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Rural vs. non-rural differences and longitudinal bone changes 
by DXA and pQCT in men aged 20-66 years: A population-based 
study☆

Bonny L. Specker*,a, Howard E. Weyb, Teresa L. Binkleya, Tianna M. Bearea, Maggie 
Minetta, and Lee Weidauera

a EA Martin Program, South Dakota State University, Brookings, SD 57007, USA

b College of Nursing, South Dakota State University, Brookings, SD 57007, USA

Abstract

The purpose of this research was to determine whether there were differences in estimated means 

and rates of change in BMC, bone area, BMD and measures of bone geometry among men (n = 

544) from three distinct populations (Hutterite [rural], rural non-Hutterite, non-rural), and whether 

activity levels or calcium intake explain these population differences. Men were enrolled in the 

South Dakota Rural Bone Health Study and followed for 7.5 years to estimate means and rates of 

change in bone mass, density, size and geometry. Femoral neck (FN) and spine measurements 

were obtained every 18 months by DXA and distal radius (4% and 20%) measurements by pQCT. 

Activity measurements and calcium intake were obtained quarterly for the first 3 years and at 54, 

72, and 90 months. Rural men had greater percent time in moderate plus vigorous activity (mean ± 

SD: 22 ± 10 vs. 15 ±8%, p < 0.001) and greater lean mass (69 ± 9 vs. 66 ± 10 kg, p = 0.05) than 

non-rural men. Both rural populations (Hutterite and rural men) had larger femoral neck (FN) 

bone area and greater 20% radius cross-sectional area than non-rural men ([least square means ± 

SE] FN area: 5.90 ± 0.02 and 5.86 ± 0.02 vs. 5.76 ± 0.03 cm2, p < 0.001 and p = 0.03 respectively 

and cross-sectional area: 171.0 ± 1.3 and 165.5 ± 1.5 vs. 150.3 ± 1.6 mm2, both p < 0.001). 

Despite lower cortical vBMD in Hutterite and rural men compared to non-rural men (1182 ± 2 and 

1187 ± 2 vs. 1192 ± 2 mm2, p < 0.001 and p = 0.06 respectively), bone strength (pSSI) was greater 

(429 ± 5 and 422 ± 5 vs. 376 ± 6 mm3, both p < 0.001). The rates of change in femoral neck BMC 

and aBMD and trabecular vBMD also differed by rural lifestyle, with greater losses among non-

rural men in their 20s and 60s compared to both Hutterite and rural populations (time-by-age-by-

group interactions, both p < 0.01). Physical activity was not found to be a potential mediator of 

population differences. Baseline calcium intake was associated with FN aBMD (p = 0.04), and 

increases in calcium intake were associated with spine BMC (p = 0.04) and inversely associated 
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with cortical area (p = 0.02). There was some evidence for mediation by either baseline calcium 

intake or changes in calcium intake over the study period, but the influence on population 

differences were negligible. We speculate that rural–non-rural differences in bone occur earlier in 

life or are a result of factors that have not yet been identified.

Keywords

Diet; Motor activity; Rural population; Life style; Human; Male; Mediation

1. Introduction

Osteoporosis and osteoporosis-related fractures occur more frequently in women, with a 

female-to-male ratio of 1.6; however, the estimated lifetime risk of an osteoporotic fracture 

in men over 50 years of age is substantial at 30% [1]. Overall fracture-related mortality also 

is greater in men than women aged 60 years and older, with 20% mortality in the first 12 

months following a hip fracture [2].

Fracture rates have been reported to be lower among individuals residing in rural areas 

compared to urban areas [3–7]. Some investigators have attributed these differences to a 

higher areal bone mineral density (aBMD) or bone mineral content (BMC) in individuals 

residing in rural areas [4,8,9]. However, most of these studies categorized individuals based 

on their residence rather than their individual lifestyle. Gardsell and coworkers reported a 

higher forearm BMC in rural vs. urban men in southern Sweden, and the BMC difference 

became greater when they limited their population to men who lived their entire life in a city 

or never lived in a city [4]. Despite rural–urban differences that have been reported, little is 

known about the determinants of these differences although physical activity and diet have 

been suggested as possibilities [7,9–11]. Additionally, these reports were based on cross-

sectional studies. There are no reports of longitudinal changes in BMC or aBMD in rural vs. 

urban populations.

Longitudinal studies are better than cross-sectional studies for determining rates of bone loss 

with aging. Evaluation of rates of change from cross-sectional studies is potentially subject 

to bias from cohort effects, and data from cross-sectional studies can both overestimate and 

underestimate rates of change observed in longitudinal studies [12,13]. The reason for these 

discrepancies is the difference in methods used to estimate rates of change in cross-sectional 

vs. longitudinal studies. In cross-sectional studies, the estimated rate of change is based on a 

regression using single measurements from multiple individuals to provide data across an 

age range. In longitudinal studies, the average estimated rate of change is based on multiple 

measurements for an individual.

