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The thesis shows that the accuracy of the integral method
is retained in the solution of problems dealing with simultaneous
free and forced convection from bodies of revolution. The spec-
ific exemple dealing with combined convection on rotating cones
not only typifies such problems but strongly implies, in general,
that the aecuracy of the integral method depends fundamentilly on
the consistent use of the multilayer concept; the latter reflects
the physical fact that if several generating mechanisms for a
ziven flow property act simultaneously they give rise to cor-
respomdingly different regimes where their influence is felt.
Results of the thesls sye compared with available exmct solutions
of the similarity class @nd found to be in good agreement over a

wide range of Pramditl numbers.
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NOMENCLATURE

A, Cl’ 02, m, n Constants defined in equation

Cp Specific heat at constant pressure

g Acceleration due to gravity

i Local heat transfer coefficient

Nux Local Husselt number %;

Pr Frandtl number

er Local Grashoff number

Rer Local Reynolds number

K Thermal conductivity

q Local heat flux

r{x) Local radius of cone

 d Temperature of fluid in boundary layer

'I‘w Wall tempermture

T, Ambient temperature

u Velocity component in x-direction

v Velocity component in y-direction

w Velocity component in z-direction

uy Characteristic welocity in x-direction in
the boundary layer

X; Yo & Coordinate system shown in Figure I

i Viscosity

P Density

v Kinematic viscosity

o Thermal diffusivity -Ei- , also

coordinate Qe



= ur >

Constant angular velocity

Semi-vertical angle of the cone

T
2. -
W o

Viscous boundary layer thickneass
Thermatl boundary layer thickness
LYY
A5
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1. INTRODUCTION

A yidely used method for the solution of various problems
dealing with laminar boundary layer flows is that originated by
T. von Karman and K. Pohlhausen some forty years lgo*. The basic
idea on which their so-called integral method rests is to satisfy,
for a given set of boundary conditions, Prandtl's boundary layer
equations on the average in contrast to what are commonly called
"exact" solutions, the latter in reality being numerical inte-
grations of Prandtl's equations. The sense of "average' is the
following: The partial differential equations are integrated with
respect to a coordinate locally normal to the surface of a body
whose boundary layer is studied; the upper limit is any positive
number, say Z, where /is greater or equal to a local boundary
layer thickness, there may be several of these. For practical
computations only the strict equalities need be considered. Poly-
nomial representations for the flow fields (i.e., velocity and
temperature) are then assumed, substituted into the various inte-
grals that finally yield ordinary differential equations with & --
the hydrodymammic boundary layer thickness--as one dependent vari-
able. For two dimensional flows and certain flows with rotational

symmetry 6 is, in fact, the only dependent variable as long as

.3
The original works were published simultaneously, both

appearing in 1921 in ZAMM, Vol. I. Later they were discussed and
extended by many other writers. All such pertinent papers are
evaluated in Schlichting's book (9), a standard reference on
boundary layer theory.



dissipation effects are negligible and no transfer of heat takes
place. If heat transfar does occur, it is determined by the
structure of the thermal layer of thickness A, the latter, in
general, being different from & . It is the account of such
differences that strongly affects the smccuracy of the integral
method and forma the basis for the thesis problem.

OQur intent in solving the thesis problem is two fold:
Firstly, we intend to illustrate that th& accuracy of the integral
methoid observed in treasting the simpler two dimensional flow prob-
lems can be retained in solving more complicated problams char-
acterizad by the fact that several generating mechanisms for a
particular flow property (velocity &nd temperature) act simulta-
neou&ly; this is the main reéison for considerimg combiined con-
wection om a cone &pinning in a fluid at reat*i SGecondly, we wish
to show in the simplest possible manner that the accuracy ciin be
retained over a wide range of Prandtl numbers of technical in-
terest. Our main conjecture, forming the basis for the thesgis,
is phat such accuracy depends fundementally on a proper account

of the various generating mechasnism for a given flow property.

L] —

Tha velocity vector V is known to have two easential
components u, w, the first parallel to the cone surface and the
second in the circumferential direction. The first of these may
be induced either by the spin of the cone or by the action of the
buoyancy forca or both; the second is due to the spin alone but,
because the governing equations are interdependent, u and w are
interrelated. Henc&, there act simultaneously two generating
mechanisms for u and w.



By this we mean that, whenever several of such mechanisms coexist,
they give rise, in general, to different regimes where their in-
fluence is felt, the latter being various different boundary layer
thicknesses. While such "multilayer concept” is by no means entirely
new, it has apparently not been exploited in the solution of free
and combined (free and forced) convection problems. Our assertion
is confirmed by the accuracy of the thesis results. We consider
the specific example of a cone whose surface temperature distri-
bution is linear, because this is the only cone flow for which an
"exact" solution of the similarity class exists under the combined
influence of spin and the buoyancy force. The numerical solutions
of the full equations are due to Hering and Grosh (10), and these
together with some unpublished results of Hayday provide the
standards for comparison. The limiting cases of pure forced
convection are also compared with the results of Hartnett and
Deland (5).

Pertinent references on integral methods of solution of
free convection problems for various other geometries are (1, 2,
3, 15, 16, 18). The latter four references employ the simplifying
assumption that the thermal and hydrodynamic boundary layer thick-
nesses are equal, undoubtedly accounting for the significant in-
accuracies when the Prandtl number is different from unity. This
assertion appears to be reinforced by our second set of calcu-

lations in which we too assumed that the thickness of the boundary



layers were the same; these results are shown to be in considerably
poorer agreement with the corresponding exact solutions than those

for which the above assumption is rejected.



2. ANALYSIS

1. Basic Equations and General Remarks on the Solution
Technique.

For all of the subsequent work, it is assumed that the
flow is of the boundary layer type, laminar, steady, with dis-
sipation and curvature effects negligible and physical properties
of the fluid essentially constant, Under these conditions, the
differential equations* expressing the principles of conservation
of mass, linear momentum, energy in an orthogonal, body-oriented

coordinate system (Fig. I) take the form

L1
a":'ﬁ " 20rVv) -0 (2+1)
oY
w 24 y Qu wodr v TU _1dp Cose {2+2)
3 W Y oax o 3y: “€aw '

w olrwy Ly rw) = T(rw)

% N 232 (2.3)
N 29 +xy 209 _ I (O (@8)
X 24 Pr Y%

)
A brief derivation of these equations and the corresponding
integral equations are given in Appendix A.



