabaceae family, however, 

there are species such as Myzus persicae, which can infest dicot plants of more than 40 

families [257]. Asexual life cycle in aphids allows prompt population growth and 

infestation in a expedite manner [257]. Up to this time, many research studies have been 

done in understanding plant-aphid interactions. This has led to concrete findings on both 

plant and aphid side, increasing insights into plant defense mechanisms against aphids. 

The plant can sense aphid effector molecules, which are mostly expressed in salivary 

glands, secreted into saliva and eventually released inside the host at the time of feeding 

and probing [258]. There are also chewing insects such as beetles and lepidopteran larvae 

that can cause damage in various plant tissues and feed through stylet penetration 

consuming phloem sap [259]. The effector molecules can be either cell wall degrading 

enzymes such as pectinases, glucanases, amylases or detoxifying enzymes such as 

oxidoreductases, phenol oxidases, peroxidases (reviewed in [260]). The manipulation of 

host responses by aphids depends on the capacity to alter host morphology, affect the 

nutrient distribution and destroying host defense responses (reviewed in [260]). To avoid 
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such attacks from aphids, plants have developed their own defense strategies such as the 

presence of preformed barriers, chemical defenses that are constitutive in nature, and 

employing direct and indirect inducible defenses [254]. Like in any coevolutionary 

interaction, in plant-parasite interactions evolutionary arms race takes place [260]. There 

are various models that describe plant-pathogen interactions such as the gene for gene 

model, guard model, decoy model, bait and switch model and zig-zag model [16, 261, 

262, 263]. The zig-zag model depicts the interaction between the plant and parasites [16]. 

It is still unknown if aphid and other insects interaction follow this particular model 

[260]. According to the zig-zag model, aphids possess conserved molecular pattern called 

Pathogen Associated Molecular Patterns (PAMPs) and are recognized by various 

receptors present in the external face called pattern recognition receptors (PRRS) [264]. 

These PRRS on plasma membrane recognize PAMPs when challenged by the pathogens, 

and plant basal immune response called PAMP-triggered immunity (PTI) is triggered. 

Effector-triggered susceptibility (ETS) is triggered by the successful aphids that deliver 

effectors capable for pathogen virulence; ETI (Effector-triggered Immunity) results from 

the successful recognition of effectors by the NBS-LRR proteins; Natural selection helps 

pathogen to dodge ETI by shedding or varying the effector gene or adding some effectors 

that suppress ETI, which eventually results in new R specificities so that ETI can be 

triggered again. As reviewed by Wu and Baldwin, 2010 [254] early defense signaling 

events take place in a cell of insect attacked leaf. Major events are described as: elicitors 

that are perceived by the receptors on plasma membrane trigger Ca2+ channels and 

produces Ca2+. Ca2+ binds with NADPH oxidase, which gets enhanced through 

phosphorylation by CDPKs eventually producing reactive oxygen species (ROS). 
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MAPKs are also activated quickly among which SIPK and WIPK trigger the synthesis of 

Jasmonic acid (JA) and JA-Ile (JA-isoleucine). JA-Ile binds to COI1 receptor causing 

degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins and releases MYC2 and 

MYC2-like transcription factors. SIPK phosphorylates ACS proteins and increases 

ethylene production, which leads to increased activity of ERF (Ethylene Responsive 

Elements). These series of signaling get translated into metabolites that are responsible 

for plant defense. 

1.8. Plant-nematode Interactions 

 

Plant parasitic nematodes are obligatory parasites and are sedentary endoparasites 

[Heterodera and Globodera (cyst nematode) and Meloidogyne (root-knot nematodes)] 

[139]. Cyst nematodes get their way to vascular cylinders by use of stylets through the 

root and form the feeding site coupled with multinucleate syncytium formation [265]. 

These cyst nematodes go through three molt stages and eventually become adults. The 

infected cells around the feeding site of nematodes divide and swell forming root knots 

[139], and after the infection, endoglucanase and polygalacturonase genes in the host are 

upregulated [266]. In Arabidopsis, a homolog of pectin acetyltransferase gene is 

upregulated in both syncytia and pre-giant cells [267]. Various experiments have reported 

upregulation of auxin-response genes and an increase in ethylene (reviewed in [139]). 

Nematodes are also involved in upregulating genes such as ENOD40, involved in 

nodulation and CCS52a, involved in cell-cycle [268].  

Numerous plant resistance genes involved in defense mechanism against aphids 

and nematodes encode proteins containing a nucleotide-binding site (NBS) and a leucine-
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rich repeat (LRR) motifs [269]. Root knot nematode (Meloidogyne incognita) resistance 

gene in tomato, Mi, is an NBS-LRR gene [270] and is involved in resistance to potato 

aphid (Macrosiphum euphorbiae Thomas) [271]. Vat gene, which confers resistance to 

Aphis gossypii in melon (Cucumis melo) is also an NBS-LRR gene [272]. Besides these, 

an aphid resistance gene, AKR (Acyrthosiphon kondoi resistance) was mapped on to a 

CNL cluster in Medicago truncatula [273]. Other nematode resistance genes, Gpa2, and 

Hero belong to the NBS-LRR family and have been cloned (reviewed in [139]).  

1.9. Plant-aphid-nematode Interactions 

 

Both above- and belowground herbivores, although spatially segregated, share the 

host plant through the systemic tissues and can influence each other [274]. Such 

herbivory has increased diversification across the insects [275]. Numerous belowground 

organisms such as nematodes, microbes, fungi, and insects that feed on plant roots can 

fluctuate the concentration of defense compounds such as phenolics, terpenoids or 

glucosinolates, both in belowground and aboveground plant tissues [276]. The impact of 

root-feeders on shoot defense and effects of aboveground herbivory on root defense was 

remained unnoticed for a long time [277].  

There have been several previous studies toward understanding plant-aphid-

nematode interactions [172, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 

289, 290] (Table 1.4). The nematode, Pratylenchus penetrans infection on Brassica nigra 

caused a decreased infestation of shoot herbivore, Pieris rapae [276].  Bezemer et al. 

(2005) [286] reported decreased fertility of aphids Rhopalosiphum padi infesting Agrostis 

capillaris and Anthoxanthum odoratum because of decreased amino acid in the phloem 
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sap of nematode infected plants. A similar type of effect was seen in the offspring of 

aphid Myzus persicae on Plantago lanceolata infected with nematode P. penetrans [287]. 

Hol et al. (2010) [291] reported a detrimental effect on aphids, Brevicoryne brassicae in 

the presence of nematodes (H. schachtii) in B. oleracea. This might be because of the 

disturbance on feeding relations between plants and aphids as nematodes reduced amino 

acid and sugar in the phloem and reduced glucapin concentration and increased 

gluconapoleiferin and 4-methoxyglucobrassicin concentration in leaves [280]. Also, the 

reproduction of aphid (Schizaphis rufula) was reduced in the presence of three nematodes 

(Pratylenchus, Meloidogyne, and Heterodera spp.) in the plant, Ammophila arenaria in 

laboratory conditions [292]. The possible reason might be mechanical factors such as 

changes in waxes of the cuticle, leaf toughness or water content in the presence of 

nematodes [293]. The water stress in the aerial part of the host plant might affect the 

insects that rely on phloem feeding [294]. Also, decreased shoot herbivory could be 

because of the accumulation of phenolics and glucosinolates [276, 277]. However, the 

changes in the concentration of plant metabolites in the host plant are independent of the 

presence of another herbivore [280]. A recent study by Hoysted et al. (2017) [279] 

reported the positive effect on the reproduction of aphids, Myzus persicae, on the 

presence of endoparasitic nematode (Globodera pallida) in Solanum tuberosum, which 

contrasts with the previous studies. The increased SA in the leaves and suppression of JA, 

when co-infected with the nematodes, played a positive effect in the M. persicae. There 

are also been some studies to show shoot aphids, in turn, possess the ability to affect 

nematode infections. The abundance of nematode, Tylenchorhynchus was decreased on 

aphid infested plants and there was no effect on Pratylenchus in N. tabaccum [295]. On 
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the same way, the abundance of H. glycines and Meloidogyne incognita was found to be 

increased when soybean plants were infested by Pseudoplusia includes or Helicoverpa 

zea caterpillars [288]. Another study by Kutyniok and Müller (2012) [285], showed that 

the presence of aphids reduced the number of nematodes, Heterodera schachtii and 

Brevicoryne brassicae when all added at the same time in A. thaliana. Ostrinia nubilalis 

caused a decreased abundance of Meloidogyne incognita infecting maize [289]. Hoysted 

et al. (2018) [296] reported the increase in the inoculum of M. persicae, inhibited the 

hatching of eggs of G. pallida as the content of fructose and glucose was decreased in the 

root exudates of aphid infested potato plant.  

The feeding habit of nematodes and aphids, the sequence of the herbivory (which 

arrives first on the plant), duration of infestation by aphids, the extent of susceptibility to 

herbivores and identification of insects are considered as crucial factors in understanding 

interactions between nematodes and insects [284, 285, 297, 298]. It is expected that the 

above ground herbivore that arrives first on the plant negatively affects the subsequent 

below ground herbivore [298]. The presence of aboveground herbivore, Spodoptera 

frugiperda on the maize had negatively affected the colonization of below ground 

herbivore, Diabrotica virgifera if maize is infested by S. frugiperda first [299]. However, 

the interaction effects between aboveground and belowground herbivores can be positive, 

negative or neutral [292]. The feeding tomato plants by chewing caterpillars (Spodoptera 

exigua) and sucking aphids (Myzus persicae) did not show a negative effect on the root-

knot nematodes (Meloidogyne incognita) [284]. However, plants showed compensatory 

growth of shoots in the form of tolerance response that was reduced by S. exigua upon 

nematode herbivory. Also, the plant responses can vary to subsequent herbivores 



 

 

46 

depending on the feeding mode of the above ground herbivores [284]. Not only the 

feeding mode of aboveground herbivore affect the belowground herbivore, but also the 

feeding habits of the belowground herbivore affect the performance of the aboveground 

herbivore. The study on the effect of cyst nematode Heterodera schachtii, and the root-

knot nematode Meloidogyne hapla showed the differential performance of cabbage 

aphid, Brevicoryne brassicae in black mustard (Brassica nigra) plants [283]. The 

preference and population of B. brassicae were negatively affected in H. schachtii 

infested plants whereas, opposite effect in the plants infested with M. hapla. H. schachtii 

enhanced aphid induced-resistance through SA pathway whereas, M. hapla enhanced 

through the JA pathway. This suggests the cross-talk of different hormonal signaling 

pathways during an infestation of the plant with aboveground aphid and belowground 

nematodes with different feeding strategies [283]. 

1.10. Induced Susceptibility  

 

The interaction between insect herbivores with their host plant creates a condition 

called induced susceptibility that assists other subsequent herbivores [300]. This type of 

susceptibility takes place between conspecifics on susceptible as well as resistant plants 

[300, 301]. The phenotype of conspecific can be both virulent and avirulent biotype. This 

can be explained by the increased survival capacity of avirulent Myzus persicae (Sulzer) 

on the initially fed resistant plant by avirulent M. persicae [302]. Hence, the diverse 

populations of both virulent and avirulent insects that appear phenotypically similar can 

stimulate induced susceptibility on the resistant plants [303]. Such effect of soybean 

aphid infestation on other pests colonizing soybean plants at the same time would be 

related to the suppression of host plant defense blocking jasmonate-dependent metabolic 
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pathways [304]. For instance, A. glycines reduces the activity of fatty acid desaturase 2 

(FAD2) and fatty acid desaturase 6 (FAD6) in the fatty acid pathway, thus reducing 

polyunsaturated fatty acids such as linolenic acid, the precursor of jasmonate [304]. 

Varenhorst et al. (2015) [305] concluded that virulent A. glycines increase the suitability 

of resistant soybean for avirulent conspecifics. Induced susceptibility arises through two 

different ways in A. glycines: feeding facilitation and obviation of resistance [301, 306]. 

This was demonstrated in the experiment by Varenhorst et al. (2015) [307] on finding the 

duration of induced susceptibility to monitor the durability of A. glycines resistance in 

soybean and this effect, persistent till the inducer population. The authors suggested that 

further studies of virulent aphid and soybean with Rag gene should be conducted 

considering the amount of time in which plant is allowed to A. glycines for the only 

obviation of resistance (i.e., 120 h post-infections). The influence of cyst nematode, H. 

glycines on aphid, Aphis glycines infestation or vice versa has been studied on soybean 

[281, 282, 290, 308, 309]. The study of the interaction effect of SCN and SBA on 

‘Williams’ soybean cultivar revealed that SBA choose the plants that are uninfected with 

SCN and the population growth of aphids remained unaffected by SCN infection [281] in 

laboratory conditions. Further, this study was validated in the natural field conditions 

(both open plots and experimental cages), where aphids preferably colonized uninfected 

soybean plants with SCN. Also, the population growth of the aphids remained almost the 

same in SCN infected and uninfected soybean plants. Further, the independent effect was 

observed in soybean yield in the presence of SBA and SCN in the field. The effect of 

SCN was related to a decline in soybean yield, whereas SBA was related to a decline in 

seed weight depending on their respective population densities. Heeren et al. (2012) [309] 
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utilized resistant and susceptible lines with respect to both SBA and SCN in order to 

study the interaction effect of SBA and SCN in the field conditions. The effect of SBA 

feeding on soybean on the SCN reproduction was not observed in any of the soybean 

cultivars as the SCN eggs and aphid densities, less than 100 SCN eggs per 100 cc of soil 

and less than 10 aphids per plant for <10 days, respectively, were too low in some of the 

cultivars. McCarville et al. (2012) [290] conducted experiment on different SCN 

susceptible (DK 28-52, IA 3018, IA 3041) and SCN resistant (DK 27-52, AG 2821 V, IA 

3028) soybean cultivars to understand the effect of multiple pests/pathogens (SBA, SCN, 

and the fungus Cadophora gregata) interaction. The study showed that the SCN 

reproduction was increased (5.24 times) in the presence of SBA and C. gregata. In 

contrast, the aphid population decreased by 26.4% in the presence of SCN and C. gregata 

and the SCN resistant cultivars (derived from PI88788) reduced aphid exposure by 

19.8%. Later, McCarville et al. (2014) [282] demonstrated the relationship between the 

aboveground feeding of SBA and reproduction belowground of SCN in the SCN resistant 

(Dekalb 27-52, PI88788 derived) and SCN susceptible (Kenwood 94) soybean cultivars. 

The authors concluded that SBA feeding improved the quality of soybean as a host for 

SCN, but this result varied significantly with the cultivar and length of the experiment. In 

30- days, the SCN eggs and females increased by 33% (1.34 times) in SCN-resistant 

cultivar and reduced by 50% in the SCN-susceptible cultivar. In 60-days, the numbers of 

SCN eggs and females remained unaffected in the resistant cultivar but decreased in the 

susceptible cultivar.  
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Table 1.4 Major host-nematode-aphid interaction studies in diverse host systems   

 

Host Nematode Aphids Effect Chemistry Refer

ences 

 Brassica nigra Pratylenchus penetrans  Pieris rapae Negative effect on 

aphids  

Increased phenolics and glucosinate levels [276] 

Agrostis capillaris, 

Anthoxanthum 

odoratum 

 

Paratylenchidae, Pratylenchidae, 

and Dolichodoridae 

Rhopalosiphum 

padi plus Aphidius 

coleman 

Negative effect on 

aphid 

population/Reduced 

parasitoid mortality 

Decreased foliar phenolic content and amino acid 

in phloem sap  

[286] 

Plantago lanceolata Pratylenchus Penetrans Myzus persicae Negative effect on 

aphid population 

- [287] 

Brassica oleracea Heterodera Schachtii Brevicoryne 

brassicae 

Reduced body size of 

aphids 

- [291] 

Ammophila arenaria   Pratylenchus, Meloidogyne, and 

Heterodera spp 

Schizaphis rufula Nematodes and aphids  

negatively affect each 

other 

Reduction of foliar nitrogen and amino acid 

  

[292] 

Nicotiana tabacum Meloidogyne incognita Trichoplusia 

ni and Manduca 

sexta 

Positive effects on 

aboveground aphids 

Change of foliar nicotine dynamics [277] 

Brassica oleracea Nematode species dominant of 

Cephalobidae and Rhabditidae 

families 

Brevicoryne 

brassicae 

Negative effect on 

aphid density 

- [310] 

Arabidopsis thaliana  Heterodera schachtii Brevicoryne 

brassicae 

No effect on aphid 

growth in presence of 

nematode/reduced 

number of nematodes in 

presence of aphids 

Reduced glucosinolates in shoots [285] 

Brassica oleracea Heterodera schachtii Brevicoryne 

brassicae 

 Increase in aphid 

doubling time from 3.8 

to 6.7 days 

Reduced glucapin /Increased gluconapoleiferin 

and 4-methoxyglucobrassicin in leaves/Decreased 

amino acid and sugar in phloem 

[280] 

Solanum tuberosum Globodera pallida Myzus persicae Positive effect on the 

reproduction of aphids 

Increased SA in the leaves and suppression of JA [279] 

Brassica nigra Heterodera schachtii Brevicoryne 

brassicae 

Lower preference of 

aphids/ lower 

reproduction of aphids 

Induced PR1 (SA pathway) 

Reduced VSP2 and MYC2 (JA pathway) 

[283] 

Brassica nigra Meloidogyne hapla Brevicoryne 

brassicae 

Higher preference of 

ahids/higher 

reproduction 

No PR1 expression/ High VSP2 and MYC2 

expression 

[283] 

Nicotiana tabacum Meloidogyne incognita, 

Tylenchorhynchus and Pratylenchus 

Myzus persicae Reduced the abundance 

of aphids/ 

Tylenchorhynchus was 

decreased on aphid 

- [295] 
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infested plants/no effect 

on Pratylenchus 

Zea mays Meloidogyne incognita Ostrinia nubilalis  Reduced nematode 

reproduction 

- [289] 

Solanum tuberosum Globodera pallida Myzus persicae Inhibited the hatching 

of eggs of the nematode 

Decreased fructose and glucose in the root 

exudates 

[296] 

Solanum tuberosum Meloidogyne incognita Myzus persicae No effect on the 

nematodes 

Decreased the root SA content [284] 

Glycine max Heterodera glycines Aphis glycines Aphids 

unaffected/aphid 

preference 

- [281, 

308] 

Glycine max Heterodera glycines Aphis glycines No effect of aphid on 

SCN reproduction 

- [309] 

Glycine max Heterodera glycines plus 

Cadophora gregata 

Aphis glycines SCN reproduction 

increased (5.24 times) 

in the presence of SBA 

and C. gregata/ aphid 

population decreased by 

26.4% in the presence 

of SCN and C. gregata 

in PI88788 derived 

cultivar 

- [290] 

Glycine max Heterodera glycines Aphis glycines SCN eggs and females 

increased by 33% (1.34 

times) in SCN-resistant 

cultivar/reduced by 

50% in the SCN-

susceptible cultivar. 

- [282] 
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In summary, this literature review provides insights into the molecular 

mechanisms of how R genes and MAPK genes are involved in regulating abiotic and 

biotic stresses including soybean-SBA-SCN interactions. Most of the previous studies 

agree that both SBA and SCN do not depend on a single gene or do not rely on just R 

gene-mediated resistance. The resistance in the soybean is controlled by several genes 

such as Rag genes for soybean aphid and Rhg genes for SCN, and in fact, soybean 

resistance to these pests isquantitative resistance. Gene pyramiding and integration of 

integrated pest management (IPM) could prove promising for soybean crop improvement 

with durable resistance. This dissertation aids this effort by unraveling stress responsive 

genes in soybean, including those involved in soybean-SBA-SCN interactions.  
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CHAPTER 2: EVOLUTIONARY DIVERGENCE OF TNL DISEASE-RESISTANCE 

PROTEINS IN SOYBEAN (GLYCINE MAX) AND COMMON BEAN (PHASEOLUS 

VULGARIS) 

This chapter has been published in the Journal Biochemical Genetics: 

Neupane, S.; Ma, Q.; Mathew, F.M.; Varenhorst, A.J.; Andersen, E.J.; Nepal, M.P. 

Evolutionary Divergence of TNL Disease-Resistant Proteins in Soybean (Glycine max) 

and Common Bean (Phaseolus vulgaris). Biochem. Genet. 2018. 

Abstract 

Disease-resistant genes (R genes) encode proteins that are involved in protecting 

plants from their pathogens and pests. Availability of complete genome sequences from 

soybean and common bean allowed us to perform a genome-wide identification and 

analysis of the Toll interleukin-1 receptor-like nucleotide-binding site leucine-rich repeat 

(TNL) proteins. Hidden Markov model (HMM) profiling of all protein sequences resulted 

in the identification of 117 and 77 regular TNL genes in soybean and common bean, 

respectively. We also identified TNL gene homologs with unique domains, and signal 

peptides as well as nuclear localization signals. The TNL genes in soybean formed 28 

clusters located on 10 of the 20 chromosomes, with the majority found on chromosome 3, 

6 and 16. Similarly, the TNL genes in common bean formed 14 clusters located on five of 

the 11 chromosomes, with the majority found on chromosome 10. Phylogenetic analyses 

of the TNL genes from Arabidopsis, soybean and common bean revealed less divergence 

within legumes relative to the divergence between legumes and Arabidopsis. Syntenic 

blocks were found between chromosomes Pv10 and Gm03, Pv07 and Gm10, as well as 

Pv01 and Gm14. The gene expression data revealed basal level expression and tissue 



 

 

 

74 

specificity, while analysis of available microRNA data showed 37 predicted microRNA 

families involved in targeting the identified TNL genes in soybean and common bean. 

Keywords: Comparative genomics; Gene duplication; Legume disease-resistant genes; 

Purifying selection; R gene targeting MicroRNAs; Synteny 

 2.1. Introduction 

Plant defense strategies have coevolved with their natural enemies such as pests 

and pathogens (Jones and Dangl 2006). Interactions among plants, pathogens, and pests 

have been recently discussed in various models including zig-zag and multicomponent 

models (Andolfo and Ercolano 2015; Jones and Dangl 2006). These models largely 

involve proteins encoded by clustered disease resistance (R) genes in plant genomes 

(Hulbert et al. 2001). The R gene encoded proteins were classified in a previous study 

into eight major groups based on an amino acid motif organization and localization in the 

cell (Gururani et al. (2012). Among these groups, two major types of R gene proteins are 

Toll interleukin-1 receptor-like Nucleotide-binding site Leucine-rich repeat (TNL) 

proteins and Coiled Coil (CC)-NBS-LRR or CNL proteins. In a recent Angiosperm wide 

study, Shao et al. (2016) have classified NBS-LRR genes into three classes (TNLs, CNLs 

and R [resistance to powdery mildew8] NLs). The TNL genes encode proteins similar to 

Drosophila melanogaster Toll and human interleukin-1 receptor’s domain sequences at 

the N-terminal and hence given the name TIR (DeYoung and Innes 2006), whereas CNL 

genes encode a coiled-coil (CC) domain at the N-terminal (Meyers et al. 2003). The TIR 

domain has mainly three conserved motifs: TIR1, TIR2, and TIR3 and one variable TIR4 

motif (Meyers et al. 2002). Both groups are believed to have vital roles in the plant 

defense system (Marone et al. 2013). The whole genome sequences of plant species at 
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diverse taxonomic levels allow us to study the diversity and evolution of the R-genes 

(Schatz et al. 2012). Increasing number of recent studies has used the whole genome 

sequences to study R genes in both monocots and dicots including legumes (Andersen et 

al. 2016; Christie et al. 2016; Luo et al. 2012; Meyers et al. 2003; Nepal and Benson 

2015; Zhang et al. 2016b). 

Legumes constitute the third largest group of Angiosperms after Orchidaceae and 

Asteraceae (http://www.theplantlist.org/1.1/browse/A/Leguminosae/). They contribute 

approximately 27% of world’s major crops and supply one-third of dietary protein to 

humans along with fodder (Duc et al. 2015; Zhu et al. 2005). Legumes also play 

important role in biological nitrogen fixation through their symbiosis with rhizobia: such 

symbiosis is almost 60 million-year-old (MYA), and root nodulation is believed to be 

almost 58 MYA (Sprent 2007). The production of legumes is limited by both biotic and 

abiotic factors. The abiotic factors include water deficit, flooding, salinity, cold, heat, 

UV-B radiation, ozone etc. and biotic factors include diseases such as rusts, mildews, 

root rot diseases etc. (Rathi et al. 2016). The major biotic threats to the legume crops 

consist of bacteria, viruses and fungi and the crops employ NBS-LRR genes to confer 

resistance against them. Resistance to Phytophthora sojae, a major root-rot causing 

disease in legumes is conferred by Rps (Rps1-k-2, Rps1-k-1; Resistance to P. sojae), an 

NBS-LRR disease resistance gene in soybean (Gao and Bhattacharyya 2008; Gao et al. 

2005). Bacterial blight disease, caused by Pseudomonas syringae in soybean with their 

pathogen avrA, avrB, avrC, avrD, avrE, avrF, and avrG effectors interacting against 

host’s Rpg genes, the CNL type of R-genes (Chen et al. 2010; Milos et al. 2013). 

Phakopsora pachyrhizi, a basidiomycete that causes soybean rust (SBR), considered to 
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be the most destructive foliar disease in soybean, resistance for which is conferred by 

Rpp genes (Goellner et al. 2010). Two dominant R- genes Phg-1 and Phg-2 were 

identified to confer resistance to Pseudocercospora griseola (Namayanja et al. 2006; 

Sartorato et al. 2000). Uromyces appendiculatus, fungus causing common bean rust 

produces effectors that interact against 14 major dominant rust R-genes (Ur-1 to Ur-14) 

in common bean (Souza et al. 2013). Various resistance loci (Rag, resistance to Aphis 

glycines) in soybean including Rag1, Rag2, Rag3, Rag4, Rag5, and Rag6 have been 

identified conferring resistance to A. glycines Matsumura (Hemiptera: Aphididae) (Bales 

et al. 2013; Hartman et al. 2001; Hill et al. 2012; Jun et al. 2012; Kim et al. 2010a; Kim 

et al. 2010b; Zhang et al. 2009; Zhang et al. 2010). Studies have shown that these Rag 

genes encode NBS-LRR proteins (Kim et al. 2010a; Kim et al. 2010b). The recently 

studied comparative transcriptomic analysis of common bean genotypes revealed that 

TNL protein Phvul.010G054400 was highly expressed high in soybean cyst nematode 

(SCN) resistant genotype of common bean (Jain et al. 2016). 

Among the two major classes of NBS-LRR genes in plants, TNL genes are absent 

in monocots (Li et al. 2015) although origin of both CNLs and TNLs dates back to 

bryophytes, one of the oldest groups of land plants (Yue et al. 2012). Even though both 

CNL and TNL genes are present in dicot species, the absence of TNLs in some eudicot 

species such as Aquilegia coerulea (Collier et al. 2011), and Beta vulgaris (Tian et al. 

2004) has been reported. Various studies on phylogenetic analyses have suggested that 

TNL group expanded after the monocots and dicots diverged from each other and are 

mostly involved in resistance to species-specific pathogens (Yang et al. 2008). In 

Arabidopsis, TNLs require functionally enhanced disease susceptibility (EDS1) allele to 
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activate hypersensitive response (HR), whereas CNLs require a functional non-race 

specific disease resistance (NDR1) gene for the activation of disease resistance 

(Glazebrook 2001). Collier et al. (2011) have reported the absence of NRG1 (N 

Requirement Gene 1) genes, typical CNL genes absent in plant species lacking TNL 

genes. Interestingly, a TNL type protein N, activated against tobacco mosaic virus 

(TMV), partners with NRG1 (N Requirement Gene 1), which belongs to CNL type of 

protein (Peart et al. 2005). This implies the involvement of overlapping signaling 

pathways involving CNL and TNL genes (Tian et al. 2004). The diversity and 

distribution of the TNLs and CNLs vary from plant species to species: 161 CNLs and 54 

TNLs in Malus x domestica (Arya et al. 2014); 119 CNLs and 64 TNLs in Populus 

trichocarpa (Kohler et al. 2008); 203 CNLs and 97 TNLs in Vitis vinifera (Yang et al. 

2008); 118 CNLs and 18 TNLs in Solanum lycopersicum (Andolfo et al. 2014); 25 CNLs 

and 19 TNLs in Cucumis sativus (Yang et al. 2013); 65 CNLs and 37 TNLs in Solanum 

tuberosum (Lozano et al. 2012); 152 CNLs and 118 TNLs in Medicago truncatula (Yu et 

al. 2014); 128 CNLs and 34 TNLs in Manihot esculenta (Lozano et al. 2015); 64 CNLs 

and 57 TNLs in Capsella rubella (Zhang et al. 2016b); 167 CNLs and 112 TNLs in 

Cajanus cajan (Shao et al. 2014); 126 CNLs and 27 TNLs in Gossypium raimondii (Wei 

et al. 2013). However, A. thaliana has 94 TNLs and 55 CNLs (Meyers et al. 2003); A. 

lyrata has 103 TNLs and 21 CNLs (Guo et al. 2011); Brassica rapa has 52 TNLs and 28 

CNLs (Mun et al. 2009); Eucalyptus grandis has 162 TNLs and 128 CNLs (Christie et al. 

2016); Thellungiella salsuginea has 50 TNLs and 33 CNLs (Zhang et al. 2016b) 

suggesting TNLs are abundant than CNLs in some plant species.  
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Increased availability of the legume genome sequences (Glycine max, Phaseolus 

vulgaris, Medicago truncatula, Arachis ipaensis, A. duranensis, Arachis hypogaea, 

Trifolium pratense, Vigna radiata, V.  angularis, V. unguiculata, Lupinus angustifolius, 

Cicer arietinum, Cajanus cajan, Lotus japonicus ) provides opportunities for comparative 

genomic analyses, particularly in enhancing our understanding of R genes and ability to 

develop durable resistance in cultivars (https://legumeinfo.org/species). In this study, we 

analyzed the genomes of G. max (Schmutz et al. 2010) and P. vulgaris (Schmutz et al. 

2014), with the genome sizes of approximately 1,100 and 588-637 million base pairs 

(Mbp), respectively (Arumuganathan and Earle 1991; Bennett and Smith 1976). The two 

legume species diverged almost 19 MYA at the time soybean genome got the last 

duplication event (Lavin et al. 2005; Schlueter et al. 2004). Analyses of Rpg1b (for 

Resistance to Pseudomonas glycinea 1b) showed a potential involvement of this locus in 

speciation event in the two species (Ashfield et al. 2012). The recombination rates 

twinned with loss and retention of the redundant regions have caused differences in the 

number of genes in the two species (Ashfield et al. 2012; Du et al. 2012). Previously, 

bioinformatics analyses of NBS-LRR genes in soybean and other legumes were 

conducted by many groups (Benson 2014; Kang et al. 2012; Nepal and Benson 2015; 

Shao et al. 2016; Shao et al. 2014; Zhang et al. 2016a; Zheng et al. 2016). It was beyond 

the scope of these large-scale studies to focus on specific group(s) of R genes, lacking the 

clear picture of protein domains, their function and evolutionary significance. 

Nonetheless, detailed evolutionary relationships, structural as well as functional 

divergence of the CNL R-genes in soybean and common bean were revealed by Nepal 

and Benson (2015) and Benson (2014). In this study, our objectives were to identify TNL 
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R-genes in soybean (G. max; 2n=40) and common bean (P. vulgaris; 2n=22) and assess 

their structural and functional divergence. The results from this study shed light on 

evolutionary relationships of the TNL genes with potential implication in crop 

improvement.  

2.2. Materials and Methods  

2.2.1. Hidden Markov Model (HMM) Search and TNL Gene Identification 

Genome-wide identification of TNL genes in soybean and common bean was 

carried out using methods used in A. thaliana, Setaria italica, and Hordeum vulgare 

(Andersen et al. 2016; Andersen and Nepal 2017; Meyers et al. 2003). G. max protein 

sequences accessed through Ensembl Genomes database and P. vulgaris protein 

sequences obtained from Phytozome.net were used to construct local protein database for 

HMM profiling (Finn et al. 2015). Arabidopsis TNL protein sequences 

(http://niblrrs.ucdavis.edu/data_protein.php) were used as reference or seed sequences to 

search for TNL protein sequences in soybean and common bean. Reference sequences in 

the stockholm file format was used for HMM profiling in the program HMMER version 

3.1b2 (Finn et al. 2015) at a threshold expectation value of 0.05. NB-ARCs [for APAF1 

(apoptotic protease activating factor-1), R (Resistance genes), and CED4 (Caenorhabditis 

elegans death-4 protein)] were further identified using Pfam (Finn et al. 2013) database 

integrated in InterProScan (Jones et al. 2014). Proteins with match in accordance to Pfam 

with the TIR domain (PF01582), NB-ARC (NB) domain (PF00931), and LRR domains 

with ‘LxxLxxLxx’ signatures were selected. Genes with NB-ARCs were aligned to create 

reference for second HMM profile to scan the respective genomes with threshold 

expectation value of 0.001. Further Interproscan database was searched using the 
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program Geneious [(Kearse et al. 2012) https://www.geneious.com/] to confirm the NBS 

proteins with TIR domains. Multiple expectation maximization for motif elicitation 

(MEME) (Bailey and Elkan 1994) analysis was performed to confirm the presence of P-

loop, Kinase-2, and GLPL motifs in NBS domain and TIR1, TIR2, TIR3, TIR4 motifs in 

TIR domain. SignalP 4.1 (Petersen et al. 2011) was employed to analyze the presence of 

signal peptides in the identified TNL genes. Subcellular localization of the putative TNL 

genes were analyzed using TargetP 1.1 (Emanuelsson et al. 2007). NLStradamus (Ba et 

al. 2009) was used to examine whether the TNL genes contain nuclear localization 

signals (NLS). 

2.2.2. Phylogenetic Analysis 

The NBS domains in TNL proteins identified in A. thaliana, G. max and P. 

vulgaris were aligned using ClustalW (Larkin et al. 2007) with default settings. MEGA 

(version 7.0.14) (Kumar et al. 2016) was used to perform maximum likelihood (ML) 

phylogenetic analysis with 100 bootstrap replicates. The trees were rooted with 

Streptomyces coelicolor accession P25941 as an out-group as previously used in 

Arabidopsis study (Meyers et al. 2003). The protein model selection for phylogenetic 

analysis was carried out in MEGA, resulting in the selection of the JTT+G+I (Jones–

Taylor–Thornton with gamma distribution and invariant sites). The sequences with 

bootstrap confidence ≥70% (0.7) are assigned to be orthologous sequences (Peele et al. 

2014). In order to find some orthologs for manually curated TNL genes, one additional 

tree was constructed using the same method but including manually curated TNL genes 

obtained from PRGdb (http://prgdb.crg.eu/wiki/Main_Page) with TNL genes of soybean 

and common bean. 

https://www.geneious.com/
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2.2.3. Chromosomal Locations, Clustering and Syntenic Analysis 

Entire chromosome sequences of G. max and P. vulgaris obtained from Ensembl 

Genomes and Phytozome.net were uploaded into the program Geneious. The TNL gene 

locations and clustering were visualized by matching the locations of genes in their 

respective chromosomes. The clustering of TNL genes was quantified on the basis of 

nucleotide intervals between the genes following Jupe et al. (2012), which used two 

criteria: 1) distance between two TNL genes is less than 200kb, and 2) presence of no 

more than eight annotated non-TNL sequences between two consecutive TNL sequences. 

Coding sequences of the TNL genes were used to calculate the nonsynonymous 

substitutions per nonsynonymous site (Ka) and synonymous substitutions per 

synonymous site (Ks) values. Ka/Ks ratios for each clade were calculated using the pro-

gram DnaSP 5.10.1(Rozas 2009). Relative age of duplication events was inferred from 

average Ks values. Syntenic map of TNL genes of G. max and P. vulgaris were created 

using SyMAP version 4.2 (Soderlund et al. 2011) using South Dakota State University 

High Performance Computing Cluster (HPC Cluster). The input files for syntenic map of 

G. max and P. vulgaris were whole chromosome sequences and TNL R-gene annotation 

files. 

 2.2.4. Expression and microRNA (miRNA) Analysis 

Expression profiles of the soybean and common bean TNL genes were studied 

using RNA-Seq data available at Soybase.org (Severin et al. 2010) and 

http://plantgrn.noble.org/PvGEA/ (O’Rourke et al. 2014), respectively. Raw data 

(number of mapped reads per gene per tissue) and normalized data were used for the 
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respective expression profile studies. Heatmaps were generated using deseq normalized 

data through MeV package available in http://mev.tm4.org/ (Howe et al. 2011). The 

expression data were further studied through K-means clustering method dividing data 

into three clusters (moderate to minimal expression, minimal expression to no expression 

and no expression at all) based on Euclidean distance under 1000 iterations (Howe et al. 

2011). The mature microRNA (miRNA) sequences of soybean and common bean were 

acquired from miRBase (Kozomara and Griffiths-Jones 2014). There were 639 and ten 

miRNAs for soybean and common bean, respectively. microRNAs and regular TNL gene 

sequences identified in this study, were used in Plant Small RNA Target Analysis Server 

to predict miRNA-targeting sites (Dai and Zhao 2011). 

2.3. Results 

2.3.1. Identification of TNL Genes in Soybean and Common Bean 

The first HMM analysis of 46,430 soybean protein sequences resulted in 741 

protein sequences orthologous to A. thaliana TNL reference sequences, at a threshold 

expectation value of 0.05. After InterProscan annotation, the NB-ARC domains extracted 

from 644 sequences were employed in the second HMM analysis at a threshold 

expectation value of 0.001. This resulted in 153 unique protein sequences containing TIR 

and NB-ARC regions in soybean. Among them, 117 sequences containing three signature 

motifs: P-loop, Kinase-2, and GLPL were identified as regular TNL genes, and included 

for further analysis. Similarly, the first HMM analysis of 27,197 common bean protein 

sequences resulted in 465 protein sequences orthologous to the reference TNL protein 

sequences in Arabidopsis, at stringency of 0.05. After Interproscan annotation, the NB-

ARC domains extracted from 395 sequences were used in the second HMM analysis at 
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stringency of 0.001. Among 93 sequences containing TIR, NB-ARCs regions, 77 

sequences containing three signature motifs were identified as regular TNL proteins in 

common bean and were included for further analysis. The LxxLxxLxx signatures were 

present in 126 out of 153 protein sequences ranging from 1 to 18 in soybean, and 81 out 

of 93 protein sequences ranging from one to 27 in common bean. Further, the TNL genes 

were classified into subgroups: TNL, TN (truncated)L, TLTN, TN (lacking LRRs), 

TNTN, TNT and TX (lacking both NBS and LRRs) (Supplementary Fig. 1 and 

Supplementary Fig. 2; Supplementary Table 1). Soybean and common bean TNL 

proteins possess some unique domains in some members. The gene members 

GLYMA16G33971 and GLYMA16G33961 of soybean possess basic secretory proteins 

domain (BSP, PF04450) at the C-terminal instead of leucine rich domains. Other gene 

members GLYMA08G41270, GLYMA09G29050, GLYMA16G23790, 

GLYMA16G33590, GLYMA16G33616, Phvul.001G128200, and Phvul.002G171400 

possessed zinc binding in reverse transcriptase (zf-RVT, PF13966) and reverse 

transcriptase like (RVT_3, PF13456) domains. SignalP analysis of the identified TNL 

genes showed 17 and ten N-terminal signal peptides, in soybean and common bean, 

respectively (Supplementary Table 2). Out of the 153 and 93 soybean and common bean 

proteins, 19 and nine proteins were identified to contain a putative NLS using 

NLStrdamus (Supplementary Table 3). 

In soybean, P-loop, Kinase-2, GLPL, and RNBS C motifs are present in all 117 

regular TNL genes, whereas RNBS A, RNBS B and RNBS D are present in 115 (except 

GLYMA08G41560 and GLYMA13G26450), 116 (except GLYMA06G40690) and 52 

members, respectively. Of the total 153 genes annotated to have TIR domain, only 123 
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genes have all TIR1, TIR2, TIR3, and TIR4 motifs. The TIR1, TIR2, TIR3, TIR4 are 

present in 139, 143, 142 and 145 members, respectively. Altogether, 108 gene members 

possess all four TIR domains and three NBS signature motifs. Also, MHDL motif is 

present in 108 gene members (Supplementary Fig. 3). Similarly, in common bean, P-

loop, Kinase-2, GLPL, and RNBS C motifs are present in all 77 genes whereas RNBS A, 

RNBS B, and RNBS D are present in 75 (excluding Phvul.010G028500 and 

Phvul.010G136800), 76 (excluding Phvul.011G140300) and 55 members respectively. 

Of the 93 genes annotated by Interproscan to have TIR domain, only 80 genes have all 

TIR1, TIR2, TIR3, and TIR4 motifs. TIR1 and TIR2 motifs are present in 88 members 

whereas TIR3 and TIR4 motifs are present in 90 members. Altogether, 70 gene members 

possess all four TIR domains and three NBS signature motifs. Also, MHDL motif is 

present in 73 gene members (Supplementary Fig. 4). The sequences of the conserved 

motifs of soybean and common bean are represented in Table 2.1. 

2.3.2. Gene Clustering and Structural Variation 

Figure 2.1 visualizes the TNL gene clustering in soybean and common bean. 

Since Phvul.L003500 and GLYMA0220S50 were present in the scaffold_220 of common 

bean genome and scaffold_40 of soybean respectively, they were excluded from cluster 

analysis. Seventy four of the 117 TNL genes identified in soybean formed 28 clusters 

located on 15 of 20 chromosomes, and most of them were located on chromosomes 

Gm03, Gm06 and Gm16. Approximately, 40% of the clustered genes were present in 

Gm16 (Figure 2.1A). Likewise, approximately 48 of 77 TNL genes identified in common 

bean formed 14 clusters located on five of 11 chromosomes, and mostly clustered on 

chromosome Pv10. Approximately, 70% of the clustered genes are present in Pv10 
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(Figure 2.1B). Exon analysis showed presence of average of 5.5 exons in both soybean 

(ranging from two to 12 exons) and common bean (ranging from two to 13 exons) (See 

Fig. 2.1) 

 

 Figure 2.1. Chromosomal distribution of TNL gene clusters in A) soybean (N=20) and in 

B) common bean (N=11) genomes. Each blue arrow represents a TNL gene location and 

orientation on a chromosome represented by the black line. A black rectangle on the 

chromosome represents a centromere position. 

 

2.3.4. Ks Values 

Estimated synonymous substitutions per synonymous site (Ks) values were used 

to infer the relative age of the gene clusters. In soybean, average Ks values were highest 
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for cluster 1_1 (GLYMA01G03921, GLYMA01G03980, GLYMA01G04000) and lowest 

for the cluster 3_2 (GLYMA03G06854, GLYMA03G06976). Likewise, in common 

bean, average Ks values were highest for the cluster 4_1 (Phvul.004G134300, 

Phvul.004G135100) and lowest for the cluster 8_1 (Phvul.008G195100, 

Phvul.009G195300) (Supplementary Table 4). The average Ka/Ks ratios of the clades 

inferred from phylogenetic tree showed the values less than 1 except for the pair 

GLYMA06G41714, GLYMA06G41896 having values greater than 1 accessions in L11 

clade (See Figure 2.2). 