The South Dakota Rural Bone Health Study (SDRBHS) is a longitudinal study of three 

populations distinguished by lifestyle (Hutterite, rural, non-rural) that have been followed 

7.5 years. Both Hutterite and rural populations live a similar rural farming lifestyle but with 

significant differences in social structure (Hutterites have a religion-based communal 

lifestyle). The non-rural population never lived on a working farm and would be expected to 

have lower physical activity levels [10]. Enrollment of participants from these three distinct 
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populations is helpful in determining whether it is the rural vs. non-rural lifestyle or genetic 

differences that influence rates of bone loss with aging. The purpose of the current analysis 

was to determine whether there were population differences in estimated means and rates of 

change in DXA BMC, bone area and areal BMD (aBMD) and pQCT measures of 

volumetric bone mineral density (vBMD) and bone geometry among men aged 20 to 66 

years at enrollment. It was hypothesized that Hutterite and rural men would have greater 

BMC, aBMD and bone size than non-rural men and these differences would be maintained 

across the different ages. Whether physical activity levels or dietary calcium intake could 

explain the population differences also was determined.

2. Methods

2.1. Subjects

The SDRBHS is a 7.5-year longitudinal study of 1271 healthy adults aged 20 to 66 years 

who were enrolled between 2001 and 2004. Of the 1271 participants, 585 (226 males) were 

Hutterites, 350 (184 males) were classified as rural, and 336 (134 males) were classified as 

non-rural. Hutterites are an Anabaptist religious group who believes in isolated communal 

living and self-sufficiency through technologically advanced agricultural-based rural 

lifestyle. To be classified as Hutterite, an individual had to be of Hutterite descent 

(originating in Tyrol region of Germany and Austria in the 1500s) and currently residing on 

a Hutterite colony. Both rural and non-rural populations were recruited from eight counties 

that included at least one participating colony. All eight of these counties are considered to 

be rural, non-metro counties. To be considered rural, the subject had to have reported at the 

time of enrollment spending ≥75% of their life on a working farm while working <1040 h/

year off the farm. In order to be considered non-rural, the subject could never have spent 

time living on a working farm. Both rural and non-rural participants were recruited by 

calling every tenth phone number from local phone books. This process was repeated once 

for one of the 8 counties that had a large population of non-rural residents. In addition, 

individuals whose names were on County Zoning Office phone lists of people owning land 

zoned agricultural in these 8 counties were called. Difficulty was encountered in locating 

sufficient numbers of participants who had never lived on a working farm and eventually 

recruitment was opened to anyone interested in participating as long as they met the criteria 

for being non-rural. Twenty-one percent of the non-rural participants were recruited through 

open enrollment [10]. SDSU Institutional Review Board approved the protocol and written 

informed consent was obtained from all participants.

2.2. Body composition and bone measurements

Body composition and bone measurements of femoral neck (FN), hip and spine were 

measured every 18 months using a DXA densitometer (Hologic QDR 4500A/Discovery, 

Bedford, MA) (Table 1). Hip scans were done on the left hip, and aBMD Z-scores for 

femoral neck, hip and spine were obtained from the manufacturers' software (Version 12.3). 

Due to decreased accuracy in spine scans obtained on obese patients, all scans with an epoxy 

equivalent thickness greater than 12 in., as determined by the Hologic software, were 

deleted per manufacturer recommendations (33 spine scans from 16 men [7 Hutterite, 4 

rural, 5 non-rural] were omitted). Coefficients of variation (CV) were analyzed from 
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triplicate scans on 15 adults with repositioning between each scan and were <2% for hip and 

spine BMC and bone area. Quality control and quantification procedures outlined by Orwoll 

et al. were used to monitor and adjust DXA results for alterations in scanner performance 

[14].

pQCT measurements of the left radius were obtained using a Norland-Stratec XCT2000 

densitometer (Pforzheim, Germany). Arm length was measured from the elbow to the ulna 

styloid process and a scout view was taken to identify the end of the radius. Slices were 

obtained at the 4% and 20% of the measured arm length from the distal radius using a voxel 

size of 0.4 mm and scan speed of 30 mm/s with a 1-block rotation. The slices were analyzed 

using ContMode2, Peel Mode 2 and a threshold of 400 mg/cm3 to obtain trabecular 

volumetric bone mineral density (vBMD) (4% site only). Cortical bone was identified using 

a density threshold of 710 mg/cm3 at the 20% site, and a threshold of 280 mg/cm3 for pSSI. 

