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INTRODUCTION

Fresent theories describing polarographic processes zre inade-
guate; for, they do not correctly predict expsrimental results.
Investigations which center on this veriance are actually too few evan
though polarographic anpnlysis is widely employed. Most prebably,
this lack of inguiry stems from researchers being content with squa-
tions which satisfactorily predict the average diffusion current.
However, this use of the average conceals how poorly the instantaneous
time-dependeiice of the diffusion surrent is represented.

Accordingly, this paper attempts to illuminate tha& situation
and do what it can to remedy the problem.

Some authors have sought to make theory agree with experiment
by improving the approximate solution of the accepted partial differ-
ential equation (p.d.e.). BSuch attempts have met with little succesu1
in predicting the instantaneous current. Consequently, a revision of
the basic postulates is suggested.

The present paper points out a flaw inherent in the accepted
Pedeees A corrected p.d.e. is then derived which, however, seems to be
intractable: Nevertheless; not being able to solve the p.d.e. does
not detract from its implications.

. few workers have adopted a nonrigorous apgroach to the prob-

lem and have ohtained better results. &Since# a solution to the naw

1J. Me Markowitz mmd . J. Elvinmg, Chem. Hevs., 5, 1047 (1959).
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pede.e. was not found, the present study also engages in a nonrigorous
research which proves fruitful, yielding better results than have
hitherto been obtainad.

This paper begzins with a compendium of polarography for the
purpose of familiarization. It then explains the nature of the problem
that confronts polarography. This is followed by & derivation of a
now p.d.e. and a derivation of a function that fits the instaneous

current-time data.



POLAROGRAPHY

Around 1920, Jaroslov Heyrovsky invented a method of amalysis
based on the concentration polarizmtion which occurs st a small

electrode im a solution.2 He called it polarography, probmbly to

emphasize thils dependence on polarization.

Thus, one may define polarography as the method of analysis
based on electrolyzing a minute fraction of a solution in a cell
consisting of one& small, easily polarizz=ble, and one large non-

E

polarizable electrode. Subsequent exs=ination ol the current-voltage
curve obtained from the electrolysis reveals the nature znd concentra-
tion of the reacting material.

Origin=lly, the# current-voltage curves were plotted manually at
the expense of mush labor and time. This circumstance was relieved,
and exploitation of polarography was made possiile, when in 1925,

Heyrovsky developed the polerograph. This instrument automatically

racords the current=voltage curves, now termed polarograms.

Agparatus

Figure 1 is a diagram of a simpliiied arrmngement used in
polarographic analysis.
The apparatus consists of a reservoir D that supplies mercury

to a fine glass gapillary £ via & flexible rubber tube. The capillery,

€J. Heyrovsky, Ches. Listy, 16, 256 (1922).

3O. lio Muller, The Polarographic Method of Analysis, 2nd Ed.,
Chemical ducation Publishing Co.: Xaston, Pa., 1956, pe O,




Figure 1. Schematic Drawing of Dropping Mercury Electrode Apparatus



which i betws#en 5 and 10 cm long, has a diameter of about 0.05 mm, so
that by properly adjusting the haight of the reservoir, marcury will
issue dropwise from the caplillary at F, at about the ratz of 3 sec
per drop. The drops, which form small polarizable electrodes, fall
into m powl of mercury fi, which forms a large non-polarizable electrode.
The latter electrode is connected to ths movable contact I of an
accurnte slide wire B. A known voltage A is applied to the ends of tha
slide wire. Hence, the voltage mpplied to the electrolysism cell I
can be calculated from the kmown applied voltage 4 and the setting of
the slide wire contact C. The current through the electrolysis cell,
which does not exceed 50 Ma, is measured by = sensitive, long period,
ballistic galwanometer G.

A swall glass inlet is provided on the Erlemseyer flask for
bubbling an inert gas, such as HZ’ through the molution before

electrolysim.

Operation and Current-Voltage Curve

When conditions in the electrolysis cell &re such that the
rate of reaction at the dropping mercury slectrode (d.m.e.) depends
solely on the rate of supply of reactants by diffugion, then the
current-voltage curve pictured in Figpure 2 is obtained in the following
manner: The applied voltape is gradually increassd by mowing the
contact &, in Figure 1, from left to right across the zlide wire. At
each setting of the contact, the current is measured by the maximum

deflection of the galvamometer G.
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The small linesr increase of current gonstitumtes the residual
current. A large increas# in current occurs when the decomposition
rotentinl of some substance in the solution is reached. This large
incrense in current continues with increasing voltage until the voltage
attains a valua such that =11 the reacting material reaching the
glectrode is electrolyzed. Further increase in voltage will produce
no increase in diffusion current and hence the limiting current is
estzblished.

The wave-height, which is the limiting current minus the ex-
trapolated residual current, is the #iffusien current and is a function
of the concentrstion of the reacting materiml. The half-wave potential
is characteristic of the naturs of the reacting materisl.

Figure 7 is & current-voltage curve (polarogram) recorded by
the polarograph. The case here reprosents two reacting substances
present in the sclution. The oscillations of the broken line follow
the deflections of the gamlvanometer mmd each small peak in the broken
line corresponds to tha falling of a drop. It can now be seen why a
long period is reguired of the galvmmometer, for it is convenisnt to
have the oscillations somewhat localized. # manually constructed
current-voltage curve for this solution would produce & curve which

would be the anvelope of the broken line.

