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NOt· ENCL TURE 

C = specifie heat. BTU p r  lb per degree F p 
2 g = gravitational acceleration, 32.2 ft/se·c 

I= hot-wire current, milliamperes 

I == hot-wire current at zero velocity, milliamperes 
Q 

IC � square-wave current, milliamperes 

J = mechanical equivalent of heat, ft-lb per BTU 

L = mixing length 

L = mixing 1 ngth w 
I\= random signal. voltmeter reading, hot-wire heated, millivolts 

M2 = random signal voltmeter reading, hot-wire unheated, millivolts 

= random signal voltmeter reading, hot-wire heated and square 
wave superimposed, millivolts 

P = static pressure• paig 

P = mean static pressure 

P = fluctuating static pressure 

Pa.bs = absolute pressure, psia. 

P == density 

R._. t 
-lJ V = correlation coefficient of longitudinal an 

ents 

Ru{u; = longitudinal correlation coefficient 

t = time 

T = temperature in the mixing region, degree F 

T8 = sta ation temperature, degree F 

T = maximum free stream temperature,, de ee F m� 

transverse compon-



U = velocity in the direction 

U = mean velocity in the X direction. feet per second 
t 

U � fluctuating velocity in the X direction 

UA = free stre mean velocity in strearn "A•" feet per second 

UB = fre stream mean velocity in stream nB," feet per second 

U = maximum free stream mean velocity, feet per second max 

= longitudinal intensity of turbulence 

U = viscosity 

V = velocity in the Y direction 

V = mean velocity in the Y direction 

= velocity in the Z direction 

W = mean velocity in the Z direction 
' 

W = fluctuating velocity in the Z direction 

X = longitudinal coordinate in the direction of flow, X c O cor­
responds to the location where streams start to mix 

Y - lateral coordinate in the tran verse direction of flow, Y = O 
corresponds to the center of splitter plate 

Z = lateral coordinate perpendicular to XY plane 



CHAPTEB I 

IN RODUCTION 

Turbuletlt mixing of air .• gases of different densities, and gases 

of different kinds a:re of fundamental importance to scientists and 

mathematicians, and are of practical importance to engineers. Turbu­

lence as it occurs in nature is of mysterious nature, and there are 

insurmountable mathematical difficulties in completely analyzing the 

mechanism by which it is produced. While theoretical researchers are 

busy finding new ways and means to solve turbulence proble:rns. the 

practical researchers have been successful in gaining more insight into 

turbulence phenomena by applying semi-empirical theories. With the 

invention of the hot-wire anemometer, it has been possible to measure 

in wind tunnels, the intensity of turbulence, the correlation of 

longitudinal d transverse fluctuating components. the microscale and 

macroseale of small and large eddies, and the t�rbulence spectrum. 

Recently, with the availability of hot-wire anemometer on a commercial 

basis, we have been able to investigate turbulence phenomena that 

previously were confined to more specialized research centers. 

When parallel streams of air, divided by a flat plate, are 

allowed to mix, the mixing boundar·es are extensions of the boundary 

layer initially developed upstream of the mixing zone. s the stream 

leaves the separating p.late, zero velocity at the plate suddenl 

disappears. Momentum from the potential flow is transferred to the 
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boundary 1 yer, and the continuous tr sfer of en rgy causes a lateral 

growth of the bound y 1 er in the mixing zone. This owth of the 

mixing region boundaries would continue indefinitely exc pt for the 

eventual containment of the confining walls. 

The purpose of this investigation as to study experimentally, 

the mean velocity distribution, the intensity of turbulence, and the 

t m erature distribution (when one stream is heated) in the mixing 

zone of two turbulent parallel streams of air. 

A hot-wire anemometer and a random signal voltmeter were used 

to measur the me n velocity and tbe intensity of turbulence. A 

eopper-constantan thermocouple was used to eai:aur@ temperature. A 

special subsonic wind tunnel was already available for this project, 

and only required a few design modifications to make it suitable for 

this p.r jeot. 
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CHAPTER II 

BACKGROUND ON TURBULENCE 

Definition of Turbulence 

When the flu.id particles are traveling in a straight line and 

orderly manner, it is called laminar flow. hen the Reynold's number 

exceeds 2000, this well ordered and parallel flow ceases. In this case 

there is superimposed on the main motion in the direction of the axis 

of the pipe,. a subsidiary motion a.t right angles to it which effects 

mixing . This irregul motion of the fluid particles is called 

turbulence. The motiort is random in nature. Due to its inherent 

property of randomness, turbulence as measured is only useful hen its 

aver ge is take.n ove·r a fin1 te time. 

When a fluid is passing over a 5.urface, the wake behind the body 

consists of a number of--whirling motions which are gen rally called 

vortices. .hen after the fluid has progressed a certain distance, 

these vortic s decompose into the random motion of turbulence . 

Turbulence may be de•fined as being homogenou.s when its scale 

and intensity e independent of the coordinate position. It is further 

defined as being isotropic when the intensity of turbulent fluctuations 

are the same in all directions. 

Development of R ynold's Stresses 

To gain more insight into the phenomena of turbulence, and to 

make a mathematical representation, it is convenient to separate the 
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velocity into me n velocity, and the turbulent velocity fluctuating 

about the mean velocity. The velocity and pressure can be r presented 

in the following form: 1 

(1) 

u = u + u ' - ' 
V = V + V - ' 
w = w + w 

= p 

' 
Where U denotes temporal average of velocity, and U denotes fluctu-

atin or turbulent components. 

The Navier-Stokes equation can be written in the following 

2 form: 
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Where 2 
"\7 denotes Laplace's operator. By replacing the velocity 

the pressure terms in the Navier .. stokes equation by their m 

and 

d 

fluctuating com onents, d by a lying averagin . rocess term by term, 

the following equations are d ducedt 

1H. chlicting, Boundary Layer Theory, Mc raw-Hill Book Comp y, 
e York, 1955, P• 3?0. 