The polar stress strain index (pSSI) at the 20%, a measure of torsional bone strength, is 

based on structural and material properties obtained by pQCT:

where ri is the voxel position from the center, a is the area of the pixel, rmax is the maximum 

distance of the voxel to the bone center, CD is the measured cortical density of the voxel, 

and ND is the normal physiological cortical density (1200 mg/ccm) [15]. CVs from 

duplicate scans obtained on 9 adults following repositioning and with a scout view were 

0.5%, 1.2% and 0.5% for cortical vBMD, cortical thickness and total bone cross-sectional 

area at the 20% site and 2.4% for trabecular vBMD at the 4% distal site.

2.3. Anthropometric measurements

Height without shoes, recorded to the nearest 0.5 cm, was measured every 18 months in 

duplicate using a Seca stadiometer (Chino, CA) and repeated if measurements differed by 

more than 0.5 cm. Weight with light clothing was measured to the nearest 0.1 kg using a 

Seca digital scale (Model 770, Chino, CA).

2.4. Activity levels

Physical activity was measured every 18 months using a 7-day physical activity recall [16], 

which requires the participant to determine the average amount of time spent per day 

sleeping, sitting, or in vigorous or moderate activity during the previous week. The 

remaining time was classified as light activity. Vigorous activity was considered as any 

activity that leads to an increase in heart rate or heavy breathing and included such activities 

as running, brisk walking, shoveling, etc. Moderate activity was considered as an activity 

that required significant movement but did not noticeably increase heart rate or result in 

heavy breathing. Activity patterns for weekdays and weekend days, as well as the number of 

days per week considered weekend days, were obtained. The average percent of time spent 

in moderate plus vigorous activity was then calculated. Records collected at 0, 3 & 6 months 

were used for baseline estimate; 15, 18 & 21 months for 18-month visit estimate; and 30, 33 
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& 36 months for 36-month visit estimate. Research staff completed all recalls during 

interviews with the participants.

2.5. Calcium intake

Calcium intakes from 24-hour diet recalls obtained quarterly during the first 3 years of the 

study (Table 1) were determined using Nutritionist V software (First Data Bank, San Bruno, 

CA). Records collected at 0, 3 & 6 months were used for baseline estimate; 15, 18 & 21 

months for 18-month visit estimate; and 30, 33 & 36 months for 36-month visit estimate. 

Research staff completed all recalls during interviews with the participants. The food 

frequency questionnaires (FFQ) obtained at 54, 72 and 90 months were used to assess 

calcium intake over the previous year [17] and was previously validated in rural populations 

[18]. Calcium intake from both the 24-hour recalls and the FFQs included calcium 

supplements.

2.6. Statistical analyses

Analyses were carried out using SAS statistical software (v 9.3, SAS Institute, Inc., Cary, 

NC). ANOVA was used to evaluate population differences in potential covariates at 

baseline, with Tukey adjustment for multiple comparisons.

A linear mixed effects model was used to evaluate population differences adjusting for 

potential covariates, allowing for simultaneous evaluation of both cross-sectional 

associations at baseline and longitudinal associations [19]. Random error was modeled 

among and within individuals, thereby accounting for correlated repeated measures within 

an individual.

For each bone outcome, the mixed model (referred to as base model) included population 

group, age, age2, height, lean mass, fat mass, change in lean mass, change in fat mass, age-

by-group, age2-by-group, time-by-age, time-by-age2, time-by-group, time-by-age-by-group, 

and time-by-age2-by-group. The age2 term was included since most relationships with age 

were non-linear. Lean mass and fat mass were used rather than weight or BMI due to the 

opposite influences that lean and fat mass may have on bone size, BMC, aBMD, and vBMD 

[20,21]. Changes in lean and fat mass were calculated as the difference of a follow-up 

measurement from the corresponding baseline measurement.

To investigate whether activity levels or calcium intake mediates the relationship between 

population group and bone measurements, the step method described by Baron and Kenny 

was used [22]. The steps require 1) the total effect of the predictor of interest (population 

group) on the dependent variable (bone) must be significant; 2) the relationship between the 

independent variable (population group) and the mediator (activity or calcium intake) must 

be significant; and 3) the relationship from the mediator (activity or calcium intake) to the 

dependent variable (bone) must be significant. The effect of a mediator is to attenuate the 

beta coefficient, or the association of the predictor of interest with the dependent variable, in 

a regression model containing both the mediator and predictor of interest. If the associations 

in the three steps described above were observed, the beta coefficient for population group 

from the base model, or the highest-order interaction that was statistically significant and 
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included population group, was considered a measure of the overall effect (OE) [23]. The 

beta coefficients obtained for the significant highest order interaction term in a model also 

containing a similar interaction that included the mediator provided an estimate of the direct 

effect (DE) of population group on the bone measure [24]. We then calculated the percent of 

the beta coefficient explained by the potential mediator as ([OE – DE] / OE) * 100, which is 

used as a summary measure of the indirect effect of the mediator on the bone outcome 

measure. We also determined the least square means of the main effect of population group 

or the highest order interaction after including the potential mediator in the statistical model.

