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ABSTRACT 

 

DEVELOPMENT OF A NEURAL NETWORK-BASED OBJECT DETECTION 

FOR MULTIROTOR TARGET TRACKING 

SPENCER HARWOOD 

2019 

Unmanned aerial vehicles (UAVs) have, for the past few decades, seen an increased 

popularity in industry and research centres. Despite this intense utilization by both markets 

there exists an active demand for the development of autonomous guidance, navigation, 

and control strategies. One need relates to the achievement of a high level of autonomy to 

identify and track a target object. An elective technique for this set of tasks is neural 

networks. In the development and study of these networks there is a distinct lack of 

substantive validation techniques to qualify network performances when implemented in a 

multirotor UAV. This thesis will first describe the development of a neural network-based 

object detection subsystem for use in target tracking with an autonomous multirotor UAV. 

Then, the second part of this thesis will utilize a developed indoor multirotor testbed to 

externally verify the tracking performance of the multirotor UAV during an object 

following maneuver.
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CHAPTER ONE 

INTRODUCTION 

Multirotor UAVs have been in development for decades and currently are being utilized 

in many different applications in the following areas; search and rescue operations, 

construction planning and surveying, precision agriculture and environmentalism efforts, 

and package delivery. This widespread utilization is largely due to several characteristics’ 

UAVs are known for; from their cost-effective design in production, their limited impact 

to its surroundings or workspace, and their ability to gather information without putting 

active personal in physical harm or danger. Each of these industries have a unique impact 

on the future designs of UAVs as a result of a culmination of their application requirements. 

Today there are two primary classes of UAVs. These two classes include fixed wing and 

rotary wing vehicles. Fixed wing UAVs utilize a rotor for forward thrust and letting air 

foils generate the necessary lift. While rotary wing UAVs, also called multirotors, have 

between one and eight rotors to generate vertical lift [1]. 

 

Figure 1. Fixed wing UAVs. 
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Figure 2. Rotary wing UAVs. 

 

 Of this subdivision of rotary wing vehicles, vehicles that have four rotors are called 

quadcopters and will be the focus of research in this paper. Quadrotors have become the 

standard platform for many commercial and research applications. This is largely attributed 

to their simplicity, cost, and high manoeuvrability [2]. In this work an AR Drone 2.0, 

manufactured by Parrot, will be used, pictured in Figure 3. The AR Drone 2.0 is equipped 

with several additional sensors that make this model suitable for laboratory research. 
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Figure 3. AR. Drone 2.0 

 

The sensors that the AR Drone 2.0 is equipped include three gyroscopes, three 

accelerometers, three magnetometers, a pressure sensor, an altitude ultrasonic sensor, and 

a vertical camera. Although all these sensors may be used to develop autonomous 

navigation the primary focus of this work will utilize the vertical camera. More accurately 

the real time captured video data will be utilized in an object detection-based object 

tracking. 

The multirotor UAV must locate an object within the camera frame and track the object 

by providing relevant control information with the end goal of remaining fixated on this 

object. This task, for a human operator or pilot, may become difficult if the object tends to 

move erratically or if the object follows an unpredictable pattern resulting in poor tracking 

performance and therefore wasted motion reducing flight time.  

One elective technique autotomizes this task for a multirotor platform is to use a neural 

network. Neural networks as are a cost-effective solution that can utilize nothing more than 

the sensors currently available to the AR Drone 2.0 and the use of a PC/mobile device for 

computation. 

 Before detailing the construction and implementation of a neural network for object 

tracking with a multirotor UAV a few regulatory considerations with respect to 

autonomous flight should be noted. The Federal Aviation Administration, FAA, in 2016 
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implemented policy 14 CFR § 107 regarding remote pilots and commercial operators. 

Specifically, all autonomous operations must be overseen by a licensed remote pilot who 

can override autonomous controls in the event of an unknown situation. Although these 

provisions pertain to outdoor FAA controlled airspace it shall serve as a safety baseline for 

indoor laboratory operations. 

1.1. Background 

In the last decade there have been a variety of research efforts to develop neural 

networks for use with UAV systems. Some of these works focus primarily on the 

theoretical development with simulated manoeuvres being used to validate their 

performances [3]. Whereas numerous other research projects, developed within the last 

two years, implemented their networks for indoor multirotor UAVs to real world testing 

[4], [5], [6], [7]. These works focused their attention to shorter manoeuvres that spanned 

the length of indoor hallways. With many of these models showing promise for sustained 

flight and therefore greater benchmarks with respect to distance goals. One team has moved 

its system beyond the lab to outdoor environments in an endurance test spanning a distance 

greater than 1 km [8].  

In all these papers the focus of the neural network was to classify incoming video data 

into three output situations (left, right, and center), where the position represents the 

directed path forward for the UAV. The UAV would follow these commands to determine 

how to best proceed while other system variables like elevation would dynamically be held 

constant. In each case of the studies presented the benchmarks focus only on a binary result, 

pass or fail, for a maneuver. To offer an alternative to this line of thought the fitness of a 

network could also be judged on the accuracy or tracking error taken from an external 

source. This external validation can provide an in-depth unbiased approach for the 

comparison of the fitness of a neural network. 
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1.2. Thesis Goals and Outline 

The goal of this thesis is to discuss the development of a neural network-based object 

detection for position control of a multirotor for experimentation on autonomous target 

tracking.  

Chapter 2 provides an in-depth background into neural networks and contains the 

necessary steps needed to set up and train a neural network for experimentation in object 

detection for multirotor vehicles using an AR Drone 2.0 quadrotor. This section will detail 

the strategies used to collect training data, how to effectively train a neural network using 

training data, and some of the potential sources of error to understand and to avoid. Then, 

the chapter will provide a validation study of the presented methods. 

Chapter 3 outlines and describes the indoor multirotor testbed in use in the ARTLAB at 

South Dakota State University. The chapter will go into the details of the existing 

communication networks utilized by the testbed and how control commands are relayed to 

the UAV. Then, the chapter will discuss the integration of a trained neural network into the 

indoor multirotor testbed for object detection and tracking.  

Chapter 4 describes the experimentation of object detection and target tracking first with 

a simulated multirotor model. Then, the chapter will provide a description of an integrated 

neural network control system with the Indoor Multirotor Testbed.  

The last chapter is attributed for a conclusion and recommendation on this thesis.    
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CHAPTER TWO 

NEURAL NETWORK CREATION, TRAINING 

AND VALIDATION 

2.1. Neural Network Theory and Notation 

Neural networks, or specifically their base components, were first conceptually 

constructed in the late 1950’s as a hypothetical means of understanding the biological 

structures of higher organisms with regards to how information is processed, stored, and 

influences current decision making [9]. A direct representation of a biological neuron was 

then developed, known as a perceptron, to create a connection to simple computer logic, 

see Figure 4.  

 

Figure 4. Perceptron representation. 

 

From the single perceptron introduced by Rosenblatt, weights were developed; w1, w2, 

and w3, which could then be assigned to each connection into a perceptron to represent the 

importance of that connection from another perceptron. In particular, a large weight could 

denote that a specific input holds a greater merit to influence a decision over a different 

input. Therefore, for each of these connections imagine that a weight is assigned. Now 

present a series of input arguments; x1, x2, and x3, to the connections. The resulting sum of 
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the products of the weights and inputs results in a finite output or outcome for the 

perceptron. Numerically, any such outcome could be judged by the following relationship: 

 

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 =

{
 

 0, ∑ 𝑥𝑖𝑗𝑤𝑖𝑗 ≤ −𝑏𝑖
𝑗

1, ∑ 𝑥𝑖𝑗𝑤𝑖𝑗
𝑗

> −𝑏𝑖
}
 

 
 (1) 

Where bi is an associated bias or threshold for a decision to be made. The indices i and 

j represent the perceptron number within a network and the connection input to the 

perception respectively. The bias can be thought of, for example, the importance of the 

decision to be made. Where a large bias could be used to limit the ability of a perceptron 

to become active.  

Continuing from this simple notation Nielson provides an exhaustive derivation of how 

complex perceptron systems coordinate into simple matrix algebra [10]. The above 

notation can be rewritten such that all terms are greater than or less than or equal to zero 

by moving the bias term to the left-hand side and setting the right-hand side equal to zero. 