Conditions Hacessary for Observation of the Diffusion Current

A polarized electrode sssumes a potential apprecisbly different

from that at a point in the body of the solution, while a nonpola#izad



electrode does not, regardless of the half-cell reactions occurring at
its surface. HNow in a polarograpvhic cell, the polarized electrode is
the mercury drop and the nonpolarized electrode is the pool of mercury.
Hence, any electromotive forca applied to the cell becomes the poten-
tial of the deme.e. and this potential determines whether a given half-
cell reaction can occur.

At the d.m.e. it is assumed that electron transfer to the
reducible ion occurs immeasurably fast. The rate of the half-cell
reaction then depends on how fast the ion can be supplied from the
body of the solution by virtue of diffusion. Fer a fixed drop the
diffusion rate is proportional to the concentration in the bulk of the
solution. Then the current to the d.m.e. would be constant and one
would say that a steady stute concentration polarization existed. For
a drop prowing under ziven conditions, a related proportionality is
found.

Ions of the reacting material can reach the d.m.e. via diffusion
and electrical migration (migration of charged particles in an
electrical fieldh). The current must be controlied by diffusion, so0,
@#lectrical migration is &liminated by adding a relatively large concen-
tration of an indifferent salt (substance that will migrate but will

not react with the ions being studisd nor with the electrode in the

potential range being useds). Tie ions of the salt effectively limit

“Muller, ops Cite, pe 60

’Toidey pe 624



the potentiml gradient to a diminutive region next to the electrods
so that it no longer affects movement of the ions being investigated.

Wken the drops fsll, thay stir the solution to some extent. If
the drop rate is faster than 3 mec per drop, the stirring becomas
severe, bringing undepleted solution into contact with the d.m.e.
Then, incompatible maxima appear in the resulting current-voltags
curves. Any stirring with a drop rate slower than % sec per drop is
effectively eliminated by adding gelatin to the solution.

Oxygen is reduced at small applied emf's, and the resulting
current masks the currents of other materisls in the solution. There-
fore, oxygen is removed by bubbling inert gas through the solution.
(Its relatively; high concentration in the solution forces oxygen to
diffuse into the bubbles, whereupon the bubble removes it from the
solution,)

The remidual current6 is the result of a small charging or
"condenser" current. That is, the drop and pool of mercury =ct as a
small capacitor in the electrical circuit, and after each drop falls
there ie n new capacitor to be charged. 4is the ewf. is increased, more
charge cin ba stored on the cepacitor, resulting in a linear incremse
of the residual current.

#hen there is more tham oner msterial presemt in the smolution,

it may happen that their current-voltage curves overlap. The gurvea

61. M. Kolthoff and J. J. ILingane, Eolarograggz. 2nd Ed.,
Interscience Publishers, Inc.: New York, 1952, p. 6.
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can often be separated by changing the pH of the soluticn or by forming
suitable complexes.7

In practice, polarographic mmulysis is carried out by first
comptring the half-wave potentiml with thosa that are tabulated for
different substances. With the material identified, one determines the
unknown concentration by compering the diffusieon current with a cali-

bration curve previously obtained with known solutions.

Advantages and applications of Polarography

Advantage58 of the d.m.e. and of polarography are these: (1)
The surface is reproducible, smooth, and continually renewed. (2)
Mercury amalgamates with most metals lowering their decomposition
potential. (3) The voltage needed to reduce hydrogen is highest on
mercury so much work can be done in acid solutiocns without interference
from evoluticn of hydrogen. (4) Simultaneous quantitive and qualita-
tive analysis of several components of a solution.is possible. (5)
Only small quantities of solution are needed, Indeed, & cell designed
by Majer needs only 0,005 ml. of solution. (6) The detecting range
is between 0.1 and 10-'6 M giving the method high sensitivity. (7)
‘The polarograph makes rapid analysis possible and provides a permanent

record of the current-voltage curve.

7Mullnr, op. cit., p. 153,

sIbidc, PEoe 29 and 147-
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With these potent advantages in mind, Otto H. Muller suggests
that polarography be ranked along with calorimetry, spectroscopy,
potentiometry, and other specialized methods of analytical chemistry.9

Applications of polarography are wide and numerous and growing.
In inorgrmic analysis practically all elements as well as many alloys
have been subjected to the method. Many orgenic compounds react at
the d.m.e. and polarography therefore finds uses in biology, biochem=-
istry, and medicine. Polarographic analysis can be carried out in
solutions using nonagueous solvents, making many water-insoluble sub-
stances subject to the method. In research polarography is well suited
for the study of oxidation~reduction phenomenon and rates of reaction

in kinetic studies.lo

9 1bid.

lOKolthoff and Lingane, op. cit., p. 1lb.
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DIFFICULTIES IN THE SCCEPT:D THEURY

Knowing how the diffusion current is #stabliehed, one can now
turn to the problem of formulating mathematical equations which explain

and predict this phenomenon.