2schlictin , 2E.• cit. , P• 372. 
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(6) 

{7) 
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The above averagin process introduces six new additional terms; 
.--r 
U V , 

-.-. 
V W , 

Reynold's or apparent stresses. The terms; 

u , which are called --.--. 
U V , V W , and 

U are turbulent shearing stresses, as the laminar viscous shearing 
·-

stress in tu bulent flow is negligible. The other three terms {normal 

stresses) � e associated with the intensity of_ turbulence. 

isotro ic turbulence, intensity of turbulence is defined as 

Correl tion of Fluctuating Components 

In 

Ju' 2 /u. 

The correl tion of longitudinal and transverse fluctuations can 

be measured with two hot-wires arrm ed in a single robe in the form 

o x-r y. The correlation coefficient is defined as follois: 3 

3schlicting, .£P_• �-, P• 377. 
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-
t ' 

UV 

This is also termed the shear correlation coefficient since U V  is 

the turbulent shear. 

Turbulent flow has in it a mixture of eddies of all sizes. 

6 

Large size eddies are associated with low frequency and small size 

eddies are associated with high frequency. It is very important to 

measure energy distributed between various size eddies. This can be 

accomplished by studying the spectral distribution of energy over the 

frequency range with the aid of a wave analyses and frequency is 

plotted against percentage of total energy. From this plot, energy 

distributed in various size eddies can be determined. 

The next important analysis thereof in turbulent flow is the 

determination of the si�e or scale of eddies . There are two scales in 

turbulent flow; microscale and macroscale. The microscale is the 

average of smallest size eddies and the macroscale is the average of 

largest size eddies. he size of eddies can be determined by measuring 

the longitudinal correlation coefficient between two longitudinal 
t ' 

fluctuating components u1• and u2 at pints whose transv rse distance 

is Y. The longitudinal correlati n coefficient is defined as follows: 4 

(9) 

4schlicting, �• .£!1•, P• 380. 
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CHAPTER III 

REVIEW OF THE LITER TURE 

Tollmien,5 in 1926, was the first investigator who worked with 

the general problem of mixing air streams. He specifically solved 

the case of a single parallel stream of air, air charging into still. 

air and mixing with it. He started with the equation of motion and 

made the following asswnptions to simplify the solution: 

l. Pressure gradient in the flow direction was zero. 

2. Initial boundary layer thickness was negligible. 

3. Friction due to viscosity was neglected. 

With the application of  Prandtl 's momentum theorem, and intro.ducin.g 

the stream function to satisfy the equation of continuity, it was 

possible to reduce the partial differential equation to an ordinary 

differential equation. -straight line boundaries of the turbulent 

mixing zone were found to vary linearly • ith the axis in the direction 

of flow. 

6 Ku.ethe, in 193.5, extended Tollmien ·• s method of analysis to a 

more complicated case of  the turbulent mixing of  two streams of air at 

different velocities. Kuethe used the same general approach as that of 

.5. Tollmien, Calcu.1.ati n of  Turbulent Expansion Processes, 
N. A. C. A. ,  TM No. 1085. 1945 • 

. 6 A. M. Kuethe, Investigations of  Turbulent Mixing Regions Formed 
by Jets, Journal of Applied Mechanics, Vol. 2, PP• A8?-A95 1 1935• 
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Tollmien. perimental results ere in close a eem nt with the 

theory . When one stream was allowed to mix ' th the oth r stream at 

zero velocit , the mixing boundaries ere un ymmetrical. However, as 

the zero veloci ty str am approached the velocity of the other stream, 

mixing bound ies had a tendency to become symmetrical. 

Corr in , 7 in 1943 , did extensive experimental work . on a heated 

j et of air ent ring a still air reservoir . The experiments ere 

conducted with a three inch nozzle having an outlet velocity of 70 

ft/sec, and a temperature difference of 13°F above the surrounding 

air. A hot-wire anemometer was used to measure mean velocities and 

turbulent v loci ties. Temperatures were mea ured with c per-

const ntan thermocouples, and were found to verge more rapidly than 

velocities . At any cross s ction in the direct · on of flow, fully 

turbulent flow was observed throughout those areas where �he velocity 

as t least one half the maximum velocity. imum velocit was at 

the c nter . The velocity and turbulent flow profiles remained simil 

at distances r ate than 20 diameters from the outlet of the nozzle . 

erimental velocity and temperature profiles r1er compared with the 

theor tic curves bas d on randtl's momentum trans er theory and 

Taylor ' s orticity theory . At any cross section, experiments checked 

fairly well within the distance o one nozzle di meter, but outside 

of this region, xper · mental catter was too great to enable the points 

7s. Corrsin, Investigation of � low in � ly ymmetrical 
Heated Je t of ir, N • • •  A. ,,  CI. fo. 3L23, · -94, 1943. 
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to be fitt d into the theoretical curves. This disc epancy could not 

be expl · ned . 

Abramovich,8 in 1944, dev loped a theory for a plane-parallel 

free stream of a compressible fluid. His theory 

follo · ng two diff .r nt cases : 

s applicable to the 

1. here the mixing boundaries were c used by a stream of r 

entering the medium at rest, the temperature of the stream was differ-

ent than that of the surroundin s and the velocity was less t half 

velocity of sound. 

2. Where the mixing bound _ i s ere caused by a stream of air 

entering th medium t rest, but with a elocity equal to the velocity 

of sound. 

Abramovich applied the same approach as Tollmien except that 

he retained the density function in the equation of motion, nd in 

the continuity equ tion. Also aylor's vorticity th orem w s pre­

ferred over the r dtl ' s mom ntu theorem a it g· ve better corr lation 

b tween theor nd experimental results of  heated jet . d  heated 

streams. By lowering the t mperature of the stream 60°F belo that 

of the surrounding fluid • and at a velocity belo on half the velocity 

of sound, the mixing region boundari s only increased by 0. 7 percent. 

· hen the elocity of the stream as increased from a ery low velocit 

· 8a • •  Abr movich, The Theory of a Free Jet of 
Gas, N • • C. A. ,  TM No. 105 , arch, 1944. 

Com ressible 



to the velocity of sound, the mixing region boundari s decreased by 

1. 3  percent. 