 

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 =

{
 

 0, ∑ 𝑥𝑖𝑗 ∙ 𝑤𝑖𝑗
𝑗

+ 𝑏𝑖 ≤ 0

1, ∑ 𝑥𝑖𝑗 ∙ 𝑤𝑖𝑗
𝑗

+ 𝑏𝑖 > 0
}
 

 
 (2) 

This description for perceptrons, primarily its behavior, can be imagined as logic 

functions such as; AND, OR, and NAND functions. For example, a perceptron may behave 

as a logic function by first setting an acceptable input of 0 or 1 for each input connection 

and by assigning a set weight for each connection and a bias for the perception. For the 

example shown in Figure 5, the weight for each connection is set to a constant -2 and the 

bias is set to a constant 3. If inputs of 1 and 1 are implemented than the following equation 

develops: 

 (−2) ∗ 1 + (−2) ∗ 1 + 3 = −1 (3) 
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As this number is negative the actual output of the perceptron is 0. This behavior is an 

example of a NAND gate, where two active inputs, (1, 1), result in an inactive output 0. 

 

Figure 5. NAND Gate Analogy. 

 

For all perceptrons in a network it may be more useful for the output to be in a 

continuous output form. This is done to allow for greater flexibility in the output of a 

perceptron as many situations may require a higher level of fidelity than a binary output 

system. So, to separate the logic from using a Boolean output a perceptron could use the 

following format: 

 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 =∑ 𝑥𝑖𝑗 ∙ 𝑤𝑖𝑗
𝑗

+ 𝑏𝑖 (4) 

And the output is therefore represented by any real number. 

It is from this basic structure that a fully constructed architecture may be created to 

generate what is known as a neural network. Using Figure 6 as an example, we can see a 

single layered neural network comprised of an input layer, a single hidden layer with four 

perceptrons, and an output layer. Neural networks can be considerably larger than this 

representation but quickly become complex to display in the given 2D representational 

form. 
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Figure 6. Hidden perceptron layer. 

 

The input layer can be scaled to match a desired input source including; sensor data, 

known state variables, or even time. On the other hand, the output may be scaled to match 

a desired list of expected outcomes or targets. As the input and output layer design is set 

by a situation the design of the hidden layer is left open to more creative interpretation. The 

hidden layer may consist of several or more layers with any number of perceptrons in each 

layer. With the general sense being that for more complex and dynamic scenarios, more 

hidden layers or a larger number of perceptrons may be needed to accurately model a 

system. Although, it should be noted at this point that larger networks are necessary to 

solve complex problems but, depending on additional system constraints (like 

computational processing time), large networks may not be appropriate. 

Now that the structure of a neural network has been described the next substantial step 

is implement a learning algorithm within the network. To address this step, one should first 

ask to suppose that a large incremental change is made to either a weight or bias value in a 

perceptron. This can subsequently result in the output of the network of a perceptron 

suddenly increase by a large value drastically effecting the next perceptron in the network 

and the overall behavior of the entire network. To correct this behavior a perceptron may 

be modified to limit the effects that a large weight or bias change can have on each 
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perceptrons output. Thereby constraining a perceptrons output within a set range. This new 

type of neuron is called a sigmoid neuron. 

A sigmoid neuron, is denoted by the following: 

 
𝜎(𝑧) =

1

1 + 𝑒−𝑧
 (5) 

Where z is the representation of the function from a perceptron’s output as in Eq. (4): 

 
𝜎(𝑧) =

1

1 + 𝑒𝑥𝑝(−∑ 𝑥𝑖𝑗 ∙ 𝑤𝑖𝑗 − 𝑏𝑖𝑗 )
 (6) 

This results in the following plotted function as shown in Figure 7.  

  

Figure 7. Step Function Eq. (2) (left) and Sigmoid Function Eq. (6) (right). 

 

Where by design, the shape of this function is just a modified version of the Boolean 

step function mentioned earlier, but retains the benefits of a continuous output bounded 

between 0 and 1. From this function, finite changes in a weight or bias of a neuron will 

result in a small finite change in the output of the neuron as the output of the function is 

now bounded between 0 and 1. 

 
∆𝑜𝑢𝑡𝑝𝑢𝑡 ≈∑

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑤𝑗
𝑗

∆𝑤𝑗 +
𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑏
∆𝑏𝑗 (7) 

The use of sigmoid neurons prepares the groundwork for the learning process of a neural 

network. The next few sections will break down the learning process of the network. 
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First, we must introduce the concept of training inputs denoted by the value, x. Where 

x is a dimensional vector provided as an input into a neural network and such that an output 

variable, also a dimensional vector, denoted by y exists. 

 𝑦 = 𝑦(𝑥) (8) 

To generate a learning algorithm, such that y(x) accurately approximates a given 

scenario for a given training input of x, a cost function denoted C, also known as loss 

function, may be used. 

 
𝐶(𝑤, 𝑏) =  

1

2𝑛
∑‖𝑦(𝑥) − 𝑎‖2
𝑛

1

 (9) 

Where n is the total number of training inputs sets, y(x) is the actual vector output given 

an input vector x, and a is the actual vector targets given x. A target is a known or expected 

output that the neural network is expected to output given a specific input array. This 

method is best known as the mean squared error and the goal of using this method is to 

minimize a cost function through several epochs, or rounds, of training. This is best done 

using an algorithm known as gradient descent [11], [12].  

In the gradient descent method, the gradient vector of the cost function denoted, ∇C, is 

used to determine, for lack of generality, the direction that each of our variables, weights 

and biases, should change. This total change of the cost function can be constrained within 

a small step usually called learning rate, denoted by 𝜂, such that: 

 ∆𝑣 = 𝑣 − 𝜂∇𝐶 (10) 

Where Δv is a representation of m variables for the cost function, C. 

 ∆𝑣 = (∆𝑣1, … , ∆𝑣𝑚) (11) 

Removing the generality of the above equations we can represent the weights and biases 

in the following manner: 

 
∆𝑤 = 𝑤 − 𝜂

𝜕𝐶

𝜕𝑤
 (12) 

 
∆𝑏 = 𝑏 − 𝜂

𝜕𝐶

𝜕𝑏
 

(13) 
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But this is not a complete notation as described earlier the cost function was stated as 

an average. Without the use of this average notation one cannot partition out training data 

into several epochs and one key issue can occur. When processing a large sample of 

training data to minimize the cost function and therefore the weights and biases, it will be 

incredibly slow. To mediate this issue all training data may be divided into smaller epochs 

of number m samples with training inputs of Xm. 

 
∆𝑤 = 𝑤 −

𝜂

𝑚
∑

𝜕𝐶𝑋𝑗
𝜕𝑤

𝑚

𝑗

 (14) 

 
∆𝑏 = 𝑏 −

𝜂

𝑚
∑

𝜕𝐶𝑋𝑗
𝜕𝑏

𝑚

𝑗

 (15) 

The current structure presented thus far is known as a feedforward neural network, 

where one layer only feeds into the next layer. Alternative networks, to the feedforward 

networks, have been previously presented including recurrent neural networks [13]. Where 

cross layered connections exist between layers creating feedback loops within the network.  

In other research papers comparing the two models’ recurrent networks tend to outperform 

feedforward networks but at the cost of increased complexity and computational resources, 

which depending on specific situational requirements may be unfavorable [14].  

2.2.  Development of a Neural Network-Based Object 

Detector 

2.2.1. Matlab Deep Learning Neural Network Toolbox 

The application used for most of this thesis utilizes Matlab and Simulink developed by 

MathWorks®. Matlab supports a powerful toolbox known as the Deep Learning Neural 

Network Toolbox. This toolbox can be used for classification, regression, image feature 

learning, time series, and text data. For the efforts completed in this thesis a shallow neural 

network will be utilized for situational pattern recognition and target classification. 

Although the title of the toolbox claims to use deep learning, this is a misnomer to some 

of the capabilities within the application. For instance, only a shallow neural network may 
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be used. A shallow neural network is denoted as such due to it characteristic of using a 

single hidden layer of neurons. Deep learning neural networks are mostly characterized by 

several hidden layers. The use of a shallow network can introduce several benefits that may 

be leveraged to improve the efficiency and speed at which neural networks may operate. 