In (2.1)-(2.4) u, v, w are respectively the x, y, z components of
the velocity field with X being measured along a meridian curve,

y along the local normal and z in the circumferential direction;
r(x) = x min @ is the radius of the cone with half angle @ and 6 =
T - T stands for a local temperature difference. A complete
nomenclature is given on pages iv and v.

The appropriate boundary conditions for our problem are

ulxo) =v (x.0) =0 wix o0 =rQ. 0(x, 0> = 9\»("\

(2.5)
b W (x¥) = Qigy w x, ) =0 lve S(xX) =0
Y>> @ Y > X >®

The set (2.5) states that at the surface the reclative motion between
the fluid and the body is zero, and hence the only non-vanishing
velocity component there is w(%,0), induced by the uniform rotmtion
of the cone. Moreover, the body spins in m fluid otherwise at rest,
the ambiant fluid being at & uniform temperature. The surface
temperature distribution ew(x) muat, of course, be specified. To-

gether, (2.5) and (2.2) imply now that

- Qoo § Cos @

—_—

and standard developmant gives

dP _qCos¢ = YBCosa ©
ox

rol-



¥*

where B is the coefficient of thermal expansion .

L?AS\
~e 2T7lip
Hence, (2.2) may be replaced with

<z 2
M W _wdt _ ) 2u
Ll g = oA = et b %(’é cosd O (2.6)

It is this equation which is mctually used in the comput@tions that
follow.

At this point, it is worthwhile to bring up the general
character of combined (free and forced) convection problems of the
type treated in the thesis. For this purpose, we consider the im-
plications of the set (2.1), (2.3) - (2.6). Equations (2.3), (2.k4),

(2.6) imply that any solution of & combined convection problem
where free and forced convection are of equal importamce must neces-
sarily involve & simultaneous treatment of the equations of motion
and energy. This is true for both exacik and @pproximate solutions.
While the same comment applies teo pure free convection problems,
the solution here is more complicated becmuse of the z-component
equation of motion (2.3) coupled thrsugh w to (2.2) and thraugh 6
to (2.4). The simpler problems of pure freg convection and pure
forced conwection afford the followinz simplificationst In the
first case, the motion is due solely to the buoyancy force, and
hence, w = 0, i.e., in (2.6) EF' ¢t _~ 0 and (2.3) does not

Ly ax
appear; in the s=cond problem the buoyancy force is zero, i.e.,

*®

The first statement is a consequence of the fact that at
the edge of the boundary layer not only the velocities but also all
y derivatives vanish.



94 PCosdd =0 and so the enexrgy equation (2.4) is uncoupled from
the equations of motion (2.3), (2.6), the latter remaining coupled
through w. 1In the special case of very slow rotation, we may met
W = 0 (but not w ) and, hence, when free convectiom is the deminant
mechanism, forced convection affects, through the w equation, the
surface stresses but contributes nothing to heat transfer.

He seek approximate @olutions to tha problems outlined
above. The starting point for all of the subseguent numarical

conputations 1is proviided by the integral equationa corresponding

respectively to (2.6), (2.3) and (2.4). These are:

(5,4)

? o *
d | 2 _lc.2 e 2
(&«-;\‘[u dy %gow ay  =ra Tl ghtoss ooy (2.7)
®
3,2) fuwd aer u oM
( dx+ x ) ) ! 'b‘{\\(r'o . (2.8)
Cm A)
( d +L ) \ue dy - _ = 128
ax X Xo Pr 3\1\%0- (2.9)""

where % stands for the thickness of the velocity boundary layer

and A denotes tlic thickness of the thermal layers.

*
(%, A), read D or A. A brief derivation of eguations
(2.7) and (2.8) is given in Appendix B.

*%
( 2, 8), read o A.



The proper choice of the limit in the first integral of
(2.7) depends fundamentally on both the Grashof and Prandtl numbers*
arnd must be made for each particular numerical example. While it
is, of course, possible to write (2.7)-(2.9) with one limit, say L,
where L > %, A, we have not done so in order to better emphasize
the Prandtl number dependence of the solutions and hence, the general
"two-boundary layer" nature of the problems. The notation used in
(2.7)-(2.9) indicates clearly that the buoyancy and thermal effects
influence the limits on u and 6 but not on w. This is further re-

flected in the form of the assumed profiles for the velocity and

thermal fields,

7 T . T
[t (%.8) \ L x%.u\ (2.10)
2
o= h-Y) (2.11)
o i
T WA- %X s (2:88)
G\N - A X

These well known dimensionless parametexrs are of fund-
gmoantal importance in heat transfer problems. Their influence on
the various heat transfer calculations is made precise later. A
quick qualitative assessment of their importance may be obtained
independently on the basis of dimensional analysis as indicated in
Appendix C.
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The profiles (2.10)-(2.12) form the simplest set satisfying
the boundary conditions (2.5)*. We hmve chosen these primarily for
simplicity and, as customary, justify their use a posteriori by
comparims our results with exact theory, other approximate results,
and, whenever possible, with experiments. Moreover, our main aim
is to calculate the Prandtl number influence on heat transfer, and
for this purpose the profiles prove to be fuite adequate. That the
Prandtl number greatly affects the hemt transfer 1is well known from
available exact solutioms; it may already be anticipated from the
order of magnitude analysis yielding the differential equations (2.1)-
(2.6) and showing that %rvf?r. Hence, for Pr << 1, A > &, for
Pr > 1, A << b, The required treatments for high and low Prandtl

numbers are necessarily different from one another; and, therefore,

*More precisely, (2.10) and (2.12) are the lowest order poly-
nomials comsistent with (2.5) and the "smoothing condition" at
y = A, the latter requiring that tha first derivatives vanish there.
It must be mentioned, however, that (2.10)-(2.12) do not satisfy all
of the conditions implied by the differential equations (2.1), (2.3),
(2.4), and (2.6). Thus,