2.3.5. Phylogenetic and Syntenic Relationships 

Phylogenetic relationships of TNL genes of soybean and common bean were 

examined and compared with those of A. thaliana. We used amino acid sequences of 

NBS domain with P-loop, Kinase 2 and GLPL motifs from these species for the 

phylogenetic analyses. Among the eight clades reported in Arabidopsis, only TNL-C 

gene members were nested with GLYMA01G04590, GLYMA08G40501, 

Phvul.002G079200, and Phvul.003G072500 (TNL-C clade) (Fig. 2). Although soybean 

and common bean diverged about 19MYA, most of the TNL genes appear to be 

conserved in these plants. Based on the clade support and orthologous relationships, we 

named the clades (I-XIV and TNL-C) of soybean and common bean TNL genes on the 

phylogenetic tree. Soybean and common bean TNL genes are concentrated on 

chromosome Gm16 and Pv10 respectively. Hence, we examined if chromosome Gm16 

and Pv10 were clustered in the same clade in the phylogenetic tree. The TNL genes on 

chromosome Gm16 were found in 11 different clades and those on chromosome Pv10 

were found in four different clades. For comparative analysis of orthologs of disease 
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resistance genes, we constructed the second phylogenetic tree including characterized and 

manually curated TNL and RPW8-NL type genes from Solanum tuberosum, S. 

tuberosum subsp. andigena, A. thaliana, Nicotiana benthamiana, N. glutinosa, Linum 

usitatissimum, and G. max (Supplementary Fig. 5). The BLAST result of Rj2/Rfg1 

protein sequence within the Ensembl Genomes database showed that GLYMA16G33780, 

GLYMA16G23800, GLYMA19G02670, Phvul.004G028900 are the most likely gene 

accessions for Rj2/Rfg1 gene. These accessions were found in the same clade in the 

second phylogenetic tree as well. Thus, we assigned Phvul.004G028900 gene accession 

as homolog for Rj2/Rfg1 gene in common bean (BS=97%). The KR1, gene resistant to 

soybean mosaic virus (SMV), clustered together with GLYMA19G07680, 

GLYMA19G07650, GLYMA19G07700 and Phvul.004G058700 with high bootstrap 

support and are the most likely orthologs of KR1 gene. Likewise, flax rust resistance 

proteins L6 and M were clustered with GLYMA01G04590, Phvul.002G079200, 

GLYMA08G40501 and Phvul.003G072500 with strong bootstrap support suggesting that 

these are the most likely orthologs of L6 and M proteins. Other group of TNLs of plants 

belonging to Solanaceae family (Gro 1.4 from S. tuberosum, RY-1 from S. tuberosum 

subsp. andigena, N from N. glutinosa) formed their own cluster. Likewise, RPP5, RPP4, 

RAC1, SSI4, RPP1 genes from Arabidopsis formed their own clade and were with sub 

clade formed by many soybean and common bean TNL genes. The RPW8 group of 

resistance genes containing ADR1, ADR1-L1 from Arabidopsis and the NRG1 from N. 

benthamiana formed their own clusters suggesting these groups might have different 

evolutionary history than the TNL resistance proteins. The syntenic map of TNL genes of 

G. max and P. vulgaris, created using SyMAP, showed high synteny between 
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chromosomes Pv10 and Gm03; Pv07 and Gm10, Pv01 and Gm14 (Supplementary Fig. 

6). It also showed that most of the fragments of multiple chromosomes of common bean 

had similarity to the single chromosome of soybean. For instance, soybean chromosome 

Gm08 possesses the chromosomal fragments from Pv02, Pv04, Pv01, Pv03, Pv05, Pv06, 

Pv08 and Pv10. Likewise, soybean chromosome Gm05 possess the fragments from Pv03, 

Pv09, Pv04, Pv02, Pv01. 

 

Figure 2.2. Phylogenetic relationships of the NB-ARC amino acid sequences of the TNL 

genes from A. thaliana (AT; orange), P. vulgaris (Phvul; blue) and G. max (GLYMA; 

light blue). The JTT+G+I (Jones–Taylor–Thornton with gamma distribution and 

invariant sites) model was used for the Maximum-Likelihood tree construction using 100 

bootstrap replicates. The tree was rooted using Streptomyces coelicolor (P25941) as an 

outgroup. The accessions of soybean and common bean are followed by the number of 

exons and genomic cluster. The clades are named I-XIV and TNL-C. Average Ka/Ks 

values of each clade are represented on the left side of the figure.  
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2.3.6. Expression and miRNA Analysis 

Available gene expression data for soybean and common bean are visualized as 

heatmaps (Figure 2.3). Eighty-nine of the 153 TNL genes of soybean had unique 

mappable reads whereas we obtained all 93 common bean TNL genes with unique 

mappable reads. Soybean had reads ranging from 1351 to 222 reads in the upper quartile 

while common bean had reads ranging from 28460 to 4124 in the upper quartile. 

GLYMA16G33590 (1351 reads in diverse set of tissues under different conditions) and 

Phvul.002G323800 (28460 reads in diverse sets of tissues under different conditions) had 

highest number of reads and mostly expressed in all tissues. The dataset revealed 

GLYMA02G03760 and GLYMA03G05730 had zero expression (zero reads) in all 

tissues whereas in common bean the minimum number of reads was three for 

Phvul.010G025700. The dataset and heatmap revealed some of the genes were tissue 

specific (Supplementary Table 5). We observed 15 genes in Cluster I representing 

moderate to minimal expression, 29 genes in Cluster II representing minimal expression 

to no expression and 45 genes in Cluster III representing no expression at all (except 

significantly high expression of GLYMA12G03040, GLYMA16G25140 in nodule and 

GLYMA01G31550 in root) in all tissues in soybean. Similarly, in common bean, 11 

genes in Cluster I representing moderate to minimal expression (Phvul.010G054400 

being highly expressed in pre-fixing and ineffectively fixing nodules), 40 genes in 

Cluster II representing minimal expression to no expression (except significantly high 

expression of Phvul.008G195300, Phvul.004G046400, Phvul.008G19510 in whole roots 

and Phvul.010G054600 in ineffectively fixing nodules) and 42 genes in Cluster III 

representing no expression at all in all tissues was observed (Supplementary Table 6). Six 



 

 

 

90 

hundred thirty nine and 10 miRNAs for soybean and common bean respectively were 

utilized to discover potential regulators of identified regular TNL gene sequences. We 

identified 35 soybean microRNAs and two common bean microRNAs to be involved in 

TNL genes regulation (Supplementary Table 7). Among 35 soybean miRNAs involved, 

16 seemed to regulate soybean TNL genes, nine seemed to regulate common bean TNL 

genes, and ten shared by both species. In case of two common bean microRNAs (pvu-

miR482-3p and pvu-miR2118), they seemed to regulate both soybean and common bean 

TNL genes. The pvu-miR482-3p regulates GLYMA01G31520 and GLYMA08G41270 

soybean TNL proteins and pvu-miR2118 regulates GLYMA13G03770, 

GLYMA01G04590, GLYMA12G03040, GLYMA20G06780, GLYMA01G27455, 

GLYMA03G14888 and GLYMA12G36841 soybean TNL proteins. 
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Figure 2.3. Expression profile for A) soybean TNL genes and B) common bean TNL 

genes visualized as heatmaps. Deseq normalized data were employed to generate the 

heatmap for soybean TNL gene expression in different tissues. Clustering (I, II and III) 

was based on K means Clustering method.  
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Figure 2.4. Diversity of putative TNL and CNL genes in the genomes of 18 different 

plant species. 

 

2.4. Discussion 

2.4.1. Diversity of TNL Genes 

Whole genome sequencing of multiple plant species at various taxonomic levels 

has implications in revealing the details of genome architecture (Goff et al. 2002) and 

shedding light on the processes leading to functional divergences (Caicedo and 

Purugganan 2005). In the present study, we carried out comparative genomics of the TNL 

R genes from soybean and common bean to understand their diversity, structure and 

functions. We identified 117 and 77 regular TNL genes in soybean and common bean, 

respectively. Shao et al. (2014) reported 178 (124 TNL, 24 TN, 17 NTIR, 12 NTIR only, 1 

others) in soybean and 103 (78 TNL, six TN, 15 NTIR ,11 NTIR only and two others) in 

common bean. Zheng et al. (2016) reported 237 TNLs subclass (112 TIR, 76 TN and 49 

TNL) in soybean and 66 TNLs subclass (57 TIR, eight TN and one TNL) in common 
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bean. Our identification is based on the presence of three signature motifs (P-loop, 

Kinase-2, and GLPL) in the NBS domain (Andersen et al. 2016; Nepal and Benson 

2015). We observed these motifs manually and verified the presence of these motifs. 

Since the threshold expectation value for second HMM profiling was 0.001, the false 

positive results and a few functional TNLs might have been omitted during HMM 

profiling. We compared our findings on the TNL gene diversity with respect to CNL 

gene diversity with the previous findings from other plant species (Figure 2.4, 

Supplementary Table 8). The numbers of TNLs in soybean and common bean were lower 

than CNL genes- 188 and 94 CNLs, respectively (Benson 2014; Nepal and Benson 

2015). One recent study has reported a wide variation (0.55% to 54.17%) of the 

proportion of TNLs across eudicots (Zhang et al. 2016a). The factors determining the 

numbers of TNL or CNL genes in the genome can be the pool of pathogens that infect the 

plant and the different patterns of evolution that drive the success and failure of R genes 

(Lozano et al. 2012). These R genes evolve in plants by divergent selection and that is 

explained by birth and death model (Michelmore and Meyers 1998). The soybean TNLs 

number was found almost similar to TNLs of Medicago truncatula (118 TNL genes) 

despite that the soybean genome experienced two whole genome duplication (WGD) 

events (59 and 13 million years ago) (Schmutz et al. 2010). It could be attributable to low 

exposure to pathogenic environment and a longer domestication history in soybean than 

M. truncatula (Kang et al. 2012).  

Soybean and common bean have gone through WGD events 56.5 million years 

ago and then diverged 19.2 million years ago (Lavin et al. 2005). After diverging, 

soybean underwent an independent WGD 13 million years ago (Schmutz et al. 2010). 
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The WGD events have important role in evolution of protein-coding genes, as genes 

could be produced and mutated causing no harm to organism (Taylor and Raes 2004). 

We expected in soybean twice the number of genes as in common bean, whereas soybean 

retained 64% more TNL genes present in common bean. The reason might be the genes 

that shared the first WGD might not be involved in disease resistance or may have been 

purged through purifying selection. An equally plausible explanation can be that common 

bean has evolved more rapidly than soybean since Ks value for common bean (8.46 × 10-9 

substitutions/year) is 1.4 times higher than that of soybean (5.85 × 10-9 substitutions/year) 

(Schmutz et al. 2014). Subfunctionalization of certain R genes in soybean possibly 

facilitated by artificial selection (during domestication) and R genes prone to 

diploidization events might have contributed to the reduction in number of R-genes 

(Zheng et al. 2016). 

Analysis of the identified TNL R genes in soybean and common bean showed 117 

and 77 gene members containing full length and conserved signature motifs (P-loop, 

Kinase 2 and GLPL). We observed conserved sequence “DDVD” of Kinase-2 and 

‘TTRD” in the RNBS-B motif, the distinguished feature of TNL subgroup of NBS-LRR 

genes (Shao et al. 2016). Further classification of TNL genes has revealed 12 TN, four 

TX, eight TN(truncated)L, one TNTN, one TLTNT subgroup gene members in soybean 

and 14 TN, four TN(truncated)L, one TNT, one TNTN subgroup gene members in 

common bean. Similar classification within the TNL group was reported in previous 

studies (Lozano et al. 2012; Meyers et al. 2002; Yu et al. 2014). Previous findings about 

the occurrence of TX, TN and TNL genes in dicots and conifers suggest that these were 

present approximately 300MYA when the species diverged (Savard et al. 1994). The 



 

 

 

95 

function of TX and TN type proteins in plants is unknown but have been compared to 

some Toll-like receptor (TLR) family proteins such as MyD88 and Mal, which act as 

adaptor proteins involved in mammalian and Drosophila immune responses (Meyers et 

al. 2002). Nandety et al. (2013) inferred the role of TN and TX proteins in plant defense 

responses as the adapters or guard complexes interacting with TNL proteins. Apart from 

the conserved domains in NBS-LRR proteins, these genes also contain unique and 

variable domains which are involved in resistance mechanism (Cesari et al. 2014). The 

unique domains such as basic secretory proteins domain (BSP, PF04450) zinc binding in 

reverse transcriptase (zf-RVT, PF13966) and reverse transcriptase like (RVT_3, 

PF13456) domains were identified in the TNL genes of soybean and common bean. 

Specific functions of the BSP domain are not clear but believed to be involved in the 

defense mechanism against pathogens (Kuwabara et al. 1999). The zf-RVT domain is the 

zinc-binding region of putative reverse transcriptase and RVT_3 domain is found in 

plants and appear to be the part of a retrotransposon (Marchler-bauer et al. 2015). The 

TNL gene, RRS1, encodes a protein having an additional WRKY domain in the C-

terminal that plays an important role in plant defense by acting as integrated decoys 

(Cesari et al. 2014). Among TNL genes with N-terminal signal peptides, six in soybean 

and four in common bean, were predicted to be transmembrane type. TargetP analysis 

predicted 17 proteins in soybean, 15 of them were predicted to enter secretory pathway, 

one (GLYMA15G37276) was predicted to enter mitochondria and one 

(GLYMA16G10020) was predicted to enter chloroplast. Likewise, of the 10 predicted 

proteins in common bean, eight were predicted to enter the secretory pathway and 

remaining two (Phvul.010G028200 and Phvul.002G098200) were predicted to enter the 
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chloroplast. When flax TNL proteins, such as L6 and M interact with fungal effectors 

AvrL567 and AvrM, respectively, L6 gets localized to Golgi endomembrane and M gets 

localized to vacuolar endomembrane (Takemoto et al. 2012). Another TNL protein, 

RRS1 gets localized to the nucleus upon detection of broad spectrum avr proteins from 

Ralstonia solanacearum strains (Lahaye 2002). 

2.4.2. Gene Clustering and Structural Variation 

Clustering of the NBS-LRR genes have been observed in many previous studies 

(Asai et al. 2002; Meyers et al. 2003; Mun et al. 2009; Wan et al. 2013). The cluster 

arrangement assists their evolution through mispairing during recombination, which aids 

in exchange of sequences (Friedman and Baker 2007; Hulbert et al. 2001). This process is 

assisted by several other processes such as gene conversions, unequal crossovers, and 

tandem duplications (Leister 2004). In this study, 74 out of 117 TNL genes 

(approximately 63%) were involved in forming 28 clusters in soybean and 48 out of 77 

TNL genes (approximately 62%) were involved in forming 14 clusters in common bean. 

In Arabidopsis, 43 clusters were formed by 109 out of 149 (approximately 76%) NBS- 

LRR genes (Meyers et al. 2003). The largest gene cluster was present in chromosome 16 

in soybean (30 genes; approximately 40%) and chromosome 10 in common bean (34 

genes; approximately 70%). The formation of big clusters would be as a result of tandem 

duplications or chromosomal rearrangements, and transposases activities conferring 

benefits of co-amplification of clustered genes and aiding adaptation to the changing 

environment (Pontes et al. 2004; Reams and Neidle 2004). Kang et al. (2012) reported 

the presence of Mutator-like element (MULE) transposase and the MuDR 

(Mutator autonomous element) family transposase domain in TNL gene 
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GLYMA16G23790 located on chromosome Gm16. In this study, we report the presence 

of retrotransposon domains (reverse transcriptase like; RVT_3) in GLYMA16G23790, 

which might contribute to tandem duplications of R genes as reported in a previous study 

(Ratnaparkhe et al. 2011). Large numbers of R genes in a single chromosome have been 

observed in other plant genomes as well (Ameline-Torregrosa et al. 2008; Meyers et al. 

2003; Nepal and Benson 2015). The eight gene members of the cluster 16_5 are located 

within a 0.24Mb section of chromosome Gm16 in soybean, and are nested together in 

phylogenetic tree suggesting their evolution through tandem duplication. Likewise, the 34 

TNL genes that are distributed in nine clusters in chromosome 10Pv of common bean 

genome show evidence of R gene expansion through tandem duplications. Similar 

expansion of NBS-LRR genes in Arabidopsis was believed to be due to tandem and 

large-scale block duplications (Leister 2004). Overall, tandem duplications we observed 

in TNL R genes in this research are consistent with those observed in previous studies, 

and our inferences are: tandem duplications should be the source of genetic variation 

(Dangl and Jones 2001), frequent sequence exchanges and high copy number suggest 

their rapid evolution (Li et al. 2010), and high diversity introduced through tandem 

duplication could guarantee the resistance to rapidly evolving pathogen effectors (Kuang 

et al. 2008). 

2.4.3. Ks Values as a Proxy of Gene Duplication History 

The Ks values infers the history of gene duplication events when WGD and 

polyploidy are taken into account (Pfeil et al. 2005; Schmutz et al. 2010). In soybean, 

cluster 1_1 (GLYMA01G03921, GLYMA01G03980, GLYMA01G04000) has the 

highest average Ks value of 1.968 and the cluster 3_2 (GLYMA03G06854, 
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GLYMA03G06976) has the lowest average Ks value of 0.013 which suggest that cluster 

1_1 formed before the cluster 3_2. Likewise, in common bean, the cluster 4_1 

(Phvul.004G134300, Phvul.004G135100) has the highest average Ks value of 1.518 and 

the cluster 8_1 (Phvul.008G195100, Phvul.009G195300) has the lowest average Ks value 

of 0.036 suggesting cluster 4_1 formed before the cluster 8_1 was formed. The selection 

pressure was detected using Ka/Ks ratios with the interpretation that the value greater than 

1 indicates positive selection, less than 1 indicates negative or stabilizing or purifying 

selection, and equal to 1 as neutral selection. Although overall average Ka/Ks ratios of the 

clades inferred from the phylogenetic tree showed value less than 1 suggesting a 

purifying selection for the TNL family, the pair GLYMA06G41714 and 

GLYMA06G41896 accessions showed Ka/Ks ratio value >1 in the XI clade, indicating 

that genes have undergone positive selection. The mean Ka/Ks ratios for the TNL genes in 

soybean (0.57) were slightly higher than for common bean (0.44). The TNL exons in 

both soybean and common bean were similar (5.5 exons per gene) consistent with the 

number of TNL exons reported in Arabidopsis (5.25 on average) (Meyers et al. 2003), 

however, are not consistent with the number of TNL exons in grapevine (7.68 on 

average) or in poplar (3.5 on average) (Yang et al. 2008). The number of TNL exons we 

found in this research is greater than the number of CNL exons in soybean (3.6 on 

average), common bean (4.0 on average), grapevine (3.22 on average), poplar (2.23 on 

average) and Arabidopsis (2.17 on average) (Benson 2014; Meyers et al. 2003; Nepal and 

Benson 2015; Yang et al. 2008). Increased number of exons in TNL genes might have 

implication in alternate splicing, a mechanism of making diverse defense proteins by host 

plants in response to rapidly evolving pathogen effectors.  
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2.4.4. Phylogenetic Relationships of Identified TNL Genes and Their Orthologs  

Phylogenetic analysis of the NBS protein sequences of Arabidopsis, soybean and 

common bean showed evidence of gene duplications and revealed orthologs. Species-

specific nesting patterns are common in the phylogenetic tree except Arabidopsis TNL-C 

members AT1G27180 and AT1G27180, which were nested with their orthologs in 

soybean and common bean. Similar patterns were reported in previous studies for TIR-

NBS sequences from distantly related taxa (Pan et al. 2000; Plocik et al. 2004; Wan et al. 

2013). These patterns are often reported to be useful in differentiating species (Wei et al. 

2013). As expected, due to relatively recent divergence, soybean and common bean did 

not have as many species-specific clades of TNL genes as compared with the 

Arabidopsis. Interspecies clades or mixed clades allowed us to identify TNL orthologs in 

the two species. The phylogenetic analyses of the manually curated TNL genes revealed 

homologs for Rj2/Rfg1, KR1, L6 and M proteins. The TNL protein Phvul.010G054400, a 

member of the TN subgroup, was expressed in SCN resistant genotypes (Jain et al. 2016). 

Our prediction that the TNL orthologs of Phvul.010G054400 protein (in the TN 

subgroup) are GLYMA12G16450 (E-value: 1.4E-127), GLYMA06G41241 (Evalue: 4E-

126), GLYMA06G41380 (Evalue: 2.5E-124), GLYMA06G40710 (Evalue: 3.7E-127) 

and GLYMA06G40780 (Evalue: 8.5E-119) in soybean, and are the potential gene 

accessions for conferring resistance to SCN infection. These predictions should be 

validated through functional characterization, such as hairy root transformation, over 

expressing and silencing of defense related genes. The TNLs RPP1 (Botella et al. 1998), 

RPP4 (Van Der Biezen et al. 2002), RPP5 (Noël et al. 1999) confer resistance to 

Pernospora parasitica, also RPS4 resist against Pseudomonas syringae (Gassmann et al. 
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1999). In addition, Linum usitatissimum TNLs L, L6, M, P proteins have shown 

resistance against Melampsora lini (Anderson et al. 1997; Dodds et al. 2001; Ellis et al. 

1999; Lawrence et al. 1995) and Nicotiana tabacum N protein has shown specific protein 

interactions with effector proteins of Tobacco Mosaic Virus (TMV) (Whitham et al. 

1994). The KR1 gene encodes a TNL protein that confers resistance against soybean 

mosaic virus (SMV) and was isolated from SMV resistant variety Kefeng-1 soybean (He 

et al. 2003). Among the characterized TNL genes, Rj2 and Rfg1 encoded proteins restrict 

the nodulation in soybean (Yang et al. 2010) suggesting their role in biological nitrogen 

fixation, an example of broader role of the TNLs in biotic interactions. To date only a few 

important TNL genes have been characterized, and our discussion was limited to the 

comparison with the characterized genes. Functions of the majority of the TNL genes we 

identified are unknown suggesting their involvement in unknown resistance pathways or 

non-host resistance responses (Schulze-Lefert and Panstruga 2011) warranting 

experimental studies leading to the characterization of these genes. 

Many studies have been done to understand the syntenic relationship in plants 

such as tomato, potato, sorghum and maize (Bonierbale et al. 1988; Whitkus et al. 1992). 

The purpose of syntenic map data (Choi et al. 2004) is to provide a reference point for 

ortholog comparison between species. McClean et al. (2010) have shown the syntenic 

relationship between common bean and soybean. They have suggested that soybean and 

common bean shared loci in syntenic blocks. Another study of syntenic relationships 

between the two showed single region of the chromosomal blocks of common bean 

mapped onto the two chromosomal blocks in soybean (Schmutz et al. 2014).This might 

be due to independent WGD along with extensive breakage and rearrangement in the 
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soybean genome that correspond to fragments from several common bean chromosomes 

(McClean et al. 2010; Schmutz et al. 2010). We observed that all of the soybean 

chromosomes contained fragments from multiple chromosomes of common bean. 

2.4.5. TNL Gene Expression and Role of microRNA (miRNA)  

The expression profiles showed differential expression of genes in tissues with 

moderate, minimal to no expression in respective tissues of soybean and common bean. 

The basal level expression and tissue-specificity of some TNL genes showed functional 

divergence. For example, GLYMA16G33780 (Rj2/Rfg1 protein) restricts nodulation and 

is highly expressed only in nodules. The expression of R genes in plants are regulated 

through utilization of microRNA (miRNA) which helps in creating balance between 

fitness cost and benefits of resistance (Shivaprasad et al. 2012). These miRNAs are single 

stranded hairpin RNAs (hpRNAs) which yield few functional small RNAs (Axtell 2013). 

Previous studies reported that expression of RPM1 and RPW8 genes have potential 

fitness costs in Arabidopsis (Orgil et al. 2007; Tian et al. 2003) and are lethal to plant 

cells (Stokes et al. 2002). In M. truncatula, the NBS-LRR genes are controlled by five 

miRNAs namely miR2118a, b, and c, miR2109, and miR1507 (Fei et al. 2015; Zhai et al. 

2011a; Zhai et al. 2011b). The TNL gene involved in symbiotic specificity in soybean, is 

targeted by microRNA miR482 (Fei et al. 2013). We identified microRNAs belonging to 

37 families that may be involved in targeting TNL genes of soybean and common bean. 

Among the identified microRNAs, some were predicted to recognize the TNL genes of 

both legumes and some were predicted to target TNL genes of unrelated species. The 

major miRNAs involved belonged to gma-miR2118a-3p, gma-miR2118b-3p, gma-

miR5668, gma-miR2109-5p, gma-miR1510a-3p, gma-miR1510b-3p, pvu-miR2118 
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family. Among these, miR482/2118 family is considered to be ancient, huge and complex 

family that target NBS-LRR genes in wide variety of plant genomes except in 

Brassicaceae and Poaceae family (González et al. 2015; Shivaprasad et al. 2012; Zhang et 

al. 2016a). This family down regulates NSB-LRR proteins when there are no pathogens 

(González et al. 2015). Presence of such potential microRNAs depicts the establishment 

of microRNA-NBS gene relationship and providing proof for common ancestry of 

soybean and common bean. Such relationship was also shown between soybean and M. 

truncatula (Shao et al. 2014). Previous studies have mentioned of microRNAs that can 

target NBS-LRR genes of different species (Shivaprasad et al. 2012; Zhai et al. 2011b). 

For instance, nine soybean microRNAs that can potentially target TNL genes of common 

bean only were identified in this study. Recently, Cui et al., (2017) have shown that 

microRNA gma-miR1510a/b plays a crucial role in cleavage of the TNL protein 

Glyma.16G135500 (GLYMA16G24940 in this study) that is upregulated in response to 

Phytophthora sojae in soybean. This suggests the role of microRNAs in regulation of 

TNL R genes in response to pathogens.  

2.5. Conclusions 

 

We identified 117 and 77 regular TNL R genes in soybean and common bean, 

respectively, and assessed their structural and functional divergence. The presence of 

unique domains such as BSP, zinc binding in reverse transcriptase, and reverse 

transcriptase-like domains and signal peptides identified in some TNL genes provides 

insights into their evolution and sub-cellular localization. Most of the TNL genes 

identified in soybean and common bean have undergone purifying selection rather than 

positive selection except for a few accessions. Approximately 63% of the regular TNL 
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genes were found in clusters in both soybean and common bean, which signifies the 

occurrence of tandem duplications. We also identified microRNAs potentially targeting 

TNL genes in both soybean and common bean, and involving in balancing fitness costs 

and resistance advantages. Characterization of these TNL genes is warranted for 

understanding resistance pathways paving avenues toward crop improvement. 
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CHAPTER 3: GENOME-WIDE IDENTIFICATION OF NBS-ENCODING 

RESISTANCE GENES IN SUNFLOWER (HELIANTHUS ANNUUS L.) 

This chapter has been published in the Journal Genes: 

Neupane, S., Andersen, E., Neupane, A., and Nepal, M.P. (2018). Genome-Wide 

Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.). 

Genes 9(8) 

Abstract 

Nucleotide Binding Site-Leucine-Rich Repeat (NBS-LRR) genes encode disease 

resistance proteins involved in plants’ defense against their pathogens. Although 

sunflower is affected by many diseases, only a few molecular details have been 

uncovered regarding pathogenesis and resistance mechanisms. Recent availability of 

sunflower whole genome sequences in publicly accessible databases allowed us to 

accomplish a genome-wide identification of Toll-interleukin-1 receptor-like Nucleotide-

binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL), Resistance 

to powdery mildew8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding 

genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences 

from sunflower resulted in 352 NBS-encoding genes, among which 100 genes belong to 

CNL group including 64 genes with RX_CC like domain, 77 to TNL, 13 to RNL, and 

162 belong to NL group. We also identified signal peptides and nuclear localization 

signals present in the identified genes and their homologs. We found that NBS genes 

were located on all chromosomes and formed 75 gene clusters, one-third of which were 

located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis 

NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the 
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CNL-A clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a 

moderate bootstrap support (BS = 50%) for CNL-A clade being nested within TNL clade 

making both the CNL and TNL clades paraphyletic. Arabidopsis and sunflower showed 

87 syntenic blocks with 1049 synteny hits and high synteny between chromosome 5 of 

Arabidopsis and chromosome 6 of sunflower. Expression data revealed functional 

divergence of the NBS genes with basal level tissue-specific expression. This study 

represents the first genome-wide identification of NBS genes in sunflower paving 

avenues for functional characterization and potential crop improvement. 

Keywords: coiled coil, disease resistance, nucleotide binding site encoding genes, gene 

clustering, plant defense, resistance pathways, resistance to powdery mildew 8, R genes, 

sunflower, synteny 

3.1. Introduction 

 

Plants employ different gene families in signaling networks in response to 

numerous biotic and abiotic stresses [1]. In order to deal with these stresses, during the 

course of evolution, plants have developed multifaceted processes to recognize the stress 

stimuli, transfer them to the plant’s own message(s) and complete the signal transduction 

pathways [2, 3]. In response to the stresses due to pathogens, plants have developed race-

specific and race non-specific resistance, known as qualitative and quantitative resistance, 

respectively [4]. Plants recruit proteins encoded by disease resistance (R) genes that 

recognize or interact with specific pathogen avirulence (avr) gene products [5] or effector 

molecules triggering a downstream signaling in resistance pathways [6, 7]. Various 

models, such as Zig-zag and multicomponent models, propose a dynamic relationship 
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between a host and its pathogen and explain how incompatible interactions between the 

hosts and pathogens lead to a selection of new R genes in response to co-evolutionary 

pressure due to pathogen races [6, 8]. Host R genes can vary within a species, and their 

variation is correlated with that of the corresponding pathogen effectors [9]. For example, 

host polymorphic to R genes is found to provide partial resistance against pathogens [10]. 

Such partial resistance accumulates throughout the plant development and eventually 

provide quantitative resistance in the form of broad spectrum resistance [10]. 

Identification of R genes and their pathogen effectors is essential for understanding host–

pathogen interactions and disease resistance pathways in order to develop durable 

resistance in crop species. 

The Pathogen Recognition Genes database (PRGdb, http://prgdb.org) listed 153 R 

genes that have been cloned and characterized, and 177,072 annotated candidate 

Pathogen Receptor Genes (PRGs) [11]. These R genes encode mostly nucleotide binding 

site (NBS) leucine-rich repeat (LRR) proteins and have been classified into categories 

based upon the domains and motifs organization in the proteins [12, 13]. Most commonly 

recognized categories are Toll-interleukin-1 receptor-like-NBS-LRR (TNL), Coiled-Coil-

NBS-LRR (CNL), and Resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) [13, 

14]. All TNL, CNL and RNL genes are present in dicots, whereas TNL genes are absent 

in monocots [14, 15]. Analysis of NBS genes in Fabaceae and Brassicaceae revealed that 

CNLs and RNLs diverged prior to divergence of Rosid I and Rosid II lineages of 

Angiosperms, and, in both plant families, the two clades are sister to each other [15, 16]. 

The NBS domain, also known as NB-ARC where ARC stands for APAF1 (apoptotic 

protease-activating factor-1), R genes, and CED4 (Caenorhabditis elegans death-4 
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protein), hydrolyzes ATP to induce the conformational change in R proteins by acting as 

the nucleotide binding pocket [17]. The NBS domain mainly consists of P-loop, Kinase-

2, RNBS A, GLPL and MHDL motifs [14]. The LRR domains at the C-terminus help 

activate or deactivate the defense signaling by interacting with the NBS domain in the 

presence or absence of pathogen effectors, respectively [18]. A diverse number of NBS 

genes have been reported in various plant species since the first study in Arabidopsis 

thaliana was published in 2003 [14]. With the increasing availability of plant genome 

sequences, R gene proteins have been identified in many plant species, such as A. 

thaliana [5, 14]; Vaccinium spp. [19]; Amborella trichopoda, Musa acuminata, 

Phyllostachys heterocycla, Capsicum annuum, and Sesamum indicum by Shao et al. 2016 

[13]; Cicer arietinum [20]; Glycine max [21, 22, 23, 24]; Oryza sativa [25, 26]; Medicago 

truncatula [27]; Vitis vinifera and Populus trichocarpa by Yang et al. 2008 [28]; 

Solanum tuberosum [29]; Brassica rapa and B. oleracea by Zhang et al. 2016 [30]; 

Hordeum vulgare [31]; Setaria italica [32]; Theobroma cacao [5]; Populus trichocarpa 

[5]; V. vinifera [5]; Cucumis sativus [33]; Phaseolus vulgaris [16, 24], Lotus japonicas, 

Cajanus cajan, Glycine soja by Zheng et al. 2016, Gossypium arboretum [34], etc. A 

recent study by Li et al. 2016 [35] has identified NBS-encoding genes as well as receptor-

like protein kinases (RLKs) and receptor-like proteins (RLPs), collectively called as 

Resistance Gene Analogs (RGAs), for 50 plant genomes using a RGAugury pipeline. 

According to a report by Food and Agriculture Organization (FAO) in 2010 

(http://www.fao.org), domesticated Helianthus annuus L. (Family Asteraceae), is the 

fourth most important oilseed crop in the world. Since sunflower has the capacity to 

maintain stable yields in different environmental conditions such as drought, it has been a 
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model crop species for studying climate change adaptation [36]. The study on diversity 

analysis of 128 expressed sequenced tag (EST)-based microsatellites in wild H. annuus 

has provided insights into the ability to adapt salt and drought stress and selective sweeps 

revealing transcription factors as the major group of genes involved in those processes 

[36]. In addition, studies on wild and cultivated relatives of sunflower on disease 

resistance [37] and oil content [38] aspects have played great roles in understanding the 

genetic background for these traits. However, many fungal diseases like charcoal rot 

(Macrophomina phseolina), downy mildew (Plasmopara halstedii), Fusarium rot and 

stem rots (Fusarium sp.), phoma black stem (Phoma macdonaldii), phomopsis stem 

canker (Diaporthe helianthi, D. gulyae), Sclerotinia mid and basal stem rot (Sclerotinia 

scelerotiorum), Verticillium wilt (Verticillium dahlia), leaf blight (Alternariaster 

helianthi), leaf spot (Pseudomonas syringae pv. helianthi), powdery mildew (Erysiphe 

cichoracearum), rust (Puccinia helianthi) and many others have caused crop damage 

resulting in the loss of yield and oil content [39]. 

Previously, various studies have contributed their findings about the NBS group 

of R genes in sunflower [40, 41, 42, 43]. Plocik et al. 2004 [40] identified nine sunflower 

resistance gene candidates with coiled-coil (CC) domains in the N-terminal region using 

degenerate primer sets. Sunflower showed diverse structures in CC subfamily, while 

lettuce and chicory, closely related species, showed high similarity in structure. Radwan 

et al. 2008 [42] used degenerate primers to identify 630 NBS-LRR homologs in wild 

species of sunflower (Helianthus annuus, H. argophyllus, H. deserticola, H. paradoxus, 

and H. tuberosus). In addition, Radwan et al. 2004 [43] isolated R gene analogs 

belonging to the CNL class of R genes from the inbred sunflower line QIR8 containing 
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Pl8I locus against P. halstedii, which causes downy mildew. Later, Hewezi et al. 2006 

[41] cloned partial antisense PLFOR48, which showed homology to the TNL family, in 

mildew resistant sunflower line, RHA 266 and Nicotiana tabacum L. The recent 

availability of the H. annuus genome [44] has now made it possible for studying the 

diversity and evolution of gene families in sunflower. The main objectives of this 

research were to conduct a genome-wide search for H. annuus NBS genes and analyze 

their genomic structure and functions. A proper identification of the R genes is crucial to 

elucidate their roles against various diseases in sunflower. 

3.2. Materials and Methods 

 

3.2.1. Retrieval and Identification of Sunflower NBS-Encoding Genes 

The genome of sunflower (INRA inbred genotype XRQ described in [44]; H. 

annuus r1.2) was accessed from the sunflower genome database 

(https://www.sunflowergenome.org) as well as Phytozome 

(https://phytozome.jgi.doe.gov). The sunflower genome is 3.6 gigabases and its genes 

distributed over 17 chromosomes encode 52,243 proteins 

(https://phytozome.jgi.doe.gov). A. thaliana TNL and CNL (= nonTNL or nTNL) protein 

sequences were used as reference for the identification of NBS-LRR proteins in 

sunflower, and were obtained from http://niblrrs.ucdavis.edu. The multiple sequence 

alignment file of these reference sequences in Stockholm format were employed in 

hmmbuild and hmmsearch for HMM profiling using the program HMMER version 3.1b2 

[45] at a cut-off value of 0.01. InterProScan Version 5.27 (EMBL-European 

Bioinformatics Institute, UK) [46] and Pfam ID [47] and PROSITE ID 

(http://prosite.expasy.org/) were used to search for the conserved domains. The proteins 
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with PfamID of TIR (PF01582), NBS (PF00931), RPW8 (PF05659), CC and LRR 

domains with ‘LxxLxxLxx’ signatures were selected to determine the NBS proteins in 

sunflower. Further verification of the CC domains at the N-terminus was carried out 

using the MARCOIL server [48] with a 9FAM matrix having probability between 0.4–1. 

Multiple expectation maximization for motif elicitation (MEME) [49] analysis was 

performed to confirm the presence of P-loop, Kinase-2, GLPL, MHDL, RNBS A, RNBS 

B, RNBS C, and RNBS D motifs in the NBS domain, TIR1, TIR2, TIR3 motifs in TIR 

domain and RPW8 motifs in RPW8 domains. A set of parameters used in MEME 

analysis included maxsize: 100,000, mod: zoops, nmotifs: 20, minw: 6, and maxw: 50 to 

25. Subcellular localization of the putative NBS genes were analyzed using TargetP 1.1 

[50]. The program NLStradamus [51] was used to examine nuclear localization signals 

(NLS) in identified NBS genes of sunflower using a two-state HMM static model with 

Viterbi and posterior prediction methods (with 0.5 cut-off). 

3.2.1. Phylogenetic Tree Construction 

The NBS protein sequences from A. thaliana and H. annuus were aligned using 

CLUSTAL W [52] and MUSCLE [53] integrated in the program Geneious [54]. 

Phylogenetic analysis of the aligned data matrix was performed using Maximum 

Likelihood (ML) method (1000 replicates) in the program MEGA Version 7.0.14 [55]. 

The phylogenetic analysis employed the best evolutionary model (resulted from the 

ModelTest analysis using MEGA7) JTT + G + I (Jones–Taylor–Thornton with γ 

distribution and invariant sites), and Streptomyces coelicolor accession P25941 as an 

outgroup [14]. Additional phylogenetic trees of the NBS domains of predicted TNL and 

CNL proteins of sunflower and all reference proteins obtained from http://prgdb.crg.eu 
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were reconstructed using the methods and models described above. Thus, the obtained 

Newick format of phylogenetic trees were employed in the Interactive tree of life (iTOL) 

Version 3 (Biobyte solutions GmbH, Bothestr, Germany) for their visual enhancement 

[56]. 

3.2.2. Chromosomal Locations, Clustering and Gene Structure 

All 17 chromosome sequences of H. annuus were obtained from 

https://www.sunflowergenome.org and uploaded in the program Geneious [54]. The 

chromosome locations of the respective gene families were visualized using an 

annotation file in Generic Feature Format (GFF). The NBS gene locations, NBS types 

and clustering were visualized on their respective chromosomes. Gene clustering of the 

NBS genes was carried out following Jupe et al. 2012 [57], using two major criteria: (a) 

distance between two NBS genes is less than 200 kb, and (b) presence of no more than 

eight annotated non-NBS sequences between two consecutive NBS sequences. The exon-

intron distribution pattern was obtained by the Gene Structure Display Server 

(http://gsds.cbi.pku.edu.cn). 

3.2.3. Ka/Ks and Syntenic Analysis 

Coding sequences (CDS) of the NBS genes were used in calculating 

nonsynonymous substitutions per nonsynonymous site (Ka) and synonymous 

substitutions per synonymous site (Ks) in the program DnaSP 6.11.01 [58]. Syntenic map 

of the NBS genes of H. annuus and A. thaliana was created using SyMAP Version 4.2 

(Arizona Genomics Computational Lab, Tucson, AZ, USA) [59], executed within South 

Dakota State University’s High-Performance Computing Cluster. Whole chromosome 
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sequences and gene annotation files were used as input files for syntenic mapping of H. 

annuus and A. thaliana. 

3.2.4. Gene Homology and Expression Analysis 

Putative homologs of the predicted sunflower NBS genes were accessed using 

BLAST tool available in http://prgdb.org with reference genes of PRGdb and a cutoff E-

value of 0.01. The filtering included sequences with E-values less than 0.01 and identity 

percentage of greater than 50%. Expression profiles of the putative NBS genes were 

downloaded from https://www.sunflowergenome.org. A heatmap was generated using 

deseq normalized data through the MeV package, available at http://mev.tm4.org/ [60]. 

The heatmap clustering was performed based on Euclidean distance under 1000 iterations 

using the K-means Clustering Method. The clustering classification used these 

categories: moderate to minimal expression, minimal expression to no expression, and no 

expression at all. 

3.3. Results 

3.3.1. Diversity of the NBS-Encoding Genes in Sunflower 

The HMM analysis of all sunflower protein-coding genes using the reference 

sequences of A. thaliana resulted in 485 NBS proteins, using a filtering threshold 

expectation value of 0.01. These sequences were further annotated with InterProscan, and 

evaluated for the presence of NBS domains in each sequence. After a careful 

examination, 352 protein sequences were confirmed to have an NBS domain. Among 

these, 100 genes belonging to CNL group (after verification using MARCOIL server 

omitted ten false positives), 77 to TNL, 13 to RNL group, as well as 162 genes possess 

neither CC nor TIR domains thus classified as an NL group. Among 100 CNL types, 64 

http://mev.tm4.org/
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possesses a CC domain similar to S. tuberosum disease resistance protein (Rx). 

Furthermore, Leucine-rich repeats (LxxLxxLxx signatures) were examined to classify 

CNLs, TNLs, RNLs and NLs into their subgroups. Following the classification of NBS-

encoding genes in Brassica species and A. thaliana [5], the NBS genes were classified 

into: CC-NBS-LRR (CNL), CC-NBS (CN), CC-NBS-NBS-LRR (CNNL), CC-NBS-

NBS (CNN), RPW8-NBS-LRR (RNL), RPW8-NBS (RN), RPW8-CC-NBS-LRR 

(RCNL), TIR-NBS-LRR (TNL), TIR-NBS (TN), TIR-TIR-NBS-LRR (TTNL), TIR-

NBS-LRR-TIR-NBS-LRR (TNLTNL), TIR-CC-NBS-LRR (CTNL), TIR-CC-NBS 

(CTN), NBS (N), NBS-LRR (NL), NBS-NBS (NN), and NBS-NBS-LRR (NNL) (see 

Table 3.1, Figures S1–S4). The LxxLxxLxx (=LRRs) signatures were present in 97 (out 

of 100) CNL genes with their LRRs ranging from two to 22, 12 (of 13) RNL genes with 

one to eight LRRs, 55 (of 77) TNL genes with two to 26 LRRs, and 131 (of 162) NL 

genes with two to 30 LRRs. Among them, HanXRQChr02g0052061, a TNL protein 

sequence contained a unique Kelch motif sequence (PF01344). TargetP analysis showed 

that 20 NBS proteins were predicted to localize to the chloroplast, 14 to mitochondria, 80 

enter the secretory pathway, and 238 were predicted to enter other subcellular locations 

other than mitochondria or the chloroplast (Table S1). Thirteen CNLs, seven TNLs, one 

RNL, and eight NLs were identified to contain a putative NLS using NLStradamus 

(Table S2). 