10 

Liepmann and Laufer, 9 in 1947 , studied the so-called half jet 

phenomena here one side of the free stream is bounded by a solid 

boundary. Their experiment covered the oase of one moving stream 

mixing with still air. The initi boundary layer that developed 

upstream of the mixing region was neglected. The divergence of the 

mixing boundaries under these restrained conditions varied linearly 

with the axis in the direction of flow. A two dimensional wind tunnel, 

60 by 7. 5 inches, was specially designed with suitable screens and 

honey comb paper .mailing tubes, to control the intensity of turbu1ence. 

Mean and fluctuating velocities ere measured with a hot-wire anemome­

ter. Both longitudinal and transverse intensity of turbulence reached 

its maximum at the euter edge of the mixing boundaries. 

� 10 Corrsin and Uberio, in 1949, made further studies of a one 

inch, round, turbulent jet, mixing with still air. Experiments were 

also conducted with the jet heated to 570°F. The rate of spread of  

the heated jet was found to be considerably greater than that of the 

unheated jet. 

9H. W. Liepmann and J. La fer, Investigations of ree Turbulent 
xing, . A. C. A. , T No. 1257, 94?. 

10 s . Corrsin and • S. Uberio, Further Experiments on the Flow 
and Heat Transfer in a Heated Turbulent Air Jet, . A. C. A. ,  TN o .  
1865, 1949. 
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Torda and tillwe11 . 11 in 1956 , released a ver comprehensive 

report on mixing of compressible and incompressible turbulent streams . 

and turbulent jets, This was the first paper where the eff.ect of the 

initial boundary layer, developed upstre m of the mixing region . was 

taken into account. The iring boundnries were assumed to be a 

continuation of  the initial boundary layer. The Von Karmen integral 

concept was used b employing the continuity equ tion, the momentum 

equ tion, and the energy equation. Constant exohan e coefficient in 

the form of E = K b  ( U  - U) wa used where K is the dimensionless max 

constant to be determined by experiments, and b is the width of the 

mixing zone , he. experiments showed two important deviations from the 

previous results. First, the boundaries of the mixing zone were found 

to be curved rather than to vary linearly with downstream distance from 

the beginning of mixing . econd, they showed t t a  sudd n change of 

the viscous mechanism at the nd of the separating plate c· used a 

contraction of the mixing zone. 

Chil :\ . t 12 . 1 . ds ana ssoc1a es, in 2, prese ted a solution for two 

dimensional turbulent mixing bet een p llel jets, when the initial 

boundary layer as taken into consideration. Starting with the 

11T • • Torda and H. s. t�llwell, alytic 1 and ' erimental 
Investigations of Incompr ssibl d ompressible Mixing of Str s 
and Jets, W DC Technical Rep t 55347 , 1956 • 

. 1
2 • E. Childs and ssociates, we-Dimensional 

Between Parallel Jets Considering Effects of Initial 
The Universit of .ashington, Department of rechanioal 
October 16 1 1962. 

Turbulent · ixing 
undary Layer. 

gineering, 
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equation of motion, Childs used the method of small perturbation as 

well as constant exchange coefficient to reduce the equation of 

motion to the for of the non-steady, one dimension·l heat conduction 

equation . The heat conduction equation was solved for the v ious 

boundary layer configurations. In the experimental set up, hilds 

used a l/2tt wide screen placed perpen · cular to the direction of flow. 

This screen w s supposed to thicken the initially boundary layer. The 

experimental results were in close agreement with the theory. 
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CHAPTER IV 

TE T F, CILITI 

Description of Wind Tunnel 

A sc·hematic diagram of the wind tunnel is shown in igure I •  

and a complete description of the facility is given by Iverson. 13 The 

wind t nel w s specially d signed to conduct studies on the mixing 

of turbulent stream of air. A high static pressure fan, manufactured 

by the New York Blower Comp y, w s powered by a 15 H .P . ,  3600 R M  3 

phase induction motor. Downstream of the fan outlet, the duct was 

divided into two .streams . There ere provisions to regulate the mass 

rate of flow individually in each stream. U /UB (wher U is the free 

stream velocity in stream " , "  and UB is the free stre · velocity in 

tream "B" ) could be v i d  from 0. 25 to 1. 0. Stream "B" was allowed 

to pass over a steam he ting coil a.a shown in the Figure. The coil 

was suppl�ed with 15 peig steam -which enabled stream trB" to be raised 

32 <>F above the temp rature of tream "A . " Th re w s a damp r t the 

system outlet . here shown in the Figure I ,  by which the vel.ocity in 

th system could be varied from a minimum of 28 feet per second to a 

m imum of 130 feet per econd. 

Mean velocities were m s red in the wind tunnel during prelim­

inary t ts, and it as disco e d th t the velocity profiles were 

13R • • Iverson. The Design of an pparatus for Investigating 
Turbulent ixing of Two arallel · r  .;)tream and lysis of Half-Jet 
Phenomena , • •  Thesis, South akota State University, 1964. 

1 7 3 8 5 4 SOUTH DAKOTA ST ATE UNIVERSITY LIBRARY 
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irregular in shape. A representative plot of  the velocity distribu­

tion at X = 0 is  shown in Figure II. As can be seen from 1'.,igure II, 

there is a 20% increase in velocities along the outside radius of the 

flow. These irregularities in the flow occurred due to a 90° bend 

upstream o:t the test s ction. A distance of  3 feet , between the 90° 

bend and the test section , was not long enough for the fluid to 

recoYer completely . 

To further carry on the experiments ., it was necessary to 

stabilize the flow in the test  section of the wind tunnel. This was 

accomplished by designing a. new miter elbow with 22 carefully con­

structed turn vanes at the bend. The turn vanes had 4 inches of 

straight length in the downstream direction of flow. lso , two screens 

o f  l meshes per inch, . Oll" O .D . ,  were placed downstream from turn 

vanes. The pur ose of the screens was to reduce the intensity of 

turbulence . A 1/2 inch ·· wide ordinary windo screen was also inst led 

p$rpendicular to the direction of flow , and at distance of 1 1/2 

inches from the top of the splitter plate. The purpose o f  th window 

screen as to increase the boundary layer thickness along the splitter 

pl te. 

