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ABSTRACT

VARIABLE SELECTION TECHNIQUES FOR CLUSTERING ON THE UNIT

HYPERSPHERE

DAMON BAYER

2018

Mixtures of von Mises-Fisher distributions have been shown to be an effec-

tive model for clustering data on a unit hypersphere, but variable selection for

these models remains an important and challenging problem. In this paper,

we derive two variants of the expectation-maximization framework, which are

each used to identify a specific type of irrelevant variables for these models.

The first type are noise variables, which are not useful for separating any pairs

of clusters. The second type are redundant variables, which may be useful for

separating pairs of clusters, but do not enable any additional separation beyond

the separability provided by some other variables. Removing these irrelevant

variables is shown to improve cluster quality in simulated as well as benchmark

datasets.
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1 INTRODUCTION

Model-based clustering uses mixtures of distributions to identify subpopulations

in a dataset. Several distributions have been proposed for the model-based

clustering of data on a hypersphere. Among these are mixtures of von Mises-

Fisher distributions [1], mixtures of Watson distributions [3], mixtures of inverse

stereographic projections of multivariate normal distributions [7], and mixtures

of Poisson kernel distributions [8]. Text data is a common example of data

modeled on the hypersphere, with normalized vectors of word counts being used

to represent documents. Mixtures of multinomial and Bernoulli distributions

have been used for clustering these documents [15, 24]. A comparison of these

two to the previously mentioned mixtures of von Mises-Fisher distributions is

presented in [29]. Various non-generative methods have also been proposed

for clustering spherical data, including several modifications of the popular k-

means clustering method [13, 28].

It is well known that the addition or presence of irrelevant variables in a

dataset degrades the clustering performance [16, 17]. Additionally, performing

dimension reduction as part of the preprocessing of dataset can degrade clus-

tering quality [4]. For this reason, the study of variable selection in the context

of clustering is important. Recently, several authors have studied this topic,

primarily in the context of finite mixtures of multivariate normal distributions.

The study of variable selection for model-based clustering has primarily fol-

lowed two perspectives.

The first are methods which make explicit assumptions about the rela-

tionships between relevant clustering variables, irrelevant clustering variables,

and mixture membership. The complexity of these assumed relationships has

evolved over time, with Law et al. [11] first assuming independence between

the relevant and irrelevant variables. Raftery and Dean propose an approach

analogous to stepwise regression and assume irrelevant variables are condition-
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ally independent of the cluster labels given the relevant variables [21]. In this

approach, the irrelevant variables are assumed to be explained by the relevant

variables. Maugis et al. [14] expand on this concept by further separating the

set of irrelevant variables into those which are redundant and can be explained

by the relevant variables, and those which are noise and cannot be explained

by the relevant variables.

Other variable section methods for model-based clustering use regulariza-

tion methods, wherein some penalty term is added to the likelihood function

used for maximization. Penalized model-based clustering was first used in [19]

to model mixtures of multivariate normal distributions with common isotropic

covariance matrices. An L1 penalty is used to obtain a sparse solution with

many mean parameters being pushed to zero. This work has further been ex-

panded in [25], which introduced an L∞ penalty term to reduce the maximum

mean for each cluster in order to shrink more mean parameters to zero. A

pairwise fusion penalty was used in [9] to identify which variables can discrim-

inate which pairs of clusters. The restriction of a common isotropic covariance

matrix is relaxed in [27] and abandoned fully in [30] to develop penalized clus-

tering with no constraints on covariance matrices. Recently, a hybrid approach

was proposed in [6], which first uses the method proposed in [30] to rank the

variables. The ranked variables are then processed in order for being noise

or redundant by the method discussed in [14]. This hybrid method overcomes

some of the computational challenges faced by the variable selection algorithms

that follow from [11].

Variable selection methodologies also exist specifically for text data. The

most common among these are the removal of “stop words,” common words in

a language (a, the, is) which are presumed to not provide relevant information

for some analysis tasks, and variable selection by term frequency-inverse docu-

ment (tf-idf) frequency, a measure of a word’s concentration into relatively few

documents [12]. Both of these methods are performed as a preprocessing step.
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As mentioned, performing variable selection as part of preprocessing can

negatively impact the quality of clustering. Additionally, the currently available

variable selection methods are mostly focused on Gaussian mixtures. Therefore,

variable selection for text and other spherical data in the context of clustering

is an important, but relatively unexplored, area of study. In this regard, our

proposed method aims to identify irrelevant clustering variables, which can be

“noise” or “redundant” variables, by making use of two specialized expectation-

maximization algorithms.

This article is organized as follows. Section 2 recalls the the von Mises-

Fisher distribution and presents our algorithm for identifying redundant a noise

dimensions to perform variable selection. Sections 3 and 4 demonstrates the

applicability of our method on simulated and real-world data, respectively. Dis-

cussion of these results and concluding remarks are given in Section 5. Detailed

derivations are provided in the Appendix (Section A).

2 METHODS

The proposed method seeks to partition the p variables available for clustering

into several sets. Using the notation from [14], we aim to find S, the variables

relevant for clustering, and SC , variables which are irrelevant for clustering.