Three major signature motifs: P-loop, Kinase-2, and GLPL of the NBS domain of 

disease resistance proteins were present in 57 out of 100 CNLs, 69 out of 77 TNLs, all 13 

RNLs and 58 out of 162 NLs (Supplementary File S1, Figures S5–S7). Other important 

motifs RNBS A, RNBS B, RNBS C and RNBS D, and MHDL were also present in the 
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NBS proteins (Tables S3–S5). Motifs TIR1, TIR2, TIR3, and TIR4 varied in number 

across the TNL genes: among the 77 TNLs, 76 had TIR1, 76 had TIR2, 75 had TIR3 and 

76 had TIR4 motifs. Only two TNLs (HanXRQChr05g0136351 and 

HanXRQChr06g0184071) did not have all four TIR motifs. Of the 100 CNLs, 81 had the 

characteristic conserved amino acid sequence ’DDVW’ in the Kinase-2 motif. Remaining 

CNLs had either Isoleucine (I), Methionine (M), or Leucine (L) in the place of Valine (V) 

amino acid in the sequence ‘DDVW’. Of the 77 TNLs, 50 shared the characteristic 

‘DDVD’ amino acid sequence in the Kinase-2 motif. Of the 162 NLs, 83 had ‘DDVW’ 

and 18 had ‘DDVD’, hence classified as NCC and NTIR group of the NLs, respectively. All 

of the 13 RNLs had ‘DDVW’ sequence in the Kinase-2 motif except for 

HanXRQChr03g0067681 with ‘DDVR’ sequence. Another key characteristic found 

within the RNBS B motif was that the majority of the CNLs had ‘TSR’, TNLs had 

‘TTRD’, and RNLs had ‘TSR’ residues. The sequence alignments illustrating all the 

conserved motifs of the CNLs, TNLs, and RNLs are presented in Supplementary File S2. 

3.3.2. Gene Location, Clustering, Ka/Ks Values and Structural Variation 

The NBS genes are located on each of the chromosomes, with only four 

(HanXRQChr00c0003g0570971, HanXRQChr00c0003g0570951, 

HanXRQChr00c0004g0571011, and HanXRQChr00c0037g0571241) were not assigned 

to any chromosome (Figure S8). The number of the NBS genes located on each 

chromosome ranged from three (chromosome Ha12) to 99 (chromosome Ha13). 

Chromosomal distribution of the CNL, TNL, RNL, and NL genes and their clusters are 

shown in Figure 3.1. The CNL genes were absent in chromosomes Ha3, Ha5, and Ha16, 

whereas, TNL genes were absent in chromosomes Ha7 and Ha11. Most of the TNL genes 
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were uniformly distributed across the chromosomes, whereas most of the CNL and NL 

genes were densely represented on chromosome Ha13 (approximately 28%). The 

smallest number of RNL genes (thirteen) were present in chromosomes Ha2, Ha3, Ha4, 

Ha5, Ha7, Ha11, Ha14, and Ha15 (see Figure 3.1). Among the 352 NBS genes, 200 

(~57%) genes formed 75 clusters (4.4 clusters per chromosome and 2.7 genes per cluster) 

with chromosome Ha13 hosting 25 clusters of 73 genes (~37%; Table S6). The gene 

clusters were present in all chromosomes except for Ha5 and Ha12. Gene positions and 

clusters on chromosomes of H. annuus are shown in Figure 3.2. The average Ka/Ks values 

for the clades of CNLs, TNLs, and RNLs were 0.68, 0.89, and 0.31, respectively. The 

number of exons in the genes is shown in Table S1 and Figures S9–S12. The number of 

exons for CNLs, TNLs, RNLs, and NLs ranged from 1 to 11, 2 to 18, 4 to 9, and 1 to 19, 

respectively. In average CNLs, TNLs, RNLs, and NLs had 2.7, 6.1, 6.2, and 2.9 exons 

per gene, respectively. 
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Figure 3.1. Chromosomal distribution (Ha1–Ha17) of the NBS genes and gene clusters in 

sunflower. Different NBS groups and gene clusters are color coded. CNL: Coiled-Coil-

NBS-LRR; TNL: Toll-interleukin-1 receptor-like-NBS-LRR, RNL: Resistance to 

powdery mildew8 (RPW8)-NBS-LRR; NL: Nucleotide Binding Site—Leucine-Rich 

Repeat (NBS-LRR). 
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Table 3.1 Nucleotide Binding Site (NBS)-encoding proteins in sunflower in relation to 15 other plant species. 

 
Predicted protein 

domains 

Letter 

code 

Number of proteins  

  Ha* Ata Gmb, c Mta Boa Bra Tca Pta Vva Cad Cse Pvf, c Ljf Ccf Gsf Gah 

CC-NBS-LRR CNL 92 17 95 152 6 19 82 120 203 19 17 31 11 37 47 80 

CC-NBS CN 5 8  25 5 15 46 14 26 33 1 40 26 41 62 44 

CC-NBS-NBS-LRR CNNL 4 - 5   2    1       

CC-NBS-NBS CNN 1                

RPW8-NBS-LRR RNL 10 2 6  1 4    2 2     3 

RPW8NBS

  

RN 1 3   2 1    2      0 

RPW8-CC-NBS-LRR RCNL 2                

TIR-NBS-LRR TNL 52 79 126 118 40 93 8 78 97 6 11 81 16 47 49 5 

TIR-NBS TN 21 17 22 38 29 23 4 10 14 7 2 11 53 36 76 2 

TIR-NBS-NBS-LRR TNNL 0 1   1 4           

TIR-TIR-NBS-LRR TTNL 1         1       

TIR-NBS-LRR-TIR-

NBS-LRR 

TNLT-

NL 

1                

TIR-CC-NBS-LRR CTNL 1                

TIR-CC-NBS CTN 1                

NBS N 29 26 4 328 53 29 53 62 36 14 1 59 82 136 213 59 

NBS-LRR NL 125 20 73  24 27 104 132 159 12 23 20 18 56 58 53 

NBS-NBS NN 2    3 2    1       

NBS-NBS-LRR NNL 6     3           

 

Note: Ha: Helianthus annuus; At: Arabidopsis thaliana; Gm: Glycine max; Mt: Medicago truncatula; Bo: Brassica oleracea; Br: Brassica rapa; Tc: Theobroma cacao; Pt: 

Populus trichocarpa; Vv: Vitis vinifera; Ca: Cicer arietinum; Cs: Cucumus sativus; Pv: Phaseolus vulgaris; Lj: Lotus japonicas; Cc: Cajanus cajan; Gs: Glycine soja; Ga: 

Gossypium arboretum (* = this study, a = [5], b = [23], c = [24], d = [20], e = [33], f = [16], g = [34]).
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3.3.3. Phylogenetic and Syntenic Analysis 

The data matrix with the NBS aligned sequences (NBS domain region is more 

conserved than remaining 5’ and 3’ regions) was used in phylogenetic analyses. 

Phylogenetic relationships among the sunflower NBS sequences are shown in Figure 3.3, 

and those of the sunflower and Arabidopsis NBS sequences are shown in Figure 3.4; each 

tree reveals distinct clades of CNLs, RNLs and TNLs. The RNL clade was surprisingly 

nested within the TNL clade. As shown in Figure 3.3, the CNLs and TNLs formed six 

subclades each. The TNL subclades are named TIR (I), TIR (II), TIR (III), TIR (IV), TIR 

(V), and TIR (VI), whereas CNL subclades are named CC (I), CC (II), CC (III), CC (IV), 

CC (V), and CC (VI). The phylogenetic tree reconstructed using sunflower and 

Arabidopsis NBS sequences revealed clade-specific nesting patterns in the CNL group 

(Figure 3.4). The nesting of all sunflower RNL genes within CNL-A clade (with 

Arabidopsis RPW8 genes) was strongly supported (bootstrap support = 96%). CNL-C (I) 

clade constituted six CNL genes (HanXQRChr14g0440091, HanXQRChr17g0562451, 

HanXQRChr12g0374601, HanXQRChr08g0224171, HanXQRChr13g0417971, and 

HanXQRChr13g0417981) with a weak support [bootstrap support (BS) = 57%]. CNL-C 

(I) clade, sister clade to CNL-C (II) and CNL-D constituted 79 genes. CNL-B clade 

constituted three genes (HanXQRChr02g0046161, HanXQRChr11g0333001, and 

HanXQRChr11g0333091). The remaining 12 genes did not belong to any clade of 

Arabidopsis CNL genes. The TNL group formed a species-specific clade, except ten 

genes that formed a small clade with AT5G36930, named TNL-D clade with strong 

bootstrap support of 100%. We found a moderate bootstrap support (BS = 50%) for 
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CNL-A clade being nested within TNL clade making both the CNL and TNL clades 

paraphyletic. Another tree constructed using RNL genes of A. thaliana and H. annuus 

showed two distinct clades for two lineages: activated disease resistance gene 1 (ADR1) 

and N-required gene 1 (NRG1) (Figure 3.5). The Newick files related to phylogenetic 

trees in Figures 3.3–3.5 are provided in Supplementary File S3. For the comparative 

study, all the manually curated TNL and CNL reference proteins obtained from 

http://prgdb.crg.eu were phylogenetically compared with sunflower TNL and CNL NBS 

proteins. The sunflower NBS proteins formed clades with various reference proteins such 

as Pi36, Pl8, Rps2, VAT, RPG1, Gro1.4, RY-1, and N proteins suggesting their 

homologs (Figure S13). The syntenic relationship between the Arabidopsis’s 119,146 kb 

genome and sunflower’s 3,641,596 kb genome showed 87 syntenic blocks with 1049 

synteny hits. The chromosome 2 of Arabidopsis was highly syntenic to chromosome Ha1, 

Ha2, Ha3, and Ha15 chromosomes of sunflower. Similarly, the highest syntenic region 

was observed between chromosomes 5 of Arabidopsis and chromosome 6 of sunflower. 

The sunflower chromosomes Ha2, Ha5, Ha11, Ha13, Ha15, and Ha17 are least syntenic 

to any of the chromosome of Arabidopsis. The pericentromeric region of the sunflower 

chromosomes Ha3, Ha9, and Ha14 were highly syntenic to the chromosomes of 

Arabidopsis. The chromosome Ha13 that contains 99 NBS genes contains fragments 

from only chromosome 2 of Arabidopsis (Figure S14). 
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Figure 3.2. Chromosomal distribution of sunflower NBS gene clusters (n = 17). Each 

arrow color represents an NBS gene type and orientation, and the thick vertical line 

represents a chromosome. 
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Figure 3.3. Maximum likelihood (ML) tree featuring NBS groups based on the conserved 

domains of the CNL, TNL, and RNL genes from Helianthus annuus. The ML tree was 

constructed using the JTT + G + I (Jones–Taylor–Thornton with γ distribution and 

invariant sites) model with 1000 bootstrap replicates. The ML tree was rooted using a 

Streptomyces coelicolor NBS containing protein, P25941, as an outgroup. The clades 

TNL (blue), CNL (red), and RNL (green) and outgroup (purple) are color-coded. 

Subclades are mentioned as TIR (I) to TIR (VI) and CC (I) to CC (VI). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def8
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Figure 3.4. Maximum likelihood (ML) tree featuring NBS domain amino acid sequences 

of the CNL, TNL, and RNL genes from Arabidopsis thaliana (AT; orange) and 

Helianthus annuus (light blue). The ML tree was reconstructed using JTT + G + I 

(Jones–Taylor–Thornton with γ distribution and invariant sites) evolutionary model with 

1000 bootstrap replicates. The ML tree was rooted using Streptomyces coelicolor NBS-

containing protein, P25941, as an outgroup (yellow). The clades are color-coded: TNL in 

blue, CNL in red, RNL clade in green, and outgroup in purple. Subclades are labeled as 

CNL-A to CNL-D and TNL-A to TNL-H. 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def8
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3.3.4 Homologs and Expression Analysis 

The predicted 352 NBS proteins of sunflower showed homology, with identity 

greater than 50% and E-value less than 0.01, to 39 genes among 153 reference genes on 

the Plant Resistance Genes database (Table S7). Among them, 21 proteins showed 

greater than 70% identity to the H. annuus clone Ha-NTIR11g CC-NBS-LRR gene (Pl8). 

HanXRQChr13g0425411, HanXRQChr13g0425361, and HanXRQChr13g0425431 

showed more than an 80% identity to the Pl8 gene suggesting the probable homologs to 

that gene. HanXRQChr04g0123041, belonging to the NL group has shown homology to 

Lycopersicon esculentum EIX receptor 1 (LeEIX1), a gene that encodes receptor-like 

proteins (RLPs). Similarly, HanXRQChr17g0552491 showed homology to MLA10, 

HanXRQChr13g0420141 to N, HanXRQChr17g0552491 to both MLA12 and MLA13 

and HanXRQChr17g0552491 to Sr33 protein with greater than 60% identity. Sunflower 

Genome Database with H. annuus r1 annotations was employed to obtain expression data 

for predicted NBS genes. We compared accessions of H. annuus r1.2 annotations to H. 

annuus r1 to obtain the expression data for NBS proteins. Since there were many 

duplicates for H. annuus r1.2 annotations, we used only the sequences with the unique 

names. The raw Read Per Kilobase Million) (RPKM) values of gene expression were 

downloaded separately. The expression values were from bract, corolla, leaves, ligule, 

ovary, pollen, seed, stamen and stem. Only expression data for 9 CNL type, 33 TNL type, 

23 NL type and 6 RNL type genes were retrieved from the database and employed to 

generate heatmap after deseq normalization of the data using MeV package (Figure 3.6). 

Cluster I consists of 13 genes representing moderate to minimal expression, cluster II 
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with 43 genes representing basal to no expression and cluster III with 15 genes 

representing minimal expression to basal expression (Figure S15). 

 

Figure 3.5. Phylogenetic relationships of RNL proteins in Arabidopsis thaliana and 

Helianthus annuus. The clades N-required gene 1 (NRG1) and activated disease 

resistance gene 1 (ADR1) are color-coded in blue and red, respectively. The tree was 

rooted using Streptomyces coelicolor NBS-containing protein, P25941, as an outgroup. 

3.4. Discussion 

3.4.1. Diversity of NBS-Encoding Genes 

Our findings on the NBS-encoding genes in this study is based on recently 

sequenced sunflower genome [44]. Previously, Gedil et al. 2001 [61] identified RGC 

fragments with the NBS domains and assigned to 11 groups among which Ha4W2A was 

linked to Pl1, a downy mildew resistance gene. Plocik et al. 2004 [40] identified nine 

unique NBS domain sequences using degenerate primers in sunflower and compared 

them to lettuce, chicory and A. thaliana. They concluded that NBS gene sequences of 

Asteraceae family are ancestral to the Brassicaceae family. Later, Radwan et al. 2008 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149708/#def1
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[42] identified 118 and 95 NBS domain sequences in RHA373 and ANN-1811 

germplasm of H. annuus, respectively. In this study, we identified 352 NBS-encoding 

genes that constitute 0.67% of the total predicted proteins in sunflower, which shows 

similarity to M. truncatula (~0.66%) [27]. This number is higher than that of Arabidopsis 

(~0.43%) [14], C. sativus (~0.21%) [33], Carica papaya (~0.21%) [62] and lower than 

that of P. vulgaris (~1.19%) [63], Manihot esculenta (~0.9%) [64], V. vinifera (~1.3%) 

[28], and G. max (~0.73%) [23, 24]. We performed protein blast (BLASTp) analyses 

using 352 NBS domains of NBS-encoding genes identified in this study against a 

database with previously studied NBS domain sequences. The BLASTp analyses against 

a database comprised of sequences from Gedil et al. 2001 [61], Plocik et al. 2004 [40], 

and Radwan et al. 2008 [42] showed 70 to 100% identity to 143, 68 and 100 NBS domain 

sequences identified in this study, respectively (Supplementary File S4). 
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Figure 3.6. Expression profile of NBS genes from sunflower visualized as heatmap. The 

heatmap was generated using deseq normalized data for sunflower NBS genes expression 

in different tissues. K-means Clustering Method was employed for clustering (I, II and 

III). Gene IDs are followed by NBS type (C: CNLs; T: TNLs; N: NLs and R: RNLs). 
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Following the classification of NBS genes by Shao et al. 2016 [13] and Yu et al. 

2014 [5], we classified NBS genes of sunflower into CNL, TNL, RNL and NL groups 

and their subgroups. We identified 100 genes belonging to the CNL group, with 64 

possessing RX_CC like domain, 77 to the TNL group, 13 to the RNL group, and 162 to 

the NL group. In sunflower, the number of CNLs was found to be higher than that of 

TNLs, and the ratio of CNLs to TNLs was 1.3:1. The CNL:TNL ratio in the current study 

is not consistent with the findings observed in some other dicot species such as A. 

thaliana (1:2), A. lyrata (1:2), B. rapa (1:2), Eucalyptus grandis (1:1.25), and 

Thellungiella salsuginea (1:1.5) as numbers of TNLs were higher than CNLs in these 

species [14, 30, 65, 66, 67]. However, grapevine, chickpea, and potato genomes 

constituted CNL:TNL in a ratio of 4:1 [20, 28, 57]. The higher number of CNLs in 

sunflower might suggest the higher contribution of these genes providing resistance 

against pest or pathogen attack, which warrants future investigation. Furthermore, these 

groups are classified into subgroups as CNLs were classified into four subgroups [CNL 

(90), CN (5), CNN (1), CNNL (4)], TNLs into six subgroups [TNL (52), TN (21), TTNL 

(1), TNLTNL (1), CTNL (1), CTN (1)], RNLs into three subgroups [RNL (10), RN (1), 

RCNL (2)], and NLs into four subgroups [N (29), NL (125), NN (2), NNL (6)]. The 

classification is based on the presence of the CC domain named as ‘C’, the presence of 

TIR domain as ‘T’, the presence of RPW8 domain as ‘R’, the presence of the NBS 

domain as ‘N’, the presence of two NBS domains as ‘NN’, and the presence of 

LxxLxxLxx signatures as ‘L’ in the amino acid sequences of the proteins. The CNL type 

constituted approximately 92% of the genes belonging to CNL subgroup, 67% of the 

genes belonging to TNL subgroup in the TNL type, 76% of the genes belonging to RNL 
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subgroup in RNL type and 77% of the NL types genes are comprised of NL subgroup 

genes. The subgroups CN, CNNL, N, NN, and TTNL were also observed in M. 

truncatula, A. thaliana, and B. rapa [5, 19, 27]. HanXRQChr03g0067681 and 

HanXRQChr03g0073241 constituted both RPW8 and coiled-coil domains in the N-

terminal and named RCNL, which were also reported in A. thaliana and B. rapa [5]. 

HanXRQChr05g0136351 and HanXRQChr06g0184071 possessed both TIR and coiled 

coil domain in the N-terminal of NBS proteins of sunflower and named CTN and CTNL, 

respectively. Such subgroups have been previously reported in many legumes and 

blueberries [16, 19]. 

NBS-encoding genes also called NBS-LRR genes encode proteins having TIR/CC 

at the N-terminal, NBS domain in the center and LRR at the C-terminal [14]. Among the 

identified NBS groups, genes belonging to NLs possessed less conserved NBS domain, 

as only 32% of the genes possessed all three signature motifs, while 57% of the CNLs, 

89% of TNLs, and 100% of RNLs possessed all three signature motifs. Of the 100 CNLs, 

64 genes possessed Rx_CC like domain in their N-terminal region. The disease resistance 

protein Rx possess CC domain in the N-terminal, and is expressed against potato virus X 

in S. tuberosum [68]. All TIR1, TIR2, TIR3 and TIR4 were detected in the TNLs of 

sunflower, which shows the consistency of TIR domain as described in other plant 

species such as A. thaliana, P. vulgaris, G. max, and P. trichocarpa [14, 24, 63, 69]. The 

characteristic ‘DDVW’ sequence was conserved in kinase-2 motifs of RNL and CNL 

genes, whereas ‘DDVD’ sequence was frequently found in TNL genes. The ‘TSR’ 

sequence was highly conserved in RNBS B motifs of the RNLs, while it slightly varies as 

‘TTR’ and ‘TTRD’ in the CNLs and TNLs, respectively. This was found to be consistent 
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with the large scale study of NBS proteins in angiosperms [13]. All of the identified NBS 

proteins possessed MHDL motifs, except for the RNL genes, frequently possessing 

QHDL motif. Such QHDL motifs were observed in NBS proteins of P. trichocarpa [69]. 

A unique Kelch motif sequence was observed in HanXRQChr02g0052061 protein. 

Previously, Kelch motifs were reported in the NBS proteins of B. rapa [5]. Kelch motif 

sequences are considered to be signature motif for positive selection mostly found at the 

C-terminal of F-Box proteins and are well studied in plant species such as A. thaliana, P. 

trichocarpa, and O. sativa [70]. 

We further compared our pipeline with another pipeline, RGAugury [35], for the 

identification of NBS-encoding genes. RGAugury is the integrative pipeline that 

facilitates the prediction of NBS-encoding genes, RLKs, and RLPs [35]. RGAugury 

predicted all 352 NBS proteins identified in this study plus five more proteins 

[HanXRQChr02g0037021 (TN), HanXRQChr09g0240471 (TN), 

HanXRQChr11g0340171 (CNL), HanXRQChr13g0394521 (TN), and 

HanXRQChr16g0515381 (CN)] and 25 belonging TX (absence of NBS domain) 

subclass. These missed proteins were manually checked and NBS domain (PF00931) in 

HanXRQChr09g0240471, HanXRQChr11g0340171, HanXRQChr13g0394521, and 

HanXRQChr16g0515381 were absent except in HanXRQChr02g0037021 (could belong 

to TN subgroup). In addition, we suggest HanXRQChr09g0240471 to be classified as a 

TX subclass. We found some discrepancies in the CNL group counts between two 

pipelines. The use of a MARCOIL tool in our pipeline helped with filtering false 

positives from the CNL group counts, and we could not observe any discrepancies in the 

TNL group counts between the two pipelines. Furthermore, the RGAugury pipeline could 
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not identify an RNL group of genes that were identified in this study and majorly 

categorized them to NL group (N and NL subclasses) of genes. The study and 

identification of TX proteins were beyond the scope of our study as these proteins were 

filtered out because of the absence of NBS domains. The differences and discrepancies 

between identification and classification of predicted NBS-encoding genes using our and 

RGAugury pipelines are represented in Supplementary File S5. In addition, RGAugury 

was employed to predict proteins belonging to RLP, RLK and Transmembrane-coiled-

coil (TM-CC) proteins. A total of 257 RLPs [255-LRR type, 2-lysin motif (LysM) type], 

1086 RLKs (368-LRR type, 12-LysM type and 706 Other-receptor type) and 173 TM-CC 

proteins were predicted in the sunflower (Supplementary File S5). Both RLKs and RLPs 

play important role in plant development and defense mechanism [4, 71]. RLKs such as 

FLAGELLIN SENSITIVE 2 (FLS2) [72], elongation factor Tu receptor (EFR) [73], 

systemin cell-surface receptor (SR160) [74], Xa21 [75], ERECTA RLK [76] and many 

more are well characterized that are mainly involved in detection of pathogen associated 

molecular patterns (PAMPs). On the other hand, RLP (lacking Kinase-2 domain) such as 

Arabidopsis CLAVATA2 (CLV2, AtRLP10) [77] is involved in the development of 

meristem and Cf is involved in pathogenesis against Cladosporium fulvum in tomato [78]. 

3.4.2. Gene Location, Clustering, Ka/Ks Values and Structural Variation 

A variety of clustering patterns of NBS-encoding genes, frequently observed in 

almost all plant species, is one of the major reasons for rapid evolution of the NBS genes 

[14, 79]. The NBS genes of sunflower formed 75 clusters, 25 of which reside in 

chromosome Ha13, 73 out of 200 (~37%) genes. In M. esculenta, 143 NBS genes 

positioned in 39 clusters [64]. In C. sativus, 33 NBS genes were located in nine clusters 



 

 

 

 

140 

[33]. The average number of NBS proteins per cluster in sunflower was approximately 

2.7, lesser than ratios in Solanaceae species such as tomato (3.48), potato (4.65), pepper 

(3.44) [80], Brassicaceae species such as B. oleracea (3.04), B. rapa (2.7), A. thaliana 

(2.8) [5], Fabaceae species such as G. max (4), V. vinifera (6), M. truncatula (5) [16], 

Gossypium species such as G. arboretum (3.4), G. raimondii (5.5), G. hirsutum (5.3), and 

G. barbadense (3.5) [34]. Both segmental and tandem duplications are responsible for the 

formation of new clusters that generate intraspecific variation by processes such as 

unequal crossing over [9, 14, 81]. However, NBS-encoding genes do not undergo high 

rates of mutation and maintain both intra- and inter-specific variation [9]. The average 

exon counts of sunflower CNLs (2.7 exons per gene) and TNLs (6.1 exons per gene) 

were consistent with CNLs (2.7 exons per gene) and TNLs (5.1) of Arabidopsis [14]. 

This implies a high number of exons of TNLs and RNLs could help with generating 

diverse resistance proteins through alternative splicing. All NBS types showed Ka/Ks 

values of less than one, indicating that these genes are under the influence of purifying 

selection. 

3.4.3. Phylogenetic Relationships, Homology, Synteny and Expression Analysis 

Sunflower CNL genes were similar to C. sativus CNL genes while compared to 

their respective TNL genes [33]. However, the CNL clade size in sunflower is different 

from Arabidopsis, as TNL clades constitute larger numbers of genes than CNL clade 

[14]. Subclades CC (I) possessed gene members with introns in range of one to ten, and 

CC (II) constituted gene members with introns in the range of zero to one. Other 

subclades, CC (III) and CC (IV) constituted gene members with introns in the range of 

zero to two and CC (V) and CC (VI) constituted gene members with introns in the range 



 

 

 

 

141 

of zero to four. Only HanXRQChr02g0057361, HanXRQChr02g0057351, and 

HanXRQChr13g0425771 in the subclade CC (VI) possessed in the range of five to seven. 

Similarly, subclade TIR (II) possessed gene members with introns in the lowest range 

(three to five). TIR (I), TIR (III), TIR (IV), TIR (V) and TIR (VI) gene members 

possessed introns in range of 3 to 17, 2 to 7, 1 to six, 1 to 15, and 1 to 13, respectively. 

Similar patterns were also observed in the phylogenetic tree of CNL and TNL in C. 

sativus [33]. The differences in the clade pattern with correlation to introns in two gene 

families suggest the role of intron loss and gain in the structural evolution of the NBS 

genes as suggested by Wan et al. 2013 [33]. In addition, the position, presence or 

absence, and phase of introns often play important roles in phylogeny [82]. 

We found that RNLs were nested within the clade of TNLs in sunflower (a member of 

the Asterids lineage) although RNLs in the families Brassicaceae and Fabaceae (Rosids 

lineage) were found to be related to CNLs [15, 30]. The lineage of Asterids is believed to 

have evolved from the rest of Angiosperms (Rosids + monocots + basal Angiosperms) 

little over 100 million years ago (MYA) [83]. A large-scale study of Angiosperms NBS 

genes also concluded that RNLs were sister to the CNLs [13]. However, these earlier 

studies did not include H. annuus in the analysis as the genome was not available by then. 

Our results indicate a surprising position of RNLs within TNLs in sunflower making the 

clades of TNL and CNL potentially paraphyletic. Upon reconstruction of the 

phylogenetic tree with Arabidopsis NBS genes, RNL genes of sunflower were observed 

in a CNL-A clade (although it is consistent with the previous study) [14]. The CNL-A 

clade did not consist of any sunflower CNL gene members besides RNLs. Further study 

on comparative genomics or transcriptomes across the Asterids lineage can confirm 
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whether CNL genes are completely absent in the lineage. Shao et al. 2016 [13] suggested 

that RNLs were derived from ADR1 and NRG1, and two ancient lineages separated 

before the Angiosperms diversified. The RNL genes, ADR1 and NRG1, have been 

characterized in Arabidopsis and Nicotiana, respectively. A separate tree, constructed to 

observe the relationships among sunflower RNLs and Arabidopsis RNLs, formed two 

clades. The sunflower RNL genes HanXRQChr02g0046611 and 

HanXRQChr05g0129181 were nested with AT4G3330 (ADR1-L1), AT1G33560 (ADR1) 

and AT5G04720 (ADR1-L2 or PHX21), with bootstrap support of 90%. On the other 

hand, HanXRQChr02g0048181, HanXRQChr11g0331571, HanXRQChr03g0067681, 

HanXRQChr0073241, and HanXRQChr04g0095241 were nested with AT5G66630 

(RNL) and AT5G66910 (homologous to NRG1), with bootstrap support of 63%. This 

suggests that the sunflower RNLs mentioned above are orthologous to the ADR1 and 

NRG1 homologs of Arabidopsis. ADR1 proteins play a role as helper genes for receiving 

signals from the R genes in downstream signaling of effector-triggered immunity [84]. 

Similarly, NRG1 proteins help the N protein during the pathogenesis by the tobacco 

mosaic virus [85]. Since they are not directly involved in detecting the pathogen 

effectors, they are not much influenced by a selection pressure due to the pathogens [13]. 

Only 5.8% of the total NBS genes in sunflower are RNL genes which is consistent with 

other species, such as A. lyrata (2.5%), A. thaliana (4.2%), B. rapa (4.4%), Capsella 

rubella (4.7%) and T. salsuginea (5.7%) [30]. Other results from this study that separate 

RNLs from the rest of the NBS genes include their highest average number of exons per 

gene and lowest average Ka/Ks ratios values for the clade. This supports the hypothesis of 

high conservation and slow evolutionary rates among the RNL genes [86]. 
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Sunflower NBS proteins identified in this study formed clades with reference proteins 

such as Pi36, Pl8, Rps2, VAT, RPG1, Gro1.4, RY-1, and N proteins, suggesting their 

homologous relationships (Figure S13). The sunflower TNL proteins are inferred to be 

orthologous to S. tuberosum nematode resistance protein (Gro1.4) [87], S. tuberosum 

subsp. andigena RY-1 (conferring resistance to potato virus Y) [88], and N. glutinosa 

Tobacco Mosaic Virus resistance (N) gene [89]. Similarly, sunflower CNL proteins are 

inferred to be orthologous to A. thaliana RPS2 (Resistant to P. syringae 2) [90], Cucumis 

melo VAT (resistance to Aphis gossypii) [91], H. annuus Pl8 [43], O. sativa Pi36 

(conferring resistance to Blast fungus) [92], and H. vulgare subsp. vulgare RPG1 

(conferring resistance to stem rust fungus) [93]. The BLAST investigation of sunflower 

NBS proteins with reference proteins available on http://www.prgdb.org has shown some 

of them to be the possible homologs of the reference proteins (Table S7). Sunflower NBS 

proteins such as HanXRQChr13g0425411, HanXRQChr13g0425361, and 

HanXRQChr13g0425431 showed greater than 80% sequence identity to the H. annuus 

gene, Pl8 gene (CNL). The Pl8 gene is involved in conferring resistance to P. halstedii, a 

causative agent to downy mildew [43]. HanXRQChr04g0123041, belonging to the NL 

group has shown homology to L. esculentum EIX receptor 2 (Eix2), a gene that encodes 

receptor-like proteins (RLPs) involved in detecting ethylene-inducing xylanase, a fungus 

elicitor [94]. Other inferred homologs include HanXRQChr17g0552491 to MLA10, 

HanXRQChr13g0420141 to N, HanXRQChr17g0552491 to both MLA12 as well as 

MLA13, and HanXRQChr17g0552491 to Sr33. The MLA locus is highly polymorphic 

and encode allelic CNL type resistance proteins such as MLA1, MLA2, and MLA3 that 

confer resistance to barley powdery mildew fungus (Blumeria graminis f. sp. Hordei, 

http://www.prgdb.org/
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Bgh) [95]. Another protein, Sr33, which belongs to the CNL type, confers resistance to a 

wheat stem rust pathogen, Puccinia graminis f. sp. tritici [96]. We were able to access 

expression profiles for only a few unique sunflower NBS proteins because of the 

duplicated names found for corresponding H. annuus r1.2 annotations compared to H. 

annuus r1 annotations. From the available expression data, it can be deduced that NBS 

genes can be expressed at a basal level with tissue specificity in unchallenged conditions 

[97]. In the expression dataset, most of the NBS genes were found to have a minimal to 

no expression value possibly as a result of low sequencing coverage, or their expression 

dependent on infection of pathogens or due to a pseudogenization, which was also noted 

by Frazier et al. 2016 [98]. Thus, detailed transcriptomic and proteomics studies are 

warranted to functionally characterize the sunflower NBS genes, particularly challenging 

the plant by various pests and pathogens through carefully crafted experimental designs. 

3.5. Conclusions 

 

We identified 352 NBS genes in sunflower and studied their clustering, 

phylogenetic relationships, gene homology and functional divergence. These genes 

formed clusters and showed structural conservation in signature domains and exon/intron 

architecture in CNL, TNL and RNL types of NBS genes. The RNLs belonged to the 

CNL-A clade, which in turn was found nested within the TNL clade, making both CNL 

and TNL clades paraphyletic. This warrants further rigorous analysis. All of the NBS-

encoding genes have undergone purifying selection and available expression data have 

revealed their functional divergence. We confirmed homology of sunflower NBS genes 

to multiple previously characterized Pl8, LeEIX1, MLA10-13, Sr33 resistance genes. 
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Further characterization of the NBS genes will help us to understand resistance pathways 

and to develop durable resistance necessary for crop improvement in sunflower, one of 

the major oilseed crops in the world. 

Supplementary Materials: The following are available online at 

https://www.mdpi.com/2073-4425/9/8/384/s1. Figure S1. Predicted protein domains in 

sunflower CNL protein sequences with number of LxxLxxLxx signatures (in 

parentheses). Each black line represents amino acid sequence lengths that correspond to 

the scale provided at the top of the figure. The name and signs of the domains are 

presented below the black line: CC: Coiled Coil; NBS: Nucleotide Binding Site; RX_CC: 

Coiled coil domain present in disease resistance protein, Rx; LxxLxxLxx signatures are 

represented by the purple shapes under the black lines. Figure S2. Predicted protein 

domains in sunflower TNL protein sequences with the number of LxxLxxLxx signatures 

(in parentheses). The black lines represent the protein lengths that correspond to the scale 

provided at the top of the figure. The name and signs of the domains are presented below 

the black lines: TIR: Toll-interleukin-1 Receptor; NBS: Nucleotide Binding Site; CC: 

Coiled Coil; LxxLxxLxx signatures are represented by the purple shapes under the black 

lines. Figure S3. Predicted protein domains in sunflower RNL protein sequences with 

number of LxxLxxLxx signatures (in parentheses). The name and signs of the domains 

are presented below the color-coded lines: RPW8: Resistance to powdery mildew 8; 

NBS: Nucleotide Binding Site; CC: Coiled Coil; LxxLxxLxx signatures are represented 

by the purple shapes under the color coded lines. Figure S4. Predicted protein domains in 

sunflower NL protein sequences with the number of LxxLxxLxx signatures (in 

parentheses). The black lines represent the protein length that corresponds to the scale 
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provided at the top of the figure. The name and signs of the domains are presented just 

below the black lines: NBS: Nucleotide Binding Site; LxxLxxLxx signatures are 

represented by the purple triangular shapes under each black line. Figure S5. Conserved 

domains of sunflower CNL genes predicted by MEME analysis. The parameters used 

were the number of motif-20; minimum width-6; and maximum width-50. The logos of 

numbered color-coded motifs are shown in Supplementary File S1a. Figure S6. 

Conserved domains of sunflower TNL genes predicted by MEME analysis. The 

parameters used were- the number of motif-20; minimum width-6; maximum width-25. 

The logos of numbered color-coded motifs are shown in Supplementary File S1b. Figure 

S7. Conserved domains of sunflower RNL genes predicted by MEME analysis. The 

parameters used were-the number of motif-20; minimum width-6; maximum width-25. 

The logos of numbered color-coded motifs are shown in File S1c. Figure S8. 

Chromosomal distribution of NBS genes in a sunflower (n = 17). Figure S9. Exon–intron 

architecture of the coding sequences of CNL genes in sunflower. Figure S10. Exon–

intron architecture of the coding sequences of TNL genes in sunflower. Figure S11. 

Exon–intron architecture of the coding sequences of RNL genes in sunflower. Figure 

S12. Exon–intron architecture of the coding sequences of NL genes in sunflower. Figure 

S13. Maximum likelihood (ML) tree of the NBS amino acid sequences of the CNL, TNL 

and RNL genes from sunflower along with those of previously characterized CNL, TNL 

and RPW8 type genes. The tree was reconstructed using JTT + G + I (Jones–Taylor–

Thornton with gamma distribution and invariant sites) model with 1000 bootstrap 

replicates. The tree was rooted with Streptomyces coelicolor (P25941) as an outgroup. 

Figure S14. Syntenic relationships between chromosomes of Arabidopsis and sunflower. 
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Chromosomal blocks of Arabidopsis (color coded) are mapped onto the chromosome of 

sunflower (Ha1 to Ha17). Figure S15. Identified genes in different clusters showing 

differential expression on all tissues in sunflower. Gene IDs are followed by NBS type 

(C: CNL type; T: TNL type; N: NL type and R: RNL type). Table S1. List of NBS gene 

accessions, their type, number of LxxLxxLxx signatures, exon/introns number, protein 

sequence length, gene orientation, amino acid length and amino acid sequences. Table 

S2. List of NBS genes of sunflower with nuclear localization signal (NLS) peptides. 

Table S3. MEME predicted conserved motifs in CNL proteins of sunflower. The motif 

logos represented in column three are shown in Supplementary File S1a. Table S4. 

MEME predicted conserved motifs in TNL proteins of sunflower. The motif logos 

represented in column three are shown in Supplementary File S1b. Table S5. MEME 

predicted conserved motifs in RPW8 proteins of sunflower. The motif logos represented 

in column three are shown in Supplementary File S1c. Table S6. List of gene accessions, 

their corresponding gene clusters and chromosomal location. Table S7. BLAST result of 

NBS genes against reference genes of Plant Resistance Genes database (PRGdb; 

http://prgdb.org) with a cutoff E-value of 0.01. Supplementary File S1. Motif sequence 

logos for the sunflower NBS proteins. Supplementary File S2. Sequence alignment of the 

NBS domains belonging to different groups in fasta format. Supplementary File S3. 

Newick files for phylogenetic trees shown in Figure 3, Figure 4 and Figure 5. 

Supplementary File S4. BLASTp result of NBS domains of the genes identified in this 

study and those previously identified by Gedil et al. 2001 [61], Plocik et al. 2004 [40], 

and Radwan et al. 2008 [42]. Supplementary File S5. Identification and classification of 
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NBS-encoding genes using current pipeline (this study) compared to those predicted by 

RGAugury pipeline, and a list of RLPs, RLKs and TM-CC proteins in sunflower. 
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CHAPTER 4: IDENTIFICATION AND CHARACTERIZATION OF MITOGEN 

ACTIVATED PROTEIN KINASE (MAPK) GENES IN SUNFLOWER (HELIANTHUS 

ANNUUS L.)  

This chapter has been published in the Journal Plants: 

Neupane, S.; Schweitzer, S.E.; Neupane, A.; Andersen, E.J.; Fennell, A.; Zhou, R.; 

Nepal, M.P. Identification and Characterization of Mitogen-Activated Protein Kinase 

(MAPK) Genes in Sunflower (Helianthus annuus L.). Plants 2019, 8, 28. 

Abstract 

Mitogen Activated Protein Kinase (MAPK) genes, known to regulate biotic and 

abiotic stresses in plants, are classified into three major subfamilies: MAP Kinase (MPK), 

MAPK Kinase (MKK), and MAPKK Kinase (MKKK). The main objectives of this 

research were to conduct genome-wide identification of MAPK genes in Helianthus 

annuus and examine functional divergence of these genes in relation to those in nine 

other plant species (Amborella trichopoda, Aquilegia coerulea, Arabidopsis thaliana, 

Daucus carota, Glycine max, Oryza sativa, Solanum lycopersicum, Sphagnum fallax, and 

Vitis vinifera) representing diverse taxonomic groups of plant kingdom. A Hidden 

Markov Model (HMM) profiling of the MAPK genes utilized reference sequences from 

A. thaliana and G. max, yielding a total of 96 MPKs and 37 MKKs in the genomes of A. 

trichopoda, A. coerulea, C. reinhardtii, D. carota, H. annuus, S. lyccopersicum, and S. 

fallax species. Among them, 28 MPKs and eight MKKs were confirmed in H. annuus. 

Phylogenetic analyses revealed four clades within each subfamily. The transcriptomic 

data showed that at least 19 HaMPK and seven HaMKK genes were induced in response 

to salicylic acid (SA), sodium chloride (NaCl), and polyethylene glycol (Peg) in leaves 
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and roots. Of the seven published sunflower microRNAs, five microRNA families are 

involved in targeting eight MPKs. Additionally, we discussed the need for using MAP 

Kinase nomenclature guidelines across plant species. Our identification and 

characterization of MAP Kinase genes will have implication in sunflower crop 

improvement, and in advancing our knowledge of the diversity and evolution of MAPK 

genes in the Plant Kingdom. 

Keywords: Abiotic stress; evolution of gene families; homology assessment; MAP 

Kinase cascade genes; MAPK nomenclature; sunflower; RNA-seq 

4.1. Introduction 

 

Plant responses to abiotic and biotic stresses involve protein kinase molecules that 

are crucial to signal transduction pathways [1]. The protein kinase molecules are involved 

in phosphorylation of Serine/Threonine and Tyrosine sidechains of proteins [2]. Among 

these protein kinases, Mitogen-Activated Protein Kinase (MAPK) cascade genes are key 

components of signal transduction pathways in animals, plants, and fungi [3] that help 

transduce extracellular signals to intracellular responses [4]. Discovered in 1986, the 

MAPK gene family was originally found in animal cells as a microtubule associated 

protein kinase [5]. The first reports of plant MAPK gene family in 1993, identified 

MsERK1 in alfalfa [6] and D5 kinase in pea [7]. MsERK1 is believed to play a role as an 

inducer of mitosis in root nodules during symbiosis by Rhizobium and D5 kinase as a cell 

cycle regulator in pea [6, 7]. In addition to such roles in cell proliferation and cell 

differentiation, MAPK genes are involved in regulating various biotic (e.g. bacteria, 
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fungi, viruses) and abiotic stress (e.g. light, drought, UV, salinity, pH, cold) responses 

[8]. 

The stress signals trigger the MAPK cascade which is composed of reversibly 

phosphorylated kinases such as MAP Kinase (MAPK, MPK), MAPK Kinase (MAP2K, 

MAPKK, MKK), and MAPKK Kinase (MAP3K, MAPKKK, MKKK) [9, 10]. The 

MKKKs constitute relatively larger gene family constituting three sub-groups of genes: 

the MEKKs, Rafs, and ZIKs [11]. Each of these proteins in the cascade is interlinked and 

is activated through the recognition and phosphorylation of a specific serine/threonine 

amino acid motif [12]. An external or internal stimulus triggers the first step, an 

activation of an MKKK member, through receptor-mediated phosphorylation or 

intermediate bridging factors or interlinking MKKKs [10]. The phosphorylated MKKK 

member induces the activation of MKK through the phosphorylation of two serine or 

threonine amino acid residues in the conserved motif S/TxxxxxS/T [10]. The activated 

MKKs, which are dual specificity kinases, in turn, trigger the phosphorylation of MPKs 

at the Thr-Asp/Glu-Tyr [T(D/E)Y] motif located in the activation loop (T-loop) between 

kinase subdomains VII and VIII [3, 10, 13]. Apart from T(D/E)Y motif in many plant 

species, some other variants such as T(Q/V/S)Y, T(/Q/R)M, MEY, TEC in the activation 

loop have also been reported [1]. The MPK members phosphorylate a variety of 

substrates, including transcription factors, protein kinases, and cytoskeleton proteins [10, 

14]. The activation of the MAPK cascade genes induces the translocation from the 

cytoplasm to the nucleus [15], further enacting the specific cellular response to the 

external stimuli through gene activation and inactivation. The detail illustration of MAP 
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Kinase signaling pathway in response to diverse abiotic and biotic stresses in plants is 

represented in Figure S1 adapted from various studies [16, 17, 18, 19, 20, 21, 22, 23, 24]. 