The velocity measurements . ta.ken fter the above modific tions , 

ere lotted again in Figure II . As can be seen from Figure II 1 there 

is a definite impro ent in he velocit profile. Also . the boundary 

layer has thickened, and the velocity at the center of the splitter 

plate has reduced considerably. 
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Electronic Equipment 

Development of the hot ... wire anemometer has been of great 

importanee in the fundamental research of turbul nee. Both the con­

stant current method and the constant temperature m thod have been 

used extensively for the hot-wire circuitry. 

A HWB3 hot-wire anemometer , ma.nufaetured by the Flow Corpora­

tion, was used for the measurement of mean velocities. The d· sign of 

the instrument was based on the prinoi.pJ.e of the constant current 

method. The hot-wir probe h d on its work'ing end a tungsten filament 

whieh had a diameter of .0003.5" an:d a length of . 044° and it was 

eleetrically heated. The stre&m of air passing over the heated filament 

has a oooling effect due to convective heat transfer. The resistance 

of the filament is a function of temper ture . Thus, a change of 

resistance of the hot-wire filament is due to change in temperature, 

which in turn is due to change of  air v locity. !n t s m ner , chang 

of resistance ean be u ed for the measurement of air v lociti s. 

In the measurement of  fluct atin components, it is very impor­

tant that the temperature of  th hot-wire filament should fluctu te 

t the same frequency as the fluctuating components, I owever ue to 

a finit ther al inertia of the filament, tem erature fluotuations 

actually lag behind velocity flu .:tuations and the sensitivity of the 

instrument is greatly decre ed. To increase this sensitivity a com­

pensating circuit is built into the instrument, which autom tically 

corrects for any thermal inertia lag. 
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A random i al voltmeter, manufac'.tured by the Flow Corpor tion . 
'\. 

\ " � ;, 

·� 
wa us d to me sure the tµrbulent v 1 citie�. The voltmeter had an 

aver i time of 16 seconds which 
1

it an ide-1 instrum nt for 

the true root- an-s u e measurement of r ndom signals. 

A DuMont oseilloscop . , \ ty e 401 , , as used for adjusting the 
' .  

compens ting frequency for the hot-wire anemomet.er output signals by 

the method of square ave c libr: tion. Visual observations of the 

fluctuating components were made oco sionally on the oscilloscope 

screen. 

Equipment for Temperature asurement 

Thermocouple voltage a measured with Leeds and Northrup, 

model . 686 potentiometer, The instrument was calibrated against known 

temperatures. No . 4o copper-constantan wires ere used as thermocouple 

leads, and the thermocouple junction was a ball type welded joint. 

The construction of temperature probe is shown in Figure III. 

Thermocoupl wires er apped i th l o·trician • s t p 

into a . o4t t thick, l/4" O . D. ,  and 15" long plastic tubing. 

d thread. d 

lastic 

material as chosen for it lo thermal conductivity, and in this ay 

th heat conducted along the len th of the tubing wa minimized. The 

orking end of the prob was plugged with a wooden plug. On -fourth 

inch from the orking end ; two oles of . 045" diameter were rilled 

9()0 apart . The thermocoupl junction was aligned with th . 045" 

di et r holes. 



Two holes of 0. 045" diameter 

t Ai r fl o w  

A-A 

Copper-Consta.ntan thermocouple leada 

� Plastic  tubing Wood plug 

Electrician ' s  tape 

15" 

Figure I I I . Temperature probe 

"A" 

7 

---1 0 . 25" i---

I I  A" ._J 
...., 
\D 
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· rhe temperature probe was dju ted in the stream of air in such 

a way that hole #1 was p rallel to the direction of flow. Thus a 

small sample of air would enter through hole ' , and would escape 

through hole #2. In this way there ould be a constant circulation 

of air around the thermocouple junction. 

A small jet of air passing throu ·h the hole would impinge on 

the thermocouple junction . Thus . due to this impact of air , the 

kinetic energy which the air possessed would be converted into heat . 

s a result of this , the instrument would indicate stagnation or total 

temperature . 

The error involved , due to the conversion of the kinetic energy 

into heat , as calculated from the following equation :14 

(10) u2 T = TS - 2 · J C 
g p 

In this equation • T , T5 ,- and U are variables and the rest of the t rms 

are constants. From the measured values of T
8 

and U, and using the 

appropriate constants , T was calculated. 

·l4
s. c. Hottel and A . Kalitinsky , Temperatur Measurements in 

High Velocity r Streams . Journ 1 of Applied Mechanics , Vol, 67 , 
PP• A25-A32 , 1949. 



CHAPTER V 

TEST OCEDURE 
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The test probe was threaded into the fitting at position #1 as 

shown in ]figure I. The splitter plate was raised to its maximum 

position , and was ju.st clearing the probe in the vertical direction. 

The outlet damper was adjusted at the desired position ( full closed 

to full open) . At the full closed position ,  20 percent of  the mass 

was still flowing through the system . The splitter damper was adjusted 

to change the ratio of velocities in the streams .  When i t  was neces­

sary to heat stream "B, n gate valve was opened to allow 15 psig steam 

into the heating coil . 

Measurements were made across the width of the duct every 1/2" 

and close to the splitter plate every 1/4" . The splitter plate was 

lowered to the esired distance and the measurement were again ma.de 

across the duct "idth. he procedure was repleated till the splitter 

plate was at its lowest position. Test probe was then threaded into 

the fitting .t position �2 as shown in Figure I and the procedure was 

repeated. 

For accurate measurements of velocities, r2 versus ( P  u)
112 

abs 

calibration curve was drawn. Frum the calibration c rve, th following 

e uation was derived . 15 

15see Appendix • 
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(11 ) 

This quation was very convenient for calculating the mean velocities 

from the measured values of current and pressure. IBM 1620 digital 

computer was used for the calculations of v-eloci ties� The Fortran 

program is given in Appendix B . 

he intensity of turbul9nce was computed from the following 

16 equation .. 

( 12 )  

le t I
0

, I, � • M2, and M3 are measured quantities . These variables 

are mea ured with the aid of a random signal voltmeter and a hot-wire 

anemometer. By usin these quantities in th above semi-empirical 

equation � th intensity of turbulence is calculated. 