% 2
(o widr _you y=o = QBCosé Ow

r ox NZ
’07'(\'\»)\ =0 a‘z__e \ =
9% =0 X% N=p

which are immediate consequences of (2.6), (2.3), (2,4) and the
boundary conditions (2.5). While we realize this, the purpose of
the thesis is to assess, in the simplest way, possible improvements
in the integral method applied to combined convection problems;
hence, our choice of the polynomials.
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the presentation is divided accordingly. The low Prandtl number
analysis requires separate consideration of pure forced convection,
er = 0, from the more general case er # 0. While at low Prandtl
numbers this split-up is dictated by the choice of the profiles,
no corresponding separate treatments are required at high Prandtl
numbers where the limiting cases of pure free and pure forced
convection are obtained by taking &ppropriate limits of the more
general results. All numerical results for Pr << 1 and Pr => 1

join smoothly at Pr = l.

2. Solutions Heat Transfer at Pr << 1.

Case I. er = 0, Pure Forced Convection.

The buoyancy force is zero, and the velocity boundary leyer
is independent of the therwal layer. Hence, both u and w profiles

have the same limits a&nd (2.10)-(2.12) specialize to

4 Y ((_ Y\

Wy T 0% i %) (2.13)
W oo (4~ X)F

= = (A %) (2.14)
8 '8 4

Y ( ‘T‘J (2.15)

The appropriate set corresponding to (2.7)-(2.9) is
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?
d \ 2 \ 2 20
)= - wa - W d\( = - s 51
(ox+*)§> ¢ *XO YN W=o tpke
: (2.17)
4+ ) Juwax = » 2= i
(a’*-\- "3 ) SO W ) 2X X=o0
&
(34 Ly Jue ox - _u 99 (2.18)
ax X 0 Pe O Y=O
Since A >> b , we have
o % 12N %
S\Aed\( = &U.Q oY « S“ea\( % \ue ¥
(o] [ 1) [v]

where the last equality is implied by (2.13). We substitute now

(2.13)-(2.15) into (2.16)-(2.18) and, after some simplifications,
*
obtain the respective differential equations in x,

i 3 2
(242w ® = ovads _ i (2.19)
ox X 9% 9 % B

*The integrals in (2.16)-(2.18) have the following values:
°

& 2
Jutay = Wik Tuway = WrQd Twgy = (s
o o ° ) A 5
4 z S
iued\‘ = weet[ Y= Sy v $7co)

£ = ®h



LYrL

(£.+2%) “L%%ﬁ = - (2.20)
g )[ £ E,?'/ N %5/603\ - L 20w (2.21)
(Z’+; MO8ua( 54, - 215 " % & 2.

The intermediate results (2.19)-(2.21) are now considered as the
equations determining the three unknowns Uy, & , and A. While
this system appears rather complicated, the desired solutions are
obtained quite easily. The reason is that the functions Uy, 5 ,
and & we seek correspond to exact solutions of the similarity

class; therefore, without loss of generality, we may set

n m
W= cCc,x b = Coa ¥

and use effectively (2.19)-(2.21) to determine the exponents n, m
1’ 02, and u,. The procedure in this
particular cmse is the following: First we use the w-equation (2.20)

together with the constants C

to obtain an expression for the product uy % , then take tha energy

equation (2.21) to deduces a relationship for § - %_, and finally

\

solve for § from the u-equation (2.19). With & known, it is then

w
a simple matter to give explicit formulae for Uy and A . We give

now the details, with

*This is by no means true in the subsequent cases because
the simultaneous algebraic equations for Uy %, A are quite dif-
ficult to handle. Fortunately, as will be shown later, one need
not solve explicitly for u,, ¢ , A in order to compute heat
transfer; hence, there is }ack of elegance but in no way does this
effect the results.

185445
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1k

W 6= F&) B2 C('R

(2.20) reduces to a first order linear eguation in F(x)

SECON, B - eow g7 (2.22)
A% L Cy

whose general solution is

A-N

6o W
FOO =W, % = s X = 5 Cons‘\o:t\\
%=1 Cy % %3

Now, u, > 0 and obviously 5 (0) = O. Therefore, the constant is
zero; and using #&gain the fact that o = Clx“ , we obtain the

reguired resulk,

Q% zyeo¥ (2.23)

t 9}

»
on|*

This expression is substituted into the energy eguation

yielding an equation in §= % P

9 L GOV Quw % 2 3
(;**-X) ﬁ %“ig— (g/\q_— “5/\5 + g-’/60)‘\ - ?-9_;)

|

Setting

%(g) - '\E ( g/\'?_ _"%7-/‘5 ¥ g3/%('33
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and using A = C2 X, there follows from above a first order

linear equation in GH) = %\_%0&3‘) 5
\=
(2 & Le)elose % 9“ GM\ Lt (2.24)
dx a-n -9 Coex™ Pr
The general solution is*
glxy s 40 2 G Ao .
3-m 30k g * B

We take C = O showing a posteriori that W < % and hence, the re-

quired boundedness of G(x) at x = O is consistent with this choice.

C, =N m —Nx N
Since T = % % - oy g and G) = }\g(ﬂ} 2

the above equation implies

) z 3 _ A=T
—z(é/n.‘ g/\5“' /so) il = "!:_ﬂh (2.25)

Once n and m are specified, this statement, (2.25), be-
comes a basic functional relationship between g = %& --the ratio

of boundary laver thickness--and the Prandtl number Pr. As it stands,

It suffices to note that since G = Ax, (2.24) is easily
gxpresseid ms

- n-m-)
4 G0) + 220 Gk = 40 x c,
dx kS 30 Qv -

Co

obviously implying the general solution given above.
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(2.25) implies only that m = n; this follows because its right
hand side is independent of x; hence, § is independent of x and
therefore, m = n. In other words, & = §(Pr).