The advent of sequencing technologies and rapid progress on bioinformatics tools has 

assisted the sequencing of the plant genomes at a faster pace. Genome-wide identification 

of MPKs and MKKs has been documented in various plant species including both model 

and crop species [14, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Previous 

identification and characterization of MAP Kinase cascade proteins in rice, Arabidopsis, 

and other plants [4, 39, 40] provide a wealth of information for comparative analyses of 

these proteins in species that have yet to be studied. The availability of the complete 

genome sequences from each of the major plant groups such as Asterids (Daucus carota 

[41], Helianthus annuus [42], Solanum lycopersicum [43]), Amborellales (Amborella 

trichopoda [44]), Ranunculales (Aquilegia coerulea [45]), Bryophyte (Sphagnum fallax 

[46]), and Algae (Chlamydomonas reinhardtii [47]) allowed us to identify the MPK and 

MKK genes of these species and assesses phylogenetic relationships. Domesticated 

sunflower is the fourth most important oilseed crop in the world (http://www.fao.org/) 

and can adapt to diverse environmental conditions such as drought and maintain the 

stable yields [48]. Thus, MAPK gene family might play important role in sunflower to 

help thrive in changing climate. The research was carried out with two major objectives: 

(a) detailed identification, nomenclature and functional characterization of MPK and 

MKK genes in H. annuus, (b) assess phylogenetic relationships of MPK and MKK genes 

of H. annuus with that of A. coerulea, A. trichopoda, C. reinhardtii, D. carota, S. fallax, 

and S. lycopersicum and including the homologs from relatively better-studied plant 

species from Rosids (A. thaliana, G. max, O.sativa, and V. vinifera). Findings from this 
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study might support further efforts in crop improvement focused on the development of 

cultivars that maintain yield when challenged by biotic and abiotic stresses as well as 

understand the evolution pattern of MAPK gene family in sunflower and other plant 

species.   

4.2. Materials and Methods 

4.2.1. Retrieval and Identification of Putative MAP Kinase Cascade Genes 

Genome-wide identification of MPK and MKK cascade genes were done using 

protein sequences of A. coerulea (v 3.1), A. trichopoda (v 1.0), C. reinhardtii (v 5.5), D. 

carota (v 2.0), H. annuus (r 1.2) , S. fallax (v 0.5), and S. lycopersicum (iTAG2.4) 

obtained from Phytozome database [45]. The protein sequences for sunflower were 

accessed from sunflower (INRA inbred genotype XRQ; H. annuus r1.2) whose genome 

is 3.6 gigabases and encode 52,243 proteins distributed over 17 chromosomes [42]. The 

20 MPKs and ten MKKs sequences of A. thaliana [25] and 38 MPKs and 11 MKKs 

sequences of G. max [26] were used as reference sequences for the identification of MPK 

and MKK proteins of sunflower. The multiple sequence alignment file of these reference 

sequences was employed in HMM profiling using the program HMMER version 3.1b2 

[49] at a threshold expectation value of 0.01. MPK and MKK genes were further 

identified using InterProScan Version 5.27 [50], Pfam ID [51], and PROSITE ID 

(http://prosite.expasy.org/). The proteins with PfamID of MAPK domain (PS01351), 

ATP-binding domain (PS00107), and protein kinase domain (PS50011), serine/threonine 

protein kinase active site (PS00108) were used for identification of corresponding MPK 

and MKK proteins (Figure 4.1). Multiple expectation maximization for motif elicitation 

(MEME) [52] and multiple sequence alignment analysis was performed to confirm the 
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presence of signature motifs (a) the phosphate binding P-loop, GxGxxG [1], where ATP 

binds in protein kinases (b) the catalytic C-loop, D(L/I/V)K, found within the S/T PK 

active site signature, and (c) the activation- or T-loop, T(D/E)Y in MPK and 

GTxxYMSPER in MKK proteins. The following parameters for MEME were employed: 

maxsize: 100,000, mod: zoops, nmotifs: 10, minw: 6, and maxw: 25. Further, MKK 

genes were identified using BLAST [53], with an E-value cutoff of 0.01, in which A. 

thaliana MKK sequences were used as a query, and the top ten hits for each A. thaliana 

MKK query sequence were employed for MKK genes identification. The protein 

theoretical molecular weight and isoelectric point were predicted using compute pI/Mw 

tool available in ExPASy (http://au.expasy.org/tools). Subcellular localization of the 

putative MPKs and MKKs genes of sunflower were analyzed using TargetP 1.1 [54]. 

 

 

Figure 4.1. Schematic representation of in silico approaches used in the identification of 

MPK and MKK genes in seven plant species and their downstream analyses. 
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4.2.2. Phylogenetic Tree Construction and Homology Assessment  

The multiple sequence alignment of identified MPK and MKK proteins of H. 

annuus was performed using CLUSTAL W [55] and MUSCLE [56] in Geneious [57] and 

subjected to phylogenetic analysis employing the maximum likelihood (ML) (100 

replicates) using MEGA (version 7.0.14) [58]. The phylogenetic analyses employed the 

best evolutionary model (resulted from the ModelTest analysis using MEGA7) JTT+G+I 

(Jones–Taylor–Thornton with gamma distribution and invariant sites). Additionally, ML 

trees were constructed using MPK and MKK proteins of H. annuus with MPKs and 

MKKs of other plant species used in this study. The trees using MPK and MKK 

sequences were rooted with corresponding human MAP Kinase proteins (HsMAPK1 

[GenBank: NP_002736.3] and HsMAPKK1 [GenBank: AAI37460.1]), respectively as an 

outgroup. Timetree was constructed using Reltime method [59] from MEGA7 to study 

the evolutionary divergence of MKK3 proteins belonging to all species under study. 

Following criteria were used for the construction of Timetree: constraints used: 3 

[Divergence time: O. sativa and A. trichopoda (168-194 MYA), G. max and H. annuus 

(110-124 MYA), and V. vinifera and A. thaliana (105-115 MYA) obtained from 

http://www.timetree.org/ [60]], variance estimation method: analytical, statistical method: 

Maximum Likelihood, substitution model: JTT, rates among sites: 5 categories (+G, 

parameter = 0.6307), rate variation model allowed: ([+I], 0.00% sites), amino acid 

involved: 11, and total positions: 574 positions. Homology to MPKs and MKKs of other 

plants was assessed using BLASTp top-hit approach 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) with non-redundant protein sequences (nr) 

database.  
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4.2.3. Chromosomal Locations and Gene Structure 

All 17 chromosome sequences of H. annuus accessed from the Phytozome 

database were uploaded into the program Geneious [57]. The chromosome locations of 

MPK and MKK genes were visualized using annotation file in Generic Feature Format 

(GFF) obtained from the annotation database of Phytozome. The exon-intron distribution 

pattern was obtained by the Gene Structure Display Server [61].  

4.2.4. Nomenclature of MPKs and MKKs 

Nomenclature of sunflower MPKs and MKKs was carried out using MAPK gene 

nomenclature guidelines [3, 4]. The nomenclature uses the following guidelines: a) the 

first letter (upper case) of the genus name followed by two to three letters of species 

(lower case) was used, b) a number was provided based on the homology to the 

Arabidopsis MAP Kinase cascade genes, and c) the number was followed by a hyphen 

and a number if paralogs are present. Such guidelines for nomenclature of MPKs and 

MKKs have been employed in many studies [1, 4, 26, 27, 33, 34, 35, 36, 62, 63, 64, 65]. 

In this study, we renamed GSVIVT01005924001 (VvMPK2) and GSVIVT0102277001 

(VvMPK10) identified by Cakir and Kılıçkaya 2015 [37] as VvMPK22 and VvMPK23, 

respectively which were not identified in a study by Mohanta et al. 2015 [1]. 

4.2.5. Expression Analysis and miRNA Prediction of Sunflower MPKs and MKKs 

The expression pattern of sunflower MPKs and MKKs was investigated using 

data accessed from NCBI SRA (Sequence Read Archive) SRP092742 [SRR4996815 

(Peg treated pooled root samples), SRR4996819 (NaCl treated pooled root samples), 

SRR4996823 (Peg treated pooled leaf samples), SRR4996828 (Pooled Control root 

samples), SRR4996834 (NaCl treated pooled leaf samples), SRR4996836 (Pooled control 
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leaf samples), SRR4996839 (Salicylic Acid treated pooled leaf samples), and 

SRR4996847 (Salicylic Acid treated pooled roots samples)]. These data are the result of 

the application of one hormone treatment (0.05 µM SA), two abiotic stresses 

[(polyethylene glycol 6000 (Peg) at 100g/l, which creates osmotic stress, and sodium 

chloride at 100mM (NaCl)], and control [Dimethyl sulfoxide (DMSO) only] collected 

from roots and leaves samples. The detailed experiment for generating transcriptomic 

data is described in a study by Badouin et al. 2017 [42]. Briefly, roots and first leaves 

were collected after six hours of treatments (SA, Peg, NaCl, and DMSO) applied to 

sunflower (INRA inbred genotype XRQ) seedlings (two-week-old) grown in a 

hydroponic system. The collection was repeated three times and was pooled after 

separate RNA extractions in equimolar concentration. RNA sequencing of roots and 

leaves samples done as non-oriented pair end libraries (2*76bp for roots and 2*100 for 

leaves). The quality control of these reads was accessed by running the FastQC program 

(version 0.11.3) [66], and trimming was done using Btrim64 (version 0.2.0) [67] to 

remove low-quality bases (QC value > 20; 5-bp window size). High-quality pair-end 

reads were mapped against the coding sequences of H. annuus 

(Hannuus: Hannuus_494_r1.2.transcript.fa.gz) obtained from the Phytozome database 

using Salmon tool ver.0.9.1 [68] accessed from Bioconda channel [69]. The codes that 

were used for data processing are available as Appendix I; Supplementary 1. The 

obtained transcript estimated quantification reads for each treatment were compared with 

their respective reads from the controls to calculate the log2Fold Change (log2FC) and 

visualized using integrated Differential Expression and Pathway analysis (iDEP 0.81 

R/Bioconductor packages; http://bioinformatics.sdstate.edu/idep/) [70]. The heatmap was 
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generated using following criteria: Distance – correlation, Linkage –average and Cut-off 

Z score – 4 to study the hierarchical clustering and expression pattern of MPK and MKK 

genes in different tissues under different treatments. k –means clustering was done using 

standardization normalization technique. To identify the potential miRNA targeting sites 

The nucleotide sequences of the identified sunflower MPKs and MKKs were subjected to 

a plant small RNA (psRNATarget) target analysis server [71] against seven published H. 

annuus microRNAs using Schema V2 (2017 release) scoring schema. 

4.2.6. Tajima’s Relative Rate and Neutrality Test 

Tajima’s relative rate test [72] was conducted to study the statistical significance 

of variations in molecular evolution in a different group of plants. The same MEGA files 

used in phylogenetic tree construction were used in the program MEGA7. In this test, 

three random sequences of either MPKs or MKKs of different plant species were selected 

considering one of the sequences as the outgroup and χ2 test statistic is applied. A p-value 

of less than 0.05 was used to reject the null hypothesis of equal rates between selected 

sequences of different plant groups. All positions containing gaps and missing data were 

eliminated. Tajima’s test of neutrality [73] was performed to understand and distinguish 

the evolution pattern of randomly evolved MPKs or MKKs with non-randomly evolving 

MPKs or MKKs. During the neutrality test, all positions with less than 95% site coverage 

were eliminated. Therefore, fewer than 5% alignment gaps, missing data, and ambiguous 

bases were allowed at any position. The grouping of A, B, C represent the statistical 

groups, which should not be confused with MPKs or MKKs clades. 
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4.3. Results 

4.3.1. Diversity of MPK and MKK Genes in Sunflower Relative to Other Species 

After a careful examination of the signature motifs of the 2,419 sequences 

resulted from the HMM profiling using reference sequences of A. thaliana and G. max 

against 52,243 protein sequences of sunflower, we identified 28 MPKs (filtered from 

possible 244 MPKs) and 8 MKKs (filtered from possible 100 MKKs) (Table 4.1 and 

Table 4.2). We also used protein sequences of A. coerulea, A. trichopoda, C. reinhardtii, 

D. carota, S. fallax, and S. lycopersicum and identified their MPKs and MKKs, which are 

shown in Table S1-S2. The protein sequences identified including reference sequences 

used in this study and their identity in percentage are presented in Supplementary File S2. 

The diversity of MPK and MKK genes in the genome of A. coerulea (306.5Mb), A. 

trichopoda (706Mb), C. reinhardtii (111Mb), D. carota (421Mb), H. annuus (3600 Mb), 

S. lycopersicum (900Mb), and S. fallax (395 Mb) does not seem to correlate with genome 

size (Table 4.1). 
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Table 4.1 Abundance of MPK and MKK genes in the genomes of 11 species used in this 

study 

 Plant Species Ploidy 
Size of Genome 

(Mbs)γ 
No. of loci γ MPK MKK 

Amborella trichopodaǂ Diploid 706 26846 8 7 

Aquilegia coerulea ǂ Diploid 302 24823 11 5 

Arabidopsis thaliana Diploid 135 27416 20a 10a 

Chlamydomonas 

reinhardtiiǂ 
Haploid 111.1 17741 6 1 

Daucus carotaǂ Diploid 421 32,113 17 5 

Glycine max Tetraploid 975 56044 38b 11b 

Helianthus annuusǂ Diploid 3600 52243 28 8 

Oryza sativa Diploid 372 39049 16c 8c 

Solanum lycopersicumǂ Diploid 900 34727 15 5 

Sphagnum fallaxǂ Haploid/Diploid 395 26939 11 6 

Vitis vinifera Diploid 487 26346 14d 5d 
ǂ = Plant species with MPKs and MKKs identified or revisited in this study 

γ = References on the size of genome and number of loci Amborella trichopoda [44], Arabidopsis thaliana [74], Aquilegia coerulea 

[45], Chlamydomonas reinhardtii [47], Daucus carota [41], Glycine max [75], Helianthus annuus [42], Oryza sativa [76], Solanum 

lycopersicum [43], and Sphagnum fallax [46], and Vitis vinifera [77]   

a= [10], b= [26], c=[4], d=[37] 
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Table 4.2. Sunflower MPK and MKK genes with their proposed name, GeneID, 

chromosomal location (Chr), strand direction (Str), start and end position of the genes on 

chromosome, protein length (PL), number of exon (Exo) and intron (Int), subcellular 

localization [Sl; M = Mitochondria and C = Chloroplast, - = Subcellular locations other 

than mitochondria or the chloroplast), isoelectric points (pI) and molecular weight (Mw)]. 
 

Name Gene ID Chr Str Start End PL  Exo Int Sl pI Mw 

MPK                       

HaMPK6-1 HanXRQChr01g0023391 Ha1 - 130301686 130292965 359 6 5 _ 5.85 41581.61 

HaMPK16-1 HanXRQChr03g0071491 Ha3 - 77378137 77372246 564 10 9 _ 9.17 64059.43 

HaMPK7 HanXRQChr03g0074811 Ha3 + 102410161 102406169 353 3 2 _ 7.62 40274.83 

HaMPK23-1 HanXRQChr03g0081221 Ha3 + 129978443 129973452 453 15 14 _ 9.65 50392.28 

HaMPK23-3 HanXRQChr03g0081391 Ha3 + 130506162 130500013 423 16 15 _ 8.91 47648.79 

HaMPK22 HanXRQChr04g0108301 Ha4 - 77321727 77315970 432 18 17 _ 5.46 49633.87 

HaMPK11-1 HanXRQChr04g0121371 Ha4 + 158781451 158778221 358 6 5 M 6.42 41228.21 

HaMPK3-1 HanXRQChr05g0133161 Ha5 + 21064225 21061089 358 6 5 _ 5.68 41323.35 

HaMPK8 HanXRQChr05g0143371 Ha5 - 116774638 116767923 505 11 10 _ 6.8 57051.89 

HaMPK2 HanXRQChr05g0151241 Ha5 - 169574750 169571609 349 3 2 _ 6.54 40295.67 

HaMPK11-2 HanXRQChr06g0167011 Ha6 - 7104659 7099870 359 6 5 M 6.25 41336.17 

HaMPK4 HanXRQChr06g0170261 Ha6 + 16894292 16893100 157 2 1 M 8.36 17702.54 

HaMPK13-1 HanXRQChr06g0175501 Ha6 - 34635251 34631528 363 7 6 _ 5.22 41353.31 

HaMPK9-1 HanXRQChr06g0183531 Ha6 + 90706107 90699312 478 11 10 _ 6.53 54442.91 

HaMPK23-4 HanXRQChr08g0226701 Ha8 + 84318787 84308381 442 18 17 _ 9.52 49480.06 

HaMPK15 HanXRQChr08g0227231 Ha8 + 87599490 87591577 501 11 10 _ 8.53 57073.07 

HaMPK3-2 HanXRQChr08g0229941 Ha8 - 101013127 101009864 358 6 5 _ 5.58 41298.31 

HaMPK13-2 HanXRQChr08g0230171 Ha8 - 102808229 102804252 362 6 5 _ 5.85 41552.83 

HaMPK14 HanXRQChr09g0243011 Ha9 + 34673154 34669292 362 3 2 _ 5.57 41423.42 

HaMPK16-2 HanXRQChr09g0248301 Ha9 + 76212398 76202758 559 10 9 _ 9.07 63370.4 

HaMPK1 HanXRQChr09g0269211 Ha9 - 185086347 185083825 361 3 2 _ 6.64 41831.44 

HaMPK19-2 HanXRQChr11g0330461 Ha11 + 43791321 43784989 574 9 8 _ 9.33 65344.85 

HaMPK6-2 HanXRQChr11g0343001 Ha11 - 125967866 125963374 359 6 5 _ 5.8 41553.72 

HaMPK19-1 HanXRQChr13g0389781 Ha13 - 19048315 19044532 588 10 9 _ 9.06 66613.36 

HaMPK23-2 HanXRQChr13g0411961 Ha13 - 142634442 142625511 459 18 17 _ 9.63 50984.95 

HaMPK9-2 HanXRQChr14g0432771 Ha14 - 49683290 49679650 484 10 9 _ 6.57 55530.13 

HaMPK17 HanXRQChr15g0484561 Ha15 - 84424855 84420653 429 11 10 _ 6.24 49909.6 

HaMPK18 HanXRQChr15g0495321 Ha15 - 160155012 160149273 563 9 8 _ 9.47 64374.62 

MKK                       

HaMKK9 HanXRQChr03g0087071 Ha3 - 148424902 148425825 308 1 0 M 6.75 34332.34 

HaMKK4 HanXRQChr04g0094171 Ha4 + 471743 472816 351 1 0 C 9.04 38917.18 

HaMKK6-1 HanXRQChr09g0238861 Ha9 + 9311933 9322916 357 8 7 _ 6.76 39934.36 

HaMKK5 HanXRQChr10g0311571 Ha10 + 219604899 219606004 355 1 0 C 9.25 39840.46 

HaMKK6-2 HanXRQChr10g0318871 Ha10 + 244056044 244064185 355 8 7 _ 7.13 39751.09 

HaMKK2 HanXRQChr10g0319531 Ha10 - 245318274 245324118 371 9 8 _ 5.43 40967.01 

HaMKK1 HanXRQChr12g0354521 Ha12 - 1236278 1243005 358 10 9 _ 5.77 39199.81 

HaMKK3 HanXRQChr14g0450561 Ha14 - 141579116 141587170 520 12 11 M 5.79 68568.6 

 

 

4.3.2. Gene Location, Subcellular Localization and Structural Variation of MPKs and 

MKKs in H. annuus  

The MPK and MKK genes were distributed on all chromosomes of sunflower, 

with the highest of five genes in chromosome 3. The MPK genes were absent in 

chromosomes 2, 7, 10, 12, 10, 16 and 17 whereas, MKK genes were absent in 
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chromosomes 1, 2, 5, 6, 7, 8, 11, 13, 15, 16 and 17. Both MPK and MKK genes are 

completely absent in chromosomes 2, 7, 16 and 17. Only one HaMPK gene was found in 

chromosome 1 and 14 each; two HaMPKs in chromosome 4, 11, 13 and 15 each; three 

HaMPKs in chromosome 5 and 9 each, and four HaMPKs in chromosome 3, 6 and 8 each 

(Figure 4.2). Eight paralog pairs HaMPK3-1/3-2, HaMPK6-1/6-2, HaMPK9-1/9-2, 

HaMPK11-1/11-2, HaMPK13-1/13-2, HaMPK 16-1/16-2, HaMPK19-1/19-2 and 

HaMPK23-2/23-4 were located on different chromosomes. Only one paralog pair 

(HaMPK23-1/23-3) was present in the same chromosome (i.e. chromosome 3). Likewise, 

only one MKK gene was present in chromosomes 3, 4, 9, 12, and 14 while three MKKs 

were present in chromosome 10. The only paralog pair, HaMKK6-1/6-2 was present in 

different chromosomes. TargetP analysis showed that the proteins encoded by three 

MPKs (HaMPK11-1/11-2 and HaMPK4) and two MKKs (HaMKK9 and HaMKK3) were 

predicted to localize in mitochondria, two MKKs (HaMKK4 and HaMKK5) in the 

chloroplast, and the rest in subcellular locations other than mitochondria or the 

chloroplast (Table 4.2). Regarding the structural variation due to exons and introns, the 

number of exons in MPKs ranged from two (HaMPK4) to 18 (HaMPK22, HaMPK23-

4/23-2) with an average of 8.9 exons per gene (Table 2, Figure S2). The number of exons 

in MKKs ranged from one (HaMKK9, HaMKK4, and HaMKK5) to 12 (HaMKK3) with 

an average of 6.25 exons per gene (Table 4.2, Figure S3). 
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Figure 4.2. Chromosomal distribution of MPK and MKK genes in sunflower (n =17). 

Color-coded arrows represent MAP Kinase gene types and their orientation on the 

chromosome indicated by the black line.  

 

4.3.3. Phylogenetic Analyses 

Full-length amino acid sequences of MPKs and MKKs of sunflower, Arabidopsis 

and soybean were employed for evaluating evolutionary relationships as well as for 

nomenclature of the sunflower MPKs and MKKs. These sequences were subjected to 

multiple sequence alignment and subsequent phylogenetic analyses. Phylogenetic 

analyses included MPK and MKK gene sequences from, A. coerulea, A. thaliana, A. 

trichopoda, C. reinhardtii, D. carota, G. max, H. annuus, O. sativa, S. lycopersicum, and 

V. vinifera. 

4.3.3.1. MPKs 

 

Sunflower MPK (HaMPK) protein sequence length ranged from 349 to 588 

amino acid (aa), except for HaMPK4, which was only 157 aa. The average length of 
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MPKs was 425 aa, with isoelectric points ranging from 5.22 (HaMPK13-1) to 9.65 

(HaMPK23-1) and a predicted average molecular mass of 48523.772 Da (Table 4.1). 

Twenty-eight HaMPKs identified in this study were nested into four clades (A-D; each 

with bootstrap support > 70%) (Figure S4), which corresponded to their homologs in A. 

thaliana and G. max, except for the Clade C MPK members of Arabidopsis (Table 

S3). The Clade A members in this study include the previously identified group A and B 

members of A. thaliana MPKs [3, 4]. Likewise, Clade B consists the members from 

previously identified group C members of A. thaliana MPKs. In addition, Clade C 

includes the members identified in group E of soybean MPKs [26]. The number 

of HaMPKs in Clades A, B, C, and D were nine, four, five, and ten, respectively. 

Sunflower MPK Clade C included five members with HaMPK22 (a homolog to 

GmMPK22-1 and GmMPK22-2) and HaMPK23-1/23-2/23-3/23-4 (homologs to the 

corresponding GmMPK23-1/23-2/23-4/23-4). The Clade A and B consisted members 

with phosphorylation motif TEY (except for HaMPK23-1 and HaMPK23-2 that are 

nested within Clade C), while those with the TDY motif were found in Clade C and D. 

The sunflower MPK orthologs are shown in Table S4. The phosphate binding P-loop, the 

catalytic C-loop, D(L/I/V)K, and activation- or T-loop, TxY in MPKs were defined as 

(I/V/L)GxGx(S/F/G)GxV, HRD(L/I)KPxN and T(D/E)Y in sunflower, respectively. 

Gene HaMAPK23-3 protein sequence had a variation in catalytic C-loop, D(L/I/V)K 

motif as it possessed ‘Phenylalanine (F)’ instead of ‘Leucine/ Isoleucine/Valine (L/I/V)’. 

Other additional motifs such as VAIKKIxxxF were defined as 

VA(I/V/M)KK(I/M)xxx(F/Y) in the protein sequences of MPKs. The MPKs that 

belonged to clade ‘C’ possessed VA(I/V/M)KKMxxxY. The motifs ‘DFGLAR’ and 
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‘TRWYRAPE’ were found conserved in all of the MPKs of sunflower. HaMPK4 was the 

only member that lacked phosphate binding P-loop and VAIKKIxxxF motif. The 

structural analyses mapped onto phylogeny provided important insights into the 

duplication events. In HaMPK gene family, the number of introns ranged from one 

(HaMPK4) to 17 (three members from Clade C (HaMPK22, HaMPK23-4/23-2). The 

gene members showed a similar pattern of exon/intron structure within the clades. 

Majority of the HaMPKs (seven) in Clade A consist of six exons, and members, 

HaMPK13-1 and HaMPK4 had seven and two exons, respectively. In Clade B, all three 

members consisted of three exons. Three of the five members in Clade C possessed 18 

exons, and HaMPK23-1 and HaMPK23-3 possessed 15 and 16 exons, respectively. 

Likewise, half of the gene members in Clade D (five) possessed ten exons, two 

(HaMPK19-2 and HaMPK18) possessed nine exons, as well as three genes (HaMPK8, 

HaMPK15, and HaMPK9-1), possessed 11 exons (Figure S1). 

Phylogenetic analysis of full-length protein sequences was conducted to study 

evolutionary patterns of the MPKs in 10 plant species with sequences of C. reinhardtii 

(Figure 4.3). The MPKs were nested in four clades (Clade A-D; Table S3). Clade A is the 

second largest clade consisting 64 MPKs of MPK3/6/4/11/5/13/10 of all species under 

the study. Clade B consisted of 29 MPKs of MPK1/2/7 and 14. In cases of S. 

lycopersicum and V. vinifera, two species contain MPK1 and MPK7 in Clade B. Thus, 

MPK2 and MPK14 are absent in two species but not only MPK2. In addition, A. 

trichopoda has only AmtMPK14 in Figure 4.3. Therefore, MPK1/2/7 of A. trichopoda is 

absent. The MPK14 of V. vinifera and D. carota, MPK2 of S. lycopersicum and V. 

vinifera, and MPK7 of A. trichopoda were absent. The smallest clade, Clade C consisted 
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of 18 members of MPK22 and MPK23 from H. annuus, G. max, S. lycopersicum, V. 

vinifera, S. fallax, and C. reinhardtii. All the members of Clade A and B consisted TEY 

motif, whereas some members of Clade C (HaMPK23-1/23-4, GmMAPK23-1/23-2/23-

3/23-4, and VvMPK22) consisted TEY motif. The largest clade, Clade D consisted 70 

MPKs of MPK16/18/19/20/21/17/9/8/15, and MPK13 of C. reinhardtii. All clades had 

moderate to strong support (bootstrap values ranging from 80 to 100%). Figure 4.4a and 

Supplementary File S3 show the motifs related to P-loop, Catalytic C-loop, and activation 

or T-loop representing variations in clades A-D including other predicted conserved 

domains of MPK group proteins. In addition, the clade divergence was also based on the 

common docking site, which is important for downstream target proteins. Clade A 

consisted of K-M-L-V-F-D-P-N-K-R-I-V-E-E-A-L, Clade B consisted of K-M-L-V-F-D-

P-S-K-R-I-S-V-T-E-A-L, Clade C consisted of S-L-C-S-W-D-P-C-K-R-P-T-A-E-E-A-L, 

and Clade D consisted of R-L-L-A-F-D-P-K-D-R-P-T-A-E-E-A-L consensus common 

docking sites (Table 4.3). 

Table 4.3 Consensus Common Docking Sites in the MPK proteins belonging to clades A-

D. 

Clades Consensus common docking sites 

Clade A K-M-L-V-F-D-P-N-K-R-I-V-E-E-A-L 

Clade B K-M-L-V-F-D-P-S-K-R-I-S-V-T-E-A-L 

Clade C S-L-C-S-W-D-P-C-K-R-P-T-A-E-E-A-L 

Clade D R-L-L-A-F-D-P-K-D-R-P-T-A-E-E-A-L 
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Figure 4.3 Maximum Likelihood (ML) tree constructed using full length amino acid 

sequences from Amborella trichopoda (Amt), Arabidopsis thaliana (At), Aquilegia 

coerulea (Ac), Chlamydomonas reinhardtii (Cre), Daucus carota (Dc), Glycine max 

(Gm), Helianthus annuus (Ha), Oryza sativa (Os), Solanum lycopersicum (Sl), and 

Sphagnum fallax (Sf), and Vitis vinifera (Vv) MPK proteins. Phylogenetic analysis with 

100 bootstrap replicates was performed in the program MEGA 7. H. sapiens, HsMAPK1 

(GenBank: NP_002736.3) was used as an outgroup. Different species are color-coded, 

and the MPK clades are labeled A-D. 

 

https://www.ncbi.nlm.nih.gov/protein/NP_002736.3


 

 

 

 

174 

 

Figure 4.4. P-loop, Catalytic C-loop, and activation or T-loop motifs representing 

variations in clades A-D. Panel a = MPK and Panel b = MKK 

 

4.3.3.2. MKKs 

 

Sunflower HaMKK protein sequence length ranged from 308 to 520 aa. The 

average length of proteins for MKKs was 372 aa with isoelectric points ranging from 

5.43 (HaMKK2) to 9.25 (HaMKK5), and a predicted average molecular mass of 

42688.86 (Table 4.1). Corresponding with their homologs in Arabidopsis and G. max, the 

eight identified HaMKKs are divided into four distinct clades (Figure S5). The MKK 

homologs of MKK1/2/6-1/6-2/3/4/5/9 were only found in sunflower. The clades 

divergence followed serine/threonine amino acid motif patterns in sunflower. For 

example, Clade A contained SxxxxxS/TxxxxxT, Clade B with SxxxxxTxxxxxT, Clade C 
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with SxxxxxTxxxxxS, and D with SxxxxxSxxxxxT. The HaMKKs in clade A, B, C, D 

were four, one, two, and one, respectively (Table S5). The orthologs of identified MKKs 

of sunflower in different plant species are represented in Table S6. In HaMKK gene 

family, the number of introns ranged from zero (HaMKK9, HaMKK4, and HaMKK5) to 

11 (HaMKK3) (Table 4.2, Figure S3). Clade A members HaMKK6-1 and HaMKK6-2 

consisted of eight exons, and are paralogs to each other. Remaining Clade A members, 

HaMKK2 and HaMKK1 consisted of nine and ten exons, respectively. The only member 

of Clade B, HaMKK3 consisted of twelve exons. Interestingly, without introns 

HaMKK9, HaMKK4 and HaMKK5 belonging to clade C and D had only one exon.  

Phylogenetic analysis of full-length MKK amino acid sequences from the plant 

species with sequences of C. reinhardtii under this study revealed four distinct clades 

(Clade A- D, Figure 4.5). Figure 4.4b and Supplementary File S4 show the motifs related 

to P-loop, Catalytic C-loop, and activation or GTxxYMSPER representing variations in 

clades A-D including other predicted conserved domains of MKK group proteins. The 

largest clade, Clade A consisted of 26 MKKs belonging to MKK1, MKK2, and MKK6 

members. While MKK3 orthologs formed Clade B consisting 12 MKKs, MKK4 and 

MKK5 with 16 members formed Clade C. Gene MKK4 is absent in S. lycopersicum, V. 

vinifera, and D. carota, C. reinhardtii species. The MKK7, MKK8, MKK9, and MKK10 

formed Clade D consisting 16 of the total MKKs under study. With respect to all MKKs 

belonging to ten species, the phosphate-binding P-loop, the catalytic C-loop, D(L/I/V)K, 

and activation- or T-loop, (S/T)xxxxx(S/T) were varied according to the divergence of 

the. The GTxxYMSPER motif was well conserved in all species except for the 

OsMAPKK6 and AmtMKK6 with GTxxYMAPER in Clade A and OsMAPKK10-1 in 
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Clade D with GTxxYMSPEK. The ATP binding signature in MKK of sunflower 

terminates with ALK except for GmMAPKK6-1 (completely absent), CrMKK3 with 

AVK, VvMKK4 with ANT, OsMAPKK10-1 (completely absent), and OsMAPKK10-1 

with AVK. The Timetree based on the 11 MKK3 (each MKK3 protein from all species 

belonged to Clade B) sequences shows the evolutionary divergence across all species 

under study. Upon use of three constraints of divergence between O. sativa and A. 

trichopoda (168-194 MYA), G. max and H. annuus (110-124 MYA), and V. vinifera and 

A. thaliana (105-115 MYA), the approximate divergence of these MKK3 proteins across 

species has been found. For instance, DcMKK3 and SlMKK3 diverged 90.70 MYA from 

HaMKK3 (Figure S6). 
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Figure 4.5. Maximum Likelihood (ML) tree constructed using full length MKK amino 

acid sequences from Amborella trichopoda (Amt), Arabidopsis thaliana (At), Aquilegia 

coerulea (Ac), Chlamydomonas reinhardtii (Cre), Daucus carota (Dc), Glycine max 

(Gm), Helianthus annuus (Ha), Oryza sativa (Os), Solanum lycopersicum (Sl), and 

Sphagnum fallax (Sf), and Vitis vinifera (Vv). Phylogenetic analysis with 100 bootstrap 

replicates was performed in the program MEGA 7. Homo sapiens, HsMAPKK1 

(GenBank: AAI37460.1) was used as an outgroup. Different species are color-coded, and 

the MKK clades are labeled A-D.  

 

4.3.4. Expression Analysis and miRNA Prediction of Sunflower MPKs and MKKs 

The functional analysis of both HaMPKs and HaMKKs was studied using RNA 

seq data available in NCBI. Since the sunflower genome was available recently, the 

expression data in the public database were not found for pathogen stress. We 
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investigated the expression pattern of MPKs and MKKs in leaves and roots treated with 

one hormone treatment (SA) and two abiotic stresses (NaCl and Peg). We did observe 

expression patterns for all HaMPKs and HaMKKs except for HaMPK4 (Supplementary 

File S5). The k- means clustering result showed that the HaMPKs and HaMKKs were 

clustered into four groups (Figure S7 and Table S7). The Cluster A consisted of seven 

HaMPKs (from Clades A, B, and D) and four HaMKKs (from Clades A, B, and C). 

Cluster B consisted of three HaMKK genes (from Clades A and D) and two HaMPK 

genes (from Clade A). Cluster C consisted of three genes belonging to both HaMPKs 

(from Clades A and D) and one HaMKK (from Clade C). Cluster D consisted of 15 genes 

belonging to HaMPKs (belonging to clades A-D). The log2FC for each gene and 

hierarchical clustering of HaMPKs and HaMKKs representing the functional divergence 

of these genes are represented in Figure S8 and Figure 4.6, respectively. Some genes 

were upregulated in response to the treatments compared to the control of their respective 

tissues. For instance, in leaves, HaMKK5, HaMKK6-2, HaMPK3-2, HaMPK11-1, 

HaMPK3-2, HaMPK14, HaMPK1, HaMPK6-2, HaMPK19-1, and HaMPK18 showed 

log2FC > 1 in response to Peg; HaMKK5, HaMKK6-2, HaMPK11-1, HaMPK14 showed 

log2FC > 1 in response to NaCl; HaMPK11-1 showed log2FC > 1 in response to SA. In 

roots, HaMKK4, HaMKK1, HaMKK2, HaMPK3-2, HaMPK13-2, HaMPK23-2, 

HaMPK9-2 and HaMPK11-2 showed log2FC > 1 in response to Peg; HaMKK9, 

HaMPK13-2, HaMPK6-1, and HaMPK3-1 showed log2FC in range of 0.7 to 1.45 in 

response to SA; HaMPK6-1, HaMPK2, HaMPK23-2, and HaMPK17 showed log2FC > 

0.9 in response to NaCl. In contrast, some genes were downregulated in response to the 

treatments compared to the control of their respective tissues. For example, in leaves, 
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HaMKK9, HaMKK2, and HaMPK13-2 showed log2FC in range of -0.6 to -0.8 in 

response to Peg; HaMKK9, HaMPK7, HaMPK23-1 showed log2FC in range of -0.6 to -

0.8 in response to NaCl; HaMKK4, HaMPK7, and HaMPK11-2 showed log2fold change 

in range of -0.58 to -2.11 in response to SA. Likewise in roots, HaMPK14 showed 

log2FC of -0.53 in response to Peg; HaMKK6-2, HaMPK13-2, HaMPK14, and 

HaMPK9-2 showed log2fold change in range of -0.62 to -1.50 in response to NaCl; 

HaMPK14, HaMPK19-1, and HaMPK9-2 showed log2FC in range of -0.68 to -1.6 in 

response to SA. In addition, the expression of HaMPKs, HaMKKs showed functional 

divergence in response to stresses as the clustering of these genes in a heatmap was not 

according to the clading pattern in phylogenetic trees. The potential miRNA target sites 

in MPKs and MKKs identified using psRNATarget server revealed five (han-

miR156a/b/c, han-miR160a, han-miR3630-5p) of seven miRNA families that may be 

involved targeting sunflower MPKs only (Table S8). HaMPK16-2, HaMPK11-1, and 

HaMPK23-3 were targeted by both miRNAs (han-miR156a/b). 
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Figure 4.6. Expression profile of sunflower MPK and MKK genes visualized as a 

heatmap, with clade information. The heatmap was generated using log2FC and Z-score 

cut off of four, using iDEP [70]. The expression pattern is in response to Salicylic Acid 

(SA), salt (NaCl) and polyethylene glycol (Peg) in leaves and roots.  
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4.3.5. Tajima’s Relative Rate and Neutrality Tests on MPKs and MKKs 

Separate statistical analyses were performed selecting three random sequences 

from MPKs and MKKs group. For Tajima’s relative rate test for MPKs and MKKs, the 

sequences were selected from the species representing a diverse taxonomic group: 

monocot, a dicot, basal angiosperm, bryophytes, and algae. For the analysis of MPK 

genes following a group of sequences were selected: a. OsMAPK4 (monocot) and 

HaMPK6 (dicot) with AmtMPK13-1 (basal angiosperm) b. OsMAPK4 (monocot) and 

HaMPK6 (dicot) with sequence SfMPK4-1 (bryophyte), and c. OsMAPK4 (monocot) 

and HaMPK16-1 (dicot), with sequence CreMPK2 (algae) (Table S9). The plant group 

combination in column 1, 2 and 3 of MPKs resulted in a p-value of 0.01, 0.0053, and 

0.0007 with a χ2 value of 6.54, 7.78 and 11.46, respectively. In MKKs, following group 

of sequences were selected: a. OsMAPKK5 (monocot) and HaMKK6-1 (dicot) with 

AmtMKK6 (basal angiosperm), b. OsMAPKK5 (monocot) and HaMKK6-1 (dicot) with 

sequence SfMKK3 (bryophyte) c. OsMAPKK5 (monocot) and HaMKK6-1 (dicot) with 

CreMKK3 (algae) (Table S10). The plant group combination in column 1, 2 and 3 of 

MKKs resulted in a p-value of 0, 0.04965 and 0.05687 with a χ2 value of 100.55, 3.85 

and 3.36, respectively. Tajima’s Relative Rate test is commonly used to analyze variation 

in both DNA and amino acid sequences [78]. This test has been applied to various genes 

belonging to different gene families such as MAPKs and WRKY transcription factors [1, 

78]. In this study, the p-value (less than 0.05) and χ2 statistic showed randomly selected 

sequences of MPKs and MKKs of different plant groups to be statistically significant as 

we rejected the null hypothesis of equal rates between selected sequences of different 

plant groups. The interpretation of Tajima’s D is as follows: D= 0 (observed variation is 
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similar to expected variation which shows the evidence of no selection), D< 0 (presence 

of excessive rare alleles that suggests recent selection sweep and recent population 

expansion) and D> 0 (lack of rare alleles that suggest balanced selection and population 

contraction) [72, 73]. The values in the range of greater than 2 or less than -2 are 

considered to be statistically significant [72, 73]. In our study, Tajima’s neutrality test 

statistics (D) was found to be 5.391062 for MPKs and 5.928839 for MKKs (Table S11). 

This suggests both MPKs and MKKs have undergone a balanced selection with 

contraction in population size. Also, the average heterozygosity of both MAPKs and 

MKKs is more than that of the segregating sites suggesting a high frequency of 

polymorphism. 

4.4. Discussion 

 

MAPK signaling in plants plays important roles in multifaceted biological 

processes such as growth, development and regulation of various environmental stresses 

[4, 34, 36, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. The MPK and MKK genes have 

been the strong candidates for studying the evolution of gene families in plant species as 

well [27, 28, 39, 91]. In this study, the HMM analysis of protein sequences and 

examination of the signature motifs resulted in the identification of 96 MPK and 37 

MKK genes in A. coerulea, A. trichopoda, C. reinhardtii, D. carota, H. annuus, S. fallax, 

and S. lycopersicum.  
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4.4.1. Nomenclature of MPKs and MKKs 

A recent study on various Triticeae species (wheat, barley, rye, and triticale) by 

Goyal et al. 2018 [35] has reported numerous discrepancies in MAPK nomenclature of 

wheat and barley and suggested a new name based on sequence homology. A consistent 

nomenclature of proteins, belonging to same gene family across species based on 

orthology, facilitates an easy prediction and understanding the function of the particular 

protein [92]. Cakir and Kılıçkaya 2015 [37] reported MAP kinase cascade genes in V. 

vinifera and confirmed orthology of VvMPK14, VvMPK12, VvMPK11, VvMPK13, 

VvMPK7, VvMPK3, VvMKK5, VvMKK3, VvMKK2 to Arabidopsis AtMPK6, 

AtMPK3, AtMPK13, AtMPK12, AtMPK16, AtMPK9, AtMKK3, AtMKK6, and 

AtMKK2, respectively. Likewise, MAP Kinase cascade genes analyses in Ziziphus 

jujuba [30] provided nomenclature of MAP kinase cascade genes based on the order of 

appearance in different groups in the phylogenetic tree and not based on orthology (or 

sequence homology) to Arabidopsis MAP kinase cascade genes. The proper 

nomenclature of these MAP Kinase cascade genes should be used following an orthology 

or sequence homology based MAPK gene nomenclature guidelines to maintain the 

consistency across the plant kingdom. 