16Bulletin  No. 37D, odel HWB3 Hot-Wire emometer Theory and 
Instructions, p. 33, Flow Corporation, 205 Sixth Street, Cambridge 42, 

assachusetts. 
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CHAPTER VI 

ANALYSIS OF R 1 ULTS 

Mean Velocity Distribution 

At X = o ,  6 , 11. 16 and 21 inehes , the dimensionless parameter 

U/U was lotted against Y in Figure IV, for turbulent streams of max · 
equal velocities. X is the coordinate in the direction of flow, Y is -
the lateral coordinate in the transverse direction , U is the mean 

velocity in the X direction . and U is the marl.mum free stream max 

velocity.  Initial readings were taken to equalize the velocities in 

eaeh stream. The finest adjustment had a maximum free stream velocity 

of 106 feet per second and 104 feet per second in streams "B" and n tt 

respectively . 

A 1/2 inch wide ordinary window screen was installed perpendie-

ular to the direction of flow, and at a distance of 1 1/2 in hes from 

the top of the splitter. This was done to widen out the boundary layer 

at th start of the mixing zone. Further downstream, there as a 

lateral spread of the boundary lay r which can be explained as follows : 

en the fluid travels along the splitter length, as well as when the 

fluid leaves the splitter plate, momentum is entrained continuously 

rom the potential flow. This con J..nuous entrainment of momentum, from 

th potenti 1 flow to the boun �ary layer flo , causes a lateral growth 

of the boundary lay r thickness downstre of the low. The so called 



24 

U
A 

= 104 fee t  per second 

U
B 

• 106 fe t per second 

21 --o-o---0-o 1 . 0 

20 

0 . 5 -u-

18 
■ax 

o . o  

16 1 . 0  

u 
14  0 . 5 

aa.x 

12 o . o  

1 . 0  

10 

0 . 5 rr-
■ax 

8 

o . o  

6 1 . 0 

0 . 5 
max 

2 r:::,� 
� 

o .o  =::> 

0 1 . 0  

0 . 5 
■ax 

o . o  

-� -3 -2 -1 0 1 2 3 

I ( ill )  

Figure IV . V loci ty atributio for tur ulent atreaaa of  

eqwtl Y loci tie • ( le f .  T le 1 ) 



26 

velooi ties, behind the splitter plate, recover faster for lower, 

velocity treams. Based on the behaviour of wake veloeities, and the 

boundary layer thickness law, it is reasonable to conelude that 

mixing boundaries for lower velocity streams a1,i-ead faeter than high 

velocity streams, 

The mean velocity distributi-on, for the maximum free stream 

velooities of 195 feet per second and 49 feet per se,aond in etreams 

"B" and n " reapeotively • was plotted in Figure VIII. 'The minimum 

velocity persists for a short distance downstream of flow,  a.nd then 

there is a smooth transition between two streams. Persistance of 

minimum velocity, for a short distance in the downstream direction, 

ia dt.te to a non-slip condition at the splitter plate. The non.slip 

condition disappears at the end of  the splitter plate. Its effect 

does not disappear up to a distance of 6 inehes from the •nd of the 

splitt,er plate. The mixing boundaries are thicker on the .low v locit 

stream, which would be expected, 

Temperature Distribution 

Temperature measurements were made with stream "B'' heated. 

However • it w s discovered that there ,as also an approximately 8 °:F 

rise of temper ture in stream "A . " nis was due to the excess pres ure 

built behind th heating coils 1 � stream t B. '' This excess pressure 

caused some of the heated air in stream "B" to be mix d with the 

cold air in stream 0A. " Even though the heating coil was located at 

a distance z. 5 feet d(>'wn.stream from the leading edge o f  the splitter 
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velocities• behind the apli tter pl te, recover faster fo:r lower 

velocity treams. Based on the behaviour of wake velocities, and the 

boundary layer thickness law. it is reasonable to conclude that 

mixing boundaries for lower velocity streams spread faster than high 

velocity streams. 

The m an velocity distribution, for the maximum free stream 

velociti s of 195 feet per second and 49 feet per second in streams 

nBn and " '  respectively • as plotted in Figure V III. The minimum 

velocity persists for a short distance downstream of flow, and then 

there is a smooth transition between two streams. ersistance of 

minimum velocity, for short distance in the downstream dir etion, 

is due to a non-slip condition at the splitter plate. The non-slip 

condition disappears t the end of the plitter plate . Its effect 

do s not disappear up to a distance of 6 inches from the end of the 

splitter plate. The mixing boundari s are thicker on the low velocity 

stream, which ould be expected. 

Temperature stribution 

Temperature measurements were made with stream "B" heated. 

Ho ever, it s discovered that there was also an approxim tely 8 F 

ri e of  tem er tur in stream "A . " Tb.is was due to the excess pressur 

built behind th heating coils in tre ' B . " This exce s pre ur 

caused some of the heated a · r  in stream "B" to be mixea with th 

cold air in stream "A . " en though the he ting ooil was located at 

a distance 2. 5 feet downstream from the leading edge of the splitter 
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plate, this dietanoe was not enough to overcome the effect of the back 

pressure. 

Dimensionless parameter, T/T was plotted against Y in max 

Figures V and VII at different cross sections in the downstream direc-

tion of flow. T is the temperature in the mixing region and T is max 

the maximum free stream temperature. The mixing boundaries of_ 

temperature distribution were approximated at those points where the 

temperature in the mixing zone was equal to the free stream temperature. 

e mixing boundaries of temperature were plotted in Figure IX. Heat 

was found to spread faster than momentum_, as oan be seen from Figure 

IX. The reason for the wider spread of heat than of momentum can be 

explained by phenomenological theorems (Prandtl • s  momentum theorem and 

Taylor's vorticity theorem) . 

Prandtl's moment theorem19 is stated as follows : 

(13 ) 
-.--. f U V  = � 1  dY 

dU 
di' 

Where L is called the mixing length, and · s  analogous to the mean free 

path in the kinetic theory of gases. 

Kinetic theory of gases deals with the molecul motion in gases, 

while mixing length theorem deals d th the motion of lumps of fluid . 

The lumps of fluid travel in the direc ion of flow and also travel 

in the transv rse direction. The gh velocity lumps impart some of 

their momentum to lower velocity lumps. 