An explicit formula for © is obtained from (2.19), to-
gether with (2.2%); we set H(x) = Y¢tand write (2.19) as a linear
equation for H(x),

] _ao(an @g

— _____._(60 e o i (2.26)

|r
*l"
_/\

=3

The general solution is

L 2
-n) CSind Th-40
wix) = M_._. Q‘—S-%-'l- YO X 3

(40-Tn) (01)*

but, by the same argument as above, C = O; and, hence, the required

result for 9 (x) is

% "8
= = JELYTRD

The boundary layer thickness © 1s thus constant, and (2.27) gives

the value of C, in 9 (x) = Clxn with n = O; of course, m = n and

so alsom = O.
With © known, the explicit forms of ul(:c), A(x) are now

obtained from (2.23) and (2.25). The results are:

" -2
)

5 = 4.44 2\3T7CT6 L x (
¥ 5\\'\¢

(2.28)



and A

%
E,

\

|
0\07243\15(—21")*

(QLIXE ¥
3P 32 525523
450 “\go B

where

% - 30 ‘_’59\‘ X2

J/VZPr-+T
4% Pr i

' 8o Pr

(2.29)

Calculations of local heat transfer are based on the
formula

9

=_\«1°_\
X I1X¥=0¢

(2.30)

It is customary to introduce the heat transfer coefficient

n =

1
B

-

and present the reasults in term& of the related Nusselt number,
Nu = -
X

K

2\ Ja
Nu,= g = o 2295¢§ (R}

(2.31)
where the last equality follows from (2.29).

Results based on
formulae of the type (2.31) are discussed in the next section.

*
In the denominator it is actually + . Since 0 < § < 1,
this specifies the negative sign in the denominator.

44
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Case II. er = 0, Combined Convaction.

Herein we generalize Case I by considering the additional

effect of the buoyancy force on heat transfer. This implies that
u velocity field and the thermal field 6 are now directly inter-
acting with one another. The pertinent profiles are, thus,

it 2
| - X _ Y
4 o=x Ly (2.32)
W N \2
m = 0-3) (2.33)
B _ (. _ LY
B ( :) (2.3k)
Gw - A’L

0f course, (2.32)-(2.34) are appropriate specializations of (2.10)-
{2.12).

The integraml equations corresponding to (2.7)-(2.9) are

A ® y
3 | 2 2 - _u2
S W Wov-yiwan -0y qhcese feay (2.35)
B
9 42%) Juwd - - » oW
(ax* = §>“ L& ) \‘(-o (2.36)
A
(E{ & &} S\LB(SY - ¥
ax T ©

{237)
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*
Together (2.32)-(2.37) imply the differential equations in x,

: i ot E Co Ow (2'58)
(Lay)(82) s = (T2 L qheseor)s

-+ \\u\"m(% Y Q\\ = oura (2.39)
X % ¥ Go o

(é ‘—\ W,0w A - Q__B_ Bw
ax X St =0 ) . T (2.10)

We follow the procedure established in Case I, seeking solutions

of tiie form a _—
5 = €, % A = Caxn

-
The values of the integrals are the following:

§ 5, e IN o
Way = Uro , YW'dy = v QO B B4y = Wb
K ;05 §> . 5 ‘ g ) >
9
%
iqu\( - m?n%(g —__.\— E";o\
A
fuedy - W, Qua
S 30
#*%

The notation i& the same as in Case I; but, of course,
C,, C_ and the functions F, G, H have by no means the same values
as in Case I. In fact, F, G, i have here different meanings than in
Case I.



The differential equations (2.38)-(2.&0) are used to determine the

functions
FO= wa G = § L8] wix =z 12
where

%[g("ﬂ: éi—g-l— X g
\2 +6)B

The mystem F, G, H is.

60 &«
CLF “+ Q—F o — T— (2.41)
dx X Cq x™
d =Py m-N-
28 & (a=m) § CEE , ":___n " A 4a.na)
)

au 7 -m) W _ 140 ( —“‘) Q.S\Y\¢ c\Q‘-)Q& A
W farinGme - |5 6 o A

X (Goa)? (2.143)

where (2.41), (2.42), (2.L3) correspond respectively to (2.40),
(2.39), and (2.38); i.e., the 8, w, u system (in that order).

The general solutions are

Fuy = 25 x4 2 (2.44)
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85 B Syt A c (2.45)
C.\ (e} (A-Y\) %A-ﬂ'\ + XA—“\
e
W (x) = 'r('s_m)?-‘,"z: Q Sing 5/5 + }?’Cog¢A/5 A
= ‘%0 L% T Y e 2+ tr (5] (2.46)
© 4a _ipl‘ (5—“\ * %v\,. £

In each equation, C stands for an arbitrary constant, but
the solutions we seek require (just as in Case I) the constants to
be zero.

The procedure for obtaining formulae for uys 2 , A is now
somewhat different from Casa I. Moreover, as mentioned in a
pravious footnote, no explicit formulae for these quantities are
given. We use F (i.e., the energy equation) to deduce ulA and then
the functions H and G to obtéiir two implicit relationships between

® and A. The first result is

wea - R85 (2.47)
Py &

the latter two results are

& T Pr? ) /A Rey Gy /A'

< = \74 T — E + B (2.48)

x 10 4+TPr 5 =z .
and

- =14 (2.h9)



22

To obtain (2.47), (2.48), we have set C = 0 in (2.44) and (2.46) and
glso used A = Cexm. The statement (2.49), the second implicit re-

lationehip betwsmen © and A, follows from the G-function after aome
obvious simplifications. Instead of trying to solve now for © , A

from (2.48) mnd (2.49), we proceed as follows: With the definition

of ‘a(g) we may rewrite (2.49) as

g T T
s 50%(_\_’1__\_5*_@0) (2.50)

As in Case I, (2.50) implies that m = n and togather with (2..8)
this means that m = n = 0, But 0 < § < 1 and hence, for any
choice of €, between the sbove bounds, (2.50) yields a compatible

Prandtl number. BRewriting (2.48) in the form

B _ 1T PE VR g I
* = ﬂ_,zo 4,,‘:(pr] \Q%' 3 G;"\ (2.51)

angd subgtituting into this expression mny two compatible values of
’ and Pr from (2.50), yields o with er and Rne‘. as péarameters;
therefore, § is kmown. With € and © knowm, A is determined; and

by (2.47) so is u In this way, we have avoided the awkward prob-

1'
lem of solving (2.48), (2.49) for ©® and A. Of course, the same
development could have been used in Case I.