Least square means and annual percent change in bone outcomes are graphed at different 

ages for illustrative purposes although the actual analysis was done on the rate of change as 

described above using age as a continuous variable. Least square means are the means after 

adjusting for all the covariates in the statistical model. Denominator degrees of freedom 

were determined using the Satterthwaite approximation. Data are means ± standard 

deviations unless otherwise noted.

3. Results

Baseline characteristics of the 544 men are shown by population group in Table 2. There 

was a 94% (n = 510) completion rate after 3 years and 80% (n = 433) completion rate after 

7.5 years. Hutterite men were younger, shorter, had greater percent time in moderate plus 

vigorous activity, and lower calcium intake than rural and non-rural men. aBMD Z-scores of 

the hip and spine were greater in Hutterite men than non-rural men with rural men being 

intermediate between the two other populations. Mixed model analysis was done to 

simultaneously determine the cross-sectional and longitudinal associations, as well as rates 

of change, among population groups controlling for the covariates described in the 

Statistical Analysis section. Each covariate was a significant predictor of several bone 

measurements (see Supplemental Table 1): greater lean mass was associated with greater FN 

and spine BMC, BA, and aBMD, and radial cross-sectional area, cortical thickness, cortical 

area, pSSI and trabecular vBMD, while there was a negative relationship between lean mass 

and cortical vBMD. Fat mass was negatively associated with FN and spine BMC and BA, 

and radial cross-sectional area, cortical area and pSSI. Non-linear relationships were 

observed between age and FN and spine BMC and aBMD, and radial cross-sectional area 

and cortical vBMD. Taller men had larger FN bone area with only slightly greater FN BMC 

leading to a lower aBMD compared to shorter men. Taller men also had greater cross-

sectional area and a greater pSSI, but smaller cortical thickness and lower trabecular vBMD. 

Results described below are from the models containing all covariates.

3.1. Cross-sectional associations

Hutterite and rural men had greater FN bone area than non-rural men (least square means ± 

SE: 5.90 ± 0.02 and 5.86 ± 0.02 vs. 5.76 ± 0.03 cm2, p < 0.001 and p = 0.03 respectively), 

but there were no population differences in FN BMC or aBMD (Fig. 1; similar differences 

were observed for total hip [data not presented]). There were no population differences in 

spine bone area (70.2 ± 0.33 vs. 70.2 ± 0.36 vs. 69.3 ± 0.41 cm2, all p > 0.05), but Hutterite 

men had greater spine BMC and aBMD than both rural and non-rural men (80 ± 1 vs. 76 ± 1 
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and 75 ± 1 g, p = 0.01 and p < 0.001 respectively for BMC and 1.141 ± 0.010 vs. 1.084 ± 

0.011 and 1.077 ± 0.013 g/cm2, both p < 0.001) for aBMD (data not shown graphically).

Hutterite and rural men had greater cross-sectional area at the 20% distal radius than non-

rural men (171.0 ± 1.3 and 165.5 ± 1.5 vs. 150.3 ± 1.6 mm2, both p < 0.001) resulting in 

both Hutterite and rural men having greater pSSI than non-rural men (429 ± 5 and 422 ± 5 

vs. 376 ± 6 mm3, both p < 0.001) despite lower cortical vBMD (1182 ± 2 and 1187 ± 2 vs. 

1192 ± 2 mm2, p < 0.001 and p = 0.06 respectively) (Fig. 2). Cortical thickness was similar 

among population groups at younger ages, but smaller at older ages among Hutterites 

compared to rural and non-rural men (age-by-group interaction, p < 0.001). Cortical area 

was similar among population groups at younger ages, but was greater with increasing age 

in rural men compared to Hutterites and non-rural men (age-by-group interaction, p < 

0.001).

3.2. Population and age differences in rates of change

The rates of change in FN BMC and aBMD indicated bone loss that was non-linear with age 

and varied by population. Greater rates of loss of FN BMC and aBMD were apparent in 

non-rural men at younger and older ages compared to Hutterite and rural men (time-by-age2-

by-group interactions, both p < 0.01; Fig. 1). There was a positive rate of change in FN bone 

area (p < 0.001) that was similar across all ages (time-by-age interaction not significant) and 

among all population groups (time-by-group not significant). Greater positive rates of 

change with increasing age were found for spine BMC and aBMD (time-by-age interactions, 

both p < 0.01). The rate of gain in bone area decreased with increasing age (time-by-age 

interaction, p = 0.01) and was lower in Hutterite men compared to rural men (least square 

means [±sem] of 0.04 ± 0.04 and 0.21 ± 0.05% change per year respectively, p = 0.01).