19 chlicting, 22,• �• t  P• 386. 
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23 Uberio. They measured the following correlation coefficients for 

the case of turbulent flow : 

(15) 

(16 )  

R ' • = T V  

-.--. 
T V  

t ' 
U V  

RT ' v ' as found to be greater than Ru •v • •  which was anticipated since 

the rate of heat transfer is known to be 

omentum transfer. 

e ter than the rate of 

Intensity of urbulence· 

Longitudinal intensity of turbulence W21u was measured wi.tb 

hot- ir emometer and a random si al voltmeter. aximum free 

tream velocitie in str ams "B" and "A were 28 feet per second and 

26 feet er second respectively. Intensity of turbulence as plotted 

a ainst Y in Figure XI at X = O, 6, 11, 16 and 21 inches. In the 

potential flow at X = O, the intensity of turbulence remains constant. 

Close to the mixing boundaries, the intensity of turbulence starts to 

incre se, and reaches its maximum point at the center of the separating 

late. h turbulence mixing boundaries were approximated at those 

points wh re intensity of turbulence w a t its minimum. rther out-

ward, the int nsity of turbulence emained constant. Further 

23corrsin and · Uberio, 2R,• ill• • P• 15. 



downstream ef X = O, the mixing boundaries of momentum and the mixing 

boundaries of turbulence spr ad laterally. On comparing Figures X I  

and IV • the mixing boundaries of momentum and the mixing beundaries 

of turbulence follow the same pattern. 

The intenei ty of turbulence for a maximum .free stream veloei ty 

of 130 f .eet per second and 127 feet per second in streams "B" '  and 

"A:" res actively, was plo,tted against Y in Figure X II. The mixing 

streams. 1I'his is expected from the faet that low veloei ty streams 

spread faster than the high velocity stre.ama .  

Tbe intensity of turbulence at the eente� o f  the sep ating 

plate waa plotted in Figure XIII . .At X :; o, the intens-1 ty of turbu-

lenee is at its, maximum, and further downstre there is a deca1 of 

intensity of turbulence. As a result, the turbulent velocities ar 

trans!err d into mean velocities . ean velocities are, at their 

minimwn at = o , and further downstrea:rn they a.re in. the proo es of 

recovery .  

A s  can be seen from Figure XIII, the intensity o f  turbul.enee 

. f d 24 
is highe� for lo vGl()city streams. Wattendor a» . Kuethe, in 

1934. measured longitudinal turbulence in · r  flowing through a pip 

at various Reynold's numbers, and foun the intensity of turbulence 

24 • ··1 . wattendorf and A. M . Kuethe, Investigations of Turbul nt 
Flo·w by Means of"' the Hot•Wire Anem.omet.er, J·ourna.l of Applied Physics, 
Vol. 5, PP• 153•164, 1934. 
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higher for low Reynold • a numbers. Laufer ,25 in l950 t conducted exper­

iments on a fully developed turbulent flow in a channel , and found 

the intensity of turbulence higher for lo"' Reynold·• s numbers. 

25J. Laufer, Some Recent Measurements in a Two•Dimensional 
Turbulent Channel , Journal of the Aeronautical Sciences, Vol. 17, PP• 
2??-287 . 1950. 
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CHAP'rER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Summary of Results 

l .  The design modifications 1n the wind tunnel introduced the 

following flow chairacte:risties : 

a. The velocity profiles a.t the test section were flat, 

b. The intensity of turbulence was reduced to about 3.0%. 

c. The boundary layer at the start of the mixing zone was 

widened. 

In view of the above results, the wind tunnel is ready for 

more qualitative and quantitative exp riments. 

2. The mixing bound ies were not a straight line £unction of 

the downstream distance, but were curved. 

3. The mixing boundaries of lower velocity stre .s ere found 

to spread faster than high velocity stream . 

4. The spread of heat was found to 'be greater than the spread 

of momentum. 

5. The mixing boundaries of momentum, and th mixing bound ies 

of turbulence follow the same p ttern. 

6. The intensity of turbulence -as higher for low velocity 

streams. 
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Recommendations 

It is hi hly recommended that the work on this project should 

continue beyond the present investigation. The extension of the 

present investigation may include the following: 

1. random sign correlator and a sum-difference control 

unit might be purchased from the Flow orporation. These 

instr ents with the combination of a random signal volt­

meter could be used to measure the longitudinal and the 

tr averse components of turbulence, the correlation between 

longitudinal and  transverse components , and the correlation 

between two longitudinal component . As to the author's 

knowledge, these parameters had not been measured pre­

viously in the wind tunnel for the particular case of 

mixing of two turbulent streams. en, if there might be 

a certain amount of duplication, the importance of thi 

project should not be minimized. c rtain amount of 

duplication is rather a necess ry and an important part of 

applied research. 

2. he temperatur difference between two streams might be 

increased. This could be accomplished by either increasing 

the surf ce area of the exist:ng steam heating coil or by 

supplying the st am at a increased ressure. Further, 

ther could be a possibility of install.ing an electric 

heating coil in s ries with the existin steam heating 

coils. 



3. As mentioned earlier on page 26 , there was an 8°F rise of 

temperature in stream "A . " This was due to a back-pressure 

buildup behind the heating coil in stream "B . n This might 

be remedied by installin a restriction in stream 0A" equal 

to the amount of restriction caused by heating coil in 

stream "B . " Thus , the temperature difference between · two 

streams would increase by 16°F. 

4. Further investigation might include the application of hot­

wire equipment for measurements of temperature and temper­

ature fluctuations. 
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APPENDIX A 

For the accurate measurements of mean velociti.es t the hot.-wire 

probe was calibrated. 

is shown in Figure XIV. 

2 · '  -- 1/2 The calibration curve of 1 - vers\ls ( P  .b tJ )  a e 
The velocities and static pressures were 

measured with a conventional pi tot tube and inclined manometer.a . 

For the hot-wire anemometer, a resistance ratio of  1 . 2  was 

selected and became a standard for _subsequent measurements. The 

galvanometer needle was more stable at this resistance ratio. 

As can be seen from Figure XIV, the ealibrati·on curve is a 

straight line. From this curve, the following equation was derived : 

This equation is in a very convenient form to compile a computer 

program . 