4.4.2. Diversity and the Phylogenetic Relationship of MPKs  

Our identification of MPKs yielded a slight variation in the number of genes from 

the previous studies, for example, we identified 15 MPKs in S. lycopersicum which is 

different from Kong et al. 2012 [93], who reported 16 MPKs, and Mohanta et al. 2015 [1] 

who found 17 MPKs in the tomato genome. The number of AcMPKs, in this study, was 

11 whereas, Mohanta et al. 2015 [1] reported only 10 AcMPKs. In C. reinhardtii, six 
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CreMPKs identified in this study were consistent with Mohanta et al. 2015 [1] whereas, 

Dóczi et al. 2012 [39] had reported only five CreMPKs. The variation in a number of 

genes within the same species in different studies might come as a result of different 

statistical and stringency parameters employed during HMM profiling and further 

downstream motif analysis. The detailed study of MPKs of D. carota, A. trichopoda, S. 

fallax, and H. annuus has never been reported in previous studies. The number of MPK 

genes in sunflower is higher than that of previously identified in other numerous plant 

species such as Arabidopsis (119Mb) [3], rice (420Mb) [94] and less than soybean 

(1100Mb) [26]. Even the size of the sunflower genome, which is believed to have 

undergone the first whole genome triplication approximately 38-50 MYA, and whole 

genome duplication approximately 29 MYA, is about 3.5 times larger [95] than that of 

the soybean genome, the number of MPKs is less in sunflower than soybean. Soybean 

has undergone two polyploidization events approximately 59 and 13 MYA [75, 96]. 

Thus, recent polyploidy in plants has caused the addition of extra copies of MAPK genes 

to their genome [97, 98]. A slightly lower number of MPKs in sunflower might be due to 

past polyploidization events, recent amplification of repetitive elements causing highly 

similar and related sequences [99] and also sunflower genome encodes 52,243 proteins 

[42], which is slightly less than soybean (56,044 proteins) [75].  

Phylogenetic analysis of HaMPKs revealed four distinct clades which were 

consistent to the MPKs previously identified in Arabidopsis [100], poplar [101], rice 

[102], Brachypodium distachyon [33], Malus domestica [32], Ziziphus jujuba [30], 

Triticeae species [35], Brassica rapa [28], and Fragaria vesca [103]. In Clade A, 

Sunflower has extra one copy of MPK3, MPK6, MPK11, and MPK13 genes that might 
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be resulted because of duplications after the divergence from Arabidopsis. Such extra 

copies of these genes were also observed in soybean [26]. The two copies of MPK3 and 

MPK6 was also found in D. carota. The clading of sunflower and other species MPK 

genes with the characterized Arabidopsis MPKs suggest their potential role in respective 

functions. AtMPK3 is involved in various signaling pathways related to various stresses 

such as wounding and hypersensitive responses elicited by Avr-R gene interaction [8, 

104]. The MAP kinase genes, IbMPK3 and IbMPK6 in sweet potato (Ipomoea batatas) 

and homologs of AtMPK3 and AtMPK6 provide resistance to 

Pseudomonas syringae pv. tabaci (Pta) bacteria in tobacco leaves and induced in various 

abiotic stresses as well [84]. In mays, ZmMPK3, a homolog of AtMPK3 is induced upon 

various environmental stresses [105]. Similarly, AtMPK4 and AtMPK6 are involved in 

response to abiotic and biotic stress such as cold, drought, touch and wounding that result 

in the production of reactive oxygen species in Arabidopsis [106, 107]. AtMPK4 is 

phosphorylated and activated by the upstream components AtMEKK1 and AtMKK2 

upon cold and salt stress signaling in Arabidopsis [107, 108]. The Clade A also consists 

of AtMPK5, the homolog of which in rice, OsMPK5 is well characterized to regulate 

stress responses [109]. All copies of MPK1/2, MPK7/14 are retained in soybean in 

sunflower, soybean, and Arabidopsis. Among them, AtMPK1, AtMPK2, AtMPK7, 

AtMPK14 are phosphorylated by AtMKK3 upon abscisic acid application in A. thaliana 

plantlets [110]. AtMPK1 is induced upon salt stress whereas some MPKs in rice and 

alfalfa such as BWMK1 and TDY1, respectively, are activated upon wounding by 

pathogens [111, 112, 113]. G. max MAP kinase 1 (GMK1), a homolog of AtMAPK1, is 

activated in response to salt stress in soybean [114]. Likewise, a homolog of AtMPK7 
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in maize, ZmMPK7 is involved in the removal of reactive oxygen species upon 

induction by abscisic acid and hydrogen peroxide in maize [115]. Another homolog of 

AtMPK1 in Hordeum vulgare (HvMPK4) showed enhanced resistance to Magnaporthe 

grisea and enhanced tolerance to salt stress [85]. Clade C members include the 

homologs to G. max GmMAPK22-1/22-2 and GmMAPK23-1/23-2/23-3/23-4 [26] with 

no MPKs in Arabidopsis. A single copy of GmMAPK22-1/GmMAPK22-2 ortholog is 

retained in sunflower, and hence it is named as HaMPK22. Whereas, all copies of 

GmMAPK23-1/23-2/23-3/23-4 are retained in sunflower and hence named as 

HaMPK23-1/23-2/23-2/23-3/23-4. All the members of the Clade D consist of TDY 

motif in T-loop and are homologs to various Arabidopsis and soybean MPKs belonging 

to MPK16/19/18/8/15/17/9. 

Gene members HaMPK3-1/3-2, HaMPK6-1/6-2, HaMPK9-1/9-2, HaMPK11-

1/11-2, HaMPK13-1/13-2, HaMPK 16-1/16-2, HaMPK19-1/19-2 and HaMPK23-2/23-4 

are present on different chromosomes, while only paralogs HaMPK23-1/23-3 are present 

in the same chromosome 3. Other MPKs such as AcMPK3-1/3-2, AcMPK2-1/2-2, 

DcMPK3-1/3-2, DcMPK6-1/6-2, DcMPK8-1/8-2/8-3, DcMPK9-1/9-2, SfMPK4-1/4-2, 

SfMPK20-1/20-2, SfMPK23-1/23-2, SlMPK4-1/4-2, SlMPK17-1/17-2, SlMPK9-1/9-2, 

AmtMPK13-1/13-2 are present on different chromosomes. The only AmtMPK11-1/11-2 

pair is present in the same scaffold (AmTr_v1.0_scaffold00001) (Table S1). This 

suggests the possible role of segmental duplications and transposition events that played a 

crucial role in the evolution of MAPKs in sunflower and other plant species except for 

the pair HaMPK23-1/23-3 and AmtMPK11-1/11-2 pairs in which tandem duplication 

might have involved. Such features of segmental and tandem duplications in MPKs are 
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also evidently seen in many plant species such as soybean [26], apple [32], cotton [116]. 

Such duplications are the major reason for the expansion of the many gene families such 

as Nucleotide-binding site-leucine-rich repeat (NBS-LRR), cytochrome P450 family, 

transcription factors and many more [117].  

4.4.3. Diversity and Phylogenetic Relationship of MKKs  

Sunflower MKKs also formed four distinct clades (A-D) with previously 

identified MKKs of Arabidopsis and soybean. These four clades (A- D) are consistent 

with the MKKs of various plant species such as Arabidopsis [100], rice [102], poplar 

[101], B. distachyon [33] and apple [32]. MKK clades consist of well-characterized MKK 

proteins such as AtMKK1/2/3/4/5 [118, 119, 120, 121]. Clade A consists of HaMKKs 

grouped with AtMKK1/6/2, GmMAPKK6-1/6-2, GmMAPKK1, GmMAPK2-1/2-2. 

Sunflower and soybean have extra one copy of MKK6 than that of Arabidopsis and other 

plant species under study including S. fallax. This suggests that extra one copy of MKK6 

was not seen until soybean diverged from Arabidopsis. Also, the retention of at least one 

copy in of MKK6 in all species suggests its important role in signaling mechanism during 

various stresses. We did not find a copy of MKK2-2 in sunflower as found in soybean 

(GmMAPKK2-2). The characterized AtMKK1 protein (orthologue of HaMPKK1) is 

induced upon the application of various stresses such as wounding, drought, cold, and 

high salinity in Arabidopsis seedlings [118]. AtMKK2 (ortholog of HaMKK2) is 

activated upon cold and salt stress signaling in Arabidopsis and mediate the 

phosphorylation of downstream MPKs [107]. The Clade B consists of MKKs from the 

MKK3 proteins across all species under study including C. reinhardtii. All species have a 

single copy of the MKK3 proteins except G. max with two copies (GmMAPKK3-1/3-2). 
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Two copies of MKK3 proteins in soybean is expected as they went two duplication 

events to be a tetraploid. The time tree based on Clade B (each from all species) revealed 

how MKK3 proteins are conserved and retained in algae, bryophyte, Amborellales, a 

monocot, Ranunculales, Rosids, and Asterids. The divergence time analysis of MKK3 

with CreMKK3 as the outgroup, showed bryophyte and Amborellales being sister to the 

land plants and other extant species which is consistent to previous studies [122, 123] and 

follows the evolutionary pattern as shown in Angiosperm Phylogeny Website [124]. 

AtMKK3 is activated on various stresses such as cold, salt, hyperosmotic and ABA 

treatments [120]. This suggests the potential role of HaMKK3 in such stresses. The Clade 

C consists of both copies of AtMKK4 and AtMKK5 in only in A. trichopoda, O. sativa, 

and sunflower. However, V. vinifera, S. lycopersicum and D. carota consist copy of 

MKK5 (MKK4 group absent). AtMKK4 and AtMKK5 are activated in Arabidopsis that 

mediate cell death and production of hydrogen peroxide [119]. In clade D, the orthologs 

for MKK9 was found in all angiosperms except in soybean and O. sativa. Interestingly, 

we found three copies of MKK10 in S. fallax as in O. sativa and one copy of MKK10 in 

basal angiosperm, A. trichopoda, and Ranunculales, A. coerulea. We did not find any 

copy of MKK10 in sunflower, S. lycopersicum, D. carota, and V. vinifera. We observed 

HaMKK4/5/9 with one exon each that correlates to the At1g51660 (AtMKK4), 

At3g21220 (AtMKK5), and At1g73500 (AtMKK9) consisting one exon per gene 

(https://www.Arabidopsis.org/index.jsp). Also, members belonging to the Clade C and D 

in Gossypium raimondii had one exon in each [116]. This suggests that gene members 

belonging to Clade C and D encode proteins that are well conserved across plant species. 

Altogether, the diversity in the exon-intron structures might infer duplication events 
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caused the evolution of these genes under different environmental conditions. Also, 

AtMKK1 and AtMKK2 are involved in maintaining ROS homeostasis in Arabidopsis 

[121]. Since, the paralog pairs, HaMAPKK6-1/6-2, and SfMKK10-1/10-2 are present on 

their different respective chromosomes, we infer the possible role of segmental 

duplications.  

4.4.4. Expression Analysis and miRNA Prediction 

In this study, we explored the expression pattern of MPKs and MKKs of 

sunflower under one hormone treatment, SA and two simulated abiotic stresses, NaCl for 

salinity, and Peg for osmotic stress in leaves and roots from the publicly available RNA 

seq data. The expression of all sunflower MPKs and MKKs was detected in both leaves 

and roots except for HaMPK4. In response to hormone SA, HaMPK11-1 was upregulated 

in leaves; HaMKK9, HaMPK13-2, HaMPK6-1, and HaMPK3-1 were upregulated in 

roots; HaMKK4, HaMPK7, and HaMPK11-2 were down regulated in leaves; HaMPK19-

1, HaMPK14, and HaMPK9-2 were downregulated in roots. It has been established that 

SA is directly involved in MAPK phosphorylation [125]. SA- induced protein kinase 

(SIPK; AtMPK6) and wound-induced protein kinase (WIPK; AtMPK3) are important in 

balancing salicylic acid or jasmonic acid during herbivore wounding [126]. In 

Arabidopsis, AtMKK9 and AtMPK6 play important role in leaf senescence which is a 

complex process caused by various factors including salicylic acid [127]. Also, ZmMPK3 

in Zea mays is activated upon the application of SA hormone [128]. Thus, HaMPK3-1, 

HaMKK9, and HaMPK6-1 might play important role in leaf senescence and salicylic 

acid pathway in sunflower. In response to NaCl, HaMKK5, HaMKK6-2, HaMPK11-1 

were upregulated in leaves; HaMPK14, HaMPK6-1, HaMPK2, HaMPK23-2, and 
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HaMPK17 were upregulated in roots; HaMKK9, HaMPK7, HaMPK23-1 were 

downregulated in leaves; HaMKK6-2, HaMPK13-2, HaMPK14, and HaMPK9-2 were 

downregulated in roots. Among them, HaMPK17 play an important role under salinity 

stress as its ortholog in Gossypium hirsutum, GhMPK17 was induced by salt, osmosis 

and abscisic acid [129]. The expression pattern of some genes depended on different parts 

of the plant such as HaMKK6-2 was upregulated in leaves and downregulated in roots in 

response to NaCl. In response to Peg, HaMKK5, HaMKK6-2, HaMPK3-2, HaMPK11-1, 

HaMPK3-2, HaMPK14, HaMPK1, HaMPK6-2, HaMPK19-1, and HaMPK18 were 

upregulated in leaves; HaMKK4, HaMKK1, HaMKK2, HaMPK3-2, HaMPK13-2, 

HaMPK23-2, HaMPK9-2 and HaMPK11-2 were upregulated in roots; HaMKK9, 

HaMKK2, and HaMPK13-2 were downregulated in leaves; HaMPK14 was 

downregulated in roots. This reveals at least 19 HaMPK and seven MKK genes were 

induced upon these treatments as compared to the control. Among them, some genes are 

induced upon multiple treatments. For example, HaMKK4 and HaMKK6-2 were induced 

upon both NaCl and Peg; HaMPK6-1 was induced upon NaCl (higher expression) and 

Peg (lower expression); HaMPK16-2 was induced upon both SA and NaCl. The 

functional divergence can be observed on both HaMPKs and HaMKKs as the hierarchical 

clustering pattern of expression of these genes do not follow the clading pattern in the 

phylogenetic trees except for few genes. For example, in MPKs, HaMPK22/23-3 that 

belonged to Clade C, HaMPK3-1/3-2/11-2 that belonged to Clade A, HaMPK9-2/16-2/17 

that belonged to clade D showed hierarchical clustering for expression of these genes. 

However, only HaMKK6-1/6-2 that belonged to Clade A of MKK subgroup showed 

hierarchical clustering for expression of these genes. This shows the functional 
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divergence and convergence of the HaMPk and HaMKK genes within and among the 

clades under different stress responses. Among seven published H. annuus microRNAs, 

five families of miRNAs are involved in possibly targeting eight MPKs. We did not find 

any miRNAs targeting HaMKK genes. Previous studies reported the role of miRNAs in 

MAPK signaling pathways of animal systems in chronic myeloid leukemia [130], 

papillary thyroid carcinoma [131], Caenorhabditis elegans [132]. Not only in animals, 

but studies also reported the prediction of miRNAs targeting MAPK genes of plants such 

as Gossypium hirsutum (ghr-miR5272a regulating MAPKK6) [133] and Oryza sativa 

( miR1429_5p targeting MPK17-1 and miR531 families targeting various MKKK 

transcripts) [134]. 

4.5. Conclusion 

 

This study represents the first genome-wide identification, analysis and 

nomenclature of MPKs and MKKs in H. annuus, D. carota and, S. fallax and 

reassessment of these genes in A. coerulea, A. trichopoda, C. reinhardtii, and S. 

lycopersicum. We identified 28 MPKs and eight MKKs in sunflower, studied their 

genomic architecture, phylogenetic relationships, and functions in relation to nine other 

plant species (including A. thaliana, G. max, O. sativa, and V. vinifera). Though 

sunflower genome with 3.6 gigabases is one of the largest among plants with available 

complete genome sequences of species under study, the MPKs and MKKs are slightly 

fewer than that in soybean, which has the genome size of 975 Mbs. The phylogenetic 

trees and analyses of three important motifs, P-loop, Catalytic C-loop, and T-loop 

showed that HaMPKs and HaMKKs could be classified to four clades which are 

comparable to those groups identified in A. thaliana and G. max. However, clades such as 
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Clade A, B, and C of MPKs consisted members from different group members of A. 

thaliana and G. max. Among MPKs and MKK genes studied, MKK3 group of proteins 

are well conserved and retained in all the species under study including the outgroup, C. 

reinhardtii which warrants further exploration of these proteins across a wide array of 

species. The transcriptomics data analyzed under hormone and abiotic stresses treatments 

revealed diverse expression pattern of sunflower MPKs and MKKs exhibiting dynamic 

role to adapt to changing environmental conditions. We observed functional divergence 

of the HaMPK and HaMKK genes within the gene members of the same clade. The 

results from this study are generally important for understanding diversity and evolution 

of MAPK gene family in plants and enhancing our knowledge of MAPK signaling 

pathway in sunflower. These findings can help cultivar improvement in sunflower 

through stress-tolerance breeding. 
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respectively. Supplementary Figure S3: Exon/intron architecture of HaMKK genes. The 

blue boxes and black lines indicate the exons and introns, respectively. Supplementary 
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HsMAPKK1 [GenBank: AAI37460.1] was used as an outgroup. MKK clades are labeled 

as A, B, C, and D. Supplementary Figure S6: RelTime tree constructed using each 

sequence of MKK3 from all species belonging to Clade B of MKK group. Supplementary 
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conditions as simulated by Salicylic Acid (SA), salt (NaCl) and polyethylene glycol (Peg) 

in leaves and roots. k-means clustering method was employed for clustering of genes. 
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leaves and roots Supplementary File S1: Codes used for RNA seq data processing. 
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CHAPTER 5: CHARACTERIZATION OF INDUCED SUSCEPTIBILITY EFFECTS 

ON SOYBEAN-SOYBEAN APHID INTERACTION 

The data portion of this chapter is in review for publication in BMC Data Note. 

Abstract  

Soybean aphid (Aphis glycines Matsumura; SBA) is one of the major pests of 

soybean (Glycine max) in the United States of America. Four biotypes of soybean aphids 

have been confirmed in the United States suggesting the insect’s ability to adapt to the 

host resistance. One previous study on soybean, soybean-aphid interactions showed that 

avirulent (biotype 1) and virulent (biotype 2) biotypes could co-occur, and potentially 

interact on resistant and susceptible soybean resulting in an induced susceptibility. The 

main objective of this research was to employ RNA sequencing approach to characterize 

the induced susceptibility effect in which initial feeding by virulent aphids can increase 

the suitability of avirulent aphids in resistant soybean cultivars. The interactions were 

evaluated using SBA-resistant (Rag1) and SBA-susceptible soybean cultivars with 

biotype 1 and biotype 2 soybean aphids. Demographic and transcriptomic responses of 

susceptible and resistant (Rag1) soybean cultivars to aphid feeding were investigated in 

soybean plants colonized by aphids (biotype 1) in presence or absence of inducer 

population (biotype 2) at day 1 and day 11. WGCNA analysis revealed that 11 and 15 

KEGG pathway modules were enriched for day 1 and day 11 samples, respectively. In 

addition, enriched transcription factor (TF) binding motifs were identified in time course 

and resistant and susceptible reactions. In the presence of inducer population, we found 

746 and 243 DEGs in susceptible and resistant cultivars, respectively at day 1, whereas, 
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981 and 377 DEGs were found in susceptible and resistant cultivars, respectively at day 

11. Enrichment analysis showed a response to chitin, lignin catabolic and metabolic 

process, asparagine metabolic process, response to chemical unique to treatment with no 

inducer population, whereas, response to reactive oxygen species, photosynthesis, 

regulation of endopeptidase activity unique to treatment with inducer population. 

Furthermore, 14 DEGs were observed in Rag QTLs regions, particularly six DEGs in 

Rag1 containing QTL. The identified DEGs in the experiment in both resistant and 

susceptible cultivars during the interaction of soybean and soybean-aphids are potential 

candidates for furthering investigation into induced susceptibility. 

5.1. Introduction 

 

The invasive species have severely affected the agriculture system in numerous 

ways such as reducing yields and increasing costs of managing them affecting integrated 

pest management (IPM) [1, 2]. Aphis glycines Matsumura (Hemiptera: Aphididae), the 

soybean aphid (SBA), a common invasive pest of soybean [Glycine max (L.) Merr] was 

first reported in North America in 2000 [3]. It is regarded as a common insect pest in 

China and many Asian countries [4]. In 2003, soybean aphid spread over 21 states of the 

U. S. and three Canadian provinces [5]. By the season of 2009, soybean aphid developed 

in the eastern region (New York and Ontario, Canada) beginning from July through 

August, as well as in Midwestern region (Minnesota, Wisconsin, and Iowa) spreading to 

30 different states of the U.S. [6, 7]. The main reasons for over spreading are its alate 

(winged) form and occurrence of its overwintering host, Rhamnus cathartica (common 

buckthorn) [8]. The eggs laid on the common buckthorn hatch during March–April into 
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parthenogenically dividing (for 2 to 3 generations) apteran (wingless) aphids. These 

wingless aphids turn in to winged form and travel to their secondary host, soybean during 

May–June [9]. They prefer to feed on the ventral side of the leaves mainly in young 

soybean trifoliate leaves [10] and feed on the phloem sap and draw assimilates from 

soybean plants [11, 12]. The chief symptoms of disease caused by aphid infestation are 

plant stunting, leaf yellowing and wrinkling with a reduced photosynthesis, poor pod fill, 

and reduced yield, seed size, and seed quality than of healthy soybeans [13]. SBA 

deposits honeydew on soybean leaves that aids as a vector for various viruses such as 

Soybean mosaic virus, Alfalfa mosaic virus, and Bean yellow mosaic virus [9]. The SBA 

population can double in 1.5 days under favorable conditions whereas doubling time in 

fields is up to 6.8 days. Because of this high reproducing capability, they can undergo 

multiplication up to 15 generations in the growing season of soybean [11]. The economic 

loss due to SBA was approximately $4 billion annually [9]. 

 For an effective management approach, soybean lines that are naturally resistant 

to the aphids can be used to control SBA. Many researchers surveyed soybean germplasm 

collection and have identified soybean lines that have shown resistance to A. glycines. 

The resistance mechanism of the plant can be implemented in controlling pests without 

disturbing the environment [14]. Various dominant and recessive resistance to A. glycines 

(Rag) loci have been identified in soybean lines through various genetic analysis. Up to 

now, 16 Rag QTLs [Rag1[15], Rag1b [16], Rag1c [17], Rag2 [18], Rag3 [19, 20] , Rag4 

[19], Rag3 [16] , Rag3b [21], Rag3c [22], Rag4 [17], Rag5 [23] , Rag6 [22]; 

qChrom.07.1, qChrom.16.1, qChrom.13.1, qChrom.17.1 [24] in various soybean plant 

introductions (PI).  
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Despite the identification of many monogenic and oligogenic genes for host plant 

resistance, the discovery of virulent biotypes of A. glycines that can survive on resistant 

varieties has been a serious threat. It has been estimated that the soybean cultivar with 

alone Rag and combined Rag1 and Rag2 can diminish the A. glycines growth by 34% and 

49% respectively [25]. Up to now, four biotypes of aphid (biotype 1, biotype 2, biotype 3, 

and biotype 4) have been prevalent in the U.S having capability to reproduce in 

susceptible as well as resistant cultivars (with single or multiple Rag genes) [26, 27, 28]. 

Hence, the diverse population of both virulent and avirulent that appear phenotypically 

similar can engender induced susceptibility on the resistant plants [29]. The interaction 

between insect herbivores with their own host creates the condition called induced 

susceptibility that assists other consequent herbivores [30]. This type of susceptibility 

takes place between conspecifics on susceptible as well as resistant plants [30, 31]. The 

phenotype of conspecific can be both virulent and avirulent biotype. Few studies have 

been done to understand induced susceptibility in A. glycines to answer the reason for a 

high number of A. glycines population in resistant soybean cultivars in North America.  

Varenhorst et al. 2015, [32] showed that virulent A. glycines increase the suitability of 

resistant soybean for avirulent conspecifics.  

RNA sequencing (RNA-Seq) has been a standard tool for studying qualitative and 

quantitative gene expression assay providing information on transcript abundance with 

their variation [33, 34]. A comprehensive understanding of the transcriptomes would help 

in understanding the molecular interactions between soybean and A. glycines. A number 

of studies have been carried out using RNA-seq to unravel the molecular interactions for 

soybean-A. glycines herbivory with different objectives [35, 36, 37]. Brechenmacher et 
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al., 2015 [37] identified 396 differentially regulated proteins and 2361 significantly 

regulated genes in different time response (up to 48 hours) soybean aphid infestation 

using two Rag2 and/or Rag2 near-isogenic lines of soybean. Among them, a gene of 

unknown function, a mitochondrial protease, and NBS-LRR gene those map within Rag2 

locus are significantly upregulated in the presence of aphids. Prochaska et al., 2015 [35] 

identified 3 and 36 differentially expressed genes  (DEGs) at day 5 and day 15 in resistant 

cultivar (KS4202), respectively whereas 0 and 11 DEGs at day 5 and day 15 in 

susceptible cultivar (K-03-4686), respectively. Most of the DEGs were related to WRKY 

transcription factors, peroxidases, and cytochrome p450s. Previously, Li et al. 2008 [38] 

studied soybean defense response to A. glycines generating transcript profiles using 

cDNA microarrays. In this study, they identified 140 genes related to the cell wall, 

transcription factors, signaling and secondary metabolism in response to resistance using 

resistant (cv. Dowling) and susceptible (cv. Williams 82) soybean cultivars. Studham and 

MacIntosh 2013 [39] used oligonucleotide microarrays to study soybean- A. glycines 

interaction using aphid-resistant LD16060 with Rag1 gene and aphid-susceptible SD01-

76R. They identified 49 and 284 DEGs in 1 day of infestation (doi) and 7 doi in 

susceptible cultivar, respectively whereas 0 and 1 DEGs in 1 doi and 7 doi in resistant 

cultivar respectively studying transcript profiles determined after 1 and 7 days of aphid 

infestation. They suggested that the response of defense genes in the resistant plants are 

in constitutive in nature whereas, in susceptible plants, the defense genes are elicited only 

upon aphid infestation. 

This study is aimed to characterize induced susceptibility in soybean through the 

analysis of the transcriptional response of soybean in the presence of biotype 1 and 
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biotype 2 soybean-aphids. Results of the study would have implication in soybean-aphid 

management and developing soybean cultivar with durable resistance to A. glycines. 

5.2. Materials and Methods 

5.2.1. Plant Material and Aphid Colonies 

Two genotypes of soybean were used: susceptible soybean cultivar was LD12-

15838R and the resistant cultivar was LD12-15813Ra. The resistant cultivar contains 

Rag1 QTL. These genotypes were infested with two aphid populations defined namely 

biotype 1 (avirulent) and biotype 2 (virulent biotype [26]). The biotypes are defined by 

the response to Rag1 genes and were identified in Illinois [26]. The biotype 1 and biotype 

2 populations originated from a colony maintained by Iowa State University (Ames, IA). 

Among them, colonies of biotype 1 originated from field populations in Ohio and were 

maintained in a colony at the Ohio State University biotype. At South Dakota State 

University, aphid colonies were maintained using susceptible cultivar SD01-76R for 

biotype 1 and resistant cultivar LD12-15813Ra for biotype 2. The aphid populations used 

in this study were randomly selected removing the leaves from the soybean plants used 

for maintaining the colonies.  

5.2.2. Induced Susceptibility Experiment 

To characterize induced susceptibility effects, randomized complete block design 

(RCBD) greenhouse experiment was conducted using twelve treatments, three 

replications (plants) in three blocks (nine experimental units per treatment). We followed 

the treatments as explained by the procedure by [32]. The initial feeding population of A. 

glycines was termed as an inducer population and the subsequent feeding population of A. 

glycines was termed as a response population. Three seeds of LD12-15838R and LD12-



 

 

 

 

209 

15813Ra were planted into damp soil (Professional Growing Mix, Sun Gro Horticulture, 

MA, USA) in each pot of dimension of 10.1 cm by 8.89 cm (500 ml; Belden Plastics, 

MN, USA). Pots were placed onto plastic flats (87 × 15 × 5 cm). The soybean plants 

were watered filling the flats when top soil began to dry. The plants were thinned down 

to one plant per pot upon reaching the V1 developmental growth stage. V2 staged 

soybean plants (Day 0) were infested with avirulent inducer populations using with a 

combination of zero inducer (none), 50 A. glycines (50 avirulent), or 50 A. glycines (50 

virulent) onto a ventral side of a middle leaf of first trifoliate except the control plants. 

The infested trifoliate was covered with a small no-see-um mesh net (Quest Outfitters, 

Sarasota, FL) and secured with the paper clip and tangle trap to confine within the first 

trifoliate of the plants. After 24 hrs. (Day 1), one-day leaves from second trifoliate were 

collected from one replication set of each block and snap frozen in the liquid nitrogen. 

After sample collection from one replication, response population of 15 A. glycines (15 

avirulent), or 15 A. glycines (50 virulent) were added upon the middle leaf of second 

trifoliate (except on sampled and control plants). The whole plants were covered with the 

large no-see-um mesh net (Quest Outfitters, Sarasota, FL) to confine movement of aphids 

between the plants. The response population was allowed to move freely about the plant 

with the exception of first trifoliate. This ensures the spatial isolation of inducer and 

response populations. The response populations were counted on each plant to confirm 

the colonization by the response populations on day 5. On day 11, the response 

population of aphids was counted and the day 11 leaf samples from the one replication 

sets of each block were collected and snap frozen in the liquid nitrogen. The samples 

were kept at -80ºC for further analysis. The greenhouse conditions were maintained 
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approximately 24-25°C and a 16-hour photo period (16 light: 8 dark). An overview 

representing experimental methods used for the experiment is shown in Figure 5.1. 

The aphid counts (response population) collected at 11th day after the inducer 

infestations were analyzed using R statistical software version 3.2.4 (https://www.r-

project.org/).  The main effects of the inducer population, soybean cultivar, and the 

interaction of inducer population by soybean cultivar were analyzed using the model 

Response Counts ~ Inducer + Inducer: Cultivar. We checked the effect of both treatment 

and block for susceptible and resistant cultivars separately. The model Aphid Counts ~ 

Treatment + Block was applied in the analysis of variance (ANOVA). The treatment 

means based on A. glycines numbers were separated using Fisher- least significant 

difference (LSD) test at P < 0.05 using agricolae package [40] in R. The average SBA 

counts were plotted (Figure 5.3) using GraphPad Prism 8.0.2 (San Diego, California 

USA, www.graphpad.com).  

 

5.2.3. RNA Extraction, Library Construction, and RNA-sequencing 

RNA was extracted from the leave samples from resistant and susceptible 

cultivars treated with no aphids, biotype 2: biotype1 collected at day 1 and no aphids, 

biotype 2: biotype1 and no aphids: biotype1 at day 11. Briefly, leaf samples from each 

treatment were grounded in liquid nitrogen with pestle and mortar to a fine powder 

followed by their processing for total RNA extraction using PureLink RNA mini kit 

(Invitrogen, USA). RNA samples were treated with TURBOTM DNase (Invitrogen, USA) 

to remove any DNA contamination following the manufacturer’s instructions. 

Assessment of the isolated RNA integrity was performed by 1% agarose gel 
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electrophoresis, and RNA concentration was measured by Nanodrop 2000 (Thermo 

Fisher Scientific, USA). Three replicates from these treatments in resistant and 

susceptible cultivars were pooled in equimolar concentration. The cDNA libraries were 

constructed and sequenced at South Dakota State University Sequencing Facilities. 

RNAseq library construction was prepared using Illumina’s TruSeq Stranded mRNA Kit 

v1 (San Diego, CA). The libraries were quantified by QuBit dsDNA HS Assay (Life 

Technologies, Carlsbad, CA). The libraries were sequenced on an Illumina NextSeq 500 

using a NextSeq 500/550 High Output Reagent Cartridge v2 (San Diego, CA) at 75 

cycles. Fastq files were generated and demultiplexed on Illumina’s BaseSpace cloud 

network (San Diego, CA). 

5.2.4. RNA-seq Analysis 

Quality control of reads was assessed using FastQC program (version 0.11.3) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) [41]. The FastQC results 

were visualized using MultiQC v1.3 [42]. Low quality bases (QC value < 20) and 

adapters were removed by trimming using the program Trimmomatic (version 0.36) [43] 

(options: PE -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

HEADCROP:8 MINLEN:30). High-quality single-end reads were mapped against the 

primary coding sequences of G. max. The coding sequences  

(Gmax:Gmax_275_Wm82.a2.v1.transcript_primaryTranscriptOnly.fa.gz) were obtained 

from the Phytozome database and aligned using Salmon ver.0.9.1 [44] accessed from 

Bioconda [45]. The codes that were used for data processing are available in Appendix II. 

A flow chart showing the RNA-seq data analysis pipeline is shown in Figure 5.2. The 

read quants were filtered with 0.5 counts per million (CPM) in at least one sample. The 
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quantified raw reads were transformed using regularized log (rlog) which is implemented 

in the DESeq2 package. The transformed data were subjected to exploratory data analysis 

such as hierarchical clustering, K-means clustering, principal component analysis (PCA), 

and visualization of clusters using the t-SNE map. Gene co-expression networks were 

constructed for divided datasets with the weighted gene co-expression network analysis 

(WGCNA) package [46] using following parameters: most variable genes to include- 

3000 genes, soft threshold- 4, minimum module size- 20. The quantified transcript reads 

obtained from Salmon were employed in CLC Genomics Workbench 9.5 

(https://www.qiagenbioinformatics.com/) to obtain the differentially expressed genes 

(DEGs) using Karl’s z-test with false discovery rate (FDR) <0.01 and log2fold change 

more than a 2-fold. The annotations of the DEGs were obtained from Soybase [47] 

(www.soybase.org). To understand the molecular pathways enriched GO Biological 

processes, GO Cellular, GO molecular function, and KEGG pathways for DEGs were 

analyzed using a graphical enrichment tool REVIGO [48], ShinyGO [49] and integrated 

Differential Expression and Pathway analysis (iDEP 0.81, R/Bioconductor packages) 

[50]. The enriched transcription factor binding motifs in promoters in different 

comparisons were identified in 300bp upstream of DEGs using both iDEP and ShinyGO 

[49]. The biological relevance of DEGs was visualized using MapMan [51]. The total 

transcripts of soybean were first converted to bins using the Mercator tool [52] and 

uploaded to MapMan to assign bins to each differentially expressed transcript. 
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Figure 5.1. An overview of the greenhouse experiment on induced susceptibility effects 

of soybean-aphids on two cultivars of soybean. 
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Figure 5.2. An overview of RNA-seq data analysis pipeline for the characterization of 

induced susceptibility effects of soybean-aphids on two cultivars of soybean. 
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5.3. Results 

5.3.1. Greenhouse Experiment 

The hypothesis of response population being positively affected by the presence 

of inducer population or conspecifics was tested considering the main effects of the 

inducer population, soybean cultivar, and the interaction of inducer population by 

soybean cultivar. The response population was significantly affected by the main effects 

of inducer population (F = 15.821, df = 1, P  = 0.000130) and cultivar (F = 11.642, df = 

1, P  = 0.000926). Induced susceptibility effect on both susceptible and resistant soybean 

cultivars, as we observed increased response population densities in the 50 virulent 

inducer population treatments compared to the none inducer population treatment (Figure 

5.3a and b). Also, the interaction of inducer population on soybean cultivar was 

significant (F = 3.956, df = 1, P  = 0.049386) as the response population in the resistant 

cultivar was lower than that of a susceptible cultivar. 

Upon application of model Response counts ~ Treatment + Block was applied in 

analysis of variance (ANOVA), both treatment (F = 10.950, df = 5, P  = 6.92e-07) and 

block (F= 4.497, df = 2, P  = 0.0167) effect were significant in susceptible cultivars. 

Whereas, block effect was insignificant (F = 0.588, df = 2, P  = 0.56) in resistant 

cultivars. Thus, we applied a reduced model Response counts ~ Treatment in resistant 

cultivars. One way ANOVA was applied to observe the significance of treatment (F = 

7.601, df = 5, P  = 2.52e-05) in resistant cultivars. Fisher- least significant difference 

(LSD) test at P < 0.05 was applied to see the separation of treatment means based on A. 

glycines numbers. In susceptible cultivars, we observed the separation of means of 

avirulent (response) population between the treatments with none, biotype 2 as an inducer 
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with biotype 1 as an inducer. Response populations for the biotype 2 as inducer 

population treatments were 84.4% greater than the response population that received the 

“none inducer” treatment in the susceptible cultivar. In resistant cultivars, we did not 

observe the separation of means of avirulent (response) population between the 

treatments with zero, biotype 2 as an inducer with biotype 1 as an inducer. However, 

response populations for the biotype 2 as inducer population treatments were 228% 

greater than the response population that received the “none inducer” treatment in the 

resistant cultivar. 
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Figure 5.3. Effect of avirulent (B1) and virulent (B2) inducer populations on avirulent 

(B1) and virulent (B2) response populations on both (a) susceptible and (b) resistant 

soybean. For this experiment, the susceptible soybean cultivar was LD12-15838R and the 

resistant cultivar was LD12-15813Ra. Lowercase letters indicate significance among 

treatments (P < 0.05). Plotted values represent the means of the avirulent response 

population. 
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5.3.2. RNA-seq Analysis 

A total of 10 RNA libraries were prepared and sequenced with the sequencing 

depth ranging from 24,779,816 to 29,72,4913. Total reads of 266,535,654 were subjected 

to FastQC analysis to determine the data quality using various quality metrics such as 

mean quality scores, per sequence quality scores, per sequence GC content, and sequence 

length distribution (Figure 5.4, Table 5.1). The Phred quality scores per base for all the 

samples were higher than 30. The GC content ranged from 45 to 46% and followed the 

normal distribution. After trimming, more than 99% of the reads were retained as the 

clean and good quality reads. Upon mapping these reads, we obtained high mapping rate 

ranging from 90.4% to 92.9%. Among the mapped reads, 85.8% to 91.9% reads were 

uniquely mapped. 
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Table 5.1. Statistics of the transcriptomic data using RNA-seq pipeline used in this study. 

Sample Name Raw 

Reads 

% 

GC 

Read 

Length 

Trimmed 

reads 

Percentage 

of clean 

reads 

Mapped 

Reads 

Percentage of 

mapped reads 

Number of 

Uniquely 

mapped 

reads 

Percent 

uniquely 

mapped 

Accession 

Control: No aphids; Susceptible soybean;  

Day 1 

25252863 46%                 75  25092599 99.37 23394131 93.23119937 20651941 88.27829937 SRR8848027 

Control: No aphids; Susceptible soybean;  

Day 11 

27576285 45%                 75  27428725 99.46 25212419 91.91976295 22903908 90.84375442 SRR8848028 

Control: No aphids; Resistant soybean;  

Day 1 

26009250 45%                 75  25842889 99.36 23766133 91.96391704 21001237 88.36623526 SRR8848025 

Control: No aphids;  Resistant soybean;  

Day 11 

27852647 44%                 75  27688740 99.41 25665595 92.69325726 23579647 91.87259052 SRR8848026 

Inducer: None; Response: 15 biotype 1; 

Susceptible soybean; Day 11 

26191613 45%                 75  26048380 99.45 23554300 90.42520111 21541233 91.4535053 SRR8848031 

Inducer: 50 biotype 2; Response:15 biotype 1;  

Susceptible soybean; Day 1 

26008870 46%                 75  25862409 99.4 23894333 92.39020619 20704930 86.6520526 SRR8848032 

Inducer: 50 biotype 2; Response: 15 biotype 1;  

Susceptible soybean;  Day 11 

27213494 46%                 75  27046904 99.39 24598524 90.94765153 21099681 85.77620755 SRR8848029 

Inducer: None; Response: 15 biotype 1; Resistant 

soybean;  Day 11 

26274980 45%                 75  26116361 99.4 24249196 92.85059278 22100532 91.13923612 SRR8848030 

Inducer: 50 biotype 2; Response: 15 biotype 1;  

Resistant soybean;  Day 1 

26424818 45%                 75  26275488 99.43 24065562 91.58940074 21158309 87.91944688 SRR8848023 

Inducer: 50 biotype 2; Response: 15 biotype 1;  

Resistant soybean;  Day 11 

27730834 45%                 75  27562105 99.39 25387621 92.11060258 23022198 90.68277016 SRR8848024 
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Figure 5.4. Quality metrics of G. max sequencing data. (a) Mean quality scores per 

position, (b) Per sequence quality scores, (c) GC content distribution, and (d) Read length 

distribution. 

 

5.3.3. WGCNA Analysis 

The co-expression networks were used to detect correlated networks of genes and 

their enrichment in the divided datasets to compare difference on the day 1 and day 11 

treatments. Weighted gene co-expression network analysis identified a network of 3,000 

genes divided into 11 co-expression modules in four day 1 samples, and a network of 

2,999 genes divided into 15 co-expression modules in six day 11 samples (Figure 5.5, 
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Supplementary File 1). In entire modules, the enrichment analysis found several highly 

enriched KEGG pathways for day 1 and day 11 samples.  The only KEGG pathways 

enriched in day 1 samples, but not in day 11 samples were Phenylpropanoid biosynthesis, 

Glycine, serine and threonine metabolism, Alpha-Linolenic acid metabolism, Glycolysis / 

Gluconeogenesis, and Cysteine and methionine metabolism. Whereas, the only KEGG 

pathways enriched in day 11 samples, but not in day 1 samples were Plant-pathogen 

Interaction, Flavonoid biosynthesis, MAPK signaling pathway, Glucosinolate 

biosynthesis, and Alanine, aspartate and glutamate metabolism, Cutin, suberine, and wax 

biosynthesis. (Table S1). The common pathways for both time points included 

Biosynthesis of secondary metabolites, Metabolic pathways, Ribosome, Porphyrin, and 

chlorophyll metabolism. 
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Figure 5.5. Weighted gene co-expression network analysis identified a network of 3,000 

genes divided into 10 co-expression modules in  day-1 samples (a), and a network of 

2,999 genes divided into 15 co-expression modules in  day-11 samples (b). 

 

5.3.4. Hierarchical and K-means Clustering  

After filtering with 0.5 counts per million (CPM) in at least one sample and rlog 

transformation, a total of 37,468 genes (66.9% of original 55,983) were retained for 

clustering and visualization. We used a hierarchical clustering method to determine if 

individual gene expression patterns clustered according to the time period. The 

hierarchical clustering based on 3,000 most variable genes, sample distances (Figure 

5.6a) indicated that samples clustered on the basis of time points of sample collection 

(Day 1 and Day 11). Figure 5.6b represents the correlation between the samples using the 

top 75% genes in a range of 0.96-1. Figure 5.6c represents the standard deviation (SD) 
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distribution of the top variable 3,000 genes. Regarding the PCA, PC1 is correlated with 

time with 55% variance, and PC2 is correlated with Treatment with 18% variance (Figure 

5.6d). 