The Nusselt number relationship corresponding to (2.31) is

now
2 / \
Mux ’Z[Z Pr 1 + {0-2 i + L QGry ] I (2.52)
e~ o m 2z |



)

Note that for Gr =0 (2.52) is different from (2.31). 1In the next
section we shall show that (2.52) is valid for er > 1 but is not

accurate in the range O < er < U;

Heat Transfer at Pr >= 1.

This problem is characterized by the statement © > A. For
this reason, it is not necessairy to separate the discussion for
er = 0 from er > 0. Moreover, the solution procedure is virtually
the same as for Pr << 1, Case I, with the exception that again no

explicit forrmlae for u % , & mre given. It will suffice, there-

1,

fore, to give here only the main steps of the solution.

The appropriate profiles are

RN Y * 2.5
u =Y (=) (2.53)
W Y 12

= 0-3) (2.54)
8 _u-%)

By (2.55)
Ow = AX

The integral equations (2.7)-(2.9) specialize to

§ A
2 o 2 — _ BU (2-56)
iu 3y ‘7§>W N=-n W+ GAGs ZG ay



2L

B
d . 2 Uwdy — -1 OW
(G %) Luwey o (2.57)
d T %
8 s L uwe d - TR
(dx'\' *) §s RefyY N \‘(-0 (2.58)
% A ? N
where in (2.56) we have used foay = §Qav & SABCH = Sog dY
) °
The corresponding differential equations nre*
(8 r_)u?s . (rmls —~ IpCosalwa _ ),u.
ax’ X ICE T x5 3 = S (2.59)
(9x+9;-) wrlls = eoY x (2.60)
2 > 4 b QOw 2.
(§x+7'(w.0ws ‘.'\ he = Ve N /60} = % B (2.61)
By setting
? A L4
_ " 0 N Y
FONZT W . 6= T2 % ¥ <o ’ LR %A
II'I'he values of the integrals are
? 2 u?s ? wdy =L uros c{wid\ s
ou d\: |_05 OU. \( _-:50 \ » '3 - 5
¢ Z 3 A
\ \ \
Y\.!Bd\l = U\cho‘_TQY\ - ‘\"r)'\* ;J\X
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where
A = C\Xm ., B = Clx“ ‘\:_&_
-9
equations (2.59)-(2.61) are restated as
dF L 3¢ _ %ow M (2.62)
ax = Ty
(a-n) C Mg
96 ,(3n)G& = ¥ % 2.63
— 1 (1) 2 o ( )
Lot be |
dH o old = Ta-nt ratsing | oscpm)_ 2.64)
a—x-\'I_4+ 3(4 “)\; 1sovz % * z X (

The particular solutions required for our boundary value problem are

. BOL X
F(x) = A-n % (2.65)
A- \ ®
Bl = (’g.—z\) 00r & (2.66)
B
_ 7(a-n)* 3 [aFsind  }RCosda )
LOREE = 4——-'0—1“(—————7 % Y b (2.67)

From (2.65) and the fact that D= Cexn, there follows



T
SR S (2.68)
from (2.66) we obtain

N GG = (tl:n) ?,%p (2.69)
= Ay

implying m = n. From (2.67) and the definition of H, we obtain

.} 2 A
- ©0 ao -Tn) LI
b = v ( n’) (ﬂ Sin @ i ‘k(%CoScb AY\\(E.'TO)

T (a-m)* 5 B
\
T /4
* Rey Gry
= = 46 ATl _ X =
= 0.46418 (= 2 )
We complete the development in the same manner as in Case II.
. . — LY S T » LA
Using the definition of G = = n"- BV + Tl , (2.69) is

rewritten as
P — ) (4-n i '
SR NC= AR e

and familiar arguments imply that m = n = O. Since O < "‘ < 1,
(2.71) gives a unique Pr value for each Y] within the specified

bounds; and equation (2.70) gives then a compatible value for 9D with



Re, , Orx as parameters. For each such value of % , (2.68)

yields the compatible value of ul(x).

The appropriate Nusselt number formula is

\
/ i
N Gy
uy _ 092956 (0'2 i %) (2.72)
JRey 1 Ren
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5. RESULTS

The& results of main interest are the following:

a) variation of the boundary layer thickness ratios
% , n with Prandtl number

and

b) 1local heat transfer.

We note immedistely that while § , n depend (for amy
chosen polynomial flow field representations) on Prandtl number
alone, local heat transfer depends, in general, explicitly on all
three parsmeters, er, Rey and Pr. Of course, our remark in
reference to a) by no means implies that % itself is solely a
function of the Prandtl mumber; obviously it also depends, in
general, on all three parameters. Moreover, it is clear that b)
depends directly on a).

Quantitative evaluations of &) and b) are based respec-
tively on formulae (2.25), (2.50), (2.71), and (2.31), (2.52),
(2.72). Results depending on the former are shown in Figuvres II,
III, and IV. 1In all cases we note & strong influence of the
Prandtl number on the boundary layer thickness ratios. Figures

II and III show & vs. Pr for the low Prandtl number analysis
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with er 2 0 and er > 0. Figure IV presents the Prandtl number
dependence of the boundary layer thickness ratio when the Prandtl
number is high.

It is clear from the graphs that what is meant by "high"
Prandtl number is specified by the inequality Pr > 1.333. Cor-
respondingly, a "low" Prandtl number is one satisfying Pr < 1.333.
The particular value 1.333 is compatible with the particular pro-
files we have used. When these are changed, so is the value of the
Prandtl modulus specifying the subdivision into the high and low
Prandtl number regions.