Accepted Partial Differential iguation

Reducible ions rmach the dems.e. by virtue of differences in
concentration in varioum parts of tha& medium. The direction of movement
im from high to low concentration regions. The amount of material
reaching, or the instamtanmous current to, the electroide is therefore

given by

i = FAD <%-§)m 1)
[e]

where n is the number of faradmys of electricity requirsd psr mola of
electrode reaction, F is the faramday (96500 coulombs), A is the
instantazneous area of the elsctrodas in cma, D is the diffusion co-
efficient peculimr to the reacting substance and is numerically egual
to the number of moles diffusing scross unit area in unit time per unit
concentration pradient perpendicular to the area (cmi/sec). and
(o¢/ d r)r=r im the concentrmfion gradient (the rate of chmmge of
concentration with raspect to distmnce r measured normal to AIEE )
evaluated at the electrods murfuce r_ (mol-m/cm“).

fwaluation of the partial derivative in ®q. (1) requires
knowledge of the concentration C as a function of the distance r and

thg time t. This function is determined by ths partial differential
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#quation deéscribing diffusion to the electrodsm and the proper boundary

conditisns. The acceptedll form is

¢ 2% 2 3¢ Y _d¢

T T AT ‘2’
r 4 b k- r

C(ro,t) = 0, ﬁ_‘f C(r,t) = co t>o0 (3)

whers r is the distance from the center of the electrode, :g is a
constant relating the cubed radius of the drop to its age, and Eo is
the concentration in the bulk of the solution.

Equation (2) is developed in the same manner as the p.d.e. for
# stationary sphericual electrode, except that the movement of the
diffusing materiazl by thé moving medium is accounted for by the last

term on tha& right.

Ilkovic and Modified Ilkovic Eguations

An approximate soclution to the boundary value problem was
firest obtained by Ilkovic. From this he obtained the diffusion current

equstion

Z
i= 706nD]'/ZCm2/’tl/6 Ma (4)
in which 706 is a combination of numerical constants and m is the
mass rate of flow of mercury (mg/sec). When mll guantities nre

messured in the imits hithsrto indiczted, and when the concentration
is expressed in millimoles per liter, the current (Eg. (4) is in

microamperes ( ua).

11 s : T g
Markowitz and Zlving, op. cit.

(e
(58]
o1
(62}
(&)
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Since the galvanometer measures the average current, ig. (4) is
integrated over the life of the drop and then divided by the drop
time, Emax’ to obtain the theorsticsl average currant:

i= 6O7nD1/ 26a™ Bt;‘:i Uae (5)

Bither BEg. (4) or (5) ime referrsd to as the Ilkovic e-..-_untion.l2

Iingane and Lov:ridge13 have noted that tha concentration
gradient used by Ilkovic in Eq. (1) differs from the concentration
gradient at a plane electrode by & numerical multiplying factor of
(3/7)1/ . They then mrgue that the Ilkovic eguation has neglected the
curvature of the electrode and that a more nearly correct squation
should be obtained by introducing the constant into the concentration
gradient at the stationary spherical mlectrode and using this result

in &q. (1). Thus, they get the following equations, which ars analogous

to Egs. (4) and (5):
1 = 706n0Y%ca?3¢1/6 | 31560n00mY/ 3 1/3 6)

1/2,1/6

- 1/2., 2/3.1/6 29D
i = 607nD” “cm™ “t 1- 4% —i5
ml 3

(7)

Either Eg. (6) or (7) is referred to as the modified Ilkovic

equation.

It is of intermst to notwe that th# modified Ilkovic equation

has mlso besn derived by Kambarm mnd Tachl using the sema procedure

121. Ms Kolthoff and J. J. Lingmne, op. cit., pp. 41-43.

13J. J. Lingane and B. A. Loveridge, J. am. Chem. Doc., 72,
438 (1950).
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as Ilkovic but with a higher order approximation in the intervening

mathematics.l

Comparison #ith Experiment

Bquations (4) and (6) will now be checked against experiment.
In this way, one will be able to judge the validity of the equations
for himself.

A search of the literature prowides only one article by Taylor,
Smith, and Cooter, which has sufficiently accurate results and enough
tabulated data so that it is possible to construct a valid curreat-
time curve.

Taylory Smith, and Cooterl5

performed their measurements on an
aqueous solution of the Cd++ ion whose concentration was 3.018 mmoles/
liter. The solution also contained a Q.1 molar concentration of KC1
(indifferent salt) to stop electrical migration and a .01% concentra-
tion of gelatin to suppress current maxima. The rate of flow of mercury
was 2.305 mg/sec, and the drop time was 3.392 sec. Finally, the
diffusion coefficient for the Cd++ ion can be theoretically calculated16

and is found to be 7.2 x 10-6 cmz/sec. This information is now sub-

stituted into Eq.'s (4) and (6), thus preparing them for plotting

ll"T. Kambara and I. Tachi, Proceedings International Polaro-

graphic Congress, Frague, 1951, Part I, p. 126.

e w Taylor, R. L, Smith and ¥. L. Cooter, J. Research Natl.
Bur. Standards, 42, 387 (1949).

16

Kolthoff and lingane, op. cit., p. 94
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Equation (4) becomem

i= 7O6nD1/ZCm2/3tl/6,aa

- 706(2)(7.2x10~%)1/2(3,018) (2.305)%/3¢/6 4

= 19,9016 a. (8)

Equation (6) bacomes

i = 70600 2cn®/3¢1/6 | 31560nDcnY/>t/> 4a

1/6

- 19.94Y° | (31560)(2)(7.2x10™0) (3.018) (2. 305)Y/3¢1/3 ,a

- 19.96617%6 | 1.818Y/3 a. (9)

Table I contains the data of Taylor, 3mith, zmd Cooter for the
axparimental current-time plot and also m tabulation of cmlculated
quantities used in plotting &gs. (8) and (9).