SC is further partitioned into U , the set of redundant variables which can be

explained by a variable in R, a subset of S, and W , the set of noise variables,

which are not explained by any variables in S. These relations between these

variables are presented in Figure 1.



4

{1, . . . , p}

SC

W U

S

R S \R

Figure 1: Graphical representation of variable partitioning

To achieve this partitioning, we derive three expectation-maximization (EM)

algorithms, which are explained in the following section. First we recall the von

Mises-Fisher (vMF) distribution.

A unit random vector x ∈ Rp has a p-variate vMF distribution when its

probability density function is given by

f(x | µ, κ) = cp(κ)eκµ
Tx, (2.1)

with

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)

and ‖µ‖ = 1, κ ≥ 0, p ≥ 2, and Ir is the modified Bessel function of the first

kind. The mean direction of the distribution is specified by µ. The concentra-

tion is given by κ, with κ = 0 being a uniform density on the hypersphere and

κ→∞ approaching a point density at µ. We can then consider a mixture of K

vMF distributions indexed by h ∈ {1, . . . ,K}, with parameters θh = (µh, κh),

with µThµh = 1 and mixing proportions αh, with
∑K

h=1 αh = 1. The density of

the mixture is given by

f(x | θ) =

K∑
h=1

αhcp(κh) exp{κhµThx}.

Figure 2 shows plots of samples from two mixtures of three vMF distributions

with parameters given in Table 1.
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Figure 2: Samples from mixtures of three vMF distributions

Table 1: Parameters used to simulate data in Figure 2

(a) 2D

h α κ µ
1 0.33 2 1√

2
〈1, 1〉

2 0.33 20 〈0,−1〉
3 0.34 40 1√

2
〈−1, 1〉

(b) 3D

h α κ µ
1 0.33 5 1√

3
〈1, 1, 1〉

2 0.33 50 1√
5
〈0,−2,−1〉

3 0.34 100 1√
3
〈−1,−1, 1〉

Then the complete data likelihood of a set of observations x is

Lc(θ | x) =

n∏
i=1

K∏
h=1

[
αhcp(κ) exp{κhµThxi}

]I(zi=h)
(2.2)

where zi is a latent variable indicating the true component membership of xi.

Thus, the complete data log-likelihood is

lc(θ | x) =
n∑
i=1

K∑
h=1

I(zi = h)
[
lnαh + ln cp(κ) + κhµ

T
hxi

]
(2.3)

Given some data, we seek to estimate the parameters of this model by maximum

likelihood. Because zi is unknown, we develop an EM algorithm to achieve this

goal. Broadly, the EM algorithm consists of an expectation (E) step and a
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maximization (M) step. In the E-step, the unknown random variables zi are

estimated based on the current estimates of the parameters. In the M-step, the

parameters are updated based on the current estimates of zi. These steps are

iterated until the relative change in the log-likelihood falls below some preset

tolerance.

2.1 EM ALGORITHM FOR UNCONSTRAINED VARIABLES

With the constraints µThµh = 1 and κh ≥ 0, the conditional expectation of the

complete-data log-likelihood, commonly known as the Q-function, is

Q(θ | x) =

n∑
i=1

K∑
h=1

πih ln(αh) +

n∑
i=1

K∑
h=1

πih

[
ln(cp(κh)) + κhµ

T
hxi

]

+ ξ

1−
K∑
h=1

αh

+
K∑
h=1

λh(µThµh − 1), (2.4)

where Lagrangian multipliers ξ and λh for h ∈ {1, . . . ,K} and are added for

the constraints. In the E-step we obtain the following update equation:

πih =
αhfh(xi | θ)∑K
h=1 αhfh(xi | θ)

(2.5)

In the M-step we obtain the following update equations:

αh =
1

n

n∑
i=1

πih (2.6)

rh =
n∑
i=1

πihxi (2.7)

µh =
rh
‖rh‖

(2.8)

Derivations for these update equations are provided in Section A.1. An ana-

lytical estimate for κh is not readily available and is instead estimated by a
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numerical optimization procedure. In this case, we use the default procedure

from the movMF R package [10], “a variant of the Newton-Fourier method for

strictly increasing concave functions.” Several other methods for estimating κh

are available in the package and described in [10]. Henceforth, we refer to these

update steps given in Equations 2.5–2.8 as the “Standard-EM” procedure.

2.2 EM ALGORITHM FOR REDUNDANT VARIABLES

In this context, we define redundant variables as those that have a common

mean direction within a given mixture component. Let G be set of indices of

redundant variables. G can be thought of as a set of candidate variables for U .