We used gene clustering to assess if day 11 had more gene clusters enriched for 

defense-related pathways than day 1 samples. K-means clustering identified five clusters 

of correlated genes in day 11 samples (Figure 5.7), and Cluster A was enriched primarily 

with the biosynthesis of secondary metabolites, Cluster B was enriched with various plant 

defense-related pathways such as MAPK signaling pathway, Plant-pathogen interaction, 

and plant hormone signal transduction (Supplemental File 2). Four clusters were 

identified (A-D) in day 1 samples, of which Cluster A was enriched with photosynthesis, 

carbohydrate metabolism, Cluster B was enriched with fatty acid metabolism, 

glucosinolate biosynthesis, Cluster C and D were enriched with biosynthesis of secondary 

metabolites, and plant defense-related pathways such as MAPK signaling pathway 

(Supplemental File 2). Promoter analysis of clusters in day 1 samples found 80 enriched 

transcription factor binding motifs in four clusters (A, B, C, and D). Enriched binding 

motifs consisted of twelve transcription factor families: AP2, AT hook, bHLH, bZIP, 

CG-1, CxC, Homeodomain, Myb/SANT, NAC/NAM, TBP, TCP, and WRKY. Promoter 

analysis in day 11 samples found 100 enriched transcription factor binding motifs, 

consisting of eight transcription factor families: AP2, bHLH, bZIP, CG-1, E2F, LOB, 

Myb/SANT, and TCP (Supplemental File 2). Six transcription factor families (AP2, 

bHLH, bZIP, CG-1, Myb/SANT, TCP) were found in both time periods. Four 

transcription factor families were unique to day 1 samples (AT hook, CxC, 
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Homeodomain, and NAC/NAM), whereas, two transcription factor families were unique 

to day 11samples (E2F and LOB). 

 

Figure 5.6. Assessment of transcriptomic data. (a) Heatmap of top 3,000 variable genes, 

(b) Correlation matrix, (c) Gene SD distribution, and (d) A PCA plot. 
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Figure 5.7. K-means clustering of top 3,000 most highly variable genes in  Day-1 

samples (a) and Day-11 samples (b). 

 

5.3.5. Gene Expression Analysis 

The pair wise comparisons between treatments in two different treatments (none: 

B1 and B2: B1) at day 1 and day 11 with FDR < 0.01 and log2fold-change > 2 as cutoffs 

resulted differentially expressed genes (DEGs) shown in Table 5.2. We further 

investigated these genes using Venn diagrams (Figure 5.8). At day 1, we found 746 and 

243 DEGs in susceptible and resistant cultivars, respectively treated with biotype 2 as 

inducer and biotype 1 as response population (B2: B1). Whereas, 981 and 407 DEGs 
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were found in susceptible and resistant cultivars, respectively at day 11 treated with 

biotype 2 as inducer and biotype 1 as response population (B2: B1). At day 11 we found 

520 and 377 DEGs in susceptible and resistant cultivars treated with no inducer and 

biotype 1 as a response population (none: B1).  In total, at day 11, we found 1,274 and 

638 DEGs in susceptible and resistant cultivars, respectively upon comparing treatments 

with none: B1 and B2: B1.  

Table 5.2. A number of up-regulated and down regulated DEGs in different comparisons. 

 

Time Comparisons Cultivar Up regulated Down regulated 

Day 1 B2:B1 vs Control Susceptible 364 382 

B2:B1 vs Control Resistant 239 4 

Day 11 none:B1 vs 

Control 

Susceptible 196 324 

B2:B1 vs Control Susceptible 660 321 

none:B1 vs 

Control 

Resistant 154 223 

B2:B1 vs Control Resistant 214 196 

 

 

Figure 5.8. Venn diagram showing DEGs for two treatments N: B1 (none: B1) and B2: 

B1 in resistant (a) and susceptible cultivars (b). 
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5.3.6. GO, KEGG Enrichment and MapMan Analysis 

The 1,274 and 638 DEGs in susceptible and resistant cultivars, respectively were 

subjected to GO enrichment analysis for biological process, molecular function, and 

KEGG pathways. In susceptible cultivar, the DEGs were enriched for various biological 

processes including Jasmonic acid mediated signaling pathway, Response to chitin, 

Phenylpropanoid metabolic process, Regulation of defense response, Response to 

chemical or organic substance, Response to wounding, Hormone metabolic process, 

Reactive oxygen species metabolic process, Regulation of macromolecule biosynthetic 

and metabolic processes. Among them, Jasmonic acid mediated signaling pathway was 

unique to none: B1 treatment and Phenylpropanoid biosynthetic process and 

Glucosinolate metabolic process were unique to B2: B1 treatment (Figure 5.9). In terms 

of KEGG pathways, these genes were enriched for Cutin, suberine and wax biosynthesis 

(FDR=5.36E-07), Biosynthesis of secondary metabolites (FDR=5.36E-07), Glucosinolate 

biosynthesis (FDR=1.04E-05), Phenylpropanoid biosynthesis (FDR=4.89E-05), MAPK 

signaling pathway (FDR=8.84E-05), Plant hormone signal transduction 

(FDR=0.047596525) and others represented in Figure S1 and Supplementary File 3.  

Promoter analysis of 1,274 DEGs showed 30 enriched transcription factor binding motifs. 

Enriched binding motifs consisted of seven transcription factor families: AP2, bHLH, 

bZIP, CG-1, LOB, SBP, and TCP (Supplemental File 3). 
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Figure 5.9 Enriched GO biological processes specific to treatments in susceptible cultivar 

at day 11. None: B1 (a), common (b), and B2: B1(c). 

 

Differentially expressed genes visualized using biotic stress pathway integrated 

into MapMan showed distinct expression patterns in none: B1 and B2: B1 treatments in 

both susceptible and resistant cultivars. The biotic stress overview pathway generated by 

MapMan demonstrated the involvement of multifaceted defense related genes in the 

presence of inducer and no inducer population in both susceptible and resistant plants. In 

susceptible reaction, 280 (of 523) with 26 bins and 362 (of 984) DEGs with 25 bins were 

associated with the biotic stress pathway for none: B1 and B2: B1 treatments, 

respectively. As compared to treatment none: B1, upregulated genes related to abiotic 

stress (bin 20.2), peroxidases (bin 26.12), abscisic acid hormone pathway (bin 17.1), 

respiratory burst (bin 20.1.1), glutathione S transferase (bin 26.9), pathogenesis related 

(PR)-proteins (bin 20.1.7), and secondary metabolism (bin 16), and heat shock proteins 

(HSPs) (bin 20.2.1). 
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Figure 5.10. Biotic stress pathway overview of differentially expressed genes in 

susceptible cultivar at day 11. None: B1 (a) and B2: B1 (b).  Blue color indicates the up-

regulated and red color indicates the down regulated genes. False discovery rate (FDR) p 

< 0.01 and log2fold change ≥ 2 or ≤ -2 were used to identify the differentially expressed 

genes. 
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Whereas, 638 DEGs in resistant cultivar were particularly enriched for 

Photosynthesis, Lignin metabolic process, negative regulation of endopeptidase activity, 

response to cytokinin, Inositol catabolic process which were different from the 

susceptible reaction (Figure S2). Among them, response to chitin, lignin catabolic and 

metabolic process, asparagine metabolic process, response to chemical were unique to 

none: B1 treatment, whereas, response to reactive oxygen species, photosynthesis, and 

regulation of endopeptidase activity were unique to B2: B1 treatment (Figure 5.10). 

These genes were enriched for KEGG pathways such as Photosynthesis (FDR= 

0.005883), Glutathione metabolism (FDR=0.009895), Cutin, suberine and wax 

biosynthesis (FDR=0.012764), Cysteine and methionine metabolism (FDR=0.046797), 

and Flavonoid biosynthesis (FDR=0.046797) (Supplementary File 4). Promoter analysis 

of 638 DEGs showed 30 enriched transcription factor binding motifs. Enriched binding 

motifs consisted of four transcription factor families: bHLH, bZIP, CG-1, and TCP 

(Supplemental File 4). 

 

Figure 5.11. Enriched GO biological processes specific to treatments in resistant cultivar 

at day 11. None: B1 (a), common (b), and B2: B1 (c). 
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In resistant reaction, MapMan biostress pathway revealed 154 (of 380) with 21 

bins and 176 (of 410) DEGs with 23 bins associated with the biotic stress pathway for 

none: B1 and B2: B1 treatments, respectively. As compared to treatment none: B1, 

upregulated genes related to transcription factors [WRKY (bin 27.3.32), MYB (27.3.25)], 

peroxidases (bin 26.12), abscisic acid hormone pathway (bin 17.1), respiratory burst (bin 

20.1.1), glutathione S transferase (bin 26.9), salicylic acid hormone pathway (bin 17.8), 

jasmonic acid hormone pathway (bin 17.7), pathogenesis related (PR)-proteins (bin 

20.1.7), and secondary metabolism (bin 16), and heat shock proteins (HSPs) (bin 20.2.1). 
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Figure 5.12. Biotic stress pathway overview of differentially expressed genes in resistant 

cultivar at day 11. None: B1 (a) and B2:B1 (b). Blue color indicates the up-regulated and 

red color indicates the down regulated genes. False discovery rate (FDR) p < 0.01 and 

log2fold change ≥ 2 or ≤ -2 were used to identify the differentially expressed genes. 
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5.3.7. Comparison of the DEGs between Two-time Points 

Further, we compared DEGs for samples treated with biotype 2 as inducer and 

biotype 1 as response population (B2: B1) on day1 and day 11. Of 626 DEGs in resistant 

cultivar, 216 were unique to day 1 samples, 383 were unique to day 11 samples and 27 

were expressed at both time points (Figure 5.11a). Likewise, of 1,621 DEGs in 

susceptible cultivar, 637 were unique to day 1 samples, 872 were unique to day 11 

samples and 112 were expressed at both time points (Figure 5.11b).   

 

Figure 5.13. Venn diagram showing DEGs for treatment B2: B1 at day 1 and day 11 in 

resistant (a) and  susceptible (b) cultivars. 

 

At day 1, MapMan biostress pathway revealed 284 (of 749) with 24 bins and 90 

(of 243) DEGs with 16 bins associated with the biotic stress pathway in susceptible and 

resistant cultivars with B2: B1 treatment, respectively. As compared to a susceptible 

reaction, the resistant reaction showed fewer bins associated with the biostress pathway 

with almost all upregulated genes.  
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Figure 5.14. Biotic stress pathway overview of differentially expressed genes at day 1 

with B2: B1 treatment. Susceptible (a) and resistant (b). Blue color indicates the up-

regulated and red color indicates the down regulated genes. False discovery rate (FDR) p 

< 0.01 and log2fold change ≥ 2 or ≤ -2 were used to identify the differentially expressed 

genes. 
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Table 5.3. List of 27 common DEGs for treatment B2:B1 at day 1 and day 11 in a resistant cultivar. 

Feature ID 

Day 1 

log2fc  

Day 

11 

log2fc Top Arabidopsis Hit  Symbols Gene Description 

Glyma.01G021000 3.35 3.84 AT4G37990.1 ELI3-2, ELI3, ATCAD8, CAD-B2 elicitor-activated gene 3-2 

Glyma.02G054200 2.32 2.38 AT1G19640.1 JMT jasmonic acid carboxyl methyltransferase 

Glyma.02G108700 2.47 2.87 AT3G29000.1  Calcium-binding EF-hand family protein 

Glyma.03G068200 2.46 -6.07 AT1G73330.1 ATDR4, DR4 drought-repressed 4 

Glyma.03G222600 2.72 2.62 AT2G47140.1  NAD(P)-binding Rossmann-fold superfamily protein 

Glyma.06G004400 2.42 2.54 AT4G38650.1  Glycosyl hydrolase family 10 protein 

Glyma.06G145300 2.30 2.80 AT5G05340.1  Peroxidase superfamily protein 

Glyma.06G182700 2.48 2.14 AT5G14740.2 CA2, CA18, BETA CA2 carbonic anhydrase 2 

Glyma.06G299900 3.11 2.17 AT2G31180.1 ATMYB14, MYB14AT, MYB14 myb domain protein 14 

Glyma.07G034900 2.73 2.29 AT1G55020.1 LOX1, ATLOX1 lipoxygenase 1 

Glyma.08G199300 2.22 3.42 AT1G14520.2 MIOX1 myo-inositol oxygenase 1 

Glyma.11G051800 2.24 2.60 AT4G37340.1 CYP81D3 cytochrome P450, family 81, subfamily D, polypeptide 3 

Glyma.12G092600 2.74 5.48 AT3G51680.1  NAD(P)-binding Rossmann-fold superfamily protein 

Glyma.12G199200 3.49 2.56 AT3G23250.1 MYB15, ATY19, ATMYB15 myb domain protein 15 

Glyma.13G084000 2.11 -5.01 AT1G77760.1 NIA1, GNR1, NR1 nitrate reductase 1 

Glyma.13G349300 2.30 2.26 AT3G13790.1 ATCWINV1, ATBFRUCT1 Glycosyl hydrolases family 32 protein 

Glyma.14G102900 3.91 2.80 AT1G80840.1 WRKY40, ATWRKY40 WRKY DNA-binding protein 40 

Glyma.15G009500 2.73 3.27 AT1G80160.1  Lactoylglutathione lyase / glyoxalase I family protein 

Glyma.15G072400 2.05 4.26 AT4G27450.1  Aluminium induced protein with YGL and LRDR motifs 

Glyma.17G079000 2.12 2.01 AT3G29575.4 AFP3 ABI five binding protein 3 

Glyma.17G156100 2.61 4.78 AT4G37850.1  

basic helix-loop-helix (bHLH) DNA-binding superfamily 

protein 

Glyma.17G222500 3.47 3.84 AT1G80840.1 WRKY40, ATWRKY40 WRKY DNA-binding protein 40 

Glyma.17G242400 2.06 2.21 AT4G25000.1 ATAMY1, AMY1 alpha-amylase-like 

Glyma.18G246100 3.62 3.78 AT4G37850.1  

basic helix-loop-helix (bHLH) DNA-binding superfamily 

protein 

Glyma.18G273200 2.38 2.42 AT5G24530.1 DMR6 

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein 

Glyma.19G245400 2.42 -3.05 AT3G04720.1 PR4, HEL, PR-4 pathogenesis-related 4 

Glyma.20G036100 3.70 7.00 AT2G02990.1 RNS1, ATRNS1 ribonuclease 1 
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The 27 overlapped DEGs in resistant cultivar represented the variation in the level 

of expression at day 1 and day 11 (Table 5.3). In both cultivars, we observed no 

difference, increased and decreased expression pattern of the genes (Table 5.3 and Table 

S2). Particularly in resistant cultivar, elicitor-activated gene 3-2 (Glyma.01G021000), 

jasmonic acid carboxyl methyltransferase (Glyma.02G054200), Calcium-binding EF-

hand family protein (Glyma.02G108700), 2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein (Glyma.18G273200) showed static level or no difference 

of expression at day 1 and day 11. Whereas, the expression of NAD(P)-binding 

Rossmann-fold superfamily protein (Glyma.03G222600) increased from 2.74 to 5.48 

log2fc, myo-inositol oxygenase 1 (Glyma.08G199300) from 2.22 to 3.42 log2fc,  

Aluminium induced protein with YGL and LRDR motifs (Glyma.15G072400) from 2.05 

to 4.26 log2fc, basic helix-loop-helix (bHLH) DNA-binding superfamily protein from 

2.61 to 4.68 log2fc, and ribonuclease 1 (Glyma.20G036100) from 3.70 to 7.00 log2fc. In 

contrast, the expression of drought-repressed 4 (Glyma.03G068200) was decreased from 

2.46 to -6.07 log2fc, nitrate reductase 1 (Glyma.13G084000) from 2.11 to -5.01, 

pathogenesis-related 4 (Glyma.19G245400) from 2.42 to -3.05 log2fc. At day 1, 

particularly, seven genes belonging to peroxidases and six cytochrome P450s were highly 

upregulated. In addition, disease resistance-responsive (dirigent-like protein) family 

protein (Glyma.03G045600, Glyma.08G019900, Glyma.12G030300) were expressed in 

the range of 2.6 to 3.3 log2foldchange, Kunitz family trypsin and protease inhibitor 

protein (Glyma.08G235300, Glyma.16G212500, Glyma.08G235400) were expressed in 

the range of 2.2 to 4.7 log2foldchange, laccase 3 (Glyma.02G231600, 

Glyma.14G198900) were expressed in the range of 2.8 to 3.1, TRICHOME 
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BIREFRINGENCE-LIKE 27 (Glyma.01G034600, Glyma.02G031400) and TRICHOME 

BIREFRINGENCE-LIKE 42 (Glyma.12G233500) were expressed in the range of 2.0 to 

2.1 log2foldchange, Ferritin/ribonucleotide reductase-like family protein 

(Glyma.16G056300) was expressed by 3.129 log2foldchange, WRKY24 

(Glyma.18G238600) was expressed by 4.2 log2foldchange (Supplementary File 5). At 

day 11, particularly, wall associated kinase 5 (Glyma.13G035900) was expressed by 2.78 

log2fold change, glutathione S-transferases (Glyma.18G043700, Glyma.11G212900, 

Glyma.07G139600, Glyma.07G139900, Glyma.07G139700) were expressed in the range 

of 2.0 to 3.5 log2foldchange, Toll interleukin-1 receptor-like Nucleotide-binding site 

Leucine-rich repeat (TNL) genes (Glyma.03G048600, Glyma.03G052800, 

Glyma.03G048700, Glyma.03G047700) expressed in the range of 2.4 to 3.1 

log2foldchange, senescence-related genes (Glyma.06G273600, Glyma.13G222100, 

Glyma.15G090100, Glyma.16G052000) were expressed in the range of 2.1 to 4.1 

log2foldchange, UDP-glucosyltransferases (Glyma.08G109100, Glyma.02G105000, 

Glyma.10G062600, Glyma.20G196000) were expressed in the range of 2.1 to 3.65 

log2foldchange, myo-inositol oxygenases (Glyma.07G013900, Glyma.05G224500) were 

expressed in range of 3.5 to 3.9 log2foldchange, ferritin 4 (Glyma.02G262500) was 

expressed by 2.26 log2foldchange, WRKY40 (Glyma.17G222300) and WRKY67 

(Glyma.03G002300) were expressed in the range of 2.1 to 2.7 log2foldchange 

(Supplementary File 5). 
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5.3.8. DEGs Coincident with Rag QTL Genes 

We identified 1,691 non-redundant genes in the Rag QTLs: Rag1 [15], Rag1b 

[16], Rag1c [17], Rag2 [18], Rag3 [19, 20] , Rag4 [19], Rag3 [16] , Rag3b [21], Rag3c 

[22], Rag4 [17], Rag5 [23] , Rag6 [22]; qChrom.07.1, qChrom.16.1, qChrom.13.1, 

qChrom.17.1 [24] and compared with the DEGs found in the resistant cultivar, LD12-

15813Ra. We found 14 DEGs that were coincident with the Rag QTL genes with 

lipoxygenase 1 (Glyma.07G034900) being up-regulated at both day 1 (2.73 

log2foldchange) and day 11 (2.29 log2foldchnage) treated with B2 as an inducer 

population and B1 as a response population and Gibberellin-regulated family protein 

(Glyma.17G237100) downregulated at day 11 in both treatment conditions none: B1 and 

B2: B1. Protein kinase family proteins with leucine-rich repeat domain 

(Glyma.16G065600) and Gibberellin-regulated family protein (Glyma.17G237100) were 

downregulated at day 1 and day 11, respectively treated with B2 as an inducer population 

and B1 as a response population. Likewise, arabinogalactan protein 22 

(Glyma.07G087200) and Gibberellin-regulated family protein (Glyma.17G237100) were 

downregulated treated with no inducer population and B1 as a response population at day 

11. 
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Table 5.4. List of DEGs coincident with Rag QTL genes 

 

Time Treatment GeneID Log2foldchange E-value 

Top 

Arabidopsis 

Hit Symbols Gene Description 

Day 

1 
B2:B1 

Glyma.07G034800 3.181 0 AT1G55020.1 

LOX1, 

ATLOX1 lipoxygenase 1 

Glyma.13G183000 5.276 0 NA   
Glyma.13G183500 2.729 9.57E-10 NA   

Glyma.16G053300 3.141 0 AT5G41040.1  

HXXXD-type acyl-transferase family 

protein 

Glyma.16G056300 3.129 8.33E-08 AT3G27060.1 

TSO2, 

ATTSO2 

Ferritin/ribonucleotide reductase-like 

family protein 

Glyma.16G065600 -4.430 3.91E-03 AT1G35710.1  

Protein kinase family protein with 

leucine-rich repeat domain 

Glyma.07G034900 2.73 0.00E+00 AT1G55020.1 

LOX1, 

ATLOX1 lipoxygenase 1 

Day 

11 

B2:B1 

Glyma.17G237100 -3.45066 0 AT5G59845.1  Gibberellin-regulated family protein 

Glyma.16G052000 2.146059 0 AT3G02040.1 SRG3 senescence-related gene 3 

Glyma.07G051500 2.670101 0 AT4G00870.1  

basic helix-loop-helix (bHLH) DNA-

binding superfamily protein 

Glyma.13G035900 2.780425 0 AT1G21230.1 WAK5 wall associated kinase 5 

Glyma.07G061500 2.96304 0 AT2G46240.1 

BAG6, 

ATBAG6 BCL-2-associated athanogene 6 

Glyma.07G034900 2.29 0 AT1G55020.1 

LOX1, 

ATLOX1 lipoxygenase 1 

none:B1 

Glyma.07G051500 2.86115 0 AT4G00870.1  

basic helix-loop-helix (bHLH) DNA-

binding superfamily protein 

Glyma.07G087200 -2.05063 0 AT5G53250.1 

AGP22, 

ATAGP22 arabinogalactan protein 22 

Glyma.17G237100 -2.03562 1.99E-10 AT5G59845.1  Gibberellin-regulated family protein 

 

5.4. Discussion 

 

This experiment is the first attempt to characterize the induced susceptibility 

effect that promotes the avirulent A. glycines populations in both resistant and susceptible 

cultivar treated with virulent inducer populations. Previously, this effect was initially 

tested with Rag1 + Rag2 (IA3027RA12) cultivar and subsequent tests in  near-isogenic 

soybean cultivars containing no Rag genes (IA3027), Rag1 (IA3027RA1), using biotype 

1 and biotype 2 soybean aphids in a growth chamber and semi-field settings [32]. We 

first validated this effect using susceptible soybean cultivar (LD12-15838R) with no Rag 

gene and the resistant cultivar (LD12-15813Ra) with Rag1 gene in the greenhouse 

settings with slight modifications on response population density (15 instead of five). In 
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the meantime, we collected leaves samples for the transcriptomic study. We observed 

both ‘feeding facilitation’ [53] and ‘obviation of resistance’ [31] which are the two 

subcategories of induced susceptibility. Feeding facilitation refers to the condition where 

conspecifics are favored on either susceptible or resistant host plants in presence of 

herbivore, irrespective of its genotype. Whereas, obviation of resistance refers to the 

condition where avirulent conspecifics on the resistant plant are favored in the resistant 

host plant in the presence of virulent herbivore. We chose treatments with no aphids 

(control), biotype 2: biotype1 (B2: B1) and no aphids: biotype1 (none: B1) collected at 

day 1 and day 11 for the transcriptomic study. These treatments were chosen as we 

expect some insights on gene expression pattern in resistant and susceptible cultivars in 

time course response in presence or absence of virulent soybean aphids as an inducer 

population and avirulent soybean aphids as a response population. The day 1 samples 

were selected expecting some response to the host by the inducer population. The day 11 

samples were selected as we expected both physical and metabolic changes caused by 

both inducer and response populations. 

The initial WGCNA analysis revealed 11 and 15 co-expression modules on day 1 

and day 11, respectively enriched for various pathways in both resistant and susceptible 

cultivars. At day 1 or 24 hours, we found an enriched pathway for cysteine and 

methionine metabolism which was also enriched in the DEGs in resistant cultivar 

discussed below. Many plant species utilize S‐methylmethionine and glutathione to 

transport sulphur molecules in the phloem [54]. Aphids might have an efficient 

mechanism for the production of methionine and cysteine from the phloem metabolites 

[55]. It has been shown that peach aphid and pea aphid in symbiosis with the 
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endosymbiont, Buchnera aphidicola incorporate sulphur from inorganic sulphate 

transported to the phloem sap [55, 56]. The presence of aphid endosymbiotic bacteria 

[57] in the aphids might be one of the causes for feeding facilitation and obviation of 

resistance by soybean aphids. The possibility of the role of endosymbionts including 

plant viruses and aphid effector molecules causing induced susceptibility was discussed 

by Varenhorst et al. 2015 [32]. Other enriched pathways at day 1 were Phenylpropanoid 

biosynthesis, Alpha-Linolenic acid metabolism, Fatty acid biosynthesis. Previous studies 

have shown that the phenylpropanoid pathway was induced in the resistant (Rag1) 

Dowling cultivar at 6 and 12 h after aphid feeding [58].  The pathways related to α-

linolenic acid metabolism and fatty acid biosynthesis corresponds to the precursor for 

jasmonic acid pathway via the oxylipin pathway [59]. This shows that soybean aphids 

can induce hormone response inducing changes in fatty acid metabolism within 24 hours. 

The production of various phytohormones such as JA including SA and ET  upon aphid 

infestation on the response of resistant (Rag1) and susceptible near-isogenic soybean 

lines [39]. Such effect was also seen in two soybean varieties (DK 27–52 and DK 28–52) 

when infested with soybean aphid in the field environment [60]. At day 11, we found an 

enriched pathway for Flavonoid biosynthesis, Plant pathogen interaction, MAPK 

signaling pathway, and Glucosinolate biosynthesis. The interaction of plant and pathogen 

involves pathogen-associated molecular patterns (PAMPs) of pathogens by pattern 

recognition receptors (PRRS) of the host [61]. These plant-parasite interactions have 

caused a battle in the molecular avenue where evolutionary arms race takes place [62]. 

There are various models that describe plant-pathogen interactions such as the gene for 

gene model, guard model, decoy model, bait and switch model, and zig-zag model [63, 
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64, 65, 66]. Zig-zag model depicts the interaction between plant and parasites [64]. It is 

still unknown if aphid and other insects interaction follow the particular model [62]. As 

reviewed by Wu and Baldwin, 2010 [67] early defense signaling events take place in a 

cell of insect attacked leaf. Briefly, aphid elicitors are perceived by the receptors on 

plasma membrane trigger Ca2+ channels and produce Ca2+. Ca2+ binds with NADPH 

oxidase which gets enhanced through phosphorylation by CDPKs eventually producing 

reactive oxygen species (ROS). MAPK pathways are activated quickly among which 

SIPK and WIPK trigger the synthesis of Jasmonic acid (JA) and JA-Ile (JA-isoleucine) 

which is a central regulator of plant innate immunity [68]. Another enriched pathway at 

day 11 was Glucosinolate biosynthesis. The involvement of secondary metabolites such 

as glucosinolates have been documented in two separate studies as a defensive compound 

when Myzus persicae infested Arabidopsis for three [69] and seven days [70].  

The K-means clustering revealed five and four clusters for day 11 and day 1 

samples. The pathway enrichment analysis of the clusters supported the enrichment of 

entire modules obtained from WGCNA analysis. Enriched binding motifs of these 

clusters revealed AT hook [71], CxC [72], Homeodomain [73], and NAC/NAM [74] 

transcription factor families unique to day 1 samples. whereas, two transcription factor 

families were unique to day 11samples (E2F [75], and LOB [76]). Six transcription factor 

families (AP2 [77], bHLH [78], bZIP [79] , CG-1[80], Myb/SANT [81], TCP [82]) were 

found in both time periods. Among them, AP2, bHLH, bZIP, CG-1, LOB, SBP, and TCP 

were particularly enriched in susceptible reaction whereas, bHLH, bZIP, CG-1, and TCP 

were enriched in resistant reaction. 
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At day 11, upon analyzing DEGs between treatments none: B1 and B2: B1 we 

observed a significant number of DEGs in susceptible cultivar than resistant cultivar 

(1,274 vs 638). The DEGs in susceptible cultivar were enriched for many biological 

processes related to defense programs such as MAPK signaling pathway, Plant hormone 

signal transduction, and Plant-pathogen interaction. These are the major components of 

the PTI program of defense mechanism. Such an effect in which significant induction of 

defense programs in susceptible cultivar aphid-susceptible SD01-76R when infested with 

soybean aphid for 21 days [83]. The DEGs in resistant cultivar were enriched for 

Photosynthesis, Glutathione metabolism, Cutin, suberine and wax biosynthesis, Cysteine 

and methionine metabolism, and Flavonoid biosynthesis. Particularly, glutathione 

metabolism was enriched in which one gene, glutathione peroxidase 6 

(Glyma.01G219400) was upregulated by 2.12 log2foldchange in the none: B1 treatments. 

Whereas, three genes belonging to glutathione S-transferases (Glyma.07G139700, 

Glyma.07G139900, Glyma.14G067200) were upregulated by 2.04 to 2.5 log2foldchange 

in the B2: B1 treatments. The structural damage on the host upon aphid feeding may be 

linked to the accumulation of excessive reactive oxygen species (ROS) in the attacked 

organs [84]. Plant glutathione S-transferases (GSTs) make such endogenous substrates 

and xenobiotics (e.g., ROS) less toxic upon adding glutathione molecule via nucleophilic 

or addition reactions [85]. We observed glutathione peroxidase6 being upregulated in 

none: B1 treatments. Sometimes, GSTs exhibit glutathione-peroxidase activity for the 

reduction of hydroperoxides [86]. The enrichment of Cysteine and methionine 

metabolism which was also observed in initial WGCNA analysis at day 1 was observed 

in DEGs in resistant cultivar at day 11. This shows that cysteine and methionine 
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metabolism pathway is active from initial aphid feeding to the 11th day. Another enriched 

pathway in the resistant cultivar was photosynthesis. Previous transcriptomic study on 

soybean near-isogenic lines differing in alleles for an aphid resistance gene, Rag5 

following infestation by soybean aphid biotype 2 has shown DEGs enriched for 

photosynthesis [87]. Physiologically, photosynthesis rates have been reduced up to 50% 

on soybean aphid infested leaflets [88].  

The comparison of DEGs was further expanded to see a pattern of the expression 

of DEGs especially focusing to common and unique genes at day 1 and day 11 in the 

resistant cultivar when treated with biotype 2 as an inducer population. Particularly on 

day 1, we observed upregulation TRICHOME BIREFRINGENCE-LIKE 27 and -42 

proteins and laccase 3. TRICHOME BIREFRINGENCE-LIKE genes contribute to the 

synthesis and deposition of the secondary wall [89]. Likewise, laccase genes also play a 

role in cell wall lignification [90]. The cell wall modification and deposition of callose 

are considered as the chemical defense responses during PAMP-triggered immunity (PTI) 

response after recognition of components from the aphid saliva [91]. The role of laccase 

in tolerance to the insect pests cotton bollworm (Helicoverpa armigera) and cotton aphid 

(Aphis gosypii) has been shown in cotton [92]. Upregulation of other genes at day 1 

involved peroxidases, cytochrome P450s. The role of peroxidases in scavenging ROS 

during the defense mechanism has been clearly documented in plant-aphid interactions 

[93, 94] including soybean-soybean aphid interaction [35]. Plant cytochrome P450s are 

importantly involved in jasmonic acid mediated plant defense in response to wound and 

insect attack [95]. Other DEGs belonged to disease resistance-responsive (dirigent-like 

protein) family protein, Kunitz family trypsin, protease inhibitor protein, and 
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Ferritin/ribonucleotide reductase-like family protein. Previously, DIR-like proteins were 

also upregulated during feeding of spruce (Picea spp.) stem-by boring insects (i.e., white 

pine weevil, Pissodes strobi) in bark tissue and defoliating insects (i.e., western spruce 

budworm, Choristoneura occidentalis) in green apical shoots [96]. Kunitz family trypsin 

and protease inhibitor protein target various proteases of phytophagous pests and 

pathogen as a resistance response [97]. Previously, Kunitz family trypsin and protease 

inhibitor genes were reported as a differentially expressed gene in tolerant soybean 

cultivar upon soybean aphid feeding [35]. Another gene that encodes 

Ferritin/ribonucleotide reductase-like family protein was upregulated at day 1 response. 

The differential expression of ferritin as a resistance response has been shown in previous 

studies as a part of constitutive resistance mechanism in soybean-soybean aphid 

interactions [35, 38, 83]. Upregulation of ferritins in resistant plants can limit the 

availability of iron to the insect [83]. At day 11, four TNL genes, four homologs of 

WRKY40, one homolog of WRKY67, four senescence-related genes, four UDP-

glucosyltransferases, two myo-inositol oxygenases, five glutathione S-transferases were 

uniquely upregulated in the resistant cultivar when treated with biotype 2 as an inducer. 

The expression of four TNL genes at day 11 shows the involvement of canonical 

resistance genes. Numerous plant resistance genes involved in defense mechanism 

encode proteins containing nucleotide- binding site (NBS) and a leucine-rich repeat 

(LRR) motifs [98]. For example, Vat gene, which confers resistance to Aphis gossypii in 

melon (Cucumis melo) is also an NBS-LRR gene [99].  

We examined DEGs that are coincident with the 1,691 genes that were assessed 

from the Rag QTLs. The cultivar used in this experiment is LD12-15813Ra with Rag1 
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gene. The mapping and inheritance mechanism of the Rag1 gene has been well studied in 

various soybean cultivars [58, 100, 101, 102]. Rag1 loci were finely mapped as a 115 kb 

interval on chromosome 7 through genetic mapping using cultivar Dowling (PI 548663; 

donor parent of Rag1) and Dwight (PI587386; aphid-susceptible parent) [15]. We found 

14 DEGs that were coincident with the Rag QTL genes. Among them, six genes belonged 

to Rag1 QTLs. These genes belonged to lipoxygenase 1 (Glyma.07G034800, 

Glyma.07G034900) basic helix-loop-helix (Glyma.07G051500, Glyma.07G051500), 

BCL-2-associated athanogene (Glyma.07G061500) were upregulated while 

arabinogalactan protein 22 (Glyma.07G087200) was downregulated. 

The present study is an effort to characterize the interactions between two 

different biotypes of soybean aphids in susceptible and resistant soybean cultivars. We 

validated induced susceptibility effects using demographic datasets obtained from the 

greenhouse experiment. Further, this effect was characterized using genetic datasets 

obtained from RNA-seq technique. The characterization was limited to two treatments: 

one with no inducer population and biotype 1 as a response population and another with 

biotype 2 as an inducer population and biotype 1 as a response population in both 

resistant and susceptible cultivars. Many DEGs were common and unique in two 

cultivars and treatments that were enriched for various biological processes and pathways 

and were functionally related to known defense mechanisms reported in various host-

aphid systems. The responses to aphid biotype 1 infestation in presence or absence of 

inducer population at day1 and 11 revealed significant differences on the gene 

enrichment and regulation in resistant and susceptible cultivars. The assessment of DEGs 

in Rag genes QTLs, particularly in Rag1 containing QTL on chromosome 7, six non-
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NBS-LRR genes – Glyma.07G034800, Glyma.07G034900, Glyma.07G051500, 

Glyma.07G051500, Glyma.07G061500, Glyma.07G087200 revealed distinct expression 

in treatments with absence or presence of inducer population at day 1 and day 11. 

However, four TNL genes – Glyma.03G048600, Glyma.03G052800, Glyma.03G048700, 

Glyma.03G047700 were upregulated in resistant cultivar treated with biotype 2 as an 

inducer population and biotype 1 as response population at day 11 which suggest their 

crucial role in the interaction effects. Further experiments based upon metabolomics, 

proteomics, and validation of the candidate genes will be needed to understand the 

mechanism underlying induced susceptibility effects. 

Supplementary Files 
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Data Record 

The raw fastq files were submitted to the National Center for Biotechnology 

Information (NCBI, https://www.ncbi.nlm.nih.gov/) and are available with accession 
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data could be retrieved using fastq-dump tool SRA toolkit 

(http://www.ncbi.nlm.nih.gov/sra). The raw transcript abundance counts for all the 

samples was deposited at the Gene Expression Omnibus (GEO) database, GSE129626. 
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CHAPTER 6: TRANSCRIPTOME PROFILING OF INTERACTION EFFECTS OF 

SOYBEAN CYST NEMATODES AND SOYBEAN APHIDS ON SOYBEAN 

The data portion of this chapter is under review for publication in Nature’s 

Scientific Data Journal. 

 

Abstract 

Soybean aphid (Aphis glycines; SBA) and soybean cyst nematode (Heterodera 

glycines; SCN) are two economically important pests of soybean (Glycine max) in the 

United States. The main objective of this research was to use demographic and genetic 

data sets to characterize three-way interactions among soybean, soybean-aphid and 

soybean-cyst-nematode. The interactions were evaluated using SCN-resistant and SCN-

susceptible soybean cultivars with three treatments/cultivar: SBA (biotype 1), SCN (HG 

type 0), or SCN: SBA in randomized complete block design in six blocks. The 

experiment was conducted in a greenhouse water bath using cone-tainers. Treatments 

receiving SCN were infested at planting with 2000 nematode eggs. Treatments with 

soybean-aphids were infested at second trifoliate growth stage (V2) with 15 biotype 1 

SBA. SBA populations were counted at 5, 15, and 30 days post infestation (dpi). SCN 

eggs were sampled at 30 dpi. The number of SCN eggs was significantly greater on the 

susceptible cultivar and no effect in resistant cultivar in the presence of SBA. The SBA 

population density was negatively affected by SCN populations. RNA-seq analysis 

revealed 4, 637 DEGs at 5 dpi and 19,032 DEGs at 30 dpi samples treated with SCN, 

SBA and both when compared between resistant and susceptible cultivars. Further 
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analysis was narrowed to DEGs that are common in all treatments and discordant in 

resistant cultivar focused on treatment with SBA and SCN. WGCNA analysis revealed 

seven and nine modules at 5 dpi and 30 dpi, respectively. PGSEA analysis revealed 

several pathways enriched: ‘Plant pathogen interaction’ and ‘cutine, suberine, and wax 

biosynthesis’ pathways at 5 dpi and ‘isoflavonoid biosynthesis’ and ‘one carbon pool by 

folate’ pathways enriched at 30 dpi. In addition, enriched transcription factor (TF) 

binding motifs were identified in up-regulated and down-regulated DEGs in different 

comparisons. The identified DEGs in this experiment, particularly in resistant cultivar 

during SBA and SCN interactions are potential candidates for dual and durable pest 

resistance warranting further validation. 

6.1. Introduction 

 

Soybean [Glycine max (L.) Merr.], considered as the source of high-quality sugar, 

protein, and oil, is one of the most important crops worldwide [1]. Soybean aphid, Aphis 

glycines Matsumura (Hemiptera: Aphididae) and soybean cyst nematode (SCN), 

Heterodera glycines Ichinohe are the two most economically important pests of soybean 

in the Midwestern United States [2, 3]. Soybean aphid, an aboveground herbivore (pest), 

feeds on phloem sap whereas SCN, a belowground pest, infests the soybean roots. These 

infestations can co-occur and amplify further reduction in soybean yield [4, 5]. In the 

United States, annual economic losses due to the SBA and SCN have been estimated to 

be approximately $4 billion and $1.3 billion, respectively [6, 7, 8]. To counteract these 

devastating pests, farmers rely on various management strategies that include host plant 

resistance and chemical measures [9, 10, 11]. For SBA, dependency on the use of 
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chemical management has resulted in pyrethroid resistance in SBA populations in Iowa, 

Minnesota, North Dakota and South Dakota as well as the impacts on non-target 

beneficial organisms[12, 13]. In addition, the long-term use of SCN resistance has 

resulted in SCN populations that are capable of overcoming the resistance genes (i.e., HG 

types)[14]. Although host plant resistance has not been implemented on a large scale for 

SBA management, multiple virulent SBA biotypes have been discovered in the U.S. 

Virulent SBA biotypes and SCN races threaten the sustainability of host plant resistance 

for these two pests[14, 15, 16, 17]. Thus, genetic data generated from greenhouse 

experiments on the effects of SBA and SCN on soybean cultivars are of tremendous 

importance for unraveling resistance genes and regulatory networks that can potentially 

be used for developing durable resistance in soybean to both pests.  

Although above and belowground herbivores are spatially segregated, they both 

share the host plant through systemic tissues and are able to influence each other[18]. 

Previously, the influence of SCN on soybean aphid infestation or vice versa has been 

studied on soybean using demographic datasets [4, 5, 19, 20, 21]. McCarville et al. 2012 

[4] conducted experiments on various soybean cultivars [SCN susceptible (DK 28-52, IA 

3018, IA 3041) and SCN resistant (DK 27-52, AG 2821 V, IA 3028)] to understand the 

effect of SBA, SCN, and fungus Cadophora gregata on soybean16. Their study showed 

5.24 times increase in SCN reproduction in the presence of soybean aphid and the fungus. 

In contrast, the aphid population decreased by 26.4% in the presence of SCN and C. 

gregata and the aphid exposure reduced by 19.8% in SCN resistant cultivars. Later, 

McCarville et al. [5] demonstrated the relationship between the aboveground feeding of 

soybean aphid and belowground reproduction of SCN in the SCN resistant Dekalb 27-52 
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(PI 88788 derived) cultivar, and SCN susceptible Kenwood 94 cultivar. In 30 days, both 

SCN eggs and the number of females increased by 33% in SCN-resistant cultivar and 

reduced by 50% in the SCN-susceptible cultivar. In 60 days, the number of SCN eggs 

and female count remained unaffected in the resistant cultivar but decreased in the 

susceptible cultivar. The authors concluded that soybean aphid feeding improved the 

quality of soybean as a host for SCN, but this result was varied significantly with the 

cultivar and length of the experiment. Apart from these demographic studies, molecular 

characterization of SBA-SCN-soybean interaction has not been reported previously. 

 

RNA-Sequencing (RNA-Seq) has been a standard tool for studying qualitative 

and quantitative gene expression assays that provide information on transcript abundance 

with their variation [22, 23]. The major objective of this study was to evaluate differential 

gene expression of soybean plants that are infested with SCN in the presence or absence 

of SBA. To achieve the objective, we conducted experiments on two genotypes of 

G. max [H. glycines susceptible Williams 82 (PI518671), and H. glycines resistant 

MN1806CN] that were infested with biotype 1 SBA and HG Type 0 SCN for RNA-

sequencing. More than 1.1 billion reads (61.4 GB) of transcriptomic data were obtained 

from 47 samples derived from the experiment using whole roots of G. max. An overview 

of the experimental design and transcriptome analysis pipeline is shown in Figure 6.1. A 

comprehensive understanding of these transcriptome data will enhance our understanding 

of interactions among soybean, SBA, and SCN at the molecular level. The rapid 

advancement of bioinformatics tools is facilitating the search of candidate genes and their 
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function that might play a crucial role in various pathways for host resistance against both 

herbivores. 

6.2. Materials and Methods 

6.2.1. Plant Material, Aphid, and SCN  

Two cultivars of soybean were used – Williams 82 and MN1806CN. Williams 82 

is susceptible to both HG Type 0 (race 3) of the SCN and SBA. MN1806CN is resistant 

to HG Type 0 (race 3) of the SCN. Soybean aphid biotype 1 populations were obtained 

from Ohio State University and were reared on susceptible cultivar LD12-15838R. This 

biotype is defined by an avirulent response to all known SBA resistance (Rag) genes and 

was first identified in Illinois [24]. The SCN population used was HG type 0, which is 

defined by having less than 10% reproduction documented by studies of SCN resistance 

and is avirulent to all SCN resistance genes in soybean. 

