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I ODUCTlO 

History 

The irrigation of the earth has been practiced since th earli• 

est history of man. Irrigation i an ag -old art. Hi torically, 

civiliza ion has followed the development of irrigation. 

Th antiquity of irrigation i well documented throughout the 

written history of nkind. Ther r some indications from history 

gyptians used irrigation s far bacl 4000 • c. There 

re r cords from China that indicate that th Chinese have practiced 

irrigation for ov r 4000 years. 

La of 

Th Bible talks of irrigation in the book of Genesis where the 

wumnurabi indicate to the people that they had to depend on 

irrigation for exi tence. The letter of Hamnurabi about 2000 B. c. 

indicat that the gov rnm nt w s doing much to promote irrigation. 

Irrigation i also mentioned in II Kings 3:16-17: 

And he said, us saith th Lord, Mak this valley full of 
ditch s. For thus saith th Lord, Y shall not s e wind, n ither 
shall y s e rain; yet that vall y shall be filled with w 
that y may drink, both y , and your cattle, and your bea 

Irrigation canals upposed to have been built before 2000 B. C. 

ar till deliv ring water in th vall y of the Nile. Basin irriga• 

tion introduced on the Nile about 3300 B. C. till is very important 

to Egyptian agriculture. 

1 

Th uccess of early king0 in China was measured by their wisdom 

and progress in water-control activities. The famous Tu-Kiang Dam, 

still a successful dam today, was built in 200 B. c. and still provides 



irrigation water for about one•half million acres of rice fields. 

There are reservoirs in Ceylon more than 2000 years old. Writ­

ings from that period indicate that the whole country was under irri• 

gation and wa very prosperous. 

Irrigation ideas and practices were brought to the United 

States by the early Spanish missionaries. No effort was made to 

develop an gricultural economy based on irrigation until 1847 when 

the Normans enter d the Salt Lak Valley. 

Th pressure of survival and the need for additional food sup• 

plies are necessitating a rapid expansion of irrigation throughout the 

world. The importance of irrigation 1n the world today was well 

stated by N. D. Gulhali of India: "Irrigation in many countries is an 

old art-.. as old as civilization••but for the whole world it is a 

modern science-•the scienc of survival." (7) 

Definition 

Irrigation can generally be defined as the application of water 

to the soil for the purpose of supplying the moisture essential for 

plant growth. 

lrri ation may be accomplished in four different ways: 

1. flood ng 

2. furrows 

3. sub-irrigation 

4. sprinkling. 

2 
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PURPOSE AND OBJECTIVES 

The increase of irrigation interest in outheastern South Dakota 

has brought about a need for some definite criteria for management. 

Irrigation management practices have not been fully developed for this 

area. Climate, topography, and oil condit ons are not similar to 

those of ther areas where irrigation ma.nagement studies hav been 

conducted. 

Th need for good management pr ctices is very evident in 

southeastern South Dakota wh re specialty crops are becoming an impor• 

tant cash crop. If irrigation can be expanded, the growing of sugar 

beets and oth r agricultural crops can bring about a gre.at change in 

the econom1cs of southeastern South Dakota agriculture. The desire of 

farmers for information on planning and managing an irrigation layout 

is ever increasing. In order to best recommend an economical sy tem or 

layout, information must be known about the soils• topography; climate, 

and crops of the area. 

Much of the area under study has r latively flat slopes. With 

light land grading nd leveling, an economical gravity irrigation 

sy tem could be developed. 

The infiltration rate and furrow length are interrelated factors 

which determine th efficiency of water use in furrow irrigation. With 

the infiltration rate known, the period of irrigation tim needed to 

replace given amounts of soil ir.oisture may be computed. In furrow 

irrigation, the computed period of irrigation time b gins after the 



entire length of furrow 1s wetted. Ther fore, excess water is applied 

to the upper end of the furrow for a time interval equal to the time 

it take wat r to travel the 1 ngth of the furrow. Consequently, it 

is e sential to know th influ nces of soil types and rate of water 

introduction into the furrow on the infiltration rate and the rate 

w ter travels down the furrow. 

The objectives of this inv stigat1on: 

1. To obtain relationship for the rate of advance of the 

wetting front for the particular soil investigated. 

2. To obtain relationships for the infiltration rate of water 

for the particular soil inve tigated. 

3. To investig te these relations in application to the design 

of an effici nt furrow irrigation sy tem. 

4 



VIEW O LrrERATU 

e use of  furro s for irrigatin is lmo t as old as irriga• 

tion it lf. Continu d use and exp nsion of furrow irrigation ha 

brought the need for more intensiv research. Many surfac irrigation 

s 

y tem ar poorly adapted to the soils and topography. Many investi• 

gators have put much effort forward to find information that would b 

helpful, but the introduction of irrigation to les desirable land has 

brought a eed for additional recommendations. Intake r tes and water• 

holding capacitie of the oils often ar not known befor a field is 

laid out for irrigation. The length of irrigation run n eded for 

proper distribution of moisture in the root zone seldom is determined 

b fore th system is put into operation. Improper operation of a 

w 11 designed irrigation syste@ can al o wast water, damage land, 

r duce production, and cut down net income. 