Changes in pQCT measurements included a positive rate of change in cross-sectional area at 

all ages that did not differ by population group (time-by-group interaction not significant) 

(Fig. 3). There were increasing rates of loss in cortical thickness, cortical area, cortical 

vBMD, and pSSI at older ages (all time-by-age interactions p < 0.001). Rates of change in 

cross-sectional area, cortical thickness, cortical area, cortical vBMD, and pSSI did not differ 

among population groups. There was an increased rate of loss in trabecular vBMD among 

non-rural men in their 20s and 60s compared to Hutterite and rural men; whereas middle-

aged Hutterite and rural men had greater rates of loss compared to middle-aged non-rural 

men (time-by-age-by-group interaction, p < 0.001).

3.3. The role of physical activity and calcium intake on explaining population differences in 
cross-sectional results and rates of change

Least square means and rates of change in percent time in moderate plus vigorous activity 

and calcium intake are shown in Fig. 4. Mean percent time in moderate plus vigorous 

activity was greater in Hutterite and rural men than non-rural men, especially at younger 

ages (age2-by-group interaction, p = 0.02). Non-rural men had greater percent increases in 

activity levels, while Hutterite and rural men did not (time-by-group interaction, p < 0.001).

Calcium intakes were greater in rural and non-rural men compared to Hutterite men (least 

square means ± SE: 1209 ± 31 and 1146 ± 35 vs. 1038 ± 28 mg/day, p < 0.001 and p = 0.04 
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respectively). Annual changes in calcium intake were positive and greater at older ages, with 

Hutterite men having greater increases than rural and non-rural men (time-by-age-by-group 

interaction, p = 0.02).

We next identified which bone outcomes were associated with these potential mediators. 

Neither percent time in moderate plus vigorous activity at baseline nor changes in activity 

levels were associated with any of the bone outcomes and therefore did not meet the criteria 

for being a mediator. However, baseline calcium intake was associated with FN aBMD (p = 

0.04) and increases in calcium intake were associated with spine BMC (p = 0.04) and 

inversely associated with cortical area (p = 0.02). Inclusion of baseline calcium intake 

resulted in attenuations of the beta coefficients for rate of change in FN aBMD by age and 

group (time-by-age-by-group and time-by-age2-by-group interactions) that ranged from 6.9 

to 50% depending upon the population and age group. The overall effects, however, on the 

least square means were small as shown in Table 3 and the time-by-age2-by-group 

interaction term remained statistically significant (p = 0.006 in base model to p = 0.02 in 

model with baseline calcium intake). Adding changes in calcium intake to the model 

predicting spine BMC attenuated the beta coefficient for population group, but the mediating 

effect of changes in calcium intake was small (2.9%). Changes in the least square means 

also were negligible (Table 3), and population group differences remained significant (p = 

0.03). Inclusion of changes in calcium intake in the model predicting cortical area also 

reduced the beta coefficients for the age-by-group interaction (range 1.2 to 10%) but the 

effects were minimal and the age-by-group interaction remained significant (p < 0.001).

4. Discussion

Although some longitudinal studies have investigated rates of change in bone among men 

[25–28], the current study is the first to report rates of change in bone from three distinct 

populations of men living two very different lifestyles. Two of the populations (Hutterite 

and rural) lived at least 75% of their lives on an active working farm, while the third 

population (non-rural) never lived on a working farm. The inclusion of these three distinct 

populations provides insight into whether mean measurements or rates of changes in bone 

are a result of lifestyle differences (Hutterite and rural men would be similar but different 

from non-rural men) or a result of possible genetic differences (Hutterite results would be 

different from rural and non-rural men). For example, greater FN bone area and radial cross-

sectional area, cortical area, cortical vBMD and pSSI in Hutterites and rural compared to 

non-rural men are consistent with an effect of lifestyle differences. However, the greater 

spine BMC and aBMD among Hutterites compared to both rural and non-rural men, along 

with a greater rate of change in spine bone area in rural than Hutterite men, is consistent 

with possible genetic effects.

Several studies have reported decreased fracture risk among individuals residing in rural 

geographical locations compared to urban locations [3–7]. Some investigators have 

attributed this difference to a higher aBMD or BMC among rural residents compared to 

urban residents [4,8,9]. Although we did not find population differences in our cross-

sectional analysis of hip BMC and aBMD, we did find significant Hutterite and rural vs. 

non-rural differences in bone size (femoral neck bone area and radial cross-sectional area). 
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Bone size contributes significantly to bone strength, with a larger bone having greater bone 

strength than a smaller bone [29,30]. We speculate that perhaps it is the larger bones among 

rural populations that lead to a lower fracture risk rather than differences in aBMD.