Figure U4 contains the resulting comparison plots. The first
particular that attracts attention is that neither of the mguations
fits the reml currsnt-time curve very closely at mll. Thas modifigd
Ilkovic eguation seems to b# mm improvement over the Ilkovic eguation;
for it spprousches the reml curve during the latter part of the drop
life.

Throughout the polarographic literature, it im common practice
to compsre the rasults @f experiments with the mverage currants,

Egs. (5) and (7). It generally happens that the Ilkovic equation
(5) yields uverage currents that are lower tham the experimental values.

whe modified Ilkovic equation (7) yields averapge currents that are



Table I, Tabulation of data needed to comnstruct comparison plots

—_— T - TS e e — e T T T e

Ixperimental data Theoretical data for Ilkovic and modified Ilkovic ecuations
: 1
ey Cumi‘ent s /6 &3 19.9wMC  1.8141/3 19.242 /76

> s 1,818
(sec) (ya) (sec) (sec) (sec) ( Ma) (Ua) ( ya)
0,000 0.00 0.0 0.0000 0.0000 0.00 0.000 0.00
0.049 L, 20 0.1 0.6813 0.L6k2 13.58 0.84%0 14,42
0.104 6.67 0.2 0.7647 0.5848 15.23 1.058 16.29
0.453 10.91 6.3 0.8182 0.6694 16.32 ) P 0 | 17.5%
0.204 12,48 Oolt 0.8564 0.7362 17.11 1.332 18. bk
0.296 14,42 0.5 0.8909 0.7937 17.77 1,447 19.22
0.461 16.81 0.6 0.9248 0.8435 18.42 1.526 19.95
0.635 18. 47 0.7 0.9423 0.8079 18.78 1.607 20.39
0.863 20,05 0.8 0.9635 0.9285 19,20 1.680 20,68
1.038 20.95 0.9 0.9825 0.9655 19.60 1.743 21.35
1.451 22,92 1.0 1.0000 1.0000 19.94 1.810 21.75
2,005 24.83 1.5 1.0699 1.1447 21.35 2.037 2334
2. 446 25.94 2.0 1.1225 1.2599 22.40 2.280 24,68
2.937 26.81 2.5 1.1650 1.3570 23.25 2.455 25.71
34392 27.36 3.0 1.2010 1,4420 24,00 2.610 26.61

LT
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17

larger tham experimental values. Such results are easily axplained
with the help of Figure 4., In this figure one observes that the
current correspondimg ko the Ilkovic equation is too large at the
beginning and too small ut the end, two compensating errors that make
its average current comgare more favorably to the true avera e current.
The curremt corresponding to the modified Ilkovic equation is too large
at the beginning, but approachma the true current during the latter
part of the drop life; hence, its average current will be larger than
the true average current,

The preceding conuiderations invmriably lead ona to realize
that any valid comparison between theory and experiment should involve

instantaneous current-time curves rather than averape currents. The

latter procedure hides the real discrepancye.

Urigin of the Trouble

The trouble may be that the &xisting eguations have not properly
formulated or accounted for the phenomena as they were assumsd to
have done. Or, the trouble may be that effects neglected in the
idealizations nre in fact amsserting themselves noticeably in the
Physical situation, so that the existing eguations #o not mccount for
all effects, 0Ur, the trouble with the existing equations may be that

they contain both of the abové chiortcomings.

17Kolthoff and lingane, op. cit., p. 95.



Harkowitz and Elvingla have shown that different approximations
and proczdures used in solving the accepted p.d.e. have yielded poor
results. Indeed, their work supports the first suggestion above
indicating that the given p.d.e. must be in error. 1In pursuing this
idea, it wae found that the accepted p.d.e. does not properly contain
the concept that diffusion occurs with respect to the medium. That
is, in the derivation of the accepted p.d.e., the concentration gra-
dient is applied in terms of a space variable rather than in terms of
n varinble that is fixed with respect to the medium. This fact can be
recognized in Eg. (2); for, here the terms depending on diffusion are
identical for the case of diffusiom up to = stationary spherical
electrede. he next section contains a derivation of a p.d.e. that
properly accounts for this concept.

The last suggestion givan above is the moat realistic and forms
the basis of the calculations carried out in the section following the

next.

lgMurkowitz and ilving, op. cit.



A NEW PARTIAL DIFFERENTIAL EQUATIUN

Assumgtions

The idealizing assumptions made for mathematical expediency are
listed @nd discussed below:

1. The potential of the d.m.e. is large enough to completely
deplete the layer of solution next to the electrode surface. Since
electron transfer occurs immeasurably fast, this is a realistic
assumption and it assures that the rate of remction is dependent on the
rate of supply of the reducible ions. -This assumption provides one of
the boundary conditions, exrression (3), of the preceding section.

2. The mercury drop is spherical. This assumption can be
considered a fact because HacNevin and Baliu19 have used a high-speed
motion picturs camera to verify that the drops are mot only perfact
spheres but that they also make a clenn break from the capillary tip.

3, The volume rate cof growth is constant.  This assumption has
not beem subjected to verification. Lingane20 argues that use of a
nonconstant volume rate of growth would mignificantly change pertinent
equations and go a long way in closing the gap between theoretical
and experimental current-time curves. It is here advamced that the

moving column of mercury will have = relatively largs momentum which

19w. M. MaclNevin and &. w. Balis, J. am. Chem. Soc., 65, 660
(1543).