To quickly detail why a small network boasts greater processing speeds and training rates 

look to the total number of variables within the cost function for the network. As the 

number of neurons or hidden layers increase the number of weights and biases exponential 

increases. For more numerically driven detail some research shows that for the same 

training data set a shallow neural network does not perform as well as deeper convolution 

network, but for even moderately complex functions they have great potential [15]. While 

additional work continues the topic of shallow networks and even compares the use of one 

to two hidden layer networks [16]. It was shown that two hidden layered networks are more 

prone to falling into local minima due to a more complex cost function, but otherwise 

perform similarly to single layered networks. It is from these findings that a shallow neural 

network is deemed enough in trial testing for this thesis. 
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Figure 8. Shallow (top) and deep (bottom) neural network. 

 

Lastly, the toolbox utilizes several methods for quantifying training progress including 

the use of figures, plots, cross entropy, and percent error. The use of figures and plots will 

be explored later in Section 2.2.4 Neural Network Validation. As for the numeric methods 

more explanation can be given. For several of the processes utilized within the toolbox to 

determine training performance one equation is readily used. Cross entropy is a measure 

of difference between our target value, a, and actual value, y, where larger differences are 

penalized more heavily and is given by the following equation: 

 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑎 ∗ log 𝑦 (16) 
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2.2.2. Matlab Image Processing Toolbox 

Another toolbox that will be utilized is the Image Processing Toolbox. Within this 

toolbox a series of essential functions to stream, process, and convert usable image data 

are utilized. Images taken from a data source, like a drone camera, can be resized into 

different resolution formats. While other properties of the image may be changed to meet 

user stated system requirements. 

In the case of this thesis, the AR Drone 2.0 utilizes a HD camera with a resolution of 

720p, 1280×720 pixels, and a frame rate of 30 fps. At the current resolution (720p), if 

utilized as an input to a neural network, would demand an input layer size of 921,600 

neurons. Where each pixel of the image would equate to an input neuron within the neural 

network. When considering the processing time, to train or calculate real time network 

outputs, it may be necessary to resize the image stream to a smaller resolution. 

 

Figure 9. Image Resolution 3024x4032 (left) and 76x101 (right). 

 

When scaling an image, like the example in Figure 9, the general concept is relatively 

unchanged to human eyes, but for a neural network the intension of the object may greatly 

change. To counteract this effect good engineering judgment should be made to determine 

if the new scaled resolution adversely effects the scenario presented to the neural network. 

 The images taken from the UAV may then be processed further for use in a neural 

network to meet user set system requirements. With the use of a Matlab created neural 
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network, its first layer, or input layer, must consist of a singular numerical value to 

represent each associated input neuron. Two possible solutions may be used as the images 

taken from a drone’s camera are a 24-bit TrueColor RGB, consisting of 8-bit red, 8-bit 

green, and 8-bit blue. The first option is to implement each color value for each pixel as an 

input to the neural network, but this will generate an input layer three times the size of our 

second option. The second option is to use the command rgb2gray() within Matlab. This 

command will convert each image to an 8-bit image without color information like 

chrominance. The new image will now consist of pixels having a value base of 256 

combination. Where a value of 0 represents black pixel and a value of 255 represents a 

white pixel. The function uses the following equation to convert each RGB pixel. 

 𝐼 = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 (17) 

For the work within this paper the second option will be utilized. 

Where I is an outputted ‘gray’ pixel between 0-255. Values R, G, and B are the 

representative 8-bit color value, between 0-255, for red, green, and blue respectively. 

Figure 10 shows an example of this conversion process. 

 

Figure 10. RGB image (left) and gray image (right). 

 

As mentioned previously when rescaling an image, by converting an image to grayscale 

care must be taken to change the intention of the training data. 
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2.2.3. Neural Network Training 

To train a network for a scenario, training data must first be gathered. Depending on the 

complexity of the needed network, several thousand samples of training data should be 

collected, while recording their expected output, to be paired with each sample. For 

convenience, the same camera that the system will be utilized on, will be used to collect 

these samples.  

For the experiments later discussed in CHAPTER F all training data will be collected 

using the AR Drone 2.0 front facing camera, as pictured in Figure 11. 

 

Figure 11. AR Drone 2.0 Covered (left) and uncovered (right). 

 

For the collection of training data, video data from the UAV should be captured. A USB 

storage device may be connected to the USB port located within the AR Drone’s battery 

compartment. Then, utilizing the AR.FreeFlight mobile application, available in both 

Android and IOS app stores, the camera recording features may be controlled. Figure 12 

shows a breakdown of the application’s window view.  
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Figure 12. AR.FreeFlight mobile application. 

 

Located in the upper right of the window, a recording button can be used to record 

videos of the flight. For a recording all frames within the recording should be limited to an 

intended output scenario. For example, if the intention for an object detection is to 

determine whether an object is on the right or left side of the video frame. Then, at 

minimum, two separate video files will be required where the object is mutually exclusive 

to the left or the right side of the video frame. When all videos are taken they may be 

converted to image data using a Matlab script available in APPENDIX I; A.  

Once converted, the images for each case may then be converted to a singular file format 

known as a comma separated variable, .csv. Each individual image is converted to a single 

row within a master matrix. Where the first column of each row is the target or expected 

value of the corresponding image to the row, also known as the label. The number of rows 

within the matrix is equal to the number of image samples. An illustrative example of the 

.csv file type is shown in Figure 13. 
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Figure 13. Example layout of a (.csv) file. 

 

Where N is the total number of images and M is the total number of pixels within an 

image. The Matlab script for this is reported in APPENDIX I; B. 

With all the training videos converted to comma segmented variables one final script 

will be needed to combine the files for use in the Matlab Deep Learning Neural Network 

Toolbox. While combining the rows of data, the data should be randomly rearranged to not 

mislead the training application due to grouping of consistent similar data to improve 

training efficiency. This is done using the random permutation function while maintaining 

the integrity of each row unchanged. The Matlab script for this is represented in 

APPENDIX I; C. 

Finally, this training data may be implemented with the Matlab Deep Learning Neural 

Network Toolbox to train a shallow neural network. To begin the training process, an 

initiating Matlab script is needed to segment training data and to define variable names. 

This script outlining this process is in APPENDIX I; D. The data can be further segmented 

using a holdout subset. This holdout data is separated and stored for later use in a post 

training test of the neural networks performance and provides new unseen data for 

verification. 

 With the training data prepared and segmented, the training process within the Matlab 

Deep Learning Neural Network Toolbox may be started through the use a procedurally 

generated Matlab function known as nnstart. Within this toolbox prompt the Pattern 

Recognition app will be utilized for classification tasks, as shown in Figure 14. This will 

classify an image by outputting an array of probabilities for each output type. The value 

with the highest probability is the classification output of the neural network. 

Image 1 Target Value 1 Pixel 1 Pixel 2 Pixel 3 … Pixel M

Image 2 Target Value 2 Pixel 1 Pixel 2 Pixel 3 … Pixel M

Image 3 Target Value 3 Pixel 1 Pixel 2 Pixel 3 … Pixel M

… … … … … … …

Image N Targe Value N Pixel 1 Pixel 2 Pixel 3 … Pixel M
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Figure 14. Neural Network Start. 

 

2.2.4. Neural Network Validation 

To validate that the methods previously presented are correct, and to further outline the 

Deep Learning Neural Network Toolboxes capabilities and features, a trial experimentation 

can be conducted for a simplified scenario. For a descriptive example, imagine that a user 

requires a system to determine whether a yellow dot, or pin, is located on the left or right 

side of an images frame. To accomplish this a neural network may be used to perform an 

image classification task. As shown in Figure 15, a pin is stuck into the center of a piece 

of regular white paper.  
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Figure 15. Validation object follow. 

 

The white paper is used to create a neutral backdrop limiting background noises 

obstructions that simplify the scenario. To train such a network a large series of sample 

images are created and assigned target values corresponding to whether the pin is on the 

left or right side of the camera frame, see Figure 16. 

 

Figure 16. Target value of 1 (left), target value of 2 (right). 

 

Note that the sample images are taken at a series of different heights or distances to the 

paper, therefore pin size will be independent of the neural network and not considered. To 

limit the size of the input layer of the neural network all images are scaled such that the 

current resolution is 80x60 pixels. This will leave the input layer size of 4800 neurons, 
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where each neuron is associated to a pixel from the provided image data. As stated in the 

previous section all sample images are converted to greyscale formatting and converted to 

csv file formatting. The total number of samples collected are outlined in Table 1. 