For each component, h, we denote this common mean by µhG. We let µhj be

the mean for the jth variable, with j /∈ G, in the hth component. With this

assumption and the constraints µThµh = 1 and κh ≥ 0, we develop the following

constrained Q-function:

Q∗R(θ | xi) =
n∑
i=1

K∑
h=1

πih
(
ln(αh) + ln(cp(κh))

)
+

n∑
i=1

K∑
h=1

πihκh

µhG∑
j∈G

xi,j +
∑
j /∈G

µ2hjxi,j


+ ξ

1−
K∑
h=1

αh

+
K∑
h=1

λh

1−|G|µ2hG −
∑
j /∈G

µhj

 (2.9)

The E-step yields the same update equation as in Equation (2.5). In the M-step,

we obtain Equation (2.6), as well as the following update equations:

rhj =
n∑
i=1

πihxi,j (2.10)

µhG =

∑
j∈G rhj√(

1
|G|

(∑
j∈G rhj

)2
+
∑

j /∈G
(
rhj
)2)|G| (2.11)
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µhj =
rhj√(

1
|G|

(∑
j∈G rhj

)2
+
∑

j /∈G
(
rhj
)2) (2.12)

with |G| denoting the number of indices in the set G. Derivations for these

update equations are provided in Section A.2. In this case, κh is found using the

optimize function in R [20]. We refer to these update steps as the “Redundant-

EM” procedure.

2.3 EM ALGORITHM FOR NOISE VARIABLES

We define a noise variable as those with a common mean direction over all

components. Let G be the index of such a variable. G can be thought of as

a candidate variable for W . We denote µ.j to be the common mean of the

jth variable over all components. With this assumption and the constraints

µThµh = 1 and κh ≥ 0, we obtain the following constrained Q-function:

Q∗N(θ | xi) =

n∑
i=1

K∑
h=1

πih
(
ln(αh) + ln(cp(κh))

)
+

K∑
h=1

n∑
i=1

πihκh

∑
j∈G

µ.jxi,j +
∑
j /∈G

µhjxi,j


+ ξ

1−
K∑
h=1

αh

+

K∑
h=1

λh

1−
∑
j∈G

µ2.j −
∑
j /∈G

µ2hj

 (2.13)

In the E-step, Equation (2.5) stays the same. In the M-step, Equation (2.6)

stays the same, while the mean directions are updated using the following

equations:

µhj =
κhrhj
2λh

(2.14)

µ.j =
κh
∑K

h=1 rhj

2
∑K

h=1 λh
(2.15)
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1 =
∑
j∈G

µ2.j +
∑
j /∈G

µ2hj (2.16)

See Section A.3 for derivations. We note that (2.14) and (2.15) are dependent

on λh and κh. Thus, the closed form solutions for these updates are not avail-

able. Because of this, we implement a numerical optimization procedure to

approximate solutions. In this case, we use the optim function in R [20] with

the L-BFGS-B method [5]. We estimate κh in the same way as in Section 2.2.

We refer to these update steps as the “Noise-EM” procedure.

2.4 VARIABLE SELECTION ALGORITHMS

In this section we propose two methods for identifying redundant and noise vari-

ables. The three previously presented EM procedures described in Sections 2.1

- 2.3 are used to determine a soft clustering for a given data X over a mixture

of K vMF distributions and a partition of variables into S,R,U, and W sets.

For both types of variables, we propose a backward stepwise algorithm which

is relatively computationally expensive and conservative as well as a greedy al-

gorithm which can be performed more quickly for on larger data and identifies

irrelevant variables more aggressively. The noise and redundant algorithms can

be applied in sequence in order to fully partitions the variables. In general,

the Bayesian Information Criterion (BIC) [22] is used to determine whether a

single variable is noise or if a pair of variables is redundant. Recall the general

form of the BIC,

BIC = ln(n) · C − 2 · l(θ̂ | x), (2.17)

where C is the number of parameters in the model and l(θ̂ | x) is the maximized

likelihood from Equation (2.3). For a given number of components, K, values

for C in each of the models are presented in Table 2.
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Table 2: Number of parameters for the three considered models.

Model Type C
Standard K − 1 +K × p+K
Redundant K − 1 +K × (p− 1) +K
Noise K − 1 +K × (p− 1) +K + 1

2.4.1 Greedy Variable Selection Methods

Below we describe two greedy algorithms (Algorithm 1 and 2) which can be

performed with large datasets to identify irrelevant variables aggressively. To

identify redundant variables, we begin with all variables in S and find pairs of

redundant variables using the BIC criterion. We partition the variables from

these pairs to maximize the size of U and minimize the size of R while main-

taining that every variable in U is explained by some variable in R. A final

model is then fit using only the variables in S. The details are given in Algo-

rithm 1. The greedy algorithm for noise variables (Algorithm 2) is performed

similarly. We begin with all variables in S and find noise variables using the

BIC criterion. All of these noise variables are appended to U . A final model is

fit using only the variables in S. The details are given in Algorithm 2.
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Input: Matrix X of data points on p-dimensional unit hypersphere.
Output: Soft clustering of X over a mixture of K vMF distributions; Partition of

variables into S,R and U sets.
Step 1
Begin with S = {1, . . . , p}, empty list L of variable pairs;
Fit full model, M0, to X using the Standard-EM procedure;
Obtain BICM0 ;
Step 2
for each pair i, j ∈ S do