383, 5. Lingane, J. Am. Chem. Soc., 75, 788 (1953).
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would persist in keeping the rate of flow constant by counteracting
any back pressure caused by the interfaciml tension of ths mercury
drop.

L, The drop is motionless except for its growth. Actually,
the center of mass moves downward as the drop grows, but this motion
is neglected.

5. The solution is consider'ed a body of infinite extent.
Antweileral has utilized an ingenious optical method that photograph-
ically reveals depleted regions in tha solution. Fictures of the
deme.e. in operation show that the effective diffusion layer is about
0.005 cm thick.

6. The mercury drop is isolated. This assumption is at best
an approximation. The pictures by Antweiler definitely show that the
capillary tip obstructs the diffusion field. However, this effact is
neglacted, for its inclusion would eliminate the& possibility of
deriving a pe.d.es.

7. There is no depleted solution left at the capillary tip by
the preceding drop. This assumption ha& not been verified. \hether
or not there is depleted solution left by the preceding drop is a moot
point. Perhaps this question could have been answared in the sxperi-

ments by Antweiler if he hmd taken pictures of the beginning of drop

on He Je Antweiler, Ztschr. Elektrochem., k44, 8588 (1938).
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formation. Indeed, PMarkowitz umd Elving22 use the idea of depleted
solution left behind to develop a theorstical current-time curve

substantially in agreement with the @xperimental current-time curve.
However, assumption 7 is used because the contrary spproach presents

a formidible problem.

Lffects to be Considered

It is now possible to recognize the following three effects
which the pending derivation will fully take account of:

1) Diffusion occurs with respect to the medium.

2) The arem of diffusion incresses with time,

3) The solution originally occupying the valume of the mercury
drep will be present =s a lays=r of solution #round the drop.

Anothar "distinct" effect is that the outwsrd velocity of the
drop surface counteracts the decay of the concentration gradient at
the surface of the drop. However, the solution allows for this as long

as movement of the medium and the boundary are properly introduced.

Derivation g£ the Partial Differential Eguation

First, consider =m infinitesimal spherical shell of the solution
at some particular instant when it iz out a given distance from ths
demees as in Figurg 5. The rzdius of the growing electrods ia denoted

by Lo Taking the voluma rate of growth constant yislds

22
(1959).

Je Bie M:-‘rk()':-'itz and FPe Je l’f;l"ing, io .Ej_o Chem. SOCQ’ I'.|11, 3518



Figure 6. Definition of @
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%Trro =—d=0(t (10)

where m is the mass rate of flow of mercury, d the density of mercury,

and _A the volume rate of flow of mercury, which is constant. Iguation

3

(10) is solved for r,~ to gat
E . (S
ru =E?t = Yt ¢11)

Equation (11) states that tha cubed radius is directly propor-
tional to the age of tha drop.

Sincie the surface G moves with the fluid, elactroreducibls
materiml crosses this surface because of diffusion forces only. If
the ares of murface i is denoted by ﬁg’ then the number of moles EEE

that diffuse mcross this surface in the time dt is given by the

axpression
d¢
dN_ = A D ( ) at 12)
8 g E;r g ¢
likewime, at the spherical surface I one has the mquation
dv. = A_D (__é_c) dt (13)
T~ ' f A r P

Therefore, the rate of chamge of concentration with tim# in the

given spherical shell at a given time is
\3 C de - dkg

=% = —vm (1)

whers V is the volume of the spherical shell,
Now, the subscripts in Egs. (12) and (13) indicate where tha

quantities to which they are applied mre to be evaluated. If the
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concentration gradient 9 C/ O r is to be used, it will have to be
#valuated at some point which is a function of time. That is, one
cannot have the evaluation ( O ¢/ O r)r , because this freezes the
position of surface d. Rather, the evaguation would have to be
(d¢/ 9 r)g(t)‘ which would allow surface G to move.

Instead of carrying out such a procedure, the concentration
gradient with respect to the space variable r will be replaced by a
concentration gradient with respect to a varisble Jg_ that is fixed
with respect to the fluid. The variable _Q is defined as the radius
of a hypothatical sphere whose volume is the same as the volume
enclosed between the surface of the growing drop and a spherical

surface of radius larger than the radius of the drop. This is pictured

in Figure 6. By the definition one can write

b3mr - 4/3mr> = b3 Q7

2= -r3 -2 (5)

where the last equality holds by virtue of Eg. (11).

The new variable Q@ is truly fixed with respect to the medium;
for, it can be argued that each particle of the medium which is at a
different distance from the origin of the mercury drop will have a
different value of Jg_, und each particle will mlways retain its value

of O.