Table 1. Validation Samples 

 Number of Samples 

Test Images (80x60) 19662 

Left 9831 

Right 9831 

 

An equal number of training samples were created for either of the two scenarios; left 

side of camera frame and right side of camera frame. Of these sample taken at random, 

one-third is reserved for later testing and accuracy confirmation. Leaving 13,108 samples 

for the network training process. Within the Matlab launcher the remaining samples are 

divided into the three necessary data groups, in a 70%, 15%, and 15% ratio, as shown in 

Table 2. 

Table 2. Validation and Test Data. 

 Number of Samples 

Training 9176 

Validation 1966 

Testing 1966 

 

These three categories are utilized by Matlab for various subtasks within the training 

process. The training category is used for computing the gradient and updating the weights 

and biases for the next epoch. The validation set is used in monitoring the training process 

and its progress. If the validation set, over several epochs, notices a trend of stagnant or 

increasing cross-entropy for this data set, the training process will stop. If training stops 

the weights and biases at the minimum validation set will be used in the final neural 

network. The final category is the testing subset and is used to provide an unbiased 

feedback of training effectiveness during the training process. If for example the cross-

entropy error reaches a minimum at a significantly different epoch than the validation data 

set it might indicate an issue with the training process. 
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With the training samples divided, the construction of the network architecture must be 

completed by selecting the total number of neurons that will be utilized within the hidden 

layer. In this instance let us use 50 neurons and now train the network. The post training 

results are tabulated in Table 3. 

Table 3. Training Results. 

 Cross-Entropy Percent Error 

Training 6.11 2.73 

Validation 1.63 4.02 

Testing 1.64 3.81 

 

From these results we can see that the final percent error for all three groups was below 

4%. To better understand the training performance of the system several figures and plots 

may be utilized. At the final training epoch, the training confusion matrix, shown in Figure 

17, can be utilized. A confusion matrix provides visual matrix representation of the total 

number of correctly and misclassified data. For each of the three subdivided training 

categories; training, validation, and testing, a separate confusion matrix is given, while a 

total confusion matrix combining the classes is given. For each matrix, plotted along the 

y-axis, the two actual output cases of the neural network are placed while along the x-axis 

the target output classes are denoted. Within each matrix the green squares denote the 

number of samples correctly classified to the target class and the red squares denote 

incorrect classifications. The bottom right square denotes the overall success of classifying 

the output classes. 



24 

 

 

Figure 17. 50 Neuron Confusion Matrix 

 

From here it was clear, that of the sample images used, a total of 405 samples or 3.1% 

failed placement across all three categories. If this is the case, then from the performance 

plot we can determine whether the training was stopped prematurely, or the current model 

is an accurate representation of a trained neural network for the given data. The 

performance plot is shown in Figure 18 and uses cross entropy as a measure of success. 
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Figure 18. 50 Neuron Performance Plot (top) detail zoom (bottom). 
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After 227 training epochs the network had reached a converged solution when no 

significant changes occurred and that the cost function must have reached a local minimum. 

Therefore, the training reached a reasonable conclusion for the training data provided. If 

this is the case, then perhaps by changing the number of hidden layer neurons a better 

performing network may emerge. To test this theory, four trials were run and trained by 

varying the number of hidden neurons within the hidden layer between 10 and 200 while 

maintain the same training data. The results are shown in Table 4. 

Table 4. Varying Hidden Neurons. 

10 Hidden Neurons 50 Hidden Neurons 

Cross-Entropy Percent Error Cross-Entropy Percent Error 

1.22 0.07 6.11 2.73 

3.48 0.31 1.63 4.02 

3.48 0.16 1.64 3.81 

 

100 Hidden Neurons 200 Hidden Neurons 

Cross-Entropy Percent Error Cross-Entropy Percent Error 

0.63 2.27 0.67 2.43 

1.72 3.00 1.84 3.20 

1.72 2.70 1.84 3.76 

 

From these results a stark contrast is found between the four trials. In particular, the 10 

hidden neuron network outperforms the others. The confusion matrix, shown in Figure 19, 

highlights this fact by showing that only 16 samples were misclassified across the three 

categories. 
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Figure 19. 10 Neuron Confusion Matrix. 

 

To visualize how the training performance got to this solution we may check with the 

performance plot in Figure 20. 
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Figure 20. 10 Neuron Performance Plot (top) detail zoom (bottom). 

 

In contrast to the performance plot for the 50-neuron case, training progressed after 

reaching several near convergence states, but eventually took another step to an even lower 

minimum. This demonstrates one of the effects presented earlier where smaller neural 

networks do not suffer from complex cost functions that are prone to getting caught in local 

minima. 
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From these networks we can now test their performances with never before seen held-

out data from earlier. For the four cases this performance data can be seen in Table 5. 

Table 5. Unseen data performance. 

Hidden 
Neurons Percent Correctly Classified  

10 99.71% 

50 96.35% 

100 97.12% 

200 96.57% 

 

From these tests, the best performing network still occurs with the 10 hidden neurons 

confirming the training results. 

As presented, the procedures for training neural networks for object detection have been 

demonstrated. These methods may now be applied to more complex object detection for 

use of object tracking with a multirotor UAV.  
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CHAPTER THREE 

INTEGRATION OF NEURAL NETWORKS TO 

THE INDOOR MULTIROTOR TESTBED LAB 

3.1. Introduction to the Multirotor Testbed 

Within the last two years the development of a multirotor testbed was implemented in 

the Aerospace Robotics Testbed Laboratory (ARTLAB) [17]. ARTLAB is an experimental 

facility in the department of Mechanical Engineering at South Dakota State University. 

The multirotor testbed utilizes eight “Prime13” Optitrack Motion Capture System (MCS) 

cameras for the purpose of real-time tracking of position and attitude of a rigid body, for 

example the AR Drone 2.0, as shown in Figure 21. 
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Figure 21. Aerospace Robotics Testbed Laboratory (ARTLAB). 

 

 The Prime13 cameras, shown in Figure 22, determine rigid bodies by tracking a set of 

retro reflective passive markers attached to a rigid body of interest. Figure 23 shows an 

example of the passive markers utilized by the multirotor testbed. 
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Figure 22. Prime13 Optitrack Motion Capture System. 

 

 

Figure 23. Passive Markers. 

 

This relayed current state, in terms of position and attitude, of the AR Drone 2.0 is then 

streamed to a PC station running Motive: Tracker, an Optitrack proprietary application. 
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Within this application a group of markers may be associated to a single rigid body. 

Depending on the flight scenario, many rigid bodies can also be tracked simultaneously. 

Figure 24 displays the three-dimensional representation of the ARTLAB within the Motive 

software. 

 

Figure 24. Motive: Tracker. 

 

From this representation the position of the eight cameras, in blue, are shown along with 

two rigid bodies, shown in red. The two rigid bodies within this case include the AR Drone 

2.0 and an object of interest. 

From the Motive software the state conditions of the AR Drone 2.0 are streamed to 

Simulink using User Datagram Protocol (UDP), communication ports. The Simulink 

model will then process the information on current and desired drone position, for example 

using a Proportional-Integral-Derivative (PID) controller, to calculate and stream, via Wi-

Fi connection, the required control signals to execute the maneuver. This process is 

pictured in Figure 25. 
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Figure 25. Multirotor testbed structure. 

 

In reference to this testbed structure, a neural network may be implemented to both 

accurately track and command a UAV indoors. This is done by modifying the current 

multirotor model and implementing a neural network subsystem within the control 

framework. The neural network subsystem may then utilize image data from the multirotor 

and output relevant command data to the PI controller. 