Fit model, Mi,j , to X using the Redundant-EM procedure with G = {i, j} ;
Obtain BICMi,j ;

if BICMi,j ≤ BICM0 then
Append the pair i, j to L;

end

end
Step 3
Let A be the set of unique variables found in L;
for each pair ∈ L do

Append the variable with the least total appearances in L to U . The other
variable remains in S;

end
Append A \ U to R;
Set S = {1, . . . , p} \ U ;
Step 4
Let X ′ be the variables in S projected onto the unit hypersphere;
Fit a model, MR, to X ′ using the Standard-EM procedure to obtain soft clustering
of X;

Algorithm 1: Greedy vMFM for redundant variables
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Input: Matrix X of data points on p-dimensional unit hypersphere.
Output: Soft clustering of X over a mixture of K vMF distributions; Partition of

variables into S,R, and U sets.
Step 1
Begin with S = {1, . . . , p};
Fit full model, M0, to X using the Standard-EM procedure;
Obtain BICM0 ;
Step 2
for each l ∈ S do

Fit model, Ml, to X using the Noise-EM procedure with G = l;
Obtain BICMl

;
if BICMl

≤ BICM0 then
Append l to W ;

end

end
Step 3
Set S = {1, . . . , p} \W ;
Let X ′ be the variables in S projected onto the unit hypersphere;
Fit a model, MR, to X ′ using the Standard-EM procedure to obtain soft clustering
of X;

Algorithm 2: Greedy vMFM for noise variables

2.4.2 Backward Stepwise Variable Selection Methods

For smaller datasets we propose more thorough backward stepwise algorithms

(Algorithm 3 and 4). To identify redundant variables, we begin with all vari-

ables in S and find pairs of redundant variables using the BIC criterion. We

then identify the pair which produces the minimum BIC. Two models are then

fit to the data, with each excluding one variable in the pair. The variable whose

exclusion results in the minimum BIC is appended to U . The other is appended

to R. This repeats with the new S set, which excludes the variables in U , until

no variable’s removal results in a BIC reduction. A final model is fit using

only the variables S. Details are given in Algorithm 3. The backward stepwise

algorithm for noise variables is performed similarly. We begin with all variables

in S and find noise variables using the BIC criterion. The noise variable which

results in the lowest BIC is appended to W and removed from S. This re-

peats with the new S set until no variable’s removal results in a BIC reduction.

A final model is fit using only the variables S. Details are given in Algorithm 4.
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Input: Matrix X of data points on p-dimensional unit hypersphere.
Output: Soft clustering of X over a mixture of K vMF distributions; Partition of

variables into S and W sets.
Step 1
Begin with S = {1, . . . , p};
Fit full model, M0, to X using the Standard-EM procedure;
Obtain BICM0 ;
Step 2
while |S| > 2 do

for each pair i, j ∈ S do
Fit model, Mi,j , to X using the Redundant-EM procedure with G = {i, j};
Obtain BICMi,j ;

end
Let i′, j′ be the minimum BICMi,j ;

if BICMi′,j′ > BICM0 then

break;
end
else

Let X−i′ be the variables S ∪ {i′} projected onto the unit hypersphere;
Fit model, M−i′ , to X−i′ using the Standard-EM procedure;
Obtain BICM−i′ ;

Let X−j′ be S ∪ {j′} projected onto the unit hypersphere;
Fit model, M−j′ , to X−j′ using the Standard-EM procedure;
if BICM−i′ < BICM−j′ then

Let X = X−i′ ;
Append i′ to U ;
Set S = S \ {i′};
Append j′ to R;

end
else

Let X = X−j′ ;
Append j′ to U ;
Set S = S \ {j′};
Append i′ to R;

end

end

end
Step 3
Let X ′ be the variables S projected onto the unit hypersphere;
Fit a model, MR, to X ′ using the Standard-EM procedure to obtain soft clustering
of X;

Algorithm 3: Stepwise vMFM for redundant variables
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Input: Matrix X of data points on p-dimensional unit hypersphere.
Output: Soft clustering of X over a mixture of K vMF distributions; Partition of

variables into S and W sets.
Step 1
Begin with S = {1, . . . , p};
Fit full model, M0, to X using the Standard-EM procedure;
Step 2
while |S| > 2 do

for each l ∈ S do
Fit model, Ml, to X using the Noise-EM procedure with G = l;
Obtain BICMl

;

end
Let l′ be the minimum BICMl

;
if BICMl′ > BICM0 then

break;
end
else

Append l′ to W ;
Set S = S \ {l′};
Let X be the variables S projected onto the unit hypersphere.;

end

end
Step 3
Let X ′ be the variables S projected onto the unit hypersphere;
Fit a model, MR, to X ′ using the Standard-EM procedure to obtain soft clustering
of X;

Algorithm 4: Stepwise vMFM for noise variables

2.5 COMPUTATIONAL ASPECTS

Initialization is performed using the em-EM method [2]. In this method, we

start by randomly choosing K points as the means for our K vMF distributions

and initializing zi as the closest mean to one of the random seeds using cosine

distance. We run a short-EM algorithm by iterating until the relative change

in log-likelihood is less than a lax tolerance level. This procedure is repeated a

fixed number of times and the parameter estimates with the highest likelihood

value are used as initial points to run the long-EM algorithm until a more

strict convergence criterion is met. In the simulation study (Section 3) and

the applications (Section 4), where K ≤ 3, 10 random seeds are generated and

a tolerance level of 10−2 is used for the short-EM. The long-EM is run using
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tolerance level of 10−6. For applications with larger K, the number of random

seeds should be increased or an alternative initialization method, such as the

one proposed in [18], should be used. Additionally, κ is restricted to be less

than 1500 when performing numerical optimization.