Thg rule for differentimting function of functions gives

2¢c_ 3¢ ag
dr )@ ar
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Now, differentimting Eg. (15) implicitly with respect to r

Bea_g_f_=3r2

Substituting this in the previous equation will give the desired

yields

relation between the concentration gradients:

> € e yc ( 93-1-03)2/3 D €
Br= @2 B(A= ,?2 3¢

In Figure 5, the spherical surface G has the space radius EE'

(16)

so JE_ for this surface is
P 3.r2-17 (17)
The surface F has the space radius £g + dr, so @ for this
surfuce is
@f3=( @g+d@ )3=(rg+dr)3-r03 (18)

Therefore, the volume V of the spherical shell is given by

b T 3
V = 3(r8+d.r)

r - ——

4 17 3 Lo, 3 LT 3
3 z 3 \@g+d@)+—3 ro-

b 3.a .3
3 @g o ™

Expanding this result and neglecting infinitesimals of second and higher

order yialds
V=bfirZr==4T @ad (19)
g g °¢

I'he area of surface G is (using Eq. (17)

: 2 3 3y2/3 (20)
pp= b= TR v )
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while that of F is (using Eq. (18)
= )+1T(rﬂ+dr)2=4‘ﬂ" [( @E+dQ )3+r°3J Et/3 (21)

Finally, substituting Egs. (1&), (20), amd (21) into Egs. (12)

and (13) they become
3y2/3

( Q7 +r
an =T Q2 4+r ¥ . = éc)dt (22)
g g o 02

A é@g

l:( @g-r-d@) )3+r°3]2/}

(qg+a@>2

N, = lﬂT[( @g+ do )2 4 r°3]2/3D

(éc
dQ f

The new concentration gradients are still bearing a general

(23)

subscript. However, one csn now give them m specific avaluation:

dC D¢

(=—) = (T (24)
20 0§

2
28y . (28, . c—é’-c-) (=2 °> (25)
BQ £ B@ +de B
Then Eqs. (22) and (23) become
3 3.4/3 _D d¢C

dN = b4 T ( ) (—=) _dat 26)

g % * %o 982 2Q € ¢

L/3 D éc
aN, = 47| ( dp ) r3]
£ [ R HAC I a'Fy (@g+d9)2 BQ%)+

2
(i g) o d@] dt (27)
Q g
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The infinitesimal in the denominator of Eq. (£7) im neglected.
Then Egs. (26), (27), and (19) are substituted into Eq. (14) to give

the following:

3¢ 2
4 T [( sdp ) ar 3] 4/3D [( ) dé] dt
Dc SEl B 2% ) BQ Og

Dt Lo Ql*dg dt

b Q2 4+ e )28  a
& o >0 (38
= N (28)
L 7 Q'dg at

This equation is true for any sphericsl surfiuce G, so the sub-
mcript g can b& dropped.
llote that
[(Q+d ) 4 o:l‘*/B [(e3 +r.2) +30%¢ +30a)? (dQ)B:IL*/3
.[(@3+r03) +3@2d@:| 4/3

By using Eq. (29) but dropping the terms of second and higher

e 343

order, Eq. (28) becomes

N 4H[(@3+r03)’+/5+1+(Q3+ 3y1/3 zde:l [S’@*S”J@ dQ:ldt

N

Dt 4 ™
- % 4/3 éc
LT (Q2 + v ) D << dt
" e R (30)
LT Q éaQ dt

The numgrator is now expanded and proper terms are camcellad,.

4lso, terms containing second and higher ordeér infinitesimalg are



neglected to give ths following expression

e
hv(g; * w 3)Q/ED 9% dedt + 16ﬂ(c§ +r ’)1/) & .SC dedt
)cz E@ 3¢

o1 b @ deadt

(31)

Finally, by cancelling common factors and substituting Eq. (11),

the desired p.d.e. is obtained

20 _(2. x0)? B% md. g0 S k)
dt o B@ o® ®
The boundarjy conditions are
lim
c(0,t) = 0O, Q — 00 C(@ ,t) _C s B> 0 (33)

In the derivation, effects (1) and (2) have been explicitly
introduced. Now to show that effect (3) has been implicitly accounted
for, the following transformation of coordinates is employed.

@(0O ,%)

clr,T)
(34)

r3=Q3+ yt, 7=t

Again uming the rules lor differentiating functions af functionm

and employing Egs. (34), one gets the relations,

Delr,T) dcdr 9c¢ oY 02 D¢

26 T 3p 50 OT 3@ 2 o1 vhi
b2, 1) _2c e 3% Nr® 20 203 @L‘ 3% (e
E TdSene aeae TGETTIN N
}c(r.fl)=}c\ér BCX’I’ Y kC_,_BC (37)
Bt Br }t }:’7’ Bt Brzér \37
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Gubstituting Eqs. (34), (35), (36), amd (37) into Eq. (32)

flves,
X dc . 3¢ gh 20 20 oY o* 3% of Mg
==z D |5~ 5 e e o B 2 _2_
Br 3T 9 ¥ dr r' Or Q dr
d¢ 3% 2 r> Bc] Y ¢
= - D| ==+ —=(Q1 ) - (38)
T [§r2+ r ' @3 or 3r2 dr

Equation (38) should not be compared with the accepted p.d.e.
(k@eping in mind that 7 and t are the seme). The mccepted p.d.e. was
explicitly set up to produce the convective term; hence, one must
conclude that since Eq. (38) mlso contains the convective term, Eg. (32)
implicitly accounts for effect (3).

Neither Eq. (32) nor (36) could be solvad. Indeed, mpplying the
same approximation to Egq. (38) as Ilkovic did to the accepte#d p.d.e.
was ineffective, the trouble being that the approximmtion did not

saparate the indepsndent variables ms it did in the accepted p.d.e.
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A NEW CURRENT-TIME RELATIONSHIP

iL solution to the new p.de.e. would have proved very interesting
and conceivably it might have gone a lonp way in diminishing the
discrepency between the theoretical and experimental current-time
curves. In any event, however, it is certain that the unrealistic
assumptions, (6) and (7), of the preceding section would ultimately
have to be accounted for,

khat follows, then, is a nonrigorous attempt to incorporate all
features that are actuzlly at work in the physical situation. Such
nonrigorous approacheés are not new in polarographic literature.
Nevertheless, the approximations seem more reascnable than those made

by other workers and hetter results mre obtained.