3.2. Integration of Neural Networks to the Multirotor 

Testbed 

With an understanding of the multirotor testbed’s functionality and the corresponding 

communication protocols outlining the connections between the model components a 

neural network may now be inserted. Since the neural networks are developed and trained 

within Matlab/Simulink, they must also be implemented in the same environment.  
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3.2.1. Obtaining the Image Data Stream 

The first step in obtaining image data from the AR Drone 2.0, is to connect the PC 

workstation to the Wi-Fi signal transmitted by the UAV, when powered on. When the AR 

Drone 2.0 is turned on, an active video stream is actively uploaded to an IP address and 

port. The video stream utilizes a video compression format known as H.264 or MPEG-4 

and is set by the UAV manufacturer. Because this video format is currently not a supported 

file type within Matlab/Simulink, to obtain this video stream, a separate programing 

environment should be utilized to connect to the video stream and then export image frames 

to be streamed to Simulink for processing or use. For this purpose, Python will be used, 

see APPENDIX I; E for the script. From this Python script, an image stream is captured, 

processed to grayscale, and sent to Simulink using Transmission Control Protocol (TCP) 

communication through the local IP address and an open port. Further image processing 

will need to occur before this image stream may be utilized by a trained neural network. 

3.2.2. Processing Image Data in MATLAB-Simulink 

Through the process of converting and streaming images to Simulink, the image 

becomes mirrored about the vertical direction and the image is rotated by 90 degrees, see 

Figure 26 for reference.  

 

Figure 26. Image Rotation. 

 

To execute this operation the image may be passed through a Matlab Function block to 

correct the image orientation by taking the inverse of the image matrix. Once the image is 

properly oriented, it image must be converted to a single row array using a reshape function 

like that used in the training image conversion process. From this array data type, image 
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data may be passed through a developed and trained neural network to generate useful 

command data for a multirotor UAV. 

3.2.3. Neural Network Model Integration 

Within Simulink, a neural network block may be imported in the control model as 

shown in Figure 27. Where the AR Drone 2.0 wirelessly streams image data to Matlab 

using the previously presented Python script. The image is then processed and sent through 

the neural network. The output of the network can then be used, within the multirotor 

controller, to determine a new commanded state for the multirotor to move to. The 

Optitrack system may be used to provide a third-party observer for comparison of neural 

network performance. 

 

Figure 27. Schematic of the Neural Network-Control Integration. 
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CHAPTER FOUR 

TESTBED EXPERIMENTATION FOR OBJECT 

DETECTION AND TARGET TRACKING 

In this chapter a multirotor UAV in conjunction with the multirotor indoor testbed will be 

used to locate and follow an object. For this purpose, a tennis ball will be used as an object 

for the multirotor to detect. The tennis ball has been chosen for its generic size and uniform 

edges. Although, for all scenarios explored in this work, the transmitted images used in the 

neural networks are in a grayscale format the color of the tennis ball provides a sufficient 

color differentiation between the object and the background wall colors. The ball is free 

hanging from the ceiling as shown in Figure 28 to form a free-floating object. Above the 

object a six-marker object is fastened. This marker object is used so that the multirotor 

testbed may locate and create a rigid body to represent the object for a variety of testing 

purposes using the markers as a control scenario. When initiating an experimental 

maneuver, the marker object will allow the Indoor Multirotor Testbed to autonomously 

center the multirotor for experimentation of the neural network controller. Once the UAV 

has reached a set location within reference and the tennis ball within the field of view of 

the on-board camera, all commanded variables will then be controlled by the neural 

network only. 
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Figure 28. Object Follow Tennis Ball. 

 

For the following sections of this chapter, three separate neural networks will be 

developed for three cases. To determine if the object is; on the left or right side of the image 

frame, on the upper or lower side of the image frame, and if the object is near or further 

away. 

4.1. Neural Network Development and Training 

Using the procedures outlined in section 2.2, three neural networks may be trained to 

accurately determine the location of an object within the drone’s camera frame. For each 

of the three cases the general structure of the neural network will remain constant. The 

input layer will be comprised of 9,216 pixels or the equivalent of an image resolution of 

128x72. A single hidden layer will be used comprised of 100 neurons within the layer. 

Contrary to the validation case, which showed that 10 neurons within the hidden layer had 

the best performance, 100 neurons will be used to accommodate the increased complexity 

of the scenario. And finally, for each case only two outcomes will be available such that 
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the output size of the network is two. Figure 29 shows the Matlab representation of this 

structure. 

 

Figure 29. Tennis Ball Object Follow Neural Network Structure. 

 

When training each of the three neural networks within Matlab the training data will 

segmented into the three training classes as shown in Table 6. 

Table 6. Training Data Segmentation. 

 Number of Samples 

Training 70% 

Validation 15% 

Testing 15% 

 

4.1.1. Neural Network Left Verses Right 

For this network, the output should determine whether the tennis ball is located on the 

left or right side of the image frame. This output may then be utilized to develop 

commanded values to the multirotor UAV, with the intension of keeping the object in the 

center of the image frame, therefore centered with the UAV, as shown in Figure 30. 



40 

 

 

Figure 30. Left Versus Right, Tennis Ball. 

 

To train this network 24,106 images were collected with 50% of the images containing 

the tennis ball of the left side of the image and 50% on the right side. To increase the total 

number of training samples an additional experiment will be explored. This entails 

mirroring all the images about the vertical plane, thereby doubling the total number of 

images. For the mirrored images the target value associated with them will change from 

left to right and right to left. The training performance using this method will be compared 

to that of the other two networks to ensure the viability of this practice. The total number 

of samples is tabulated in Table 7. Where one-fourth of the data will be held out for post 

training performance testing. 

Table 7. Left Versus Right Training Data. 

 Number of Samples 

Total Images 48212 

Hold Out 12053 

Training Remaining 36159 
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The performance plot for the training session is shown in Figure 31. While the confusion 

matrix is shown in Figure 32. 

 

 

Figure 31. Left Versus Right Performance (top) detail zoom (bottom). 
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Figure 32. Left Versus Right Confusion Matrix. 

 

The performance plot validation and testing categories reached a convergent solution 

after 113 epochs. While the confusion matrix only failed to classify 116 images or 0.3% of 

the training data. As for the post training performance the neural network accurately 

classified 98.73% of the never before seen held-out training data. 

4.1.2. Neural Network Up Versus Down 

For this network, the output should determine whether the tennis ball is located on the 

upper half or lower half of the image frame. This output may then be utilized to develop 

commanded values to the multirotor UAV. With the intension of keeping the object in the 

center of the image frame, as shown in Figure 33. 
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Figure 33. Up Versus Down, Tennis Ball. 

 

To train this network 14,880 images were collected with 50% of the images containing 

the tennis ball of the upper half of the image and 50% on the lower half. The total number 

of samples is tabulated in Table 8. One-tenth of the data will be held out for post training 

performance testing. 

Table 8. Up Versus Down Training Data. 

 Number of Samples 

Total Images 14880 

Hold Out 1488 

Training Remaining 13392 

 

The performance plot for the training session is shown in Figure 34. While the confusion 

matrix is shown in Figure 35. 
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Figure 34. Up Versus Down Performance (top) detail zoom (bottom). 
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Figure 35. Up Versus Down Confusion Matrix. 

 

The performance plot validation and testing categories reached a convergent solution 

after 109 epochs. While the confusion matrix only failed to classify 6 images from the 

training data. As for the post training performance the neural network accurately classified 

99.86% of the never before seen held-out training data. 

4.1.3. Neural Network Forward Versus Back 

For this network, the output should determine whether the tennis ball is located closer 

or further away from the multirotor UAV. This output may then be utilized to develop 

commanded values to the multirotor UAV. With the intension of keeping the object within 

a set distance, as shown in Figure 36. 
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Figure 36. Tennis Ball Close (left) and Far (right). 

 

To train this network 14,110 images were collected with 50% of the images containing 

the tennis ball near the drone and 50% further away. The total number of samples is 

tabulated in Table 9. One-tenth of the data will be held out for post training performance 

testing. 

Table 9. Forward Versus Back Training Data. 

 Number of Samples 

Total Images 14110 

Hold Out 1411 

Training Remaining 12699 

 

The performance plot for the training session is shown in Figure 37. While the confusion 

matrix is shown in Figure 38. 



47 

 

 

Figure 37. Forward Versus Back Performance. 

 

 

Figure 38. Forward Versus Back Confusion Matrix. 
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The performance plot validation and testing categories reached a convergent solution 

after 89 epochs. Although the testing and validation data sets reached convergences at two 

different epochs. This behavior may indicate that more training data may be needed to 

improve training. While the confusion matrix only failed to classify 2 images from the 

training data. As for the post training performance the neural network accurately classified 

100.00% of the never before seen held-out training data. Two of these metrics indicate that 

the network is properly trained but further testing with real time dynamic data may be 

needed to confirm performance. 