We note the greedy redundant algorithm is O(p2(n + p)k) and the greedy

noise algorithm is O(p(n + p)k). In the worst-case, the stepwise redundant

algorithm is O(p3(n+ p)k) and the stepwise noise algorithm is O(p2(n+ p)k).

In practice, fitting these complex models for all possible pairs of redundant

variables and all possible noise variables may be too computationally expensive.

In this case, we recommend only fitting models for pairs of variables which are

likely to be redundant and variables which are likely to be noise. To identify

likely pairs of redundant variables, after fitting M0, we compute the Euclidean

distance between the means of each variable over all components. The m pairs

with the smallest distance are identified as likely redundant pairs and tested

using the model fitting procedure described above. To identify likely noise

variables, after fitting M0, we compute the variance of each variable’s mean

over all components. The m pairs with the smallest distance are identified as

likely noise variables and tested using the model fitting procedure described

above.

3 SIMULATION STUDY

An extensive study is conducted to evaluate the performance of the proposed

method and algorithm using simulated data. A 2-component, 8-dimensional

mixtures of vMF distributions was generated. From this mixture N = 1000

datasets of size n = 1000 observations are generated using the rmovMF function

from the movMF package [10]. Parameters for the mixture are given in Table 3.

The variables are created so that there will be some pairs which are redundant

and some variables which are noise. From the µh column in Table 3, we note

the following partitioning of variables: W = (4, 5), U = (2, 3), R = (1), S =
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(1, 6, 7, 8). The means and concentration parameters were chosen to make the

mixture easily separable while maintaining the redundant and noise variable

relationships stated above.

Table 3: Parameters of simulated data

h αh κh µh
1 0.4 4 1√

38
〈−3,−3,−3,−1, 1, 0, 0, 3〉

2 0.6 4 1√
70
〈3, 3, 3,−1, 1, 4,−4,−3〉

We applied the greedy vMFM for redundant and for noise variables to these

simulated datasets. The step-by-step values of the BIC and relative differences

for one example dataset are presented in Tables 4 and 5. M1,2, M1,3, and

M2,3 are models corresponding to pairs of redundant variables and M4 and

M5 correspond to noise variables. In the Tables 4 and 5, RelDiff(%) indicates

the relative difference in BIC between the base model, M0 or MR, and the

model in consideration Mi,j . This is given by
BICMi,j

−BICM0

BICM0
. A positive

relative difference in BIC indicates an improvement from the base model, while

a negative relative difference in BIC indicates the considered model is inferior

to the base model. From Table 4, we note a slight decrease in BIC for pairs of

variables which were simulated to be redundant and larger increase in BIC for

variables which were simulated to not be redundant. Similarly, from Table 5,

we note a slight decrease in BIC for variables which were simulated to be noise

and a larger increase in BIC for variables which were simulated to not be noise.

In the case of our methods being applied to variables which were simulated

to be redundant or noise, the improved BIC arises because we are able to

achieve similar likelihood values by reducing the parameter counts. In the case

of our methods being applied to other variables, the increased BIC is a result

of the substantially lower likelihood of the data under the model, which is not

outweighed by the reduced parameter count. In 1000 datasets, at least two pairs

of redundant were correctly identified in all simulations, while all three were

correctly identified in 999 of the simulations (99.9%). With regard to noise
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variables, out of 1000 simulations, at least one noise column were correctly

identified in 999 simulations (99.9%), while both noise columns were correctly

identified in 979 simulations (97.9%).

Table 4: Example results from simulated data

Model BIC RelDiff(%) l(θ̂ | x) C
M0 -582.20 0.00 356.72 19
M1,2 -595.30 2.25 356.37 17
M1,3 -595.38 2.26 356.41 17
M2,3 -593.32 1.91 355.38 17
M6,7 -257.03 -55.85 187.23 17

Table 5: Noise results from simulated data

Model BIC RelDiff(%) l(θ̂ | x) C
MR -376.07 0.00 239.84 15
M4 -380.94 1.29 238.82 14
M5 -377.78 0.46 237.25 14
M8 -276.27 -26.54 186.49 14

4 APPLICATION

In this section we assess our methods on a variety of real-world datasets. When

computationally feasible we apply the stepwise vMFM algorithms to identify

irrelevant variables. For larger datasets, we apply the greedy vMFM algorithms.