Formulation of u Soluble Problem

The process can be broken down into a series of stages, each
stage of which is diffusion up to a stationary sphericazl electrode.
The concantration [unction for the stationary spherical

elgctrode of radius zo is

sl s B(L Ba2) 2ry w-r—ro -yzd (39)
C(r, = - - + r\/? 2VD1t e y 9
o

from which the concentration gradient at the surface of the electrode

is found to be
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dC 1 1
(T—r-)ro = C(ro + _Vﬁ (Lo)

Since Eg. (40) governs the instantaneous current to the electrode,

the problem reduces to determining how Eg. (40) must be modified before
it can be used to calculate the instantaneous concentration gradient

at the d.m.e.

The modification needs to take into account the following
effects: (1) The velocity of the drop surface enhances the concentra-
tion gradient. (2) Depleted solution lift from the previous drop
hinders diffusion. (3) The capillary obstructs the diffusion field.

i consideration of these effects at a given stapge of the process will

tell how Ege. (40) should be modified.

Solution

Consider the d.m.e. when its radius is roe If there were a
stationary spherical electrod= of radius Eo.that had been in operation
for the length of time that it took for the dem.e. to form a drop of
this size, its goncentration-distance curve would look like Figure 7,
But the result of effect (1) is to displace lower parts of the curve
to the right with respect to higher parts. This change is pictured
in Figure &, where the dotted lines r:present the supposed real situa-
tion for the d.m.e.

From Figure O one observed that the concentration gradient
(represented by the tangent line) at the drop surface is larger than

it would have been if the drop had been stationary from its inception.
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2 r ————

Figure 7. Concentration-Distance Curve for Solid Spherical Electrode

e}

P ety

Figure 8. Concentration-Distance Curve for D.M.E.
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Now, one can se# that kq. (3$) does not give the right variation
of concentration with distance. However, the true picture would be
approximated if some earlier value of t, rather than Eo’ were sub-
stituted into Iq. (39). The correct value of t must be representable
by some function of t , say fﬁfgi.

It should be pointed out that Lingane and Loveridge's modified
Ilkovic equation cam be gotten by choosing f(t) = (3/7)t. This choice
makes semnse from the above argument because (3/7)3 is an earlier time
than t. The way Lingane and loveridge derived their equation is poor.
They got the factor %/7 from a comparison with the Ilkovic equation
which is known to b# in error. One should note, however, that the
modified Ilkovic eguation does fit physical data fairly well for the
latter life of the drop.

This diecussion, then, suggests that a part of {SEl should be
of the form at, wher® a is some constant to be evaluated in a rezsonable
manner., Furthermore, effects (2) and (3) have not yet been treated.
This beginsg to give one an indication of the shortcomings of the
modified Ilkovic equation.

Now, assume the young drop grows in depleted solution. This
would corremrond to having diffusion piroceed for a while before one
begins to coumt the time. That is, there will already exist for tha
naw drop a concentrsation radient comparsable to the gradisnt that
would have bsmen prcduced by the drop at a later time if it hud started

in undgpleted solution. Therefore, effect (2) will be reflected in
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f(t) as an additive (later time) constant, say b. Thus far then,
f(t) =at + b (41)
Effect (3) is interesting because other authors =re not at all
cencerned about it. By studying pictures made by intweiler of the
deme.e., it was decided that effect (3) would be accounted for by
subtracting out a constant area from the area of the diffusion field.
% calculntion was carried through with this idea, using the modified
Ilkovic equztion. The results were surprisingly good. This effect

will be reflected in f(t) via some additive constant. For, the effect

is constant and conseguently cannot be reflected in f(t) as a function

of time. Uf course, tha constant is absorbed in b so Eq. (41) stays

the same.
with Eqe. (41) substituted in Egq. (40), the concentration

gradient at the surface of the d.m.e. is

QC - 1
( S r)r=r° = C(ro TR Df(t)) (42)

where r  is now the radius of the d.m.e. Substitution of Eg. (42)

into #g. (1) yields the instantaneous curremt to the d.m.e.

1 1 -
= = &
i nFADc(r 3 Df(t)) (43)

The subscript on r has besn dropred. Since the instamtaneous area A

of the mercury drop is kmown, Eg. (43) can be rewritten to give

£
i = n¥FDCLT(r + f%ﬁ?%??zg) (L4)
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¥inally, one is concernad with the evaluation of a and b.

First, solve Eq. (4&4) for £(t)i

2 2
1 nFDCL T r
f(t) =at + b = D [i = nFD-ﬁqu r:l (45)

Equation (45) predicts that a plot of the quantity on the right against
time would yield a straight line. In testing this result, the dmta of
Taylor, Smith, and Cooter ars used to rewrite Eq. (45). From Egse.