Heat transfer results in the form of Nux //Rew are
summarized in Table 1 for the range 0.1 < Pr < 100 and O < %‘ =<
100. Percentage errors based on a comparison of our results w;th
the exact (numerical) solutions of Hering-Grosh (Reference 11) and
Hayday (unpuhlished) are tabulated in column 5. The agreement is
very satisfactory; thpt it is mainly due to our use of the two-
boundary layer concept is strongly implied by the values in column 6
which show the results of an independent integral technique study
but with % = A, (It was necessary to perform these calculations

because the problem has not been discussed elsewhere from the point

of view of the Integral method.) MNote in particular that for
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*
Pr = 10 our results, with the exceptiom of er = 0.1, are within 3%
from the exact solutioms, whereas when % = A the corresponding
values deviate by &t least 34%. All of the results given in Table 1

are shown in Figures V to XIII, which we think are self-explanatory.

%

This is not the only exception, the same being true, for
example, when Pr = Gr_ = 0.1. Furthermore, observe that the larger
deviations are in the*small range 0 < Gr < 1 but that at Gr_ = O
the results are quite accurate. During £he final stages of this
work, a plausible explanation for this peculiar behavior of the
solutions has been suggested to the writer by Professor Hayday. He
conjectures that the relatively large errors in the small Grashof
number range are primarily the result of not exploiting the "multi-
layer" concept to the fullest extent and partly the result of the
choice of tha& profiles, the latter not satisfying all of the con-
ditions implied by the partial differential equations. Strong
evidence supporting Professor Hayday's viewpoint is the following:
The multilayer concept asserts, in harmony with the general bound-
ary layer theory and known exact solutions, that different gen-
erating mechanisms for a particular flow characteristic within the
boundary layer manifest themselves in correspondingly different
regions of their dominance. In reference to our problem, this
implies that there should, in principle, exist two velocity bound-
ary layers, say Dy’ Dy the first describing the region of the
u-variation and the s#cond the region of the w-variation. The
reason far this is that the u-field may be caused either by the
buoyancy force alone or may be induced solely by the spin of the
cone. When both act simultaneously, % and ¢ _ (being functions
of G/ Re,) assess then the relative importagce of one gen-
erating mechanism in comparison to the other. A preliminary
exploration of the validity of these statements is now well under
way and the mvailable results not only fully support them but also
show further significant improvements ou both heat transfer and
skin friction data. In fact, it turnm out that 9 Qe ir-
respective of the Grashof number, but with ¢ replgcing . u, as a
new, and obviously more significant, dependen? variable, the
entire equation system changes and so do the results. The reason
that our analysis is quite good for Gr_, = O, Pr << 1 is due to the
fact that it is entirely separate from™ the more general case
Gr # 0. Were we to take the limiting values of the latter as
cr* - O, the results would show the largest deviations but, none-
th&less, smaller than in the ©= A calculation. Of course, in the
more generml multilayer treatment it is not necessary to consider
Gr, = 0, 6r_ # 0, separately.
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Table 1
4’
Nuxl Her - Error
2 Exact ¢ A %= A
o er/Rer Solution Integral lgthod BFA D=4
0 .111009 .11189 .21382 T4 9.26
Q1 .17864 19945 2222 11.6% 2h.k
1.0 .28025 260k 2732 7.08 .3
S D A1012 38332 37373 655 8.88
(% | 10.0 L8766 1550 413831 6.7 10.12
20.0 57949 54052 5I758 6472 10.68
50.0 .72590 66926 H4796 7:8 10.74
100.0 86764 8076 6.92
0 4295 4351 JL8LY 135 12.8
0,1 16183 14590 {5093 61 9.0
1.0 61173 5900 .61901 356 1.19
8:0 86242 .8250 .BL6eT L3 1.8
&7 10.0 1.01687 9711 .99310 4,5 2.34
20.0 1.20397 1.1490 1.1725 2.6 2.6
50.0 1.5099 1.4402 1.4679 I 46 2.8
100.0 1.794%0 1.71087 1.7h22 L.6 2.9
0 .51816 5315 51167 2.9 18
0.1 5467 3556 ST 1.63 1%
1.0 .7000 6965 6539 9 6.6
o R0 9795 9624 .89LL 1.3L 85
10 10.0 1.1480 1.1309 1.0490 1.5 8.6
20.0 1.3579 1.3366 1.2386 16 8.8
8.0 1.7019 1.6755 1.5506 1,6 8.9
100.0 2.0217 1.9886 1.8403 1.64 9.0
0 1.4080 1.%120 T4387 3l k73
0.1 1.4323 1.5823 JTIO 10.4 46.2
1/ 16811 9481
5.0 2.0766 1.2967
10.0 10.0 R0 2.4005 1.523 2.0 5l 45
20.0 2.,7697 2.8110 1.7827 2423 35.2
50.0 3,4185 3.5002 2.2482 2.4 3.2
100.0 L. .0LOk 4. 1L56 2.6696 245  3h.1
0 3.4535 1.33%6
0.1 3.4791 1.3885
1.0 no exact 3.6876 9 (0 1 ]
Sl solutions L 3426 2.3352
100.0 10.0 available 4 .88L02 2.742%
20.0 5.6174 3.2103
50.0 6.9071 4 ,0L86

100.0 8.1490 4.8075
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CONCLUSIONS

The specific results presented in the thesis strongly
suggest that the consistent use of the multilayer concept 1is the
dominant factor determining the accuracy of the integral method.
While this concept, in itself, is not entirely new, its consistent
use (particularly for combined convection problems) seems to
appear here for the first time. A full exploitation of this idea

is, of course, not given here and remains for the future.
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APPENDIX A

Remarks on the Navier-Stokes eguation and a8 brief

cexivation of boundary layer equations:

The fundamental equations governing flows of viscous fluidg--
the contipuity equation and the Navier-Stokes equations--may be

expressed in vector form as

‘a_ -
=X +awv (V) =0, (a.1)
and
2V _ = = 1 2 1 -
;o—t--v x curl V + grad (-2-V ) = F—-égrnd P—v curl curl V.
(A.2)
For steady, incompressible flow, % = 0 and is constant.
2V -
Hence, in particular a—z = 0, div (V) = 0; the latter implies
that

= - ) - ] =
curl curl ¥« grad div (V) = ¢y V= v V.