4.1 CLASSIC3 DATA

We evaluated our algorithm using the well-known Classic3 document collec-

tion1. The collection consists of 3891 total documents, including 1398 Cran-

field (cran) documents from aeronautical system papers, 1033 Medline (med)

documents from medical journals, and 1460 CISI (cisi) documents from infor-

mation retrieval papers (K = 3). This data contained 21,137 unique words,

meaning that each document was represented as a 21,137-dimensional vector.

1ftp://ftp.cs.cornell.edu/pub/smart
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In addition, balanced and unbalanced subsets of the data, which were chosen

by randomly selecting a fixed number of documents from each group, were also

considered. This subset sampling was repeated 1000 times. Table 6 details the

composition and dimensionality of each dataset. As expected, the dimension-

ality of the sampled datasets are smaller than the original.

Table 6: Descriptions of the classic3 datasets

Name cisi cran med Avg. p
Classic3 1460 1398 1033 21137.00
Classic3 300 Balanced 100 100 100 6090.47
Classic3 400 Unbalanced 100 200 100 6671.66

Several variable selection methods specific to text data are considered in

addition to our vMFM methods. The methods are described below.

• none: no variable selection performed

• none+red+m+dist: m pairs of potential redundant variables (selected

by smallest euclidean distance between means) considered with greedy

vMFM for redundant variables.

• stop: all stop words in [23] removed.

• stop+red+m+dist: all stop words in [23] removed and n pairs of poten-

tial redundant variables (selected by smallest euclidean distance between

means) considered with greedy vMFM for redundant variables.

• tf-idf: the same number of words removed as with none+red+m+dist by

lowest term frequencyinverse document frequency.

• stop+tf-idf: all stop words in [23] removed and the same number of words

removed as with stop+red+m+dist by lowest term frequencyinverse doc-

ument frequency.

Tables 7–9 present results. Because tf-idf and none+red+m+dist remove the

same number of dimensions, their choice of dimensions to remove can be di-

rectly compared. Similarly, stop+tf-idf and stop+red+m+dist remove the same
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number of dimensions, so they can be compared directly. All variable selection

techniques successfully improved classification rates on the full dataset. While

the greedy vMFM for redundant variables was able to improve or maintain ac-

curacy, we note that removing the same number of dimensions by tf-idf resulted

in an additional improvement in accuracy by about 10%.

Table 7: Results of various variable selection methodologies on the Classic3 dataset

Processing Accuracy (%) p Removed
stop+tf-idf 69.49 975
stop 68.90 618
stop+red+1000+dist 60.55 975
tf-idf 55.38 1000
none+red+1000+dist 44.02 1000
none 43.95 0

Table 8: Averaged results of various variable selection methodologies on balanced
subsets of 300 documents from the Classic3 data set

Processing Avg. Accuracy (%) Avg. Rank Avg. p Removed
stop+tf-idf 77.40 2.00 654.30
stop+red+1000+dist 76.34 2.08 654.30
stop 76.13 2.17 487.24
tf-idf 57.69 3.80 163.43
none 42.47 5.28 0.00
none+red+1000+dist 42.23 5.67 163.43

Table 9: Averaged results of various variable selection methodologies on unbalanced
subsets of 400 documents from the Classic3 data set

Processing Avg. Accuracy (%) Avg. Rank Avg. p Removed
stop 61.80 2.24 501.04
stop+red+1000+dist 60.96 2.40 638.44
stop+tf-idf 59.76 2.44 638.44
tf-idf 54.92 3.00 135.82
none 42.43 5.35 0.00
none+red+1000+dist 42.44 5.57 135.82

In both subsets, we again note that methods which remove all stop words

perform much better than methods that do not. The three stop word methods
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all perform similarly, with a maximum difference in accuracy of about 2%. Re-

ducing dimensions using the greedy vMFM algorithm for redundant variables

after removing stop words enables greater variable selection beyond removing

stop words alone, without necessarily sacrificing performance. Similar perfor-

mance to removing stop words and words by tf-idf, but we hypothesize that all

three methods could be combined to further reduce dimensionality.

Methods which did not involve the removal of stop words performed sig-

nificantly worse. In both the unbalanced and balanced datasets, applying the

greedy vMFM for redundant variables led to the slightly lower average classi-

fication accuracy (by 0.01% or 0.024%) than performing no variable selection

at all and enabled a significant reduction in variables involved in the model. In

both cases, removing word by tf-idf improved classification rates while reducing

dimensionality.

4.2 BREAST CANCER WISCONSIN DATA

We also evaluate our stepwise methods on the Wisconsin Breast Cancer dataset,

obtained from the University of Wisconsin Hospitals, Madison from Dr. William

H. Wolberg [26]. The data reports 9 discrete measurements for 699 observa-

tions of clumps of breast cancer cells. The variables are Clump Thickness,

Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Single

Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mi-

toses. A correlation matrix for these variables is presented in Table 10. We

remove 16 missing observations from the dataset to arrive at a final dataset

with n = 683, p = 9. Model-based clustering alanysis is conducted using the

proposed mixture model based on these variables in order to predict whether a

given clump belongs to the class benign or malignant.
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Table 10: Within class correlation between variables in the Wisconsin Breast Cancer
dataset (Benign/Malignant)
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Figure 3: Wisconsin Breast Cancer accuracy after removing redundant variables with
stepwise procedure
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Using the whole dataset, we achieve a peak classification rate of 94.14%.