6.2.2. Experimental Design and Sample Collection 

A greenhouse experiment was designed using a randomized complete block 

design (RCBD) with eight treatments (four treatments per cultivars) with eight 

experimental units (plants) in six blocks. The treatments were factors of soybean 

genotype, SBA infestation, and SCN infestation. For examples, each of the soybean 

genotypes received one of the following combinations: SCN:no SBA, no SCN:SBA, 

SCN:SBA, or no SBA:no SCN (control). For this experiment, the soil-sand mixture was 

prepared by adding construction sand and clay soil including SCN (HG type 0) infested 

clay soil in the ratio of 3:1. The 125 cc of the mixture was distributed in cone-tainers 

(diameter of 3.8 cm, a depth of 21 cm and a volume of 164 cc; Greenhouse Megastore, 

USA). For SCN included treatments, each cone-tainer received approximately 2,000 SCN 
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eggs. The cone-tainers with three soybean seeds were arranged in a 2.0 U.S. gallon (7.57 

liter) plastic buckets (Leaktite, USA) filled with construction sand (Quikrete, GA). These 

buckets were kept in a water bath for maintaining soil temperature between 26.7 ºC and 

28.9 ºC to ensure the reproduction of SCN (i.e.~ 30 days) [5]. The plants were grown 

under 16 hour cycle of light and dark. The plants were thinned down to one plant per 

cone-tainer upon reaching the second vegetative growth stage (V2). The V2-staged plants 

with the SBA included treatments were infested with 15 mixed age biotype 1 SBA using 

a 000 fine tip paintbrush (Winsor & Newton, England). The SBA were applied on the 

abaxial surface of the first trifoliate of V2-staged plants. All plants in each bucket were 

covered with a large no-see-um mesh net (Quest Outfitters, Sarasota, FL) to prevent 

inter-bucket movement of aphids. After SBA infestation, soybean plants were regularly 

checked to confirm the successful establishment of soybean aphids. Soybean aphid 

populations were counted at 5, 15, and 30 days post-infestation (dpi). SCN eggs were 

sampled at 30 dpi. The whole roots were collected on 5 and 30 dpi by snap freezing in 

liquid Nitrogen and stored at -80 ºC for further analysis. The 5 dpi and 30 dpi root 

samples treated with each treatment were collected from Water bath I and Water bath II, 

respectively, representing each plant from three blocks (three biological replicates). The 

SCN soil and SCN infested roots were used for SCN cysts collection (except root 

samples collected for transcriptomic study) and the soil was examined for SCN counts. 

An overview of the experimental design and transcriptome analysis pipeline is shown in 

Figure 6.1. 
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Figure 6.1. An overview of greenhouse experiments and transcriptomic data analysis 

pipeline. (a) A randomized complete block design (RCBD) using two water baths (Water 

bath I and Water bath II), (b) A flow chart representing experimental methods used for 

soybean-cyst-nematode and soybean-aphid interaction using two cultivars of soybean, 

and (c) A flow chart showing RNA-seq data analysis pipeline. 

 

6.2.3. RNA Extraction, Library Construction, and RNA-sequencing 

RNA was extracted from all samples representing three biological replicates of 

each treatment that constituted 24 samples collected at 5 and 30 dpi each. Frozen root 

samples from each treatment were grounded in liquid nitrogen with a mortar and pestle to 

a fine powder followed by total RNA extraction using PureLink RNA mini kit 

(Invitrogen, USA). RNA samples were treated with TURBOTM DNase (Invitrogen, USA) 

to remove any DNA contamination following the manufacturer’s instructions. 

Assessment of the isolated RNA integrity was performed by 1% agarose gel 
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electrophoresis, and RNA concentration was measured by Nanodrop 2000 (Thermo 

Fisher Scientific, USA). The cDNA libraries were constructed using NEBNext Ultra II 

RNA library 96 single index kit prep kit and sequenced using Illumina HiSeq 3000 

(single read end utilizing a 100-bp read length) at Iowa State University Sequencing 

Facilities. 

6.2.4. Aphid and SCN Egg Counts 

Soybean aphid populations were counted at 5, 15 and 30 dpi. SCN eggs were 

sampled at 30 days. The SCN soil and roots were washed with water in the bucket and 

mixed properly using a hand. After, mixing the solution was passed through the 850 µm 

pore sieve and captured in 250 µm pore sieve. The females and cysts were then ground 

on 250 µm pore sieve using a motorized rubber stopper and eggs were released and 

recovered in 25 µm pore sieve passing through 75 µm pore sieve. Eggs were suspended 

in 50ml of water and the number of H. glycines were counted under the compound 

microscope using 1ml as the representative sample of the solution. 

6.2.5. SCN and SBA Count Data Analysis 

The SBA and SCN counts data were analyzed using GraphPad Prism 8.0.2. The 

30 dpi SCN counts and SBA counts collected at 5, 15, and 30 dpi were analyzed 

separately. One-way ANOVA was employed for 30 dpi SCN counts and statistical 

significance between the treatments was calculated using Tukey's multiple comparisons. 

The 5, 15, and 30 dpi SBA counts were analyzed using two- way ANOVA with Geisser-

Greenhouse correction and statistical significance between the treatments were calculated 
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using Tukey's multiple comparisons. The linear regression between SBA and SCN was 

based on counts obtained at 30 dpi. 

6.2.6. Pre-processing of Sequencing Data 

Quality control of reads was assessed using FastQC program (version 0.11.3) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) [25]. The FastQC results 

were visualized using MultiQC v1.3[26], and low quality bases (QC value > 20; 5-bp 

window size) were removed by trimming in the program Btrim64 (version 0.2.0) [27]. 

High-quality single-end reads were mapped against the primary coding sequences of G. 

max. The coding sequences 

(Gmax: Gmax_275_Wm82.a2.v1.transcript_primaryTranscriptOnly.fa.gz) were obtained 

from the Phytozome database and aligned using Salmon ver.0.9.1[28] accessed from 

Bioconda [29]. Downstream analyses of the quantified transcript reads were performed 

using integrated Differential Expression and Pathway analysis (iDEP 0.81, 

R/Bioconductor packages) [30]. The missing data of one of the replicates of control at 

30d in the resistant cultivar, MN1806CN were imputed averaging the counts from the 

other two replicates of cultivar at the same time point. The downstream analyses for 

obtained transcript estimated quantification reads were performed using integrated 

Differential Expression and Pathway analysis (iDEP 0.81, R/Bioconductor packages) 

[30]. The read quants were filtered with 0.5 counts per million (CPM) in at least one 

sample. The quantified raw reads were transformed using regularized log (rlog) which is 

implemented in the DESeq2 package. The project was deposited into the National Center 

for Biotechnology Information (NCBI) Sequence Read Archive (SRA) accession 

(SRR8427366-SRR8427408) under Bioproject PRJNA514200 (Table 6.1). The raw 
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transcript abundance counts for all the samples was deposited at the Gene Expression 

Omnibus (GEO) database, GSE125103 (Supplementary File 2). The transformed 

transcript abundance counts, hierarchical clustering, correlation matrices, and clusters are 

represented by Supplementary Files 3, 4, 5, and 6, respectively. 
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Table 1: Statistics of the transcriptomic data using RNA-seq pipeline used in this study 

Sample 
Number of 

raw reads 

GC 

% 

Read 

Length 

Trimmed 

reads 

Percentage of 

clean reads 

Mapped 

Reads 

Percentage of 

mapped 

reads 

Number of 

Uniquely 

mapped 

reads 

Percent 

uniquely 

mapped 

Accession 

PI518671_treatment_SCN_30d_R1 29,875,777 44 100 29,868,305 99.97% 26,306,640 88.1 24,916,413 83.4 SRR8427366 

PI518671_treatment_SCN_30d_R2 20,569,129 45 100 20,564,513 99.98% 18,327,957 89.1 17,356,148 84.4 SRR8427367 

PI518671_treatment_SCN_30d_R3 23,663,582 44 100 23,657,909 99.98% 20,899,976 88.3 19,646,683 83.0 SRR8427368 

PI518671_treatment_Aphid_30d_R1 24,553,476 45 100 24,546,368 99.97% 21,032,002 85.7 19,429,157 79.2 SRR8427369 

PI518671_treatment_Aphid_30d_R2 25,372,180 45 100 25,364,647 99.97% 22,011,320 86.8 19,706,012 77.7 SRR8427362 

PI518671_treatment_Aphid_30d_R3 37,691,731 44 100 37,682,590 99.98% 31,646,750 84.0 29,865,320 79.3 SRR8427363 

PI518671_treatment_SCNAphid_30d_R1 23,727,017 45 100 23,721,761 99.98% 21,457,335 90.5 20,276,187 85.5 SRR8427364 

PI518671_treatment_SCNAphid_30d_R2 22,378,982 44 100 22,373,777 99.98% 19,622,486 87.7 18,602,604 83.1 SRR8427365 

PI518671_treatment_SCNAphid_30d_R3 27,673,846 44 100 27,668,291 99.98% 23,304,305 84.2 22,080,120 79.8 SRR8427370 

MN1806CN_treatment_SCN_30d_R1 25,200,882 43 100 25,192,664 99.97% 18,589,872 73.8 17,402,401 69.1 SRR8427371 

MN1806CN_treatment_SCN_30d_R2 22,192,100 43 100 22,186,459 99.97% 18,350,922 82.7 17,417,979 78.5 SRR8427383 

MN1806CN_treatment_SCN_30d_R3 20,653,286 43 100 20,648,111 99.97% 15,975,636 77.4 15,083,771 73.1 SRR8427384 

MN1806CN_treatment_Aphid_30d_R1 20,903,446 44 100 20,896,290 99.97% 17,025,027 81.5 15,982,207 76.5 SRR8427385 

MN1806CN_treatment_Aphid_30d_R2 21,708,115 44 100 21,701,712 99.97% 16,458,081 75.8 15,472,937 71.3 SRR8427386 

MN1806CN_treatment_Aphid_30d_R3 26,617,069 44 100 26,610,582 99.98% 22,222,510 83.5 21,021,087 79.0 SRR8427387 

MN1806CN_treatment_SCNAphid_30d_R1 19,498,275 43 100 19,491,491 99.97% 15,139,964 77.7 14,203,387 72.9 SRR8427388 

MN1806CN_treatment_SCNAphid_30d_R2 27,765,044 44 100 27,759,095 99.98% 22,021,174 79.3 20,747,251 74.7 SRR8427389 

MN1806CN_treatment_SCNAphid_30d_R3 43,325,617 44 100 43,312,161 99.97% 33,076,203 76.4 29,935,328 69.1 SRR8427390 

MN1806CN_treatment_control_30d_R1 24,104,763 45 100 24,099,789 99.98% 18,112,259 75.2 17,132,109 71.1 SRR8427391 

MN1806CN_treatment_control_30d_R2 32,183,362 44 100 32,174,938 99.97% 26,274,456 81.7 24,162,028 75.1 SRR8427392 

PI518671_treatment_control_30d_R1 20,522,473 44 100 20,518,044 99.98% 17,937,163 87.4 17,022,590 83.0 SRR8427405 

PI518671_treatment_control_30d_R2 28,600,503 44 100 28,593,731 99.98% 25,409,842 88.9 24,045,140 84.1 SRR8427404 

PI518671_treatment_control_30d_R3 20,577,190 44 100 20,570,977 99.97% 17,574,516 85.4 16,585,012 80.6 SRR8427407 

PI518671_treatment_SCN_5d_R1 20,389,378 44 100 20,383,629 99.97% 17,826,706 87.5 16,736,123 82.1 SRR8427406 

PI518671_treatment_SCN_5d_R2 10,518,888 44 100 10,516,365 99.98% 9,444,170 89.8 8,950,048 85.1 SRR8427401 

PI518671_treatment_SCN_5d_R3 21,303,947 44 100 21,298,111 99.97% 18,909,955 88.8 17,897,118 84.0 SRR8427400 

PI518671_treatment_Aphid_5d_R1 20,262,293 45 100 20,256,610 99.97% 18,157,064 89.6 16,851,551 83.2 SRR8427403 

PI518671_treatment_Aphid_5d_R2 51,680,716 44 100 51,666,055 99.97% 45,293,720 87.7 42,794,964 82.8 SRR8427402 

PI518671_treatment_Aphid_5d_R3 20,328,355 44 100 20,322,387 99.97% 18,171,819 89.4 17,083,986 84.1 SRR8427399 

PI518671_treatment_SCNAphid_5d_R1 21,569,888 44 100 21,563,432 99.97% 18,502,664 85.8 17,044,428 79.0 SRR8427398 

PI518671_treatment_SCNAphid_5d_R2 57,520,568 44 100 57,503,170 99.97% 47,902,174 83.3 45,268,224 78.7 SRR8427381 

PI518671_treatment_SCNAphid_5d_R3 16,889,301 45 100 16,883,954 99.97% 14,700,125 87.1 13,744,624 81.4 SRR8427382 

MN1806CN_treatment_SCN_5d_R1 25,443,012 44 100 25,435,147 99.97% 21,929,527 86.2 20,483,059 80.5 SRR8427379 

MN1806CN_treatment_SCN_5d_R2 20,043,049 45 100 20,037,212 99.97% 17,551,266 87.6 16,336,263 81.5 SRR8427380 

MN1806CN_treatment_SCN_5d_R3 9,847,269 45 100 9,844,767 99.97% 8,472,717 86.1 7,992,925 81.2 SRR8427377 

MN1806CN_treatment_Aphid_5d_R1 20,503,738 45 100 20,497,489 99.97% 16,815,160 82.0 15,666,380 76.4 SRR8427378 

MN1806CN_treatment_Aphid_5d_R2 14,359,303 45 100 14,355,678 99.97% 12,268,563 85.5 11,559,112 80.5 SRR8427375 

MN1806CN_treatment_Aphid_5d_R3 19,094,540 45 100 19,088,178 99.97% 16,590,158 86.9 15,245,807 79.9 SRR8427376 

MN1806CN_treatment_SCNAphid_5d_R1 20,636,498 44 100 20,630,026 99.97% 16,806,607 81.5 15,865,622 76.9 SRR8427373 

MN1806CN_treatment_SCNAphid_5d_R2 22,488,050 44 100 22,482,625 99.98% 19,286,899 85.8 18,060,389 80.3 SRR8427374 

MN1806CN_treatment_SCNAphid_5d_R3 22,033,213 45 100 22,028,303 99.98% 16,862,396 76.5 15,964,103 72.5 SRR8427408 

MN1806CN_treatment_control_5d_R1 18,937,367 46 100 18,932,017 99.97% 14,805,819 78.2 12,707,453 67.1 SRR8427396 

MN1806CN_treatment_control_5d_R2 26,710,585 43 100 26,702,238 99.97% 20,226,195 75.7 18,092,239 67.8 SRR8427394 

MN1806CN_treatment_control_5d_R3 21,327,385 46 100 21,320,799 99.97% 16,776,843 78.7 14,820,338 69.5 SRR8427372 

PI518671_treatment_control_5d_R1 17,242,793 45 100 17,239,066 99.98% 16,044,618 93.1 14,976,834 86.9 SRR8427397 

PI518671_treatment_control_5d_R2 22,062,929 46 100 22,055,685 99.97% 20,094,996 91.1 17,347,038 78.7 SRR8427395 

PI518671_treatment_control_5d_R3 21,220,300 44 100 21,213,623 99.97% 19,994,447 94.3 18,592,042 87.6 SRR8427393 
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6.2.7. Analysis of RNA-seq Data 

To reduce the mean dependent variance, the quantified reads were transformed as 

shown in Figure 6.3b-d. The transformed data were subjected to exploratory data analysis 

such as hierarchical clustering (Figure 6.4a), principal component analysis (PCA) (Figure 

6.4b), and visualized using t-SNE map (Figure 6.4c) [31] to assess the global 

transcriptomic data. To reduce the complexity in RNA seq analysis we divided the counts 

data sets to two different subsets of samples belonging to different time point. Gene co-

expression networks were constructed for divided datasets with the weighted gene co-

expression network analysis (WGCNA) package [32] using following parameters: most 

variable genes to include- 2000 genes, soft threshold- 5, minimum module size- 20. 

DESeq2 package [33] was used to identify differentially expressed genes (DEGs) with 

more than a 2-fold change and with a false discovery rate (FDR) ≤ 0.01. We tested the 

effects of gene expression using different factors such as cultivar and treatment using the 

model (Expression ~ cultivar + treatment + cultivar: treatment) in different comparisons. 

The term cultivar: treatment refers to the interaction between cultivar and treatment. The 

annotations of the DEGs were obtained from Soybase [34] (www.soybase.org). The 

enriched up regulated and down regulated transcription factor binding motifs in 

promoters in different comparisons were identified using 300bp upstream of DEGs using 

ShinyGO [35] and iDEP 0.81. To understand the molecular pathways enriched GO 

Biological processes, GO Cellular, GO molecular function, and KEGG pathway for 

DEGs were identified using a graphical enrichment tool REVIGO [36], ShinyGO [35] 

and iDEP 0.81. The biological relevance of DEGs were visualized using MapMan [37]. 
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The total transcripts of soybean were first converted to bins using the Mercator tool [38] 

and uploaded to MapMan to assign bins to each differentially expressed transcript. 

Parametric Analysis of Gene Set Enrichment (PGSEA) method (with all samples) [39] 

with pathway significant cutoff (FDR) of 0.2 using fold change values of DEGs applying 

in divided datasets. The codes used for RNA-seq data processing in the current study are 

available as Appendix II; Supplementary 1. 

6.3. Results 

6.3.1. Greenhouse Experiment 

The SCN egg counts assessed from the resistant and susceptible cultivars were 

analyzed using one way ANOVA (F = 87.44, df = 3, P < 0.001). The SCN eggs number 

in treatments with SCN only, and with Aphid and SCN together did not show a 

significant difference between treatments in the resistant plants, whereas the SCN eggs 

number was significantly higher in the susceptible plants at 30 d after aphid infestation 

(Figure 6.2a.). To observe the relationship between the aphid counts and SCN counts, 

linear regression analysis was performed. In resistant and susceptible cultivars, aphid and 

SCN counts showed positive and negative relationships, respectively. However, these 

relationships were insignificant [resistant (F = 0.7, P = 0.43, R2 = 0.1), susceptible (F = 

0.2, P = 0.65, R2 = 0.03)]. However, the result showed a significant negative relationship 

between population density of SCN and aphids (F=143.5, P < 0.0001, R2 = 0.91) when 

SCN egg and aphid counts considered in both cultivars (Figure 6.2b). The aphid counts 

for different treatments varied across the trials. The 30 d aphid counts showed a 

significant difference between all types of treatments in which 25% decrease in aphid 

counts receiving SCN in resistant plants and 90% decrease in susceptible plants (Figure 
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6.2c). At 5 dpi and 15 dpi, aphid counts did not show a significant difference between all 

types of treatments. 

 

Figure 6.2. SBA and SCN counts analysis. a. The 30 dpi count of SCN eggs after infected 

with approximately 2000 initial SCN eggs populations on both susceptible (Williams 82 

PI 518671) and resistant (MN1806CN) soybean. Error bar represents standard error 

mean. b. Relationship between total SCN eggs and total aphid number on 30 dpi 

sampling after aphid infestation. c. A number of avirulent soybean aphid (B1) 

populations after infested with 15 initial populations on both susceptible (Williams 82 PI 

518671) and resistant (MN1806CN) soybean. Error bar represents standard error mean. 

[ns = P > 0.05, *=P ≤ 0.05, **= P ≤ 0.01, ***= P ≤ 0.001, **** = P ≤ 0.0001 (For the last 

two choices only)] 
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6.3.2. Transcriptomic Analysis and Assessment of Transcriptomic Data  

A total of 48 RNA libraries were prepared and sequenced with the sequencing 

depth ranging from 9,847,269 to 57,520,568 except for the control sample in the resistant 

cultivar, MN1806CN collected at 30d. Total reads of more than 1.1 billion were 

subjected to FastQC analysis to determine the data quality using various quality metrics 

such as mean quality scores, per sequence quality scores, per sequence GC content, and 

sequence length distribution (Figure 6.3, Table 6.1). The Phred quality scores per base for 

all the samples were higher than 30. The GC content ranged from 43 to 45% and 

followed the normal distribution. After trimming, more than 99% of the reads were 

retained as the clean and good quality reads. Upon mapping these reads, we obtained high 

mapping rate ranging from 73.8% to 94.3%. Among the mapped reads, 67.1% to 87.6% 

reads were uniquely mapped. The 43,122 genes passed the filter upon filtering with 0.5 

CPM in at least one sample. To reduce the mean dependent variance, the quantified 

transcript reads were transformed as shown in Figure 6.4a-c. The transformed data were 

subjected to hierarchical clustering and principal component analysis (PCA) followed by 

visualization using t-SNE map [31] in order to assess the global transcriptomic data. The 

hierarchical clustering of top 6000 variable genes based on two time points (5 dpi and 30 

dpi) showed distinct clustering except for some samples (Figure 6.5a; Supplementary File 

4). Figure 6.5b represents the standard deviation (SD) distribution of the top variable 

6,000 genes. Figure 6.5c represents the correlation between the samples using the top 

75% genes. The t-SNE map revealed four clusters (A, B, C, and D) for 6,000 variable 

genes (Figure 6.4d; Supplementary File 6). Regarding the PCA, PC1 is correlated with 
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time (P =1.16e-06) with 28% variance, and PC2 is correlated with Treatment (P =2.02e-

08) with 15% variance (Figure 6.4e).  

 

Figure 6.3. Quality metrics of G. max sequencing data. (a) Mean quality scores per 

position. (b) Per sequence quality scores. (c) GC content distribution. (d) Read length 

distribution 
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Figure 6.4. Pre-processing of transcriptomic data. (a) Distribution of transformed data. 

(b) Density plot of transformed data. (c) Scatter plot of the first two samples (SCNS5d_1 

vs SCNS5d_2). 
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Figure 6.5. Assessment of transcriptomic data. (a) Heatmap of top 6,000 variable genes, 

(b) Gene SD distribution, (c) Correlation matrix, (d) Visualization of top 6,000 genes 

shown in the t-SNE map, and (e) A PCA plot. 
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6.3.3. WGCNA Analysis Revealed Oxidative Stress at 30 dpi 

The co-expression networks were used to detect correlated networks of genes and 

their enrichment in the divided datasets to compare difference on the 5 dpi and 30 dpi 

treatments. Weighted gene co-expression network analysis identified a network of 2,000 

genes divided into seven co-expression modules 5 dpi samples, and a network of 1,994 

genes divided into nine co-expression modules in 30 dpi samples (Supplementary File 7). 

GO (Gene Ontology) Biological Process enrichment analysis found several highly 

enriched pathways for both 5 dpi and 30 dpi samples, including nodulation, defense 

response, cell wall organization, oxidation reduction process, interspecies interaction 

between organisms.  The only GO pathways enriched in 30 dpi samples, but not in 5 dpi 

samples, were hydrogen peroxide metabolic process and reactive oxygen species 

metabolic process (Table S2). 

 

Figure 6.6. Weighted gene co-expression network analysis identified a network of 2,000 

genes divided into seven co-expression modules in (a) 5 dpi samples, and a network of 

1,994 genes divided into nine co-expression modules in (b) 30 dpi samples. 
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6.3.4. Comparison of the DEGs between Susceptible and Resistant Cultivars 

The pair wise comparisons between treatments in two different cultivars with 

FDR < 0.01 and fold-change > 2 as cutoffs resulted in a total of 4, 637 DEGs in 5 dpi and 

19,032 DEGs in 30 dpi samples treatment with SCN, SBA and both SBA and SCN 

(Supplementary Files 8 and 9). The MA plots were used to visualize up regulated and 

down regulated DEGs for each comparison as shown in Figure 6.7. We further 

investigated these genes using Venn diagrams (Figure 6.7). Among these comparisons 

242 and 1535 DEGs overlapped in all treatments 5dpi and 30 dpi samples, respectively. 

These overlapped genes in all treatments are important for understanding the role of these 

genes in a common pathway for the interactions of these pests. The expression pattern of 

these genes visualized using heatmap and their biological functions visualized using GO 

annotations and KEGG pathway are shown in Figure 6.8 and 6.9. At 5 dpi, 242 genes 

were enriched for GO molecular functions of transferase activity, transferring acyl groups 

(GO: 0016746), ADP binding (GO: 0043531), and adenyl ribonucleotide binding (GO: 

0032559). These genes are enriched for various KEGG pathways of circadian rhythm 

(Enrichment FDR= 0.028680109; Glyma.08G110900, Glyma.08G109200, 

Glyma.08G109400), Flavonoid biosynthesis (Enrichment FDR = 0.028680109; 

Glyma.08G110900, Glyma.08G109200, Glyma.08G109400), Isoquinoline alkaloid 

biosynthesis (Enrichment FDR = 0.035955005; Glyma.18G143600, Glyma.15G071200). 

The enriched genes in the flavonoid biosynthesis pathway are represented by Figure 6.8d. 

Overrepresented TF binding motifs in the promoters of these 242 genes revealed 
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Homeodomain, Myb/SANT, and CG-1 as the enriched transcription family 

(Supplementary File 10).  

At 30 dpi, 1535 DEGs were enriched for GO biological processes of oxidation-

reduction process (GO: 0055114; 15.06%), carbohydrate metabolic process (GO: 

0005975; 5.26%), lipid metabolic process (GO: 0006629; 3.52%), extracellular 

polysaccharide biosynthetic process (GO: 0045226; 0.06%). These genes were enriched 

for various KEGG pathways of Amino sugar and nucleotide sugar metabolism 

(Enrichment FDR = 1.10E-05; 21 genes), Phenylpropanoid biosynthesis (Enrichment 

FDR = 1.12E-05; 23 genes), Biosynthesis of secondary metabolites (Enrichment FDR = 

0.018866; 66 genes), Metabolic pathways (Enrichment FDR = 0.033888; 102 genes). 

Overrepresented TF binding motifs in the promoters of these 1535 genes has revealed 

AP2, B3, bHLH, bZIP, Myb/SANT, SBP, TCP as the enriched transcription family 

(Supplementary File 11). 
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Figure 6.7. Visualization of DEGs using MA plots and Venn diagrams obtained from the 

comparison of the DEGs between susceptible and resistant cultivars. (a) 5 dpi, (b) 30 dpi. 
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Figure 6.8. Assessment of 242 genes overlapped in treatments with SCN, SBA, and both 

SBA and SCN at 5 dpi in comparison of the DEGs between susceptible and resistant 

cultivars. (a) Heatmap based on log2foldchange (b) Enriched GO molecular functions (c) 

A hierarchical tree representing enriched KEGG pathways (d) A KEGG pathway 

representing Flavonoid Biosynthesis pathway with genes overrepresented. 
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Figure 6.9. Assessment of 1535 DEGs overlapped in treatments with SCN, SBA, and 

both SBA and SCN at 30 dpi in comparison of the DEGs between susceptible and 

resistant cultivars. (a) Heatmap based on log2foldchange (b) Enriched GO biological 

processes (c) A hierarchical tree representing enriched KEGG pathways (d) A KEGG 

pathway representing Phenylpropanoid Biosynthesis pathway with genes 

overrepresented. 
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6.3.5. DEGs Coincident with SCN QTLs 

The non-redundant 251 genes were assessed from the SCN QTLs [40, 41, 42, 43, 

44, 45, 46, 47, 48, 49, 50]. In this study, we found three genes (of 242 DEGs overlapped 

at all treatments) at 5 dpi and ten genes (of 1535 DEGs overlapped at all treatments) at 30 

dpi located in SCN QTLs (Supplementary File 12; Figure 6.10). Among them, 

Glyma.18G022400 (Transmembrane amino acid transporter protein), Glyma.18G022500 

[soluble N-ethylmelaimide sensitive factor (NSF) attachment protein (GmSNAP18)], and 

Glyma.18G022700 (Wound-induced protein WI12) were up regulated from 2.53 log2fold 

change to 5.01 log2fold change in resistant cultivar as compared to susceptible cultivar in 

both time periods. These genes are present in a 31-kilobase (kb) segment at rhg1-b loci in 

Peking (PI548402) that play a significant role in SCN resistance [48, 49]. A recent study 

by Liu et al. 2017 [51] narrowed down the interval to ~14.3 kb in the recombinant lines 

of Forrest cultivar that contained three genes in three tandem repeats with in rhg1-a 

locus. These genes encode armadillo/β-catenin-like repeat (Glyma.18G022300), amino 

acid transporter (AAT), and soluble N-ethylmelaimide sensitive factor (NSF) attachment 

protein (GmSNAP18). However, Glyma.08G108900  [Rhg4 (GmSHMT08)] gene, SCN-

resistant allele [50], was downregulated at 30 dpi which was not found as DEG at 5 dpi. 

Other down regulated genes at 30 dpi involved Glyma.01G186900, Glyma.11G233500, 

and Glyma.18G023500 which belonged to protein kinases. The Glyma.14G043300 gene 

that belongs to the receptor like protein (RLP) was upregulated by 5.16 to 10.60 log2 fold 

change in all treatments at 30 dpi.  
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Figure 6.10. Log2fold change of the DEGs coincident with SCN QTLs upon a 

comparison of the DEGs between susceptible and resistant cultivars. (a) 5dpi (b) 30 dpi. 
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6.3.6. Comparison of DEGs within Susceptible and Resistant Cultivars 

The purpose of these comparisons was to find uniquely expressed genes in the 

resistant cultivar at 5 dpi and 30 dpi. Overall, in all comparisons, we found fewer DEGs 

in resistant cultivar as compared to the susceptible cultivar. At 5dpi, 44 genes were 

differentially expressed in samples treated with both SCN and SBA in which 30 genes 

were up regulated and 14 genes were down regulated in the resistant cultivar. Whereas, at 

30 dpi 578 genes were differentially expressed in which 214 genes were up regulated and 

364 genes were down regulated in the resistant cultivar (Figure 6.11 and 6.12). At 5 dpi, 

we did not find any genes shared by all the treatments in the resistant cultivar, whereas, 

40 genes were shared in the samples treated with SCN and the samples treated with both 

SCN and SBA. At 30 dpi, 139 genes were shared by all the treatments in the resistant 

cultivar. The transcriptome changes in these genes in treatments with SBA, SCN, and 

both SBA and SCN is shown in the heatmap (Figure 6.11). These genes were enriched 

for various pathways such as nine genes in MAPK signaling pathway, seven genes in 

plant-pathogen interaction, three genes in fatty acid metabolism, five genes in plant 

hormone signal transduction, 15 genes in metabolic pathways, two genes in alpha-

linolenic acid metabolism (Table 6.1). The overrepresentation of genes for KEGG 

pathway of Plant hormone signal transduction and α-Linolenic acid metabolism is shown 

in Figure 6.13c and 6.13d, respectively. Overrepresented TF binding motifs in the 

promoters of the 139 genes have revealed AP2, bZIP, C2H2 ZF, GRAS, Myb/SANT, 

NAC/NAM, SBP as the enriched transcription family (Supplementary File 13). 
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Figure 6.11. Visualization of DEGs using MA plots and Venn diagrams obtained from 

the comparison of the DEGs within susceptible and resistant cultivars at 5 dpi. (a) The 

resistant cultivar, (b) susceptible cultivar. 
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Figure 6.12. Visualization of DEGs using MA plots and Venn diagrams obtained from 

the comparison of the DEGs within susceptible and resistant cultivars at 30 dpi. (a) The 

resistant cultivar, (b) susceptible cultivar. 
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Table 6.1. Enriched KEGG pathways in 139 DEGs overlapped in treatments with SCN, 

SBA, and both SBA and SCN at 30 dpi in a resistant cultivar. 

 

Enrichment 

FDR 

Genes 

in list 

Total 

Genes 

Functional Category Genes 

1.31E-07 9 241 MAPK signaling 

pathway 

Glyma.05G021100 Glyma.15G182000 Glyma.17G078300 

Glyma.01G160100 Glyma.15G062400 Glyma.09G073200 

Glyma.15G062500 Glyma.15G062700 Glyma.02G042500 

2.88E-05 7 262 Plant-pathogen 

interaction 

Glyma.05G021100 Glyma.15G182000 Glyma.17G078300 

Glyma.15G062400 Glyma.09G073200 Glyma.15G062500 

Glyma.15G062700 

0.002244 3 61 Fatty acid biosynthesis Glyma.20G007900 Glyma.04G197400 Glyma.07G161900 

0.005913 3 94 Fatty acid metabolism Glyma.20G007900 Glyma.04G197400 Glyma.07G161900 

0.008062 3 134 Glycerolipid 

metabolism 

Glyma.10G011000 Glyma.02G286500 Glyma.01G102900 

0.008062 2 37 Linoleic acid 

metabolism 

Glyma.13G030300 Glyma.20G054000 

0.008062 15 2853 Metabolic pathways Glyma.20G007900 Glyma.10G011000 Glyma.12G156600 

Glyma.04G197400 Glyma.02G286500 Glyma.03G085500 

Glyma.13G030300 Glyma.07G161900 Glyma.01G160100 

Glyma.05G180600 Glyma.01G102900 Glyma.04G220600 

Glyma.07G100500 Glyma.20G054000 Glyma.02G042500 

0.008062 3 116 Peroxisome Glyma.20G007900 Glyma.07G161900 Glyma.20G196900 

0.013871 5 512 Plant hormone signal 

transduction 

Glyma.07G015200 Glyma.13G354700 Glyma.15G062400 

Glyma.15G062500 Glyma.15G062700 

0.018845 2 77 Fatty acid degradation Glyma.20G007900 Glyma.07G161900 

0.018845 3 204 Amino sugar and 

nucleotide sugar 

metabolism 

Glyma.12G156600 Glyma.01G160100 Glyma.02G042500 

0.018845 2 75 α-Linolenic acid 

metabolism 

Glyma.13G030300 Glyma.20G054000 
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Figure 6.13. Assessment of 139 DEGs overlapped in treatments with SCN, SBA, and 

both SBA and SCN at 30 dpi in resistant cultivar. (a) Heatmap based on log2foldchange 

(b) A hierarchical tree representing enriched KEGG pathways (c) A KEGG pathway 

representing Plant Hormone Signal Transduction pathway with genes overrepresented. 

(d) A KEGG pathway representing α-Linolenic acid metabolism pathway with genes 

overrepresented. 

 

6.3.7. MapMan Analysis of DEGs  

Differentially expressed genes visualized using biotic stress pathway integrated 

into MapMan showed distinct expression patterns in SBA, SCN, and SCN + SBA 
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treatments in both susceptible and resistant cultivars. The biotic stress overview pathway 

generated by MapMan demonstrated the involvement of multifaceted defense related 

genes in presence either SBA or SCN or both in susceptible and resistant plants at 30 dpi. 

In resistant reaction, 164 (of 362) with 22 bins, 398 (of 1162) DEGs with 25 bins, 215 (of 

578) DEGs with 24 bins were associated with the biotic stress pathway for treatments 

with SBA, SCN, SBA + SCN, respectively (Figure 6.12). Likewise, in susceptible 

reaction, 118 (of 339) with 22 bins, 350 (of 778) DEGs with 25 bins, 561 (of 1357) DEGs 

with 26 bins were associated with the biotic stress pathway for treatments with SBA, 

SCN, SBA + SCN, respectively (Figure 6.13). In a resistant reaction, there was consistent 

up-regulation of five genes (Glyma.17g078300, Glyma.09g073200, Glyma.15g182000, 

Glyma.05g021100, Glyma.08g005900) related to respiratory burst (bin 20.1.1) in 

treatments with SBA, SCN, SBA + SCN treatments. The expression of genes encoding 

signaling compounds such as calcium, receptor like Kinases, MAP kinases, proteolysis, 

heat shock proteins, and ethylene were varied across the treatments. In the context of 

hormone metabolism, a diverse number of genes were associated with ethylene, auxins, 

abscisic acid, salicylic acid, and jasmonic acid biosynthesis. In the presence of SCN only, 

16 of 19 genes that were associated with cell wall metabolism were upregulated. 

However, in the presence of both SBA and SCN, 6 of 10 genes associated with cell wall 

metabolism were upregulated mostly related to pectate lyases, polygalactouronases, and 

esterases. In susceptible reaction, as compared to other treatments, 14 genes, most of 

them upregulated, were associated with redox reaction (bin 21) mainly related to 

thioredoxin, ascorbate and glutathione metabolism in presence of both SBA and SCN. 
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The genes related to transcription factors AP2/ERF (bin 27.3.3) and MYB (27.3.25) 

showed consistent upregulation in all treatments in susceptible reaction. 

 

 

 

 

Figure 6.14. Biotic stress pathway overview of differentially expressed genes in resistant 

cultivar at day 30. (a) SBA, (b) SCN, and (c) SBA + SCN.  Blue color indicates the up-

regulated and red color indicates the down regulated genes. False discovery rate (FDR) p 

< 0.01 and logfold change ≥ 2 or ≤ -2 were used to identify the differentially expressed 

genes. 

 

 

 

Figure 6.15. Biotic stress pathway overview of differentially expressed genes in 

susceptible cultivar at day 30. (a) SBA, (b) SCN, (c) SBA + SCN.  Blue color indicates 

the up-regulated and red color indicates the down regulated genes. False discovery rate 

(FDR) p < 0.01 and logfold change ≥ 2 or ≤ -2 were used to identify the differentially 

expressed genes. 
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6.3.8. DEGs Unique to Resistant Cultivar 

To identify the important genes responsible for HG type 0 and biotype 1 soybean 

aphid resistance in resistant cultivar, we specifically focused on the DEGs that are 

uniquely expressed in the resistant cultivar. For instance, only four and 100 genes were 

unique to the samples treated with both SCN and SBA at 5 dpi and 30 dpi, respectively in 

the resistant cultivar. The four genes at 5 dpi were Glyma.03G044900 (Dirigent-like 

protein), Glyma.13G147600 (2OG-Fe(II) oxygenase superfamily), Glyma.16G214400 

(Exo70 exocyst complex subunit), and Glyma.20G089400 (Proteasome component 

domain protein) (Table 6.2).  

 Table 6.2. List of four DEGs uniquely expressed in the resistant cultivar treated with 

SBA and SCN at 5 dpi. 

 

Gene ID log2foldchange p-value Top 

Arabidopsis 

Hit 

Gene Description Gene Ontology Biological Process  

Glyma.03g044900 8.04 7.16E-03 AT5G49040.1 Disease resistance-

responsive (dirigent-

like protein) family 

protein 

GO:0006952 GO:0009807 

Glyma.13g147600 -3.59 6.27E-03 AT2G36690.1 2-oxoglutarate 

(2OG) and Fe(II)-

dependent 

oxygenase 

superfamily protein 

GO:0009058 GO:0055114 

Glyma.16g214400 7.50 4.90E-03 AT5G58430.1; 

ATEXO70B1, 

EXO70B1 

exocyst subunit 

exo70 family protein 

B1 

GO:0006887 GO:0006904 GO:0009738 

GO:0035556 

 Glyma.20g089400 -1.04 2.81E-04 AT5G15610.2 Proteasome 

component (PCI) 

domain protein 

GO:0006302 GO:0006312 GO:0007062 

GO:0007129 GO:0007131 GO:0008150 

GO:0009560 GO:0009909 GO:0034968 

GO:0042138 GO:0045132 

 

Among 100 genes, uniquely expressed at 30 dpi samples, three genes belonged to 

cytochrome P450s in which Glyma.03G160100 (CYP94B1), Glyma.10G115900 

(CYP71B34) were down regulated and Glyma.12G239100 (CYP712A1) was up 
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regulated. Another group of genes belonged to UDP-glucosyltransferase activity, 

response to auxin stimulus, thioredoxin metabolism and many more (Table 6.3). The 

gene Glyma.04G096400 showed high expression (20-fold change) which belonged to 

cysteine-type endopeptidase inhibitor activity (GO: 0004870). The GO molecular 

function enrichment on these 100 genes showed most of the genes were enriched in 

glucosyltransferase activity, transferase activity, Thioredoxin-disulfide reductase activity, 

Oxidoreductase activity, and Calcium ion binding. Overrepresented TF binding motifs in 

the promoters of the 100 genes have revealed WRKY, TCP, SBP, GRAS, and bZIP as the 

enriched transcription family (Supplementary File 14). 
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Table 6.3. Enriched KEGG pathways in 100 DEGs uniquely expressed at 30 dpi samples 

treated with both SBA and SCN at 30 dpi in a resistant cultivar. 

 

Enrichment 

FDR 

Genes 

in list 

Total 

genes 

Functional Category Genes 

0.000104666 6 236 Quercetin 3-O-glucosyltransferase 

activity  

Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

0.000104666 6 236 Quercetin 7-O-glucosyltransferase 

activity  

Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

0.000894105 6 371 UDP-glucosyltransferase activity  Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

0.002120752 6 458 Glucosyltransferase activity  Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

0.004252586 6 544 UDP-glycosyltransferase activity  Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

0.027351491 6 812 Transferase activity, transferring 

hexosyl groups  

Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

0.029538121 7 1139 Transferase activity, transferring 

glycosyl groups  

Glyma.01G046300 Glyma.09G128300 

Glyma.09G162400 Glyma.11G000500 

Glyma.14G175400 Glyma.16G158100 

Glyma.20G004900 

0.037769863 2 63 Protein-disulfide reductase activity  Glyma.08G295600 Glyma.18G127400 

0.049127578 2 78 Thioredoxin-disulfide reductase 

activity  

Glyma.08G295600 Glyma.18G127400 

0.049127578 2 81 Oxidoreductase activity, acting on a 

sulfur group of donors, disulfide as 

acceptor  

Glyma.08G295600 Glyma.18G127400 

0.049282369 4 478 Calcium ion binding  Glyma.06G079900 Glyma.12G089800 

Glyma.03G157800 Glyma.13G191200 

  

6.3.9. Enriched Transcription Factor (TF) Binding Motifs 

TF motifs enriched in gene promoters (300 bp) of up- or down-regulated DEGs 

were analyzed to reveal gene regulatory mechanisms. Overrepresented promoters of 

DEGs for different comparisons were analyzed for multiple comparisons using the 
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transcription factor (TF) target gene sets in enrichment analyses. For instance, in resistant 

cultivar treated with both SCN and SBA at 5 dpi (44 DEGs), TF family of homeodomain, 

WRKY, NAC/NAM, bZIP, and WRKY were overrepresented in up-regulated genes and 

none in down-regulated genes (Table 6.4). Likewise, in resistant cultivar treated with 

both SCN and SBA at 30 dpi (578 DEGs), WRKY, TBP, bHLH were overrepresented in 

downregulated genes and TBP (ATA), bZIP, Myb/SANT, AT hook, bHLH, CG-1 were 

overrepresented in up regulated genes (Table 6.5). For other comparisons, enriched TF 

motifs at 5 dpi and 30 dpi are presented in Supplementary File 15 and 16, respectively. 

Table 6.4. Enriched transcription factor (TF) binding motifs in 44 DEGs in resistant 

cultivar treated with both SCN and SBA at 5 dpi. 

List Motif TF TF family FDR 

Up regulated 

GCTGTCA Glyma0041s00360.1 Homeodomain 2.50E-02 

GTCA Glyma01g42410.1 Homeodomain 2.50E-02 

GTCA Glyma01g03450.1 Homeodomain 2.50E-02 

TGACGGC Glyma03g39040.1 Homeodomain 2.50E-02 

GTCAAC Glyma01g43420.1 WRKY 3.00E-02 

GTCAA Glyma01g43130.1 WRKY 3.00E-02 

GTCAA Glyma07g36640.1 WRKY 3.10E-02 

GTCAA Glyma15g37120.1 WRKY 3.20E-02 

GTCAA Glyma02g45530.1 WRKY 3.20E-02 

GGTCAA Glyma10g13720.1 WRKY 3.20E-02 

GTCAAC Glyma03g37870.1 WRKY 3.20E-02 

GTCAAC Glyma02g15920.1 WRKY 3.20E-02 

GTCAAC Glyma01g39600.1 WRKY 3.80E-02 

TTACGTAA Glyma07g05660.1 NAC/NAM 3.80E-02 

TGTCGG Glyma01g00510.1 B3 4.40E-02 

GTCAAC Glyma09g06980.1 WRKY 5.60E-02 

GTCAA Glyma01g06150.1 NAC/NAM 5.60E-02 

TGACGTCA Glyma01g21020.1 bZIP 5.60E-02 

GTCAAC Glyma06g17690.1 WRKY 6.00E-02 

GTCAA Glyma04g06470.1 WRKY 6.70E-02 
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Table 6.5. Enriched transcription factor (TF) binding motifs in 44 DEGs in resistant 

cultivar treated with both SCN and SBA at 30 dpi. 