Thug, for a&teady incompremsible flow, the systam (A.1l), (A.2)

simplifies to
div (V) = 0. (A.3)

and

2
- - - 1 At
—churlv+%gradv -F-EgradP+V v. (A.h)



We shall use now a general orthogonal coordinate system.
Let & % ’y Y denote the coordinate curves; the cor-
responding increments of length are then h;d&, hzd@. and
h3d 7 , and the increment of length squared for any curve
S is

2an? (o0’ + 0 (@) + g (a9)°

Let El, 22, -e-5 be the unit tangent vectors along the « » @ » 7
curves and let u, v, w stand for the corresponding components of

the velocity vector V. Then

‘-__ (h h u) o+ —— (h v) + "_:—7 (hthW)& s (A_lj)

divV"hhh
o ‘av 13V
12 3 h$h - Vge. 28 (n.6)
1 2'3v ’

—--(.--‘——-

27 _h3 27

e e e
1 2P ) 9P 32P
grad P wolnsScjiget SS M| o> A
hl 2ok h2 2p h3 Y (a.7)
- 2 2 2
|v|2 =u +v +w i (A.8)
and
hie;  hye,  haey
2 = 3
curl V-hh,h - 20 P

= Le, + Me, + Ne, (A.9)



where
11 §.o
Jo it hw) - (h v)
hlsl'a(s . s J
1 E) ? §
hghy [’07 (hyu) = 2= (ha¥) |
1 ?
N = hlh' [;: ( Zv) (hlu)J
2
Moreover,
. o 3
V xcurlv- u v W
L M N
1 (vN - Mw) +32 (Lw - Nu) +'€3 (mu - Lv).
= Ae1 + Bc2 + CE3 ’
where

A=Nv - Mw ,
B =Lw = Nu ,

C=M - Lv .

Equation (A.3) is now expressed as

? >
—_— —— h + h = 0
= (h 21131.1) + o6 (h3 v) (h 2w)

Substituting (A.6)-(A.10) into (A.L), we obtain

37

(A.10)

(A.11)



) =2 € =2 € -2
_(Aelﬂt_ﬁcg,,,i\_.l.zgu,,_;zxv_“_;ﬂu
3 21h, 2« h2 > @ h3 27
e N e e
.F_;I_.l.é_hh_zz.l:w}.za]
e h1 DA 2 20 331

hlhzh3 2 h. 2a& 20 h, 2@ 29 h3 29

and the corresponding component forms are

_2
1 192V 1 1P
- + - —_— — o Sw— —
A Zhl DA .F‘* Ghl DA

+ - \°(h2h3?_u)+i(fi‘l12)+3_(m3_2)
hihohy [ 2" hy  2a 26 h, 2@ 24 hy 27 '}’ (A.12)
2h, 20 3 Q h, 2@

e 2 (Blaoy, 2 Mahay e i Mlay,
hthhB A h, 9« E1) h?. X7 27 h3 27 ’

1 (a.13)

and

9
o
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where the quantities A, B, C have been defined previously.

For flows generated by spinning bodies of revolution, it is
very convenient to use a boily oriented coordinate system. Thus,
we set & = x, d = y and 7 = z, where x is measured along
meridian curves, y along local normals, and z in the circumfer-
ential direction. Clearly, h; = h, = 1 and h5 = r(x) where r(x)

*
is the local radius of the body of revolution . The particular

I
forms of equation (A.12)-(A.14), with 37 = O, are then the

following:
?zi:“l * 33(;"1 =0, (A.15)
u'%% +v ;i +-w’%¥ = v'2§ ¥ V’zf _.¥.32§§!l
-r -1 e 2 )], (4.16)
u%-&-v%*-w%?"'u%-ua—f-%%g;—wl
-Fy—%%+%\%(r§)+%(r%)3. (A.17)
End

9 X 2y r 3; 3L ?y Yy

%\“ l.(ﬂl..”_?’_LEFJ.X-H\" (r2¥) +2 (r‘-“')l . (A.18)

*See S. Goldstein, Modern Developments in Fluid Dynamics,
Vol. 1, pp 11k, Clarendon Press, Oxford, (1938).
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Further obvious simplifications yield the corresponding set

G 2y ' (a.19)
‘d 192 . [2% 2% , 1 drau
2u u w ) o u u
Ayt = F -——+v—+-——+———\
b3 dy r dx x € ox \.a < ayZ r dx 9x |,(A,20)
2 2
dx Ay y € 2y sz 2y2 r dx 2x |’ (A.21)
and
2
2w, 2w .32 2w +3__cm\,
Ut x tv 2y R ?2x (r ax) 3yz (A.22)

Equaticns (A.19)-(A.22), once simplified on the basis of
boundary layer hypothesis, are directly applicable to the thesis
problem. Ve discuss now such simplificatiomm. The arguments are
standard.

let x be a standard for length and u or w be standard for
velocities; that is, x ~ 0(1) and u, w ~ O(1). The central as-
sumption is that y ~ O (%) where % is "small" in the sense that

D <« 1 pliysically this means that the viscosity of the fluid
is small or wmoré precisely that tie Reynolds number is large.