It has been proposed that increases in periosteal apposition and bone area that is observed 

with aging in men, without an apparent change in BMC, may explain the decrease in aBMD 

with increasing age [31]. Results of the current study suggest that the annual rate of change 

in BMC parallels changes in aBMD and should not be disregarded. Our findings of 

increased rates of loss in femoral neck BMC and aBMD, but not spine aBMD, at younger 

ages (20s and 30s) are consistent with other reports in young men [25,26]. Greater rates of 

loss in femoral neck BMC and aBMD and trabecular vBMD in non-rural men at the younger 

(20–30s) and older (60s) ages compared to Hutterite and rural men suggest that these rates 

of loss are influenced by environmental or lifestyle differences.

Increased periosteal expansion occurred at all ages in all three populations, thereby 

maintaining the larger femoral neck bone area and radius cross-sectional bone area in 

Hutterite and rural men compared to non-rural men. An increased rate of cortical thinning 

occurred at older ages leading to a loss in cortical area and reduction in bone strength as 

measured by pSSI. In addition, cortical vBMD was found to decrease with increasing age. 

Although the rate of change in cortical vBMD was positive in early adulthood, by the mid-

forties there was an increased rate of loss, albeit small, in cortical vBMD. The timing of the 

increased cortical thinning and loss in cortical vBMD is consistent with declining 

testosterone and bioactive E2 concentrations, which have been shown to be associated with 

increased endosteal resorption and lower cortical vBMD [32]. Other investigators have 

reported increased cortical porosity with aging using high resolution pQCT [33,34], which 

may indicate that the reduced cortical vBMD is due to increased cortical porosity and not a 

reduction in density of bone material [34]. The increased thinning of the cortical shell in 

combination with reduced cortical area and vBMD may explain the decreased BMC and 

aBMD findings that were observed by DXA at the femoral neck.

Riggs et al. also reported decreases in trabecular vBMD in men as young as 30 years of age 

that was not associated with testosterone and bioactive E2 concentrations [32]. We also 

found significant rates of loss in trabecular vBMD among all three populations in their 30s. 

However, our finding of a greater rate of loss in trabecular vBMD in non-rural men in their 

20s compared to Hutterite and rural men of similar age suggests that lifestyle factors may be 

associated with preservation of trabecular vBMD. It is not known what aspect of a rural 

lifestyle could explain these differences. We speculate that although the recall of activity 

levels was not found to be associated with bone measures, the type of bone-loading activities 

among these populations may differ and explain group differences that were observed.

Despite the rural–urban differences that have been reported in fracture risk, BMC and 

aBMD, little is known about the factors that influence these differences. We investigated 

both activity levels and dietary calcium intake as possible explanations for population 

differences. Both rural populations had significantly greater percent time in moderate plus 

vigorous activity than the non-rural population, especially at younger ages, and calcium 

intake also varied by population group. However, physical activity was not associated with 
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any of the bone measurements and therefore could not be considered as a mediator. This 

finding was not expected since we previously reported, in a heritability analysis including 

Hutterite men [35], that the percent time in moderate plus vigorous activity was significantly 

associated with higher femoral neck BMC and radius cross-sectional area. It is likely that we 

previously were able to detect the effect of activity levels on bone because the genetic effect, 

which explained 40–62% of the residual variation in BMC and aBMD, was taken into 

account thereby allowing for factors with more subtle effects to be identified. We did, 

however, find that calcium intake and changes in calcium intake over the 7.5-year study 

partially mediated the relationship between population group and femoral neck aBMD, spine 

BMC and cortical area. However, the magnitude of the effects of calcium intake on the least 

square means or rates of change was quite small and did not explain the population 

differences in these bone outcomes.

Another possibility is that activity levels early in life are a more important predictor of adult 

bone than current activity levels [36–38]. We previously investigated the relationship 

between activity levels early in life on baseline bone measurements in the rural non-

Hutterite population by looking at individuals who were raised on farms with low 

mechanization compared to farms that were highly mechanized [38]. We assumed that 

individuals raised on farms with low mechanization would have higher activity levels as a 

child than individuals raised on farms with a higher level of mechanization. Although we 

found an effect of greater femoral neck bone area among individuals raised on farms with 

low mechanization vs. high mechanization, this difference was limited to females. Sundberg 

and coworkers previously reported differences in spine aBMD among rural vs. urban 

adolescent boys aged 15–16 years, which supports rural vs. urban bone differences existing 

earlier in life [39]. Our finding of greater radius cross-sectional area in Hutterite and rural 

men compared to non-rural men across all ages also is consistent with differences existing 

prior to our lowest age of 20 years.