4.2. Pre-recorded Simulation Testing 

Using the neural network developed to determine if the tennis ball is on the left or right 

half of the image frame, a simple experiment can be conducted to check the outputted 

values of the network with pre-recorded data. In this case within Simulink a 15 second 

video of the tennis ball may be captured and passed through the neural network to visualize 

the outputted values. For this test the camera is moved such that the tennis ball moves 

between the left and right sides of the frame. Figure 39 shows the plotted output of the 

neural network, where if the output is 0 the tennis ball is on the left side of the frame and 

if the value is 1 the tennis ball is on the right side of the frame. 

 

Figure 39. Pre-recorded Simulation Results. 

 

Referencing this outputted response a few observations can relating to the behavior of 

the neural networks. It is seen that for relatively smooth motion from left to right or right 

to left that a sharp transition occurs. This behavior is contradictory to an expected outcome 
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for values near the transition, or center, of the image frame for a binary output model. It 

was expected that a hysteresis effect would occur at this transition zone when the network 

could oscillate between left and right as each case is difficult to predict in reference to the 

other. A few conditions could have a direct effect to this behavior including; the 

translational speed of the multirotor over the transition center line of the image frame, the 

quality of provided training data, or the classification output behavior of the neural 

network. Regardless of the causes of this behavior the simulated response provides a useful 

insight to the real-time response of the neural network. Therefore, using this outputted 

value of 0 or 1 the neural networks may now be implemented in a multirotor dynamics 

model to test their ability to provide reliable commanded values to the testbed. 

4.3. Simulated Multirotor Dynamics 

Within Simulink a dynamic model for the guidance and control of a multirotor UAV 

may be created and utilized for redemptory simulation experimentation to validate and 

verify that the neural networks can provide relevant command data to a flight controller in 

real time. The basis for this model utilizes governing equations of motion for a multirotor 

derived by Tain-Sou Tsay [18]. This model allows utilizes four input commanded values 

to be implemented by the user to simulate real-time flight. These commanded values are 

input into a tuned PI controller as shown in Figure 40. 

 

Figure 40. Dynamic Multirotor Model. 
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4.3.1. Commanded Value Description and Controller Methods 

The four commanded values zc, ϕc, θc, and ѱc correspond to the height, roll, pitch, and 

yaw of the multirotor accordingly. Implementing the three developed neural networks 

within the model, three of the commanded values zc, ϕc, and θc may be adjusted given the 

network outputs while the last commanded value ѱc is left constant at 0. If the up versus 

down neural network determines the tennis ball is in the upper half of the image or if the 

ball is in the lower half of the image then the commanded value for zc, or height, may be 

incremented ±0.005 m. If the in the left versus right neural network the ball is within the 

left or right half of the image the ϕc, or roll angle, commanded value may be incremented 

±0.01 radians. Finally, if the ball is near or further away than the trained distance limit, the 

θc, or pitch angle, commanded value may be incremented ±0.01 radians. Each of these 

incremental changes may be adjusted to increase or dial back the responsiveness of the 

multirotor. 

The commanded values may then be compared to the current state of the multirotor, 

either calculated through known multirotor dynamics, as in this example, or observed 

through the indoor testbed. An associated state error may then be generated and passed 

through a tuned PI, proportional integral, controller. A block representation of this 

controller is shown in Figure 41. For each of the commanded values there will be a PI 

controller associated with it. 

 

Figure 41. Block Diagram of PI Controller 

 

For the simulated experiment utilizing this multirotor dynamic model the proportional 

and integral gains as tabulated in Table 10. 
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Table 10. PI Controller Gains 

zc θc 

Kiz 10 Kiq 3 

Koz 0.5 Koq 1 

Kozi 0 Koqi 0 

ϕc ψc 

Kip 3 Kir 0.5 

Kop 1 Kor 0.5 

Kopi 0 Kori 0 

 

For further detail Figure 42, shows a more accurate but complex representation of the 

PI controller and channel mixer. Following the standard PI controller additional state 

values are utilized to create the PI controller governing equations shown as follows in Eq. 

(18). 

 

Figure 42. PI Controller Schematic. 
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𝑢1𝑐 = 𝐾𝑖𝑧 [(𝐾𝑜𝑧 −

𝐾𝑜𝑧𝑖
𝑠
) (𝑍𝑐 − 𝑍𝑓)−𝑤𝑓] −

𝑚𝑔

cos 𝜃𝑓 cos𝜙𝑓

𝑢2𝑐 = 𝐾𝑖𝑝 [(𝐾𝑜𝑝 −
𝐾𝑜𝑝𝑖

𝑠
) (𝜙𝑐 − 𝜙𝑓)−𝑝𝑓]

𝑢3𝑐 = 𝐾𝑖𝑞 [(𝐾𝑜𝑞 −
𝐾𝑜𝑞𝑖
𝑠
) (𝜃𝑐 − 𝜃𝑓)−𝑞𝑓]

𝑢4𝑐 = 𝐾𝑖𝑟 [(𝐾𝑜𝑟 −
𝐾𝑜𝑟𝑖
𝑠
) (𝜓𝑐 − 𝜓𝑓)−𝑟𝑓]

 (18) 

Where variables denoted by an f indicated sensed or observed state values and p, q, and 

r represent angular rates in the body axis. With a tuned output from the PI controller the 

four commanded thrusts, uc, terms must then be mixed and converted to corresponding 

thrust for each rotor using the following equation: 

 

[

𝑇1
𝑇2
𝑇3
𝑇4

] = [

−1/4
−1/4
−1/4
−1/4

    

0
−1/2
0

−1/2

    

+1/2
0

−1/2
0

    

−1/4
+1/4
−1/4
+1/4

] [

−(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4)
𝑇4 − 𝑇2
𝑇1 − 𝑇3

−𝑇1 + 𝑇2 − 𝑇3 + 𝑇4

] (19) 

 Using this generated thrust, an associated rotor angular rate is calculated using the 

following relationship: 

 
𝛺𝑖 =

√𝑇𝑖
𝑏

 (20) 

Where the index i represents the rotor number, b is the damping coefficient of the air, 

and Ω is the rotor angular rate. These associated rotor angular rates may then be passed 

through the multirotor plant to generate new state conditions. 

4.3.2. Multirotor Plant Dynamics 

The multirotor plant is more descriptively a set of kinematic relationships capable of 

determining state variables given the commanded rotor angular rates. The following 

equations works back from the angular rate to the thrust generated: 

 𝑢1 = −𝑏(𝛺1 + 𝛺2 + 𝛺3 +𝛺4)

𝑢2 = −𝑙𝑏(𝛺4 − 𝛺2)

𝑢3 = −𝑙𝑏(𝛺1 − 𝛺3)

𝑢4 = −𝑑𝑏(−𝛺1 + 𝛺2 − 𝛺3 + 𝛺4)

 (21) 

Where d is the ratio of thrust to the angular moment and l is the position of the rotor 

from the center of gravity. Each of these ui components are then utilized to derive; the 
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body-axis velocities u, v, and w; the angular rates p, q, and r; and the attitude angles ϕ, θ, 

and ψ as given in the following equation: 

 

[
�̇�
�̇�
�̇�
] =

1

𝑚
[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] + 𝑔 [
− sin 𝜃

cos 𝜃 sin𝜙
cos 𝜃 sin𝜙

] − [

𝑞𝑤 − 𝑟𝑣
𝑟𝑢 − 𝑝𝑤
𝑝𝑣 − 𝑞𝑢

] (22) 

Where g is the gravitational constant, m is the total mass of the multirotor, and Fx, Fy, 

and Fz are the three axis forces given by the following: 

 

[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = [
0
0
𝑢1

] + [

𝐶𝑓𝑥
𝐶𝑓𝑦
𝐶𝑓𝑧

] (23) 

In this case Cfx, Cfy, and Cfz are aerodynamic forces in the three-axes. Using these 

relationships, the new state variables of the multirotor are then found and may be used for 

the next sampling step of the multirotor model using the following two equations. 