Consider now equation (A.19) together with the above owxder

of magnituds simplifications:

1
2fru) L 2
DK oy

1 %

(A.23)
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The first term is obviously on the order of one and, therefore,
rv is on the order of § , but since r(x) ~ 0(1), v ~ 0(9);
therefore, the continuity equation remains unchanged. The same

arguments applied to (A.20) give now

1 2 1 12 1, 1
2u Qqu w__dr 1 2P C Pu , 1 dr’au\
== —_—— e —— = -_—— 22 Lyl =N e o = = ——
u’a;r.+v3y r dx 1?x €x+ \_32-’.32 ¥ dx 9x
1 1 v % 4 1
1 %

clearly, i1f the inertia terms, viscous forces and pressure forces
2
are to be of equal importance, vV ~ 0( %) . Thus, boundary layer

form of (A.20) is

2

2
2% ol e s Bk 2t 42205
u'ax+vay r dx F Q X +By2 » (A.2k)

Of course, the pressure P, the density e and the x compoment of
the body force are all of order one.
The smme procedure mpplied to (A.21) shows that this

equation may be neglected and

9P

~ .

oy y

The boundary layer form of equation (A.22) may be shown to be

2
2 (rw) 2 (rw) _V° (rw)
vk TV TRy 2y (A.25)

The boundary layer form of the energy equation is

_— (A.26)



APPENDIX B

Integration of the boundary layer eguations--''the integral

equations."

Her#tin we develop the integral forms of the conservation
equations corresponding to the system (2.1), (2.3), (2.4k) and (2.6).
The procedure is straightforward. Basically, it amounts to a
formal intagration of the equations of motion and energy with
reapect to y, the upper limit being / vhere ¢ 1is greataér than
either the velocity boundary layer thickness ¢ or the thermal
boundary layer thickness A. Implicit use is made of the conti-
nuity equation and the boundary conditions imposed on the partial
differential equations.

We integrate (2.6) and obtain

0 X § sty
i du 2u w_dr , ' !

2u R _ B SE = yve——3 . dy.
. (u 3x+vay T dx) dy ( ‘2 gﬂgos\bu) Y. (B.1)
0 0 x

An obvious development of the left h&nd side of (2.1) yields

f o 2u p 2y o _"Tw dr
| u " dy + uv | o Yo, dy J T 4« dy.
0] 0 0

The boundary conditiongs u = v = O at y = O and ® implies
that the second term in the above expression is identically zero.

Moreover, the continuity equation gives

v 1200

oy r 2%
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where r(x) = x Sin #. Using now this information, in connection
with the expre#ision following (B.1), we obtain the final re-

arrangement of the left hand side of (B.l),
4

r 2
J u
0

H

2 1

dy g J w dy.
0

&rpd
(’ax+x)
The final expression for the integrated x~-component of the momen-
tum equation is thus,

! 4 0

2 1 2 i du
u dy"; w dy-gﬁcos ﬁJ @ dy u'a_y' (B.2)

0 y=0

)

9
(21{+

L

o ¢t

J
0
where the last term on the right hand side has been obtained by

adopting a condition of smoothness for the velocity profile, that is

The same sort of arguments applied to equation (2.3) and

(2.4) yield

2 FZ °
w o
(sz+3)yuvwdy=—"? el (.3)
y=0,
0
¢
2 .1, -—n28
( SSvam==) _[ u 0 dy N}y !y-o. (B.k)
0

In actual computations the assumed polynomial representations for
the W , w, and 6 fields imply that we may without loss of

generality replace { , appropriately with % and A as discussed

in the thesis.



APPENDIX C

Dimensional Analysis

Herein we use dimensional analysis to deduce the significant
dimensionless parameters arising in combined convection problems.
Our aim, in particular, is to deduce independently from the pre-
vious discussion the overall form of the Nusselt number formulae.
The procedure, commonly attributed to Rayleigh, is very well
knovn; and for this reason, the treatment is brief. The book by
Jacob may serve as a standard reference.

For pure forced convection, dimensional snalysis shows

that

Nu = f(Pr, Re); (c.1)

vhereas, for pure €free comnvection, one finds that

Nu = f(Pr, Gr). (c.2)

To find amalogous formulae for combined convection, we
assume that the heat tranafer cocfficient depends on the physical
properties of the fluid, the temperature amd velocity. Iience we

nay state

h=Cw Lb I“f kj rm C: (g B)P 9: (c.3)



LW

where

heat transfer cocfficient
dimensionless constant
characteristic length of the body
circumferential velocity,

H e

v

v N e e

and a, b, £, j, my n, p, 8 are exponents to be determined; the

basic units are taken as
W

H , for heat energy
T , for time

L , for length

M , for mass

e 4

for temperature.

Expressed in terms of the latter, (3.3) takes the form

1 -1 -1.f

a7 207! = (Al or Y f(er L te7 ) d

(ML'3)m(HM-10-1)n(0-1LT-2)p0'

Now, in any such equation, physical arguments dictate that
the exponents on the basic units be the same on both sides. Col-
lecting the exponents associated resgpectively with H, T, L, 6, and

4, we obtain therefore

j+tn

Falt¥yeW
a+be-f-3<-3m+p
-j-n-p+s
f+m-n

[ B B I A
'
QN

o

Clearly, the number of exponents exceeds the number of

equations by three. Since there are eight exponents and five

While H may be expressed in terms of thie basic units of
nass, length, time, and temperature, we follow iax Jacob and treat
it as an independent quantity.



equations, we may express any five of the exponents in terms of

the rem@ining three. Choosingz a, b, 8, j, £, we obtain

a=m-=- 2p
b=m+p -1
s=p (c.6)
J=1-n
f=n-m
Together, (C.6) and (C,3) yield
C e 2>
hL _ c(/:_E )“ ( M)“‘ (E._.L)P
K k M w22 (c.7)
where wm, n and p remain undetermined, Theilr values may ba
obtained on the basis of an experiment. Defining now
Hu = %%
Re = Bl
v
and
3
gée L
Gr =
v 2
equation (C.7) implies the ralationship
G
Nu = C(Pr)" (Re)™ ( == )P, (c.8)

Re

This is the required result. Observe that the Grashof
number and Reynolds mumbexr appear ai a ratio that may be used to
agsess the relative importance of free and forced convection when

both act simultanecusly. An alternate form of (C.8) is

5“—m- £(Pr, 953 ).

Re Re

(c.9)
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