There are several unique aspects of the current study. First, previous cross-sectional studies 

reported higher BMC and aBMD in populations living in rural areas compared to urban 

areas [4,39], but these studies did not consider the lifestyle of the individual. Our 

population-based study was conducted in eight counties in eastern South Dakota that are all 

classified as rural non-metro counties. We chose to identify two extremes of rural lifestyle 

by including individuals who spent either the majority of their life, or none of their life, on 

an active working farm. Hutterites actively farm and, in terms of daily activities, are more 

similar to the rural population than the non-rural population. Second, we collected 

prospective diet and activity data quarterly for the first three years from study participants. 

Few reports have collected these data throughout the year. Third, we obtained bone 

measurements using pQCT in addition to DXA, which allowed us to obtain information on 

changes in bone geometry with aging.

There are several limitations of this study. pQCT measurements were made at the radius 

only and did not include tibial measures. Originally, we chose the radius as a non-loading 

site in order to investigate possible genetic differences in bone measures independent of 

loading. However, many farming activities (i.e., throwing hale bales, shoveling, etc.) involve 

the use of the upper body and could lead to increased bone loading at the radius. It is 
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possible that tibia results may have differed from those observed at the radius. Another 

limitation is that the longitudinal statistical models used assume the within-individual 

change in a bone measure over time is linear. The cross-sectional changes in some bone 

measures when viewed over different ages have a non-linear parabolic profile, but the non-

linearity occurred over a longer time frame than the 90 months of follow-up used in this 

study. We did evaluate the potential influence of non-linearity on the estimates for rates of 

change (data not presented). We found that for almost all bone measures the age-dependent 

pattern for rates of change were similar for estimates based on 36-month versus 90-month 

data. Only FN BMC had a substantial discrepancy between rate estimates based on 36- 

versus 90-month data, as judged by complete separation of corresponding 95% confidence 

intervals. For example, the 95% confidence intervals for annual rate of change in FN BMC 

at 65 years of age for rural men was −4.7% to −2.3% based on 36-month data but −1.5% to 

−0.5% based on 90-month data.

In summary, we found that men living a rural lifestyle had larger bones by both DXA and 

pQCT, and had greater cortical area and bone strength (pSSI) despite lower cortical vBMD, 

than men living a non-rural lifestyle. We speculate that these differences in bone size may 

partially explain rural–urban differences in fracture rates that have previously been reported. 

The rates of change in femoral neck BMC and aBMD and trabecular vBMD indicated 

greater losses among non-rural men in their 20s and 60s than in both Hutterite and rural 

men. Percent time in moderate plus vigorous activity measured by recall was not found to be 

a potential mediator of these population differences. Although calcium intake at baseline, or 

changes in calcium intake over the study period, were partial mediators of population 

differences in bone, the mediation accounted for only a small amount of the population 

association. We speculate that rural–non-rural differences in adult men are a result of 

lifestyle differences that occur earlier in life or are a result of factors related to a rural 

lifestyle that have not yet been identified.
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Fig. 1. 
Femoral neck least square means (A) and annual percent change (B) by population group 

(triangle = Hutterite; solid circle = non-rural; empty circle = rural). Least square means were 

estimated from mixed models that included population group, age, age2, height, lean mass, 

fat mass, change in lean mass, change in fat mass, age-by-group, age2-by-group, time-by-

age, time-by-age2, time-by-group, time-by-age-by-group, and time-by-age2-by-group. Least 

square means are given at specific ages for presentation purposes. Bars represent 95% 

confidence intervals. Only the significance of the highest order interaction is given.
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Fig. 2. 
Least square means for pQCT bone measures by population group (triangle = Hutterite; 

solid circle = non-rural; empty circle = rural). All measurements except trabecular vBMD 

(4% distal radius) were made at the 20% distal radius. Least square means were estimated 

from mixed models that included population group, age, age2, height, lean mass, fat mass, 

change in lean mass, change in fat mass, age-by-group, age2-by-group, time-by-age, time-

by-age2, time-by-group, time-by-age-by-group, and time-by-age2-by-group. Least square 

means are given at specific ages for presentation purposes. Bars represent 95% confidence 

intervals. Only the significance of the highest order interaction is given.
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Fig. 3. 
Annual percent change for pQCT bone measures by population group (triangle = Hutterite; 

solid circle = non-rural; empty circle = rural). Least square means were estimated from 

mixed models that included population group, age, age2, height, lean mass, fat mass, change 

in lean mass, change in fat mass, age-by-group, age2-by-group, time-by-age, time-by-age2, 

time-by-group, time-by-age-by-group, and time-by-age2-by-group. Least square means are 

given at specific ages for presentation purposes. Bars represent 95% confidence intervals. 