 

List Motif TF TF family FDR 

Down regulated 

GTCAAC Glyma09g06980.1 WRKY 6.30E-08 

GTCAA Glyma04g08060.1 WRKY 6.30E-08 

GTCAAC Glyma01g06870.1 WRKY 6.30E-08 

ATA Glyma03g04500.1 TBP 1.20E-07 

GTCAAC Glyma02g15920.1 WRKY 1.20E-07 

GTCAAC Glyma01g43420.1 WRKY 2.00E-07 

GTCAA Glyma09g39040.1 WRKY 2.00E-07 

CACGTG Glyma01g09010.1 bHLH 2.60E-07 

GTCAAC Glyma03g37870.1 WRKY 2.60E-07 

GACGTG Glyma19g30680.1 bZIP 3.00E-07 

CACGTG Glyma05g07490.1 bHLH 3.00E-07 

GTCAA Glyma01g43130.1 WRKY 3.10E-07 

AGTCAACG Glyma02g01420.1 WRKY 3.20E-07 

AGTCAA Glyma09g39000.1 WRKY 3.20E-07 

GTCAAC Glyma01g39600.1 WRKY 3.70E-07 

CACGTG Glyma03g32740.1 bHLH 4.50E-07 

GTCAA Glyma02g45530.1 WRKY 4.50E-07 

CACGTG Glyma02g00980.1 bHLH 4.50E-07 

GTCAACG Glyma01g05050.1 WRKY 4.70E-07 

GTCAAC Glyma06g17690.1 WRKY 4.80E-07 

Up regulated 

ATA Glyma03g04500.1 TBP 1.50E-08 

ACACGTG Glyma08g08220.1 bZIP 2.80E-06 

GACGTG Glyma19g30680.1 bZIP 4.30E-06 

ACGTGG Glyma01g01740.1 bZIP 4.30E-06 

GGATAA Glyma01g00600.1 Myb/SANT 1.30E-05 

ACGTGGC Glyma01g38380.1 bZIP 1.30E-05 

GGATAA Glyma13g43120.1 Myb/SANT 1.30E-05 

ACACGTG Glyma04g04170.1 bZIP 1.30E-05 

ATATAATT Glyma06g01700.1 AT hook 1.90E-05 

CACGTGT Glyma09g06770.1 bHLH 1.90E-05 

CACGTG Glyma02g00980.1 bHLH 1.90E-05 

CACGTG Glyma01g04610.1 bHLH 2.60E-05 

CCACGTG Glyma01g39450.1 bHLH 4.30E-05 

CACGTG Glyma01g39360.1 bHLH 4.80E-05 

GCCACGTG Glyma08g41620.1 bHLH 4.80E-05 

CACGTG Glyma06g41620.1 bHLH 6.20E-05 

CACGTG Glyma01g02250.1 bHLH 6.50E-05 

GGAT Glyma05g36290.1 Myb/SANT 6.50E-05 

CACGTG Glyma03g32740.1 bHLH 8.80E-05 

CGCGT Glyma05g31190.1 CG-1 8.80E-05 

 

6.3.10. PGSEA and KEGG Pathway Analysis 

Pathway analysis of genes expressed at the 5 dpi versus 30 dpi was carried out 

using Parametric Analysis of Gene Set Enrichment (PGSEA). The analysis was 

conducted on the 2000 most differentially expressed genes (DEGs) using a false 

discovery rate cutoff of 0.1 (Supplementary File 17 and 18). GO molecular function 
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annotations confirmed the observed differential patterns in 5 dpi and 30 dpi treatments. 

At 5 dpi, treatments involving SCN in both resistant and susceptible cultivar revealed 

transcription factor activity (FDR= 1.36E-03) and modulation of various binding 

functions (Figure 6.16a). At 30 dpi, treatments involving SCN in both resistant and 

susceptible cultivar revealed the higher activity of ubiquitin-protein transferase activity 

(FDR= 1.45E-05) with modulation of binding activity related to carbohydrate metabolism 

(Figure 6.16b). The analysis revealed differential patterns in KEGG metabolic pathways. 

At 5 dpi, Plant-pathogen Interaction (FDR= 3.98E-03), Ubiquitin mediated proteolysis 

(FDR= 8.46E-03), Phenylalanine, tyrosine and tryptophan biosynthesis (FDR= 3.81E-

03), Cutin, suberin and wax biosynthesis (9.01E-03), Alpha-Linolenic acid metabolism 

(6.57E-04), fatty acid degradation (FDR= 1.59E-E-03) pathways were enriched (Figure 

6.15a). Whereas, at 30 dpi, most of the pathways were related to carbohydrate 

metabolism  [starch and sugar metabolism (FDR= 6.32E-04) , Pentose and glucuronate 

interconversions (FDR= 6.32E-04), fructose and mannose metabolism (FDR=2.09E-04), 

galactose metabolism (FDR= 4.81E-04)], fatty acid metabolism (FDR= 1.50E-04) 

including fatty acid biosynthesis (FDR= 3.47E-04), fatty acid elongation (FDR= 7.17E-

04), Phenylpropanoid biosynthesis (3.80E-05), isoflavonoid biosynthesis (FDR= 1.68E-

04), one carbon pool by folate (FDR= 2.89E-03) (Figure 6.17b). The KEGG pathways 

(Plant Pathogen Interaction and cutin, suberin and wax biosynthesis at 5 dpi and 

isoflavonoid biosynthesis and one carbon pool by folate at 30 dpi) for enriched DEGs 

with both SCN and SBA in resistant cultivar are represented in Figure 6.18 and Figure 

6.19, respectively. The KEGG pathways for other comparisons at 5 dpi and 30 dpi are 

represented in Supplementary Files 19 and 20, respectively. 
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Figure 6.16. Gene Ontology (GO) molecular annotations overrepresented at (a) 5 dpi (b) 

30 dpi upon PGSEA analysis. Red and blue indicate higher and lower pathway activities, 

respectively.  
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Figure 6.17. KEGG pathways overrepresented at (a) 5 dpi (b) 30 dpi upon PGSEA 

analysis. Red and blue indicate higher and lower pathway activities, respectively.  
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Figure 6.18. Expression profiles of (a) ‘Plant Pathogen Interaction’ and (b) ‘Cutine, 

Suberine, and Wax Biosynthesis Pathway’ visualized on a KEGG diagram for SCN + 

SBA in resistant cultivar at 5 dpi. Red and green indicate genes induced and suppressed, 

respectively. 
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Figure 6.19. Expression profiles of (a) ‘Isoflavonoid biosynthesis’ (b) ‘One carbon pool 

by folate’ pathway visualized on a KEGG diagram for SCN + SBA in resistant cultivar at 

30 dpi. Red and green indicate genes induced and suppressed, respectively. 

 

6.4. Discussion 

 

This study is the first to develop and use RNA sequences to study interaction 

effects of soybean-cyst-nematodes and soybean-aphids on soybean using SCN resistant, 

MN1806CN and SCN susceptible, Williams 82 (PI 518671) cultivars. MN1806CN 

cultivar carries the Rps1k gene for resistance to Phytophthora root rot making it resistant 

to races 1, 4, and 17, and is susceptible to the soybean-aphid. We used a similar 

greenhouse set up employed by McCarville et al. 2014 [5]. However, we utilized SCN 

resistant cultivar MN1806CN and SCN susceptible Williams 82 (PI 518671) instead of 

SCN resistant (Dekalb 27-52, PI 88788 derived) and SCN susceptible (Kenwood 94) 

soybean cultivars, 15 biotype 1 SBA instead of either zero, five, or ten biotype 1 SBA, 

data collected after 5 and 30 dpi by SBA instead of collecting data at 30 day after 

planting. McCarville et al. 2014 [5] showed both the SCN eggs and the number of 
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females increased by 33% in SCN-resistant cultivar and reduced by 50% in the SCN-

susceptible cultivar in 30 days after planting. In our greenhouse experiment, at 30 dpi, 

SBA feeding significantly affected the reproduction of SCN depending on the cultivars.  

We observed a significant difference in SCN egg counts in susceptible cultivars and no 

effect in resistant cultivar in the presence of SBA. This suggests that the application of 

aphid increases the reproduction of the belowground SCN in the susceptible plants and 

no effects in the resistant plants. However, if we consider for each treatment, the final 

SCN egg counts have increased from the approximate initial counts of 2,000 eggs in both 

resistant and susceptible cultivars. Previously, Heeren et al. 2012 [21] utilized resistant 

and susceptible lines with respect to both soybean aphid and SCN in order to study the 

interaction effect of soybean aphid and SCN in the field conditions. The study showed 

that the effect of soybean aphid feeding on soybean on the SCN reproduction was not 

observed in any of the soybean cultivars as the SCN eggs and aphid densities, less than 

100 SCN eggs per 100 cc of soil and less than 10 aphids per plant for less than 10 days, 

respectively, were too low in some of the cultivars.  

We analyzed our data with respect to the aphid counts at 5 dpi, 15 dpi, and 30 dpi 

to see the trend on the SBA populations in the presence or absence of SCN. At 5 dpi and 

15 dpi, we could not observe a significant difference on the SBA counts between all types 

of treatments. However, at 30 dpi we observed a significant difference on the SBA counts 

between all types of treatments. The facilitation at lower herbivore densities and 

competition at higher herbivore densities might be the reason for differences on the 

population densities of aphids depending on the length of the experiment [52]. 

Particularly, we observed 90% decrease in susceptible plants and 25% decrease in aphid 
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counts receiving SCN in resistant plants. The decline in the SBA populations compared 

to the plants that did not receive SCN might be due to the competition for food resources 

as both herbivores absorb nutrient assimilates via phloem and affect each other [52]. A 

similar pattern was also observed in a study by McCarville et al. 2014 [5] as SBA 

populations declined at 30 d and 60 d experiments when infested with five and ten SBA. 

Further, this relationship was shown by the regression analysis that showed a negative 

relationship between population density of SCN and aphids at 30 dpi.  

The negative relationship was also observed in a various host-aphid-nematode 

interaction studies. The nematode, Pratylenchus penetrans infection on Brassica nigra 

caused a decreased infestation of shoot herbivore, Pieris rapae [53].  Bezemer et al. 2005 

[54] reported decreased fertility of aphids Rhopalosiphum padi infesting Agrostis 

capillaris and Anthoxanthum odoratum because of decreased amino acid in the phloem 

sap of nematode infected plants. A similar type of effect was seen in the offspring of 

aphid Myzus persicae on Plantago lanceolata infected with nematode P. penetrans [55]. 

Hol et al. 2010 [56] reported a detrimental effect on aphids, Brevicoryne brassicae in the 

presence of nematodes (H. schachtii) in B. oleracea.  Also, the reproduction of aphid 

(Schizaphis rufula) was reduced in the presence of three nematodes (Pratylenchus, 

Meloidogyne, and Heterodera spp.) in the plant, Ammophila arenaria  in laboratory 

conditions [57]. The possible reason might be mechanical factors such as changes in 

waxes of the cuticle, leaf toughness or water content in the presence of nematodes [58]. 

The water stress in the aerial part of the host plant might affect the insects that rely on 

phloem feeding [59]. Also, decreased shoot herbivory could be because of the 

accumulation of phenolics and glucosinolates [53, 60]. 
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We utilized RNA-sequencing approach to investigate the interaction effects of 

soybean cyst nematodes and soybean aphids on soybean at two time points after SBA 

infestation. RNA-seq produces data of transcripts with higher sensitivity, reproducibility 

and comprehensive dynamic ranges than conventional methods [61]. The RNA-seq data 

generated at two time points (5 dpi and 30 dpi) were analyzed separately to remove the 

complexity in the analyses.  

In this study, identification of DEGs in resistant and susceptible cultivars was of 

particular interest, with the treatment that received both SCN and SBA to study the genes 

that are differentially expressed during the interaction. We did a comparison between and 

within the cultivars. Upon comparison, the discordant expression of genes particularly in 

resistant cultivar was considered important. In total, we found 4 and 100 discordantly 

expressed DEGs in resistant cultivar at 5dpi and 30 dpi, respectively. At 5dpi, Dirigent-

like protein, 2OG-Fe (II) oxygenase superfamily), genes encoding Exo70 exocyst 

complex subunit, and Proteasome component domain proteins were differentially 

expressed in the resistant cultivar that received both SCN and SBA. Dirigent (DIR) -like 

protein are particularly induced in different kinds of biotic such as wounding and abiotic 

stresses ranging from drought, cold, abscisic acid (ABA), H2O2, salinity, and osmotic 

stress [62, 63, 64]. These proteins play a crucial role in plant defenses against pathogens 

and lignin and lignan formation [65]. In the present study, one DIR-like protein 

(Glyma.03G044900) was upregulated by 8.04 log2foldchange at 5dpi. DIR-like proteins 

were also upregulated during feeding of spruce (Picea spp.) stem-by boring insects (i.e., 

white pine weevil, Pissodes strobi) in bark tissue and defoliating insects (i.e., western 

spruce budworm, Choristoneura occidentalis) in green apical shoots [62]. In soybean, 
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GmDIR22 conferred resistance to Phytophthora sojae regulating lignan biosynthesis [66]. 

Another gene, Glyma.16g214400 that belonged to exocyst subunit exo70 family protein 

B1 was upregulated by 7.50 log2fold change. The exocyst subunit Exo70B1 interacts 

with soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) 

complex protein SNAP in the process of vesicular trafficking, which mediates the 

exocytosis [67]. Previously, the role of α-SNAP, which is one of the important genes in 

Rhg1 mediated SCN resistance, has been unraveled in SCN resistance in many studies 

[48, 49, 68, 69]. SNAP protein, involves in vesicle trafficking that affects the exocytosis 

of food in syncytium which in turn affecting the nematode physiology [48]. Another 

important DEG is Glyma.13G147600 (2OG-Fe (II) oxygenase superfamily), which is 

down regulated by 3.59 log2fold change. The 2OG-Fe(II) oxygenase superfamily that 

constitutes flavone synthase I (FNS I), flavonol synthase (FLS), anthocyanidin synthase 

(ANS) and flavanone 3β-hydroxylase (FHT), play important role in flavonoid 

biosynthesis [70]. The remaining DEG, Glyma.20G089400 (Proteasome component 

domain protein) was also downregulated by 1.04 log2fold change. The plant proteasomes 

play an important role in an auxin signaling pathway, oxidative stress and hyper sensitive 

responses, which are an important component of plant defenses [71].  

At 30 dpi, we found 100 DEGs that were uniquely expressed in the resistant 

cultivar and 21 of them were upregulated. Particularly, Glyma.04G096400 with high 

expression (20 log2fold change) shows cysteine-type endopeptidase inhibitor activity, 

and possess cystatin domain. The cystatins are basically low molecular weight proteins 

that inhibit various exogenous proteases or digestive enzymes of invasive pests and 

pathogens [72]. It has been demonstrated that the serine protease activity of H. glycines 
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has been inhibited by cowpea trypsin inhibitor (CpTI) [73]. Numerous studies on the 

expression of both native and transgenic cystatins have shown resistance to 

phytonematodes in a wide range of hosts (see review in [74]). The transgenic expression 

of rice cystatin in eggplant improved nematode resistance in eggplant against root knot 

nematode, Meloidogyne incognita [74]. Three DEGs belonged to cytochrome P450s 

[Glyma.03G160100 (CYP94B1), Glyma.10G115900 (CYP71B34), and 

Glyma.12G239100 (CYP712A1)]. CYP94-genes play important role in Jasmonic Acid 

signaling pathway via catalyzing the sequential ω-oxidation of JA-Ile [75]. Whereas, 

CYP71 is involved in flavonoid biosynthesis in producing isoflavone and pterocarpan 

derivatives such as glyceollin in soybean in pathogen-infected tissues [76]. RNA-seq 

analysis of two Glycine soja genotypes, PI 424093 and PI 468396B, upon infestation 

by HG type 2.5.7 revealed upregulation of JA, including SA, and ET pathways [77]. 

Upon pathway enrichment of 100 DEGs, six genes (Glyma.01G046300, 

Glyma.09G128300, Glyma.09G162400, Glyma.11G000500 Glyma.14G175400, and 

Glyma.16G158100) were enriched for glucosyltransferase activity and four genes 

(Glyma.06G079900, Glyma.12G089800, Glyma.03G157800, and Glyma.13G191200) 

were enriched for calcium ion binding activity. Previously, the role of glucosyltransferase 

has been shown in Mi-mediated nematode resistance in tomato [78], which plays an 

important role in carbohydrate and cell-wall biosynthesis [79]. Calcium/calmodulin-

mediated signaling has been shown to be involved in responses to H. glycines infection 

in G. soja [77]. 

PSGEA analysis, performed for understanding biological function, showed 

distinct enriched pathways at 5 dpi and 30 dpi. Plant-pathogen interaction; ubiquitin-
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mediated proteolysis; phenylalanine, tyrosine and tryptophan biosynthesis; cutin, suberin 

and wax biosynthesis; alpha-linolenic acid metabolism; and fatty acid degradation 

pathways were enriched at 5 dpi. Plant-pathogen interaction and ubiquitin-mediated 

proteolysis play important role in plant immunity [80]. The interaction of plant and 

pathogen involves pathogen-associated molecular patterns (PAMPs) of pathogens by 

pattern-recognition receptors (PRRs) of host and are regulated by E3 ubiquitin ligase 

[80]. E3 ubiquitin ligase has been previously reported in involvement in phytonematodes 

such as Heterodera schachtii [81] and Globodera rostochiensis [82]. Phenylalanine, 

tyrosine, and tryptophan biosynthesis pathway is related to the shikimate pathway. It is 

shown that the chorismite mutase enzyme in root-knot nematode and potato cyst 

nematode alters the shikimate pathway of the host plant [83]. Other pathways such as 

cutin, suberin and wax biosynthesis, alpha-linolenic acid metabolism, and fatty acid 

degradation pathways, are related to plant lipid metabolisms, which are important for the 

production of JA, cutins, and suberins in plant defense via wounding [84, 85].  

At 30 dpi, most of the pathways were related to carbohydrate metabolism, fatty 

acid metabolism including fatty acid biosynthesis, fatty acid elongation, phenylpropanoid 

biosynthesis, isofalvonoid biosynthesis, and one carbon pool by folate. Phenylpropanoid 

biosynthesis and isoflavonoid biosynthesis pathways are particularly related to the 

metabolism that produces compounds such as flavonoids, anthocynanins, lignin, suberin, 

salicylic acid, coumarins and furanocoumarins [86]. It has been shown that phloem-

feeding-insect, whitefly Bemisia tabaci, when infested in Nicotiana tabacum activates the 

phenylpropanoid pathway [87]. We expect the carbohydrate metabolism pathway to be 

enriched at 30 dpi, as SBA and SCN might be competing for the limited food. The “one 
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carbon pool by folate” pathway is related to folate-mediated one-carbon metabolism, and 

Rhg4 resistance gene SHMT (GmSHMT08) catalyzes methylene carbon of glycine to 

tetrahydrofolate (THF) [88, 89]. Also, GmSHMT08 changes its enzymatic properties in 

the resistant allele negatively affecting the folate homeostasis in the syncytium that 

causes hypersensitive responses (HR) leading to programmed cell death (PCD) [89, 90]. 

We examined DEGs that are coincident with the 251 genes assessed from the SCN QTLs. 

Remarkably, we found three genes at 5 dpi and ten genes at 30 dpi, located in SCN QTLs 

among common genes in all treatments in comparisons of resistant versus susceptible 

cultivar. We were interested in finding out if the resistant cultivar, MN1806CN provided 

rhg1 and Rhg4 mediated resistance. Three genes Glyma.18G022400 (Transmembrane 

amino acid transporter protein), Glyma.18G022500 [soluble N-ethylmelaimide sensitive 

factor (NSF) attachment protein (GmSNAP18)], and Glyma.18G022700 (Wound-induced 

protein WI12), upregulated at both 5 and 30 dpi in all treatments are important for rhg1-

mediated SCN resistance [48, 49, 51]. We could not find Rhg4 gene as DEG at 5 dpi but 

was downregulated at 30 dpi in all treatments. This indicates that the resistant cultivar, 

MN1806CN might possess rhg1mediated SCN resistance.  

In summary, the expressions of DEGs were changed after SCN and SBA infection 

during SCN susceptible and resistant soybean interactions. Many genes revealed various 

pathways and networks involved in the interaction effects of SCN and SBA on soybean. 

Although a huge number of genes were differentially expressed, when compared between 

resistant and susceptible cultivars, the comparison within the cultivars exhibited fewer 

DEGs conferring resistance against both SBA and SCN in the resistant cultivar. One 

limitation was that the cultivar that was resistant to SCN was susceptible to SBA. Various 
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GO enrichment and KEGG pathways identified several molecular mechanisms involved 

in SCN-SBA interaction. Identified role of transcription factors in the SBA-SCN 

interaction in this study can be used for future research and breeding for SCN and SBA 

resistance in soybean.  

Supplementary Files 
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CHAPTER 7: CONCLUSIONS 

 

Current study utilized both in silico as well as greenhouse experiments to study 

stress responsive genes in the genomes of soybean and sunflower. This study has 

identified 117 TNL R genes in soybean, where most of the genes were under purifying 

selection except for a few accessions under positive selection. Approximately 63% of the 

regular TNL genes were found in clusters in soybean, which signifies their origin is 

primarily by tandem duplications. Characterization of these TNL genes is warranted for 

understanding resistance pathways paving avenues toward crop improvement. This study 

has also confirmed 352 NBS encoding genes in sunflower genome, and reported their 

phylogenetic relationships and functional divergence. These genes also formed clusters 

and showed structural conservation in signature domains and exon/intron architecture in 

CNL, TNL and RNL types of NBS genes. Interestingly, the RNLs were nested within the 

CNL-A clade, making the CNL clade paraphyletic, which warrants further analysis in 

future. All of the NBS-encoding genes have undergone purifying selection and available 

expression data have revealed their functional divergence. Further characterization of the 

NBS genes will help us understand resistance pathways as well as develop durable 

resistance necessary for crop improvement in sunflower and soybean. 

This study has become the first to report 28 MPKs and eight MKKs in the 

genome of sunflower and to conduct comparative analyses of the genomic architecture 

and phylogenetic relationships with nine other plant species representing diverse 

taxonomic groups of plant kingdom. Though sunflower genome with 3.6 gigabases is one 



 

 

 

 

314 

of the largest among the plants under this study, the MPKs and MKKs are slightly fewer 

than that in soybean, which has the genome size of 975 Mbs. Among MPKs and MKK 

genes studied, MKK3 group of proteins were highly conserved and retained in all the 

species under study, including outgroup, C. reinhardtii. This result warrants further 

investigation through an exploration of a wide array of species. Transcriptomic data 

analyzed under hormone and abiotic stresses treatments revealed a diverse expression 

pattern of sunflower MPKs and MKKs, exhibiting a dynamic role to adapt to changing 

environmental conditions. The results advance our understanding of the diversity and 

evolution of MAPK genes and their signaling pathways in sunflower, and are expected to 

help in cultivar improvement through stress-tolerance breeding. 

Present study characterized induced susceptibility effects of soybean and soybean 

aphid interaction using demographic data from greenhouse experiments and genetic data 

based on RNA-sequencing. The characterization was limited to two treatments: one with 

no inducer population and biotype 1 as a response population, and another with biotype 2 

as an inducer population and biotype 1 as a response population, in both resistant and 

susceptible cultivars. Kal’s z-test integrated with CLC Genomics Workbench 

(https://www.qiagenbioinformatics.com/) was used to study the differential gene 

expression for pooled samples with no replications. Many DEGs were common and 

unique in two cultivars and treatments that were enriched for various biological processes 

and pathways and were functionally related to known defense mechanisms reported in 

various host-aphid systems. The responses to aphid biotype 1 infestation in presence or 

absence of inducer population at day1 and day11 revealed significant differences on the 

gene enrichment and regulation in resistant and susceptible cultivars. Assessment of 
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DEGs in Rag genes QTLs, particularly in Rag1 containing QTL on chromosome 7, six 

non-NBS-LRR genes – Glyma.07G034800, Glyma.07G034900, Glyma.07G051500, 

Glyma.07G051500, Glyma.07G061500, Glyma.07G087200 revealed distinct expression 

in treatments with absence or presence of inducer population at day 1 and day 11. 

However, four TNL genes – Glyma.03G048600, Glyma.03G052800, Glyma.03G048700, 

and Glyma.03G047700 (identified in the study in chapter 2) were upregulated in resistant 

cultivar treated with biotype 2 as an inducer population and biotype 1 as response 

population at day 11 which suggest their crucial role in the interaction effects. Further 

experiments based upon metabolomics, proteomics, and validation of the candidate genes 

will be needed to understand the mechanism underlying induced susceptibility effects. 

In the last project, a three-way interaction among soybean, SBA and SCN was 

characterized. Various DEGs whose expressions were changed in the days after the SCN 

and SBA infection during SCN susceptible and resistant soybean interactions are 

reported. Many genes revealed various pathways and networks involved in the interaction 

effects of SCN and SBA on soybean. Although a huge number of genes were found 

differentially expressed between resistant and susceptible cultivars, fewer DEGs 

conferring resistance against both SBA and SCN were found in the resistant cultivar. In 

total, four and 100 DEGs were found in resistant cultivar at 5dpi and 30 dpi, respectively. 

In the present study, these genes are inferred to play important roles during SBA-SCN 

interaction on soybean. One limitation was that the cultivar resistant to SCN was 

susceptible to SBA. Various GO enrichment and KEGG pathways identified several 

molecular mechanisms involved in three-way interaction, and transcription factors  
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identified for the interaction can be used for future research and breeding programs. 

Further work will be needed for the functional validation of identified DEGs.  

Although significant progress has been made on pinpointing specific genes in the 

Rhg QTLs, narrowing down to very specific genes responsible for soybean aphid 

resistance warrants further investigations. The advent of sequencing technologies has 

made now the availability of soybean, soybean aphid, and SCN (de novo assembly) 

genomes. This should speed the discovery of particular molecular cues in terms of 

effector and host resistance components. With the development of various gene editing 

tools such as CRISPR/Cas9 system and advancement in producing various mutant hosts 

could help on understanding the function of these genes. In addition, since soybean aphid 

and SCN have been co-existed in many soybean fields, integrative system biology 

approaches might yield results useful for the plant-pest management.
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APPENDIX 

 

 

APPENDIX I: Codes Used for RNA-seq Analyses as Described in Chapter 4 
# Codes used for data processing 

#---------------------------------------------In Unix------------------------------------------------------- 

 

#Logged in to SOUTH DAKOTA STATE UNIVERSITY High Performance Cluster 

ssh username@blackjack 

 

###Download SRR files 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/005/SRR4996815/SRR4996815_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/005/SRR4996815/SRR4996815_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/009/SRR4996819/SRR4996819_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/009/SRR4996819/SRR4996819_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/003/SRR4996823/SRR4996823_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/003/SRR4996823/SRR4996823_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/008/SRR4996828/SRR4996828_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/008/SRR4996828/SRR4996828_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/004/SRR4996834/SRR4996834_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/004/SRR4996834/SRR4996834_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/006/SRR4996836/SRR4996836_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/006/SRR4996836/SRR4996836_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/009/SRR4996839/SRR4996839_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/009/SRR4996839/SRR4996839_2.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/007/SRR4996847/SRR4996847_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR499/007/SRR4996847/SRR4996847_2.fastq.gz 

 

###gunzip files 

##for one pair samples, run 

gunzip SRR4996815_1.fastq.gz 

gunzip SRR4996815_2.fastq.gz 

 

###Qulity control of raw data using FastQC  

#For one pair raw read files,run 

fastqc SRR4996815_1.fastq 

fastqc SRR4996815_2.fastq 

 

 

###Btrim64 to trim low-quality bases 

#for one pair raw read files, run 

btrim64-static -q -t /path/to/file/SRR4996815_1.fastq -o /path/for/output/file/SRR4996815_1_trimmed.fastq 

btrim64-static -q -t /path/to/file/SRR4996815_2.fastq -o /path/for/output/file/SRR4996815_2_trimmed.fastq 

 

 

###Activate Biconda Channel 

conda activate environment_name 

 

##Run Salmon tool 

  

#Buid Index 
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salmon index -t /path/to/file/Hannuus_494_r1.2.transcript.fa.gz -i /path/for/output/file/Ha_transcripts_index --

type quasi -k 31 

 

##Quantify reads 

#for one one pair trimmed files 

salmon quant -i /path/to/file/Ha_transcripts_index -l A -1 /path/to/file/SRR4996815_1_trimmed.fastq -2 

/path/to/file/SRR4996815_2_trimmed -o SRR4996815_count 

 

 

#---------------------------------------------------------Customized R codes via iDEP 0.81---------------------------------

------ 

# hierarchical clustering tree 

 x <- readData.out$data 

 maxGene <- apply(x,1,max) 

 

# Parameters for heatmap  

 input_geneCentering <- TRUE #centering genes ? 

 input_sampleCentering <- FALSE #Center by sample? 

 input_geneNormalize <- TRUE #Normalize by gene? 

 input_sampleNormalize <- FALSE #Normalize by sample? 

 input_noSampleClustering <- FALSE #Use original sample order 

 input_heatmapCutoff <- 4 #Remove outliers beyond number of SDs  

 input_distFunctions <- 1 #which distant funciton to use (Correlation) 

 input_hclustFunctions <- 1 #Linkage type (Average) 

 input_heatColors1 <- 5 #Colors (Blue-white-brown) 
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APPENDIX II: Codes Used for RNA-seq Analyses as Described in Chapter 5 and 6 

---------------------------------------------In Unix------------------------------------------------------- 

 

#Logged in to SOUTH DAKOTA STATE UNIVERSITY High Performance Cluster 

ssh username@blackjack 

password 

 

###Upload fastq.gz file in the cluster 

 

###gunzip files 

##for one sample, run 

gunzip 3-1a_S25_L005_R1_001.fastq.gz 

 

 

###Qulity control of raw data using FastQC  

##For one pair raw read files,run 

fastqc 3-1a_S25_L005_R1_001.fastq 

 

##MultiQC of all samples 

mutiqc . 

 

 

##Btrim64 to trim low-quality bases 

#for one raw read file, run 

btrim64-static -q -t /path/to/file/3-1a_S25_L005_R1_001.fastq -o /path/for/output/file/3-

1a_S25_L005_R1_001_trimmed 

 

##Trimmomatic to trim low-quality bases (Chapter 5) 

java -jar trimmomatic-0.36.jar SE -phred33 /stor2/neupanex/SoybeanAphid/2017_07_28_Madav-

44509465/5A_Madav_07_2017-53233373/5A.fastq /stor2/neupanex/SoybeanAphid/2017_07_28_Madav-

44509465/5A_trimmomatric.fastq ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36 
 

 

###Activate Biconda Channel 

conda activate environment_name 

 

##Run Salmon tool 

  

#Buid Index 

salmon index -t /path/to/file/Gmax_275_Wm82.a2.v1.transcript_primaryTranscriptOnly.fa.gz -i 

/path/for/output/file/Gm_transcripts_index --type quasi -k 31 

 

##Quantify reads 

#for one trimmed file 

salmon quant -i /path/to/file/Gm_transcripts_index -l A -1 /path/to/file/3-1a_S25_L005_R1_001.fastq -2 

/path/to/file/3-1a_S25_L005_R1_001_trimmed -o 3-1a_S25_L005_R1_001_count 
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#---------------------------------------------------------Customized R codes via iDEP 0.81-------------------------- 

 

########################## 

# 1. Read data 

##########################  

 setwd('C:/Users/owner/Downloads')    

 source('iDEP_core_functions.R')  

 

 # Input files  

 inputFile <- 'Downloaded_Converted_Data.csv'  # Expression matrix 

 # Experiment design file 

 sampleInfoFile <- 'Downloaded_sampleInfoFile.csv'   

  #Gene symbols, location etc.  

 geneInfoFile <- 'Glycine_max__gmax_eg_gene_GeneInfo.csv'  

 # pathway database in SQL; can be GMT format  

 geneSetFile <- 'Glycine_max__gmax_eg_gene.db'    

 STRING10_speciesFile <- 'https://raw.githubusercontent.com/iDEP-

SDSU/idep/master/shinyapps/idep/STRING10_species.csv'  

 

 # Parameters 

 input_missingValue <- 'geneMedian' #Missing values imputation method 

 input_dataFileFormat <- 1 #1- read counts, 2 FKPM/RPKM or DNA microarray 

 input_minCounts <- 0.5 #Min counts 

 input_NminSamples <- 1 #Minimum number of samples  

 input_countsLogStart <- 4 #Pseudo count for log CPM 

 input_CountsTransform <- 3 #Methods for data transformation of counts. 1-EdgeR's logCPM; 2-

VST; 3-rlog  

 

 #Read data files 

 readData.out <- readData(inputFile)  

 readSampleInfo.out <- readSampleInfo(sampleInfoFile)  

 input_selectOrg ="NEW"  

 input_noIDConversion = TRUE   

 allGeneInfo.out <- geneInfo(geneInfoFile)  

 converted.out = NULL  

 convertedData.out <- convertedData()   

 nGenesFilter()   

 convertedCounts.out <- convertedCounts()  # converted counts, just for compatibility  

 readCountsBias()  # detecting bias in sequencing depth  

 

########################## 

# 2. Pre-Process  

##########################  

  

 # Box plot  

 x = readData.out$data  

 boxplot(x, las = 2, col=col1, 

    ylab='Transformed expression levels', 

    main='Distribution of transformed data')  

 

 # Density plot  

 par(parDefault)  

 densityPlot()        
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 # Scatter plot of the first two samples  

 plot(x[,1:2],xlab=colnames(x)[1],ylab=colnames(x)[2],  

    main='Scatter plot of first two samples')  

 

 

 

########################## 

# 3. Heatmap  

##########################  

 # hierarchical clustering tree 

 x <- readData.out$data 

 maxGene <- apply(x,1,max) 

 # remove bottom 25% lowly expressed genes, which inflate the PPC 

 x <- x[which(maxGene > quantile(maxGene)[1] ) ,]  

 plot(as.dendrogram(hclust2( dist2(t(x)))), ylab="1 - Pearson C.C.", type = "rectangle")  

 #Correlation matrix 

 input_labelPCC <- TRUE #Show correlation coefficient?  

 correlationMatrix()  

 

 # Parameters for heatmap 

 input_geneCentering <- TRUE #centering genes ? 

 input_sampleCentering <- FALSE #Center by sample? 

 input_geneNormalize <- TRUE #Normalize by gene? 

 input_sampleNormalize <- FALSE #Normalize by sample? 

 input_noSampleClustering <- FALSE #Use original sample order 

 input_heatmapCutoff <- 4 #Remove outliers beyond number of SDs  

 input_distFunctions <- 1 #which distant funciton to use (Correlation) 

 input_hclustFunctions <- 1 #Linkage type (Average) 

 input_heatColors1 <- 5 #Colors (Blue-white-brown) 

  

 

########################## 

# 4. k-Means clustering  

########################## 

 input_nGenesKNN <- 2000 #Number of genes fro k-Means 

 input_nClusters <- 4 #Number of clusters  

 maxGeneClustering = 12000 

 input_kmeansNormalization <- 'geneStandardization' #Normalization 

 input_KmeansReRun <- 0 #Random seed  

 

 distributionSD()  #Distribution of standard deviations  

 KmeansNclusters()  #Number of clusters  

 

 Kmeans.out = Kmeans()   #Running K-means  

 KmeansHeatmap()   #Heatmap for k-Means  

  

 

 #Read gene sets for enrichment analysis  

 sqlite  <- dbDriver('SQLite') 

 input_selectGO3 <- 'KEGG' #Gene set category 

 input_minSetSize <- 15 #Min gene set size 

 input_maxSetSize <- 6000 #Max gene set size  

 GeneSets.out <-readGeneSets( geneSetFile, 

    convertedData.out, input_selectGO3,input_selectOrg, 
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    c(input_minSetSize, input_maxSetSize)  )   

 # Alternatively, users can use their own GMT files by 

 #GeneSets.out <- readGMTRobust('somefile.GMT')   

 KmeansGO()  #Enrichment analysis for k-Means clusters 

 

 input_seedTSNE <- 0 #Random seed for t-SNE 

 input_colorGenes <- TRUE #Color genes in t-SNE plot?  

 tSNEgenePlot()  #Plot genes using t-SNE  

 

########################## 

# 5. PCA  

########################## 

 input_selectFactors <- 'Treatment' #Factor coded by color 

 input_selectFactors2 <- 'Cultivar' #Factor coded by shape 

 input_tsneSeed2 <- 0 #Random seed for t-SNE  

 #PCA, MDS and t-SNE plots 

 PCAplot()  

 
########################## 

# 6. DEG1  

########################## 

 input_CountsDEGMethod <- 3 #DESeq2= 3,limma-voom=2,limma-trend=1  

 input_limmaPval <- 0.01 #FDR cutoff 

 input_limmaFC <- 2 #Fold-change cutoff 

 input_selectModelComprions <- c('Cultivar: R vs. S','Treatment: Aph vs. Cntrl','Treatment: SCN vs. 

Aph','Treatment: SCN vs. Cntrl','Treatment: SCNAph vs. Aph','Treatment: SCNAph vs. Cntrl','Treatment: 

SCNAph vs. SCN') #Selected comparisons 

 input_selectFactorsModel <- c('Cultivar','Treatment') #Selected comparisons 

 input_selectInteractions <- 'Cultivar:Treatment' #Selected comparisons 

 input_selectBlockFactorsModel <- NULL  #Selected comparisons 

 factorReferenceLevels.out <- c('Cultivar:R','Treatment:Cntrl')  

 

 limma.out <- limma() 

 limma.out$comparisons 

 DEG.data.out <- DEG.data() 

 input_selectComparisonsVenn <- c('SCN-Aph','SCNAph-Aph','SCNAph-SCN') #Selected comparisons for 

Venn diagram 

 input_UpDownRegulated <- FALSE #Split up and down regulated genes  

 vennPlot() # Venn diagram 

 sigGeneStats() # number of DEGs as figure 

 sigGeneStatsTable() # number of DEGs as table  

 

########################## 

# 7. DEG2  

########################## 

 input_selectContrast <- 'SCN-Aph' #Selected comparisons  

 selectedHeatmap.data.out <- selectedHeatmap.data() 

 selectedHeatmap()   # heatmap for DEGs in selected comparison 

 

 # Save gene lists and data into files 

 write.csv( selectedHeatmap.data()$genes, 'heatmap.data.csv')  

 write.csv(DEG.data(),'DEG.data.csv' ) 

 write(AllGeneListsGMT() ,'AllGeneListsGMT.gmt') 

 

 input_selectGO2 <- 'KEGG' #Gene set category  
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 geneListData.out <- geneListData() 

 volcanoPlot()  

 scatterPlot() 

 MAplot()  

 geneListGOTable.out <- geneListGOTable()   

 # Read pathway data again  

 GeneSets.out <-readGeneSets( geneSetFile, 

    convertedData.out, input_selectGO2,input_selectOrg, 

    c(input_minSetSize, input_maxSetSize)  )  

 input_removeRedudantSets <- TRUE #Remove highly redundant gene sets?  

 geneListGO()  

 

 # STRING-db API access  

 STRING10_species = read.csv(STRING10_speciesFile)   

 ix = grep('Mus musculus', STRING10_species$official_name ) 

 findTaxonomyID.out <- STRING10_species[ix,1] # find taxonomyID 

 findTaxonomyID.out   

 # users can also skip the above and assign NCBI taxonomy id directly by 

 # findTaxonomyID.out = 10090 # mouse 10090, human 9606 etc. 

 STRINGdb_geneList.out <- STRINGdb_geneList() #convert gene lists 

 input_STRINGdbGO <- 'Process' #'Process', 'Component', 'Function', 'KEGG', 'Pfam', 'InterPro'  

 stringDB_GO_enrichmentData()  

 

 # PPI network retrieval and analysis 

 input_nGenesPPI <- 100 #Number of top genes for PPI retrieval and analysis  

 stringDB_network1(1) #Show PPI network  

 write(stringDB_network_link(), 'PPI_results.html') # write results to html file  

 browseURL('PPI_results.html') # open in browser  

 

########################## 

# 8. Pathway analysis  

########################## 

 input_selectContrast1 <- 'SCNAph-SCN' #select Comparison  

 #input_selectContrast1 = limma.out$comparisons[3] # manually set 

 input_selectGO <- 'KEGG' #Gene set category  

 #input_selectGO='custom' # if custom gmt file 

 input_minSetSize <- 15 #Min size for gene set 

 input_maxSetSize <- 2000 #Max size for gene set  

 # Read pathway data again  

 GeneSets.out <-readGeneSets( geneSetFile, 

    convertedData.out, input_selectGO,input_selectOrg, 

    c(input_minSetSize, input_maxSetSize)  )  

 input_pathwayPvalCutoff <- 0.2 #FDR cutoff 

 input_nPathwayShow <- 30 #Top pathways to show 

 input_absoluteFold <- FALSE #Use absolute values of fold-change? 

 input_GenePvalCutoff <- 1 #FDR to remove genes  

 

 input_pathwayMethod = 1  # 1  GAGE 

 gagePathwayData.out <- gagePathwayData()  # pathway analysis using GAGE   

 gagePathwayData.out 

  pathwayListData.out = pathwayListData() 

 enrichmentPlot(pathwayListData.out, 25  ) 

 enrichmentNetwork(pathwayListData.out ) 

 enrichmentNetworkPlotly(pathwayListData.out) 
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 input_pathwayMethod = 3  # 1  fgsea  

 fgseaPathwayData.out <- fgseaPathwayData() #Pathway analysis using fgsea 

 fgseaPathwayData.out 

 pathwayListData.out = pathwayListData() 

 enrichmentPlot(pathwayListData.out, 25  ) 

 enrichmentNetwork(pathwayListData.out ) 

 enrichmentNetworkPlotly(pathwayListData.out)  

   

 PGSEAplot() # pathway analysis using PGSEA  

 

 

########################## 

# 9. Co-expression network  

########################## 

 input_mySoftPower <- 5 #SoftPower to cutoff 

 input_nGenesNetwork <- 1000 #Number of top genes 

 input_minModuleSize <- 20 #Module size minimum  

 wgcna.out = wgcna()   # run WGCNA 

 softPower()  # soft power curve 

 modulePlot()  # plot modules 

 listWGCNA.Modules.out = listWGCNA.Modules() #modules 

 

 input_selectGO5 <- 'GOBP' #Gene set  

 # Read pathway data again  

 GeneSets.out <-readGeneSets( geneSetFile, 

    convertedData.out, input_selectGO5,input_selectOrg, 

    c(input_minSetSize, input_maxSetSize)  )  

 input_selectWGCNA.Module <- 'Entire network' #Select a module 

 input_topGenesNetwork <- 15 #SoftPower to cutoff 

 input_edgeThreshold <- 0.4 #Number of top genes  

 moduleNetwork() # show network of top genes in selected module 

 

 input_removeRedudantSets <- TRUE #Remove redundant gene sets  

 networkModuleGO() # Enrichment analysis of selected module 
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