 

[

�̇�

�̇�
�̇�

] = [

1 tan 𝜃 sin 𝜙 tan 𝜃 cos𝜙
0 cos𝜙 −sin𝜙
0 sec 𝜃 sin𝜙 sec 𝜃 cos𝜙

] + [
𝑝
𝑞
𝑟
] (24) 

 

 

 

(25) 

4.3.3. Simulated Multirotor Object Tracking 

Using the developed model three simulated maneuvers may now be performed to test 

the proposed concept of object tracking using three neural networks for three of the 

command inputs. The first neural network utilizes the up versus down model to provide an 

updated zc value. By supplying a prerecorded video where the camera is moved up or down 

continuously in a smooth motion while holding other degrees of freedom constant. Figure 

43 shows a time history of the commanded height in response to the video stimuli provided. 

The model and neural network react and provide continuous feedback in both the positive 

and negative z direction. 
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Figure 43. Simulated Z response. 

 

Then, supplying a prerecorded video where the camera is moved left or right 

continuously in a smooth motion while holding other degrees of freedom constant, we may 

utilize the left versus right neural network to provide a commanded roll value, ϕc. The time 

history for this maneuver is presented in Figure 44. As is previously observed the neural 

network does provide contiguous and relevant command data to the multirotor, but some 

interesting behavior can be observed near the transition point between the two cases. From 

these points an occurrence know as hysteresis is affecting the commanded output behavior. 

This behavior is likely to occur when an image from the camera could be equally classified 

as wither of the two cases. Regardless of this behavior the sensed state of the multirotor 

remains generally unaffected and continues to track the object. 

 

Figure 44. Simulated ϕ response. 

 

Finally, supplying a prerecorded video where the camera is moved forward or back 

continuously in a smooth motion while holding other degrees of freedom constant, we may 
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utilize the forward versus back neural network to provide a commanded pitch value, θc. As 

with the previous two cases a time history is shown in Figure 45. A similar behavior may 

be observed near the transition point of the motion, where some amount of hysteresis 

causes some uncertainty of correct classification. Although, the sensed state of the 

multirotor tends to remain near the average of these points. 

 

Figure 45. Simulated θ response. 

 

From these simulations it is determined that the three neural networks may be 

implemented with a multirotor controller to provide relevant command values for object 

tracking flight. The next step to be explored within this thesis is to now integrate the neural 

networks within the flight controller for the Indoor Multirotor Testbed. 

4.4. Experimental Indoor Multirotor Object Tracking 

Within the Indoor Multirotor Testbed, the first change between the model and the 

previously presented simulated multirotor dynamics is inputted command values. The 

simulated multirotor controller provided a height, roll, pitch, and yaw while the testbed 

utilizes a commanded x, y, and z location with respect to the system origin. Like how the 

neural networks provided an incremental control to the commanded values depending on 

which classified state the object was within; the same process may then be applied to the 

new commanded values. The first step to correct this differential input type is to simplify 

the experimental conditions the multirotor is presented.  
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To accomplish this several assumptions should be made about the tacking maneuver. 

Within the test bed the multirotor should be placed such that the camera faces the positive 

x-axis direction with the object of interest being located about two meters in front of the 

UAV. The second assumption is that the yaw, ѱc, remains constant at 0 degrees keeping 

the UAV orientation fixed within the X-Y plane. The third assumption for experimental 

tests of the neural networks is that the Indoor Multirotor Testbed with use of the Motive 

software will be used to bring the multirotor into a hovering state near the object, where 

the neural networks will then take control of the commanded values for the UAV. 

A block diagram of the model is shown in Figure 46. 

 

Figure 46. Indoor Multirotor Controller. 

 

The up versus down network will be utilized to provide a commanded height value, zc. 

If the object, within the image frame, is located on the upper half of the image the 

commanded value may be incremented up by a set value to center the object. If the object 

is in the lower half of the image frame the commanded value may be incremented down to 

center the object.  
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The forward versus back neural network will provide a commanded x-axis value, xc. If 

the object, within the image frame, is located near the multirotor the commanded value will 

be incremented down so that the UAV moves away from the object. If the object is farther 

away from the multirotor the commanded value will be incremented up so that the UAV 

moves closer to the object. 

For the final commanded value, the y-axis variable, yc, will be incremented up if the 

object is in the right half of the image frame. If the object is in the left half of the image 

frame the UAV the commanded value will be incremented down. To determine this the left 

versus right neural network will be used. 

4.4.1. Issues Facing Experimental Testing of a Neural Network 

Integrated Controller 

Although the description of the how a neural network is implemented within the Indoor 

Multirotor Testbed was presented in the previous section, several design faults within the 

model have occurred. The presence of these issues prevents the full experimentation and 

testing of the neural networks with real-time flight maneuvers.  

The first of these issues is the latency, or delay, of the TCP communication to present 

an image of the current state of the multirotor to the neural networks in an efficient sample 

time. This latency would restrict the ability of the multirotor to react to real-time object 

occurrences. The second issue to overcome is a result of the configuration protocols of a 

Simulink model. As a Simulink model is initiated, the entire model experiences a 

configuration period for the model to run smoothly. This means that the first sampling step 

of the model take considerably more time to run than the following simulation. If a 

Simulink file has several parallel processes being initiated, a large delay may occur slowing 

the initial processes of the model. The final issue directly relates to the two previous issues 

and in practice is most likely a symptom of these issues. As the Indoor Multirotor Testbed 

utilizes several separate models in communication with one another, the controller model 

and the flight streaming model, each of these models must remain in sync and run at the 

same sampling rate. If one of these models becomes delayed for even a small time period, 

the communications may time out and cancel the model. 
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When performing an in-flight test of the neural networks and the multirotor controller 

model fails to initial before the system timeout. The multirotor may initiate flight without 

proper commanded values and may suffer from a fly away event. A fly away is an event 

where the UAV may take off and be unresponsive to control commands and crash into its 

surroundings causing damage or serious injuries to those around the UAVs environment. 

Until these issues are resolved or address further experimentation will be let on hold. 
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CHAPTER FIVE 

CONCLUSION 

5.1. Summary 

This thesis has presented the methods for development of a neural network-based object 

detector for multirotor object tracking. The methods presented to train shallow neural 

networks was validated using a simplified object detection experiment. Then, using these 

methods three neural networks were trained for three separate cases; to judge if a tennis 

ball is in the upper or lower half of an image frame, to determine if the tennis ball is in the 

left or right side of the image frame, and whether the tennis ball in near or further away 

from the camera. Each of these neural networks was independently tested with a large 

sample of held-out, never before seen, training data. Using this data, each of the networks 

demonstrated an accuracy of over 98.7% when classifying the images into the two possible 

cases. 

Following these performance tests, the neural networks were than implemented into a 

simulated multirotor UAV model that simulates the dynamic response of a multirotor. With 

this model each of the three neural networks was independently implemented within the 

model to test the real-time object tracking performance with prerecorded video. With all 

three neural networks the dynamic model showed that the neural networks could provide 

relevant command data to a simulated multirotor. 

Finally, this thesis outlined how to implement the three neural networks within the 

Indoor Multirotor Testbed in the ARTLAB at South Dakota State University. Although, 

latency issues within the communication protocols of the model prevented real-time flight 

response for object tracking.  
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5.2. Recommendation 

For future work several recommendations can be made to expand upon and further many 

of the methods and concepts presented. The first of these suggested recommendations is 

that further experimentation be conducted to determine the optimum number of neurons 

within the hidden layer of the neural network. Due to the computational time to train and 

test neural networks for object detection it become difficult to test a wide range of networks 

using dozens of different neuron counts, but with enough study an optimum neuron count 

may show that more or less neuron may be needed to effectively track an object. 

The second recommendation is that a wider assortment of neural networks be explored 

and objectively compared. As this thesis utilized shallow neural networks, neural networks 

with a single hidden layer, a deeper neural network, or even a convoluted neural network, 

may reach a compromise in accuracy and computational speed performance. 

Next, more study and experimentation may be made in the determination of resolution 

quality and its effects object tracking performance. If a scenario does not require a high 

level of resolution fidelity at what point does decreasing the pixel count have an adverse 

effect on the neural network. This same methodology may also be applied to removing the 

color from the input image. More study could show that leaving the three-pixel color 

components in tact may result in better neural network performance, albeit resulting in 

higher computational times. 