Using the stepwise vMFM for noise variables, we do not identify any variables

as noise. As shown in Figure 3, the stepwise vMFM for redundant variables

results in the removal of six of the nine variables, with only Uniformity of

Cell Size, Bland Chromatin, and Mitoses remaining. Using only these three

variables reduces accuracy from 94.14% to 93.70%. Looking more closely at the

result of each step of the stepwise algorithm, we see that Clump Thickness was

removed because of its redundancy with Uniformity of Cell Shape, while all of

the other variables removed, including Uniformity of Cell Shape, were found to

be redundant with Uniformity of Cell Size. These relationships generally make

sense, given the information presented in Table 10, where we note the strong

correlations between Uniformity of Cell Size and the other removed variables.

We also note that the other remaining variables, Mitoses and Bland Chromatin

have relatively low correlation with the removed variables.

5 DISCUSSION

Our greedy vMFM for noise and redundant variables algorithms were shown

to perform well on simulated data. Applying our methods to real data yielded

mixed results. In the best cases, we were able to significantly reduce dimension-

ality without sacrificing much accuracy. In the case of text data, our methods

were shown to perform well when combined with another standard dimension

reduction technique, the removal of stop words, but were not shown to con-

sistently outperform another standard technique, the removal of words with

low term frequency inverse document frequency. Areas for future development

include the adoption of more relaxed linear relationships between redundant

variables like those presented in [14], a more thorough examination of methods

for selecting likely redundant or noise variables, and addressing computational

concerns which prevented us from identifying noise variables in larger datasets.
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A APPENDIX

A.1 DERIVATIONS FOR UNCONSTRAINED VARIABLES

A.1.1 E-step

In the E-step of our algorithms, we update the distribution estimates of the

hidden variables, zi, by evaluating the expectation of Equation (2.3) assuming

all other parameters are known:

E
(
lc(θ | x)

)
= E

 n∑
i=1

K∑
h=1

I(zi = h)
[
ln(αh) + ln(cp(κ)) + κhµ

T
hx
]

=

n∑
i=1

K∑
h=1

E(I(zi = h))
[
ln(αh) + ln(cp(κ)) + κhµ

T
hxi

]
=

n∑
i=1

K∑
h=1

P (h | xi,θ)
[
ln(αh) + ln(cp(κ)) + κhµ

T
hxi

]
(A.1)

This expectation reduces to calculating the posterior probability of the compo-

nent h given observation xi and parameter values, P (h | xi,θ) which we denote

as πih.

πih =P (h | xi,θ)

=
P (h,xi,θ)

P (xi,θ)

=
P (xi,θ | h)P (h)

P (xi,θ)

=
αhfh(xi | θ)∑K
h=1 αhfh(xi | θ)

A.1.2 M-step

Next we present three variations of the M-step, one each for the Standard,

Redundant, and Noise procedures. In the M-step, we fix πih and maximize

an objective function (Q) which is the expectation of the complete-data log-
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likelihood (Equation A.1):

Q(θ | x) =
n∑
i=1

K∑
h=1

πih

[
ln(αh) + ln(cp(κ)) + κhµ

T
hxi

]
=

n∑
i=1

K∑
h=1

πih ln(αh) +

n∑
i=1

K∑
h=1

πih

[
ln(cp(κh)) + κhµ

T
hxi

]
(A.2)

We note that the first term in the sum can be maximized separately from the

second. The form of each αh is the same for the standard, redundant, and noise

cases, so we derive it only once. We now estimate each αh using

Q∗αh(θ | x) =

n∑
i=1

K∑
h=1

πih ln(αh) + ξ

1−
K∑
h=1

αh

 (A.3)

where we have included a Lagrangian multiplier corresponding to the constraint∑K
h=1 αh = 1. To maximize Equation (A.3), we differentiate with respect to ξ

and each αh and simplify with the partial derivative being equal to 0. From

0 =
∂Q∗αh
∂ξ , we derive

1 =
K∑
h=1

αh. (A.4)

From 0 =
∂Q∗αh
∂αh

, we derive

ξ = −n (A.5)

and

αh =
1

n

n∑
i=1

πih. (A.6)

We now maximize the second term in Equation (A.2). An analytical esti-

mate for κh is not readily available and is instead estimated by a numerical

optimization procedure. Because of this, we modify the second term in Equa-

tion (A.2), ignoring cp(κ) and introducing a Lagrangian multiplier λh corre-
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sponding to the constraint µThµh = 1:

Q∗(θ | x) =
n∑
i=1

K∑
h=1

πihκhµ
T
hxi +

K∑
h=1

λh(µThµh − 1) (A.7)