50 

20 

10 

Reaiatance ratio • 1 . 2  

50 60 70 8o 
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90 100 1 10 

Figure XIV .  Hot-wire prob cal i bra tion cur•• 
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AP ENDIX B 

A 1620 digital computer W' S available for the computation of 

mean velocities and intensities of turbulence. Fortran language was 

used to write the oomputer program. The following equation was used 

to calculate the mean velocities: 

To avoid any confusion between floating-point varie bles and fixed-point 

variables, the symbols in the above equati.on had to be replaced as 

follows : 

I =  CI 

p b C 
p a s 

u = u 

hot-wire current, milliamp res 

absolute pressure, psia 

me velocity . feet per second 

The Fortr program was written s follows : 

65 FO T (F7 . 3)  

4o FO T (F8 . 3 , F8 . 3 , F8 . 3) 

1 READ 65 , P 

READ 65 , CI 

CU = CI * CI 

co = cu - 3750.0 

C = CO * C 

CF = P • 34276. 87 

U = CA/CF 



PRINT 4o, U , P , CI 

GO TO l 

END 

49 



AP ENDIX C 

The following equation was used to c culate the intensity of 

turbulence : 

J;z 

u I 

The symbols in the above 

IC - VIC 

I =  VI 

I = VIO 
0 

f\ = VMl 

4 IC 
2 

2 

[1 - ,�/] M 2 
3 >\

2 

equation were replaced as follows : 

square wav current, milliamperes 

hot-wire current, _milliamperes 

hot-wire current at zero velocity, milli-

amperes 

random signal voltmeter reading , hot-wire 

heated , millivolts 

random signal voltmeter reading , hot-wir 

unheated, millivolts 

random si al voltmeter reading, hot-wire 

heated and square wave sup rimposed , milli­

volts 

intensity of turbulenc 

The Fortran pro ram was written as follows: 

4o FO T (F . 6 , 6Fl0. 4) 

LE = CDSF (9. 0 )  



2 AOE ;: RCDF (l .O )  

VIC = GE!'F (1042. 2)  

VI = GE'l:f (1083.1) 

VIO = Gt�F (1123. l. ) 

VMl = GETF (1174. l )  

VM2 ;;: GETF ( 1212. 1 )  

VM3 = GErF (1264.1) 

B ';.t 4. o • VIC 

C = VIO/VI 

D = C • C 

DE = 1. 0  • D 

DI = VI *  DE 

VM4 = (VMl • VMl ) • (VM2 • VM2) 

VM.5 ::; {VM3 • VM3) - (VMl • VMl) 

= VM4/VM5 

VMS = SQRTF(VM) 

DS = B/DI 

A = DS * VMS 

PRINT 40 , A , VIC , VI , vro , VMl , VM2 , VM3 

GO TO 2 

END 
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Table 1 .  Velocity and Temperature Distribution for Turbulent Streams 
of Eqllfll Veloci ti es . ( Ref.  Figures IV and V )  

-4 -3 -2 

104 . 50  104. 50 104 . 75 

104. 1 104 . 1  105 . 6  

96 . 6  95 . 5  96. 6 

104 .75 104.oo 104. 50 

105 . 6 101 . 1  104. l 

96 . 5 96. 7 96 . 6  

104. 5 104 .o  104. 50 

104. 1 101. 1 104. 1 

97. 9 96 . 6  97 . 0  

104 . 75 104 . 00  104 . oo  

105 . 6 101 . l  101 . 1  

96 . 6  96 . 6  97 . 8 

104 . 50 104. 50 103. 00 

104 . 1  104 . 1  95 . 3 

97 . 9  96 . 5  99 . 1  

ba � 14 . 407 psia 

Y (in )  

-1 0 

104 . ,50 83 • .50 

104. 1 21 . 02 

96 . 6  98. 2 

101 . 25 88. 50 

85 . 6  33 . 7 
98 . 6 105.0 

102 . 0  95. 50 

89 . 7  58 . 4  
99. 8  106. 7  

100. 00 97 . 00 

79 . 1  64. 8  

101 . 4  106 . 7  

100 . 00  99 . 75 

79 . 1 77 . 8  

100. 8  105 . 0  

1 2 3 

104. 75 105 . 25 104. 25 

· 105 . 6  108 . 7  102. 6 

118 . 1  118. 1 118. 8 

101 . 25 104 . 75 105 • .50 

85 . 6  105. 6 110. 3 

112. 7 118. 2 116 . 6  

95 . 50 104 . 75 105. 25 

58. 4 105 . 6  108 . 7  

114. 5 118 . 1  118. 5 

100. 00  104 . 25 104 . 75 

79 . 1  102 . 6  105 . 6 

113 . 1  116 . 8  118 . 0  

100 . 00  103. 00  104 . 75 

79 . 1  95 . 3 io5 . 6  

112 . 7  115 . 0  118 . 0  

4 

104. 75 

105 . 6  

116 . 8  

104. ?5 

105 . 6 

118 . 0  

104 . 25 

102 . 6  

119 . 0  

105 . 25 

108 . 7  

118 . 2  

104. 75 

105 . 6  

118. 0 

t:1 H 
>< 
� 

f\., 
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Table 2 .  Velocity and Temperature Distribution for Turbulent StreU1a 
of Eqwtl Velociti es .  ( Ref .  Figures VI and VII )  

P
b 

a 14. 615 psi.a a a 

Y ( in) 

-4 -3 , -2 -1 0 1 2 3 

87 . 50  87 . 50  87 . 25 87 . 25 75 . 5  87 .00 87 . 75 87 . 25 
29 . 78 3(). 46 29. 78 29. 78 7 . 60 29 . 11 31 . 14 29. 78 
99 . 2 99. 2  99. 2  100. 3  110.0 . 127 . 0  131 .0  \ 131 .  9 

87 • .50 88 . oo  87 . 2.5 85 . 25 79 . 50  86.00 87 . 50  i 87 . 75 
29. 78 31 . 84 29. 78 2J+. 70 13. 18 26 . 53 30. 46 I 31. 14 
99 . 2  89. 9 100. 4 105 . 2 115 . 2  125 . 8  129 . 5  131 . 1  