(10) and (11), and from the data on page 16 one obtainsm

1/3

1/3 " 1/3
m (3)(2.305)
r = (%a t) = l:z (L5 OOT t:, = 0.03’-}[1-1’, cm (46)

Using Eq. (46) and the information on page 16, Eg. (45) becomes

1 { (a>(965oo)(7.2x10'6)g.018)(un)(o.o;uu)zt%]2
at + b = 3

(T)(7.2x10°0) |1 - (2)(96500)(7+2x10™°) (3,018) (4 17 ) (0. 34k) >/

2/3 42
- lgo Oit fec (u7)
l:i - Lell tl73]

where 1 is given in microamperes.

when ig. (47) ie plotted with the experimental velues for i,
(all experimental dats and calculated quantities needed for this plot
are tabulated in Table II), one gets the curve pictured in Figure 9.
This verifies tha prediction axcept for values of time less than O.1
s@éc. This is not surprising for during this short interval of tima the
velocity of the drop surfuce is relatively great mmnd therefore one

does not expect diffusion to bes occurring normally.



Table II. Tabulation of data needed to plot Equation (47)

Experimental Data Theoretical Calculations
Time Current 1.Elt1/3 i-1.81t1/37 13.051;2/3 12.052/3 -
) . i-1.81¢%/3

(sec) (ma) (wma) ( ya) (ua) (sec)
0.049 L, 20 0.66 3. 54 1.75 245
0.076 6.7 0.77 5.97 2,34 154
£.104 £.67 0.85 7.82 2.89 <157
0.204 1o 48 1.07 1.4 4,52 .156
C.256 14,42 1.21 1322 5.82 .194
O.461 16.81 1.40 15.41 7.81 257
0.635 18,47 1.56 16.91 9.66 «326
0.863 20.05 1.7% 18.32 11.87 419
1.038 20.99 1.8% 19.16 13,38 487
1.451 22.92 2.06 20.87 16475 643
2.005 24,53 2.28 22.55 20.75 546
2. bls6 25494 2. 44 23.50 23.61 1.015
2.932 26.31 2.60 24,22 26.70 1.215

3.392 27.38 2.72 2k.66 25.45 1.430

— ———— I —— C———
- e ——
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Figure 9. Experimental Verification of Prediction



One can evaluate a and b using this straight line., That is,
the intercept of the ordinate axis will give b while the slope of the
line will yield a. It is clear that this manner of evaluating
constunts is more reascnable than the way Lingane and Loveridge did.
The &valuation gives

£(t) = 0.392 t + 0.092 (48)

As a check, Eq. (4L) was mubstituted into Eg. (47) and the
resulting current function plotted. This curve coincided with the
experimental curve which is pictured in Figure 4.

To obtain a general result, Egs. (46) and (48) are substituted

into Zg. (44):
i = aFpch T ()Y 3(ha)~V/32/3

+ 0FDch T Gm) 23w a)~23(rp) 20,392t + 0.092)"1/242/3

or, combining physical constants one gets

i = 31560n00nY 2tY3 4 beundY 2cn®3(0.392¢ + 0.092) V233 (49)

The constants 0.3%2 and 0.092 were evaluated using the data of
Taylor, Smith, and Cooter, which represent only one d.m.e. How well
will these constants represent another dem.e.? Of course, the final
mnswer will only come when thers are available more experiments like
that af Taylor, 3Smith, and iooter, mu that one can compare with other
instantaneous current-time curves,

However, the following argument supports the view that Eg. (49)

will ably predict the instantaneous currént to any d.m.e. now in use,
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The general success of the modified Ilkovic equation which makes
use of the constmnt 3/7, suggests that in the present aqguation the
comparable constant 0.392 will alsoc represent most d.m.e.'s.

Pictures meide by intweiler show that the# diametmr of the drop
and its diffusion layer is between 1/3 and 1/2 the diameter of the
capillary at the moment of pending drop fall. Hence, the shielding
e#ffect of the capillary used in any d.m.e. apparatus will be tha same.
Ther: fore, in going from one d.m.e. to another, the constant 0.092
will not change as a result of any "changs' in the shielding affect.

The amount of depleted solution left behind depends on the size
of the fmlling dropr and on tha relation of the capillary to the drop.
Now, even if thers are emall variations in the drop time& and the mass
rate of flow of mercury, the change in size of the famlling drop will
be very small - negligibly smmll in regard to tha amount of deplwtasd
soluition that will be left behind. As argued abovit, the relation of
the capillary to the drop is essentially the same for =11 d.m.®,.'s.
Therefore, the constant 0,092 will not chang® as a r@sult of any

"change" in the amount of dapleted solution left behind.
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SUMKARY AND CONCLUSICNS

It has been shown that the accepted p.d.s. (2) neglects the
fact that diffusion occurs with respect to the medium. This concept
is correctly mccounted for in the new p.d.e. (42). For this reason,
th® new pe.d.®, is theoretically superior to the accepted p.d.e.
However, the new p.d.=., has not yet b@en solvied and the approximations
made with the nccepted p.d.e. get one nowhere with the new p.d.e.

Consequences of the hypotheses that diffusion occurs with
respect to the medium, that the drop pgrows in partially depleted
solution, mmnd that the capillary obstructs diffusion have been
quantitatively developed in a norrigorous manner. Agxresment of the
resulting current-time curve with the expmrimental curve swizests that
the above effects are an essential part of the physical situation.

The success of Ig. (49) also sugpgests that the masa rate of
flow of mercury is truly constant m=s assumed. LUf course this is not

positive proof :znd the assumption needs to be experimentally verified.
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