To maximize Equation (A.7), we differentiate with respect to each variable and

simplify with the partial derivative being equal to 0. From 0 = ∂Q∗

dµh
, we derive

µh =
κh
2λh

n∑
i=1

πihxi. (A.8)

From 0 = ∂Q∗

dλh
, we derive

µThµh = 1. (A.9)

Using Equation (A.8) and Equation (A.9), we derive

λh =
κh
2

∥∥∥∥∥∥
n∑
i=1

πihxi

∥∥∥∥∥∥ (A.10)

and

µh =

∑n
i=1 πihxi∥∥∑n
i=1 πihxi

∥∥ . (A.11)

Letting rh =
∑n

i=1 πihxi, we have:

λh =
κh
2
‖rh‖ (A.12)

and

µh =
rh
‖rh‖

. (A.13)
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A.2 DERIVATIONS FOR REDUNDANT VARIABLES

For the redundant and noise maximizations, we begin by rewriting Equa-

tion (A.7) using only scalar multiplication:

Q∗(θ | x) =

n∑
i=1

K∑
h=1

πihκh

p∑
j=1

µhjxij +

K∑
h=1

λh

 p∑
j=1

µ2hj − 1

 (A.14)

We define redundant variables to be variables which have a common mean di-

rection within a given mixture component. Let G be set of indices of redundant

variables. G can be thought of as a set of candidate variables for U . We can de-

note this common mean by µhG for each component h. We let µhj be the mean

for the jth variable in the hth component. With this assumption and the con-

straints µThµh = 1 and κh ≥ 0, we can rewrite some parts of Equation (A.14)

using this new notation:

Q∗R(θ | x) =

n∑
i=1

K∑
h=1

πihκh

µhG∑
j∈G

xij +
∑
j /∈G

µhjxij

+

K∑
h=1

λh

1−|G|µ2hG −
∑
j /∈G

µhj


(A.15)

with |G| denoting the cardinality of G. To maximize Equation (A.15), we dif-

ferentiate with respect to each variable and simplify with the partial derivative

being equal to 0. From 0 =
∂Q∗R
∂λh

, we derive

1 = |G|µ2hG +
∑
j /∈G

µ2hj . (A.16)

From 0 =
∂Q∗R
∂µh

, we derive

µhG =
κh
∑

j∈G
∑n

i=1 πihxij

2λh|G|
. (A.17)

From 0 =
∂Q∗R
∂µhj

, we derive

µhj =
κh
∑n

i=1 πihxij
2λh

. (A.18)
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for j /∈ G. Substituting Equation (A.17) and Equation (A.18) into Equa-

tion (A.16) yields

λh =
κh
2

√√√√√√
 1

|G|

∑
j∈G

n∑
i=1

πihxij

2

+
∑
j /∈G

 n∑
i=1

πihxij

2
. (A.19)

Substituting Equation (A.19) into Equation (A.17) yields

µhG =

∑
j∈G

∑n
i=1 πihxij√(

1
|G|

(∑
j∈G

∑n
i=1 πihxij

)2
+
∑

j /∈G
(∑n

i=1 πihxij
)2)|G| . (A.20)

Substituting Equation (A.19) into Equation (A.18) yields

µhj =

∑n
i=1 πihxij√(

1
|G|

(∑
j∈G

∑n
i=1 πihxij

)2
+
∑

j /∈G
(∑n

i=1 πihxij
)2) . (A.21)

Letting rhj =
∑n

i=1 πihxij , we have:

µhG =

∑
j∈G rhj√(

1
|G|

(∑
j∈G rhj

)2
+
∑

j /∈G
(
rhj
)2)|G| (A.22)

and

µhj =
rhj√(

1
|G|

(∑
j∈G rhj

)2
+
∑

j /∈G
(
rhj
)2) . (A.23)

A.3 DERIVATIONS FOR NOISE VARIABLES

We define a noise variable as variable with a common mean direction over all

components. Let G be the index of such a variable. G can be thought of as a set

of candidate variables for W . We denote µ.j to be the common mean of the jth

variable over all components and µhj to be the mean of the jth variable (which

is not in G) in the hth component. With this assumption and the constraints
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µThµh = 1 and κh ≥ 0, we can rewrite some parts of Equation (A.14) using this

new information:

Q∗N(θ | xi) =
K∑
h=1

n∑
i=1

πihκh

∑
j∈G

µ.jxij +
∑
j /∈G

µhjxij

+
K∑
h=1

λh

1−
∑
j∈G

µ2.j −
∑
j /∈G

µ2hj


(A.24)

To maximize Equation (A.24), we differentiate with respect to each variable

and simplify with the partial derivative being equal to 0. From 0 =
∂Q∗N
∂µhj

, we

derive

µhj =
κhrhj
2λh

. (A.25)

From 0 =
∂Q∗N
∂µ.j

, we derive

µ.j =
κh
∑K

h=1 rhj

2
∑K

h=1 λh
. (A.26)

From 0 =
∂Q∗N
∂λh

, we derive

1 =
∑
j∈G

µ2.j +
∑
j /∈G

µ2hj . (A.27)
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