87 . 50  87 .50 86. 5() 84.75 82.75 84..75 86. 75 87 .75 
3(). 46 3(). 46 27 . 81 23. 51 19. 15 23 . 51 28 . 45 31 . 14 

99. 1 99 . 1  101 . 4  105 . 9  112 . 7  121. 6 128 . 2  130. 8  

88 .o  87 . 50  86. 50 84 • .50 84. 25 85. 25 85 . 50 87 . 75 
31 . 84 29.78 27. 81 22. 94 22 . 38  24.70 25 . 30  31 . 14 

99 . 1 99. 1  103.3  108 . 8  114. 1  122. 1 122 . 1  130.7  

87 . 00  87. 50  86. 50  85.00 84. 50 85. 25 86.50 87 . 75 

29. 11 29. 78 �.81 24. 1 22. 94 24. 70 27 . 81 31 . 14 

99 .0 99. 1  104 . 8  1o8. 1  113. 8 120. 6  126 . 3 129 .7  

4 

87 . 75 
31 . 14 

130. 6  

87. 75 
31 . 14 

131 . 1  

87 . 50 

30. 46 
131 . 1  

87 . 75 
31 . 1� 

131 . 0  

8? . ?5 
31 . 1Jt. 

131 . l  "­
VI 
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Table 3 .  Velocity and Temperature Distribution for Turbulent Streams 
of Unequal Velociti es. ( Ref .  Figure VIII)  

-4 . -3 -2 

92 . 50 92 . 50  90. 00 

. 48.  46 48 . 46  39 . 70 

92 . 50 92 . 50  93. 25 

48 . 46 48 . 46  51 .. 36 

92. 50 95. 00 92. 50 

48 . 46 58.38 48 . 46  

93. 00 92. 50 93. 75 

50. 35 48. 46 .53. 28 

92 . 50 93. 25 97 . 25 

48 . 46 51. 36  68. 35 

�ab- 2 13. 905 paia 

Y (in )  
... 

-1 0 

92.00 83. 25 

46 . 62 21. 22 

I 

92.50 95. 00  

48 . 46  58.38 

93. 75 101 .50 

53. 28 90.07 

99 . 50  105 .00 

79. 36 111. 04 

101 . 25 108. 0  

88 . 68 131 . 40  

l 2 3 

114.o  116. 25 115. 75 

179 . 36  200.02 195. 30 

174. 82 115. 75 116. 25 

113 . 50 195. 30 200.02 

166. 42 115. 75 116 . 25 

112 . 50 195 . 30 200.02 

108. 75 115 . 25 115.75 

137. 20 190. 6.5 19.5. 30  

112 . 25 115 . 25 115 . 75 

164 . 33 190. 65 195. 30 

4 

115.75 

195 . 30 

115. 75 

195 . 30  

116. 25 

200.02 

115. 75 

195. 30 

115 . 75 

195. 30 

\J1 
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Table 4. Intenaity of Tv.rbulence for Str•-• of  Equal Velociti•• 
(ief. Fi.pre II ) 

p aba • 14. 622 ' I • 63.75 ,  
0 

I
C

• 6 . J+o , "
2 

• 2. 25, A •  Ju ' 2/U 

I (in) 

-4 -3 -2 -1 0 1 2 3 

I 86. 50  86. 50  86. 25 86. 25 73.75 86.oo 86.75 86. 25 

M1 76 .00 70. 0  70.0  135.0 185.0 . 135.0 71+.oo 74.oo 

M3 468.o 470.0 465.0 475.0  474.o J+60.o  470.0 470.0  

i -z,.79 'Z'!-19 �- 15 �- 15 5. 7 26. 52 28 . 44  -Z,.15 

A . 106 .097 .cm . 193 . 582 . 202 . 102 . loJ. 

I 86. 50 87 .00 86.75 84. 25 78 .50 85.0  86. 5() 86.75 

"1 
75.00 72.00 Bo.oo 145. 0 185.0 1.50.0  70.00 so.oo 

M3 �75.0 475 .0  505 .0 500.0 513.0 513.0 �.o 470.0  

i -z,.79 29.10 27. 15 22. 36 11. 61 24 .09 r,.79 28. "  

A. . 103 .cm . 10.5 . 215 . 370 . 210 .098 . 110 

I 86.oo 86.oo 85. 50  83. 75 81. 75 83.75 85.75 86.75 

M l 85. 00 65.00 62. 00 98.00 145.0 105 .0 70.0 65. 00  

� 

86.75 
80.oo 

�.o 

28 . 44  

. lo8 

86.75 
10.00 

468.o 

28 ." 

. 097 

86.,50 
62.00 V, 

V, 



Table 4. (Continued ) 

( in )  Y ( in )  

-4 -3 -2 -1 0 1 2 3 4 
11 M3 410. 0 410.0 �.o 420.0  428 .0  425 .0  450.0  415 . 0  408.o 

u 26. 52 26. 52 25. 90 21. 26 17. 16 21. 26 25. 9 28. 44 27.79 

A .106 . 106 . 103 . 17� . 288 . 185 . 105 . 101 . 099 

I 87. 00  86. 50  85. 50  83. 50  83. 25 84. 25 84. 50  86 .75 86. 75 

'\ 75.00 85. 00  85. 00  ll5.0  170.0  115. 0 85. 00  90. 00 75.00 

16 M3 J+65.o 465.0  465.0  �5. 0 49().0 485.0  470.0 472 .0  465 .0  

u 29. 10 z,.99 25. 29 20. 71 20.18 22.-36 22. 93 28 . 44 28. 44 
. .. 

A. . 103 . 120 . 122 . 179 . 266 . 173 . 129 . 124 . 111 

I 86.oo 86.50 85.50 8�.oo 83.50 84. 25 85. 50 85. 25 86.75 

I\ 85.0 8.5 .0 105.0 150. 0 155 .0  1.50.0 105 .0  8o.oo 8o.oo 

21 M3 465.0 Ata5.o 485.0 �.o 48o.o 480.o �5. 0  470.0 472.0 

u 26. 52 z,. 79 25. 29 21. so 20.71 22.36 25. 29 24. 68 28 . 44 

A . 122 . 117 . 1�3 . 219 . 254 . 208  . 151 . 188 . 110 

� 
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