Only the significance of the highest order interaction is given.
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Fig. 4. 
Least square means (A) and annual percent change (B) for percent time in moderate plus 

vigorous activity and calcium intake by population group (triangle = Hutterite; solid circle = 

non-rural; empty circle = rural). Least square means were estimated from mixed models that 

included population group, age, age2, age-by-group, age2-by-group, time-by-age, time-by-

age2, time-by-group, time-by-age-by-group, and time-by-age2-by-group. Least square means 

are given at specific ages for presentation purposes. Bars represent 95% confidence 

intervals. Only the significance of the highest order interaction is given.
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Table 1

Timeline of assessments.

Study month

0 18 36 54 72 90

Consent & baseline demographics X

Bone (pQCT, DXA) & body composition (DXA) X X X X X X

Anthropometrics X X X X X X

24-hour diet recall
Quarterly

a

Food frequency questionnaire X X X

7-day physical activity recall
Quarterly

a X X X

a
Records collected at 0, 3 & 6 months were used for baseline estimate; 15, 18 & 21 months for 18-month visit estimate; and 30, 33 & 36 months 

for 36-month visit estimate. Research staff completed all recalls during an interview with the participant.
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Table 2

Baseline characteristics by population.

Hutterite (n = 226) Rural (n = 184) Non-rural (n = 134) P value

Baseline characteristics

    Age (y)
38.2 (12.3)

ab 44.4 (13.6)
a 42.5 (11.9)b <0.001

    Height (cm)
176.5 (5.7)

ab 178.7 (7.8)
a 179.0 (7.4)b <0.001

    Weight (kg) 92.3 (6.7) 94.9 (18.0) 91.2 (18.1) NS

    BMI (kg/m2) 29.6 (4.9) 29.7 (5.3) 28.4(5.3)
0.05

a

    Lean mass (kg) 67.3 (8.3)
68.8 (8.6)

a
66.4(9.5)

a 0.05

    Fat mass (kg) 22.3 (8.6) 23.5 (9.6) 22.0 (9.8) NS

    % time in mod + vig activity
25.7 (8.2)

ab 22.1 (10.3)
ac 15.3 (8.4) bc <0.001

    Dietary calcium (mg/day)
912 (405) 

ab 1179 (577)
a 1059 (468)b <0.001

Baseline aBMD Z-scores

    Femoral neck 0.47 (0.90) 0.37 (0.91) 0.30 (0.90) NS

    Hip
0.63 (0.85)

a 0.46 (0.91)
0.38 (0.85)

a 0.02

    Spine
0.50 (1.39)

a 0.24(1.41)
−0.01 (1.17)

a 0.002

Data are mean (SD). Mod + Vig = moderate plus vigorous; aBMD = areal bone mineral density.

Similar superscripts within a row indicate significant difference between means (Tukey HSD, p < 0.05).

a
No means differed by Tukey HSD.
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Table 3

Mediating effect of calcium intake on least square means for FN aBMD, spine BMC, and cortical area.
a

Hutterite Rural Non-rural

Base model
b Base + calcium 

intake
Base model Base + calcium 

intake
Base model Base + calcium 

intake

FN aBMD Age (year)

Annual % change 25 - 0.68 -0.68 -0.81 -0.82 -1.17 -1.13

35 - 0.32 -0.31 -0.53 -0.52 -0.47 -0.46

45 -0.06 -0.04 -0.27 -0.26 -0.11 -0.12

55 0.05 0.08 -0.07 -0.06 -0.17 -0.18

65 - 0.01 0.03 0.06 0.06 -0.71 -0.68

Spine BMC

Least square means 80.38 80.36 76.40 76.42 74.91 74.93

Cortical area Age (year)

Least square means 25 105.03 104.90 103.04 3.01 100.22 100.23

35 105.18 105.06 105.64 105.60 100.57 100.58

45 105.00 104.83 108.38 108.31 101.39 101.38

55 104.49 104.30 111.28 111.14 102.69 102.64

65 103.64 103.46 114.32 114.09 104.47 104.35

a
FN aBMD: significant highest order interaction including population group was time-by-age2-group; baseline calcium intake was included as a 

potential mediator. LS BMC: significant main effect for population group; change in calcium intake was included as a potential mediator. Cortical 
Area: significant age-by-group interaction; change in calcium intake was included as a potential mediator.

b
Base model included population group, age, age2, height, lean mass, fat mass, change in lean mass, change in fat mass, age-by-group, age2-by-

group, time-by-age, time-by-age2,time-by-group, time-by-age-by-group, and time-by-age2-by-group.
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