The final recommendation be that more effort and research be done to decrease the 

computational load of the multirotor model when processing live image data. This same 

study should be assessed with the neural networks themselves to increase the overall 

response rate of the system. This may provide for new opportunities to further the used of 

neural networks as a high-fidelity object-based detection and tracking method. If presented 

in a faster acting method that utilizes less computational power the neural network methods 

may be implemented in small more mobile computer systems, like mobile smart phones, 

for highly accessible controllers for autonomous flight in applications where computational 

resources are scarce. 
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APPENDIX I 

A.  Video to Image Conversion 

%Video conversion Script 
%Input a single Video to convert to '.jpg' file type for each frame 
%For more info: 

https://www.mathworks.com/help/matlab/ref/videoreader.html 
clear all 
close all 
clc 

  
vname_str = '.mp4';   %File Name; input video file name 

  
v = VideoReader(vname_str); %Video read 
% D = v.Duration;   %Video duration time, [s] 
% F = v.FrameRate;  %Avg video frame rate [frames/s] 
% n = v.NumberOfFrames; %Number of Frames 

  
%File name and directory name 
newSubFolder = erase(vname_str,".mov"); 

  
%Create the folder if it doesn't exist already. Stores images in folder 
if ~exist(newSubFolder, 'dir') 
  mkdir(newSubFolder); 
end 

  
ii = 1; %Increment Loop 
while hasFrame(v) 
   A = imresize(readFrame(v),0.1); %Resize image 
   img = rgb2gray(A); %Convert to greyscale 
   filename = [sprintf('img_%03d',ii) '.jpg'];  %Name image 
   fullname = fullfile(newSubFolder,filename);  %Save location 
   imwrite(img,fullname)    %Save frame 
   ii = ii+1;   %increment 
end 
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B.  JPG to CSV File Conversion 

%Converts all .jpg files to a single .csv file with the first column 
%indicating expected output for Neural Network training 
clear all 
close all 
clc 

  
%Set Pixel Count 
[m,n] = size(imread('.jpg')); %Insert the first .jpg file 

  
myFolder = ''; %Set folder containing .jpg images 
filePattern = fullfile(myFolder, '*.jpg'); %Determines file pattern 
theFiles = dir(filePattern); %Creates dir of file pattern 

  
for k = 1 : length(theFiles) %Loops for number of images in folder 
A = imread([sprintf('img_%3d',k) '.jpg']); %Read image 
B = reshape(A',[1,m*n]); %Reshape matrix into single row array 
C(k,:) = [1,B];   %Output 1, Output 2 
end 

  
csvwrite('.csv',C); %Insert desired file name 

 

C.  CSV Combiner 

%Combines .csv files into a random arrangement keeping columns 

consistent for a particular row 
clear all 
close all 
clc 

  
%Open files, add as needed 
A = csvread('.csv'); %File 1 
B = csvread('.csv'); %File 2 
C = csvread('.csv'); %File 3 
D = csvread('.csv'); %File 4 

  
E  = cat(1,A,B,C,D); %Combines files 

  
random_E = E(randperm(size(E, 1)), :); %Rearranges file 

  
csvwrite('train.csv',random_E) %Write new .csv file 
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D.  Training Preparation 

%Prepares and segregates training data for neural network training 
clear all 
close all 
clc 

  
tr = csvread('.csv', 1, 0);         % read train.csv 

  
n = size(tr, 1);                    % number of samples in the dataset 
targets  = tr(:,1);                 % 1st column is |label| 
targets(targets == 0) = 10;         % use '10' to present '0' 
targetsd = dummyvar(targets);       % convert label into a dummy 

variable 
inputs = tr(:,2:end);               % the rest of columns are 

predictors 

  
inputs = inputs';                   % transpose input 
targets = targets';                 % transpose target 
targetsd = targetsd';               % transpose dummy variable 

  
rng(1);                             % for reproducibility 
h = 3;                              % hold out value 
c = cvpartition(n,'Holdout',n/h);   % hold out 1/h of the dataset 

  
Xtrain = inputs(:, training(c));    % h-1/h of the input for training 
Ytrain = targetsd(:, training(c));  % h-1/h of the target for training 
Xtest = inputs(:, test(c));         % 1/h of the input for testing 
Ytest = targets(test(c));           % 1/h of the target for testing 
Ytestd = targetsd(:, test(c));      % 1/h of the dummy variable for 

testing 
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E.  Python Video Socket Stream 

%Access IP Camera in Python OpenCV 

  
import cv2 
import socket 
import numpy 

  

  
% Define Socket Address for Python Simulink Communication 
host = '127.0.0.1'                          % IP Address, Local Address 
port = 8000                                      % Port, use Empty Port 

  
sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) % Create Socket 

for Stream 
sock.bind((host,port))                               % Bind IP and Port 

  
sock.listen(5)             % Listen for Accept Confirmation from Matlab 
(clientsocket, address) = sock.accept()                 % Accept 

  
stream = cv2.VideoCapture('tcp://192.168.1.1:5555')     % Connect to AR 

Drone 2.0 Video Stream 

  
while True:                                     % Loop While Connected 

  
    r, frame = stream.read()                        % Read Image Frame 

  
    %Process Image Data for use in Matlab and Simulink 

% Collect Iinformation of the Incoming Image Type 
    info = numpy.iinfo(frame.dtype)   

% Normalize the data between 0 - 1                    
    frame = frame.astype(numpy.float64) / info.max  

    frame = 255 * frame                              % Now scale by 255 
    frame = frame.astype(numpy.uint8)      % Convert to unit8 File Type 
      

% Convert to Grayscale 
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)       

  
    %cv2.imshow('IP Camera stream',gray)                % Show Image 

  
    %cv2.imwrite('Image.jpg',frame)                     % Save Image 

  
    clientsocket.send(gray)                           % Send to Socket 

     
    if cv2.waitKey(1) & 0xFF == ord('q'):               % Exit Program 
        break 

  
cv2.destroyAllWindows()                                 % Close Windows 
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F. Simulated Multirotor Dynamics 

%Sets Constant Parameters then executes Sim File (DC2) 
clear all 
close all 
clc 

  
%% %Simulation Parameters 
sim_time = 200; %Sets Simulation run duration 
dt = 0.01; %Sets Simulation step time 

  
%% %Parrot Specifications 
b = 1.2953*10^-5; %Dampening Coefficient of rotor 
l = 0.315; %position of propeller from the central gravity 
d = 0.008; %ratio of thrust to angular moment 
m = 0.429; %Parrot mass 
g = 9.81; %Gravity Constant 
Cfx = 0; %Aerodynamic Forces along x-axis, zero for low speed 

operations 
Cfy = 0; %Aerodynamic Forces along y-axis, zero for low speed 

operations 
Cfz = 0; %Aerodynamic Forces along z-axis, zero for low speed 

operations 

  
%Moment of Inertia Values 
Ixx = 1; %Moment of Inertia along x-axis 
Iyy = 1; %Moment of Inertia along y-axis 
Izz = 1; %Moment of Inertia along z-axis 

  
%% %Initial Conditions 
x_0 = 0; %Initial value of position along x 
y_0 = 0; %Initial value of position along y 
z_0 = 0; %Initial value of position along z 
u_0 = 0; %Initial value of velocity along x_b 
v_0 = 0; %Initial value of velocity along y_b 
w_0 = 0; %Initial value of velocity along z_b 
p_0 = 0; %Initial value of angular rate along x_b 
q_0 = 0; %Initial value of angular rate along y_b 
r_0 = 0; %Initial value of angular rate along z_b 
phi_0 = 0; %Initial value of Euler angle around x 
theta_0 = 0; %Initial value of Euler angle around y 
psi_0 = 0; %Initial value of Euler angle around z 

  
%Combined Initial values in vector form 
X0 = [x_0; y_0; z_0; u_0; v_0; w_0; p_0; q_0; r_0; phi_0; theta_0; 

psi_0]; 

  
%% %Command Input 

  

  
%PI Controller Gains for Z 
Kiz = 10; 
Koz = 0.5; 
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Kozi = 0; 
%PI Controller Gains for Phi 
Kip = 3; 
Kop = 1; 
Kopi = 0; 
%PI Controller Gains for Theta 
Kiq = 3; 
Koq = 1; 
Koqi = 0; 
%PI Controller Gains for Psi 
Kir = 0.5; 
Kor = 0.5; 
Kori = 0; 

  
%% %Simulation Run 
sim('DC2'); 
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