The Soil Conservation Service (23) has developed a method for 

valuating furrow irrigation sy tems. L wis (8) ha also done similar 

work. The thod co si t of mea uring flows at points along a furrow 

to determine th amount of water that infiltrate between those points. 

The infiltration-time curve has the form: 

wher 

I un 

I= th intak rate per unit length of furrow 

T = the tim after infiltration begins 

K = the intake rate at unit tim 

(Eq. 1) 

n = the lope of the curve when plotted on logarithmic paper. 



The exponent n. i neg tive since the intak rate charact ri ti­

cally becomes smaller as th tim incr s s. While thi equation i 

mpirical, it ad quately repr nts mot fi ld data. 

In ak. data which do s not fit th quation I= K'rn may be 

repre ented by slight modifica ion: 

I C + KTn (Eq. 2) 

wh r £ is the infiltration hen I quals infinity. 

The area und r this curve is the depth of water (D) ab orb d 

during the time T). This area is, by integration: 

or: 

60 D = [•••-•] 
n + 1 

n + l 

1 
-----

T c [ :�-�-��-:-��] n + 1 

(Eq. 3) 

(Eq. 4) 

Th factor .§.Q. is ins rted to allow ti 

th i filtr tion in i che per hour. 

to be mea ured in inutes and 

If th curve I= n i plotted on logarithmic paper for a 

furrow, _ and n. may be determined o that the time may be estimated 

for any depth of irrig tion (D) . 

Shockley (18) stated that th tim required for irri ation is 

d pendent on the unt of water n eded to replenish the root zone, 

th intake rate of the soil, and th furrow spacing. The time of 

irrigation must include the time for the water to advance to the lo er 

end of the furrow, sine the lower end i the location that receives 

6 



the least amount of water. Shockley indicated that it is desirable to 

have the water travel the length of the furrow in approximately 25 per 

cent of the total irrigating time. The l rgest pos·sible non-erosive 

stream should be used to advance the water to the lower end of the 

furrow a rapidly as possible. The furrow inflow should then be cut 

down to pr vent inefficient use of water. The Soil Conservation 

Service (23) suggested that the "opportunity time" for the soil to 

absorb water is 25 _per cent greater at the upper end than at the lower 

end. But the intake rate of the soil decreases with time, frequently 

inversely proportional to the square root of the elapsed time. 

D. G. Shockley (19) used unit-streams to analyze an irrigation 

system. Shockley used a unit area of 100 square feet or an area one 

foot wide and 100 feet long. The unit-streams developed are the unit­

streams required for application at 100 per cent efficiency. The unit­

streams must be empirically adjusted for the expected level of field 

application efficiency. The general formula for the computation of 

unit-streams for any given soil is: 

q = -�-[--=---] E T • TL 

F ------ (Eq. 5) 
7.2 T 

where: 

q = unit-stream in c. f. s. 

E = efficiency expressed as a decimal 

F = desired depth of water application in inches 

___ ,------



T = time, in minutes, required for the infiltration of F 
inches of water 

TL recession time lag in minutes (from the time the stream 
is cut off until recession begins). 

8 

Shockley (19) also presented an expression for the time required 

for an irrigation: 

where: 

T = __ ., ___ _ 
432 E q 

d = required net depth of application in inches 

E = expected efficiency level 

q = design unit•stream in c. f. s. 

T = time required for irrigation (hours) 

(Eq. 6) 

Phelan (12) , in his analysis , indicated that the maximum non• 

erosive stream could be expres ed empirically as: 

wh re: 

10 
Qe = ---

S 

Qe = maximum non•erosive furrow stream 

S a slope in per cent. 

(Eq. 7) 

This relationship , though very simple,. does closely approximate 

a constant velocity in a parabolic furrow as computed by Manning's 

formula: 

1.49 
V = ..-u. R2/3 sl/2 (Eq. 7a) 

n 



where: 

V = mean velocity in feet per second 

R = hydraulic radius in feet 

S = slope of energy line 

n = coefficient of roughness (Manning's n). 
Since it is a limit only, it appears to be satisfactory for design 

purposes. 

The intake c;haracteristics of furrows are different from those 

prevailing under flooding methods of irrigation. Some of the factors 

that may affect average intake in furrows directly or indirectly are: 

1. soil type 
2. size of stream 
3. slope of furrow 
4. roughness coefficient 
5. furrow cross•section 
6. furrow spacing 
7. total depth of application. 

Some attempts have been made to derive expressions for rate of 

advance, particularly for irrigation borders. Lewis and Milne (9) 

derived a rather complex equation for rate of advance in borders. 

9 

They assumed an estimated depth of water and a predetermined functional 

.relationship for infiltration. The effects of slope and surface rough• 

ness are not easy to distinguish but are reflected i1 the estimate of 

the depth of the flowing water. 

In the design of furrow irrigation systems it is necessary to 

determine experimentally, or to compute by an analytical expression, 

the curve for the rate of advance of the wetted front down the furrow. 

In determining the curves experimentally, it is necessary to introduce 



10 

furrow inputs of v rying amounts into separate furrows nd then time 

the advance of the wetted front as it passes the control points. This 

procedure can be repeated for different soil types and furrow slopes. 

The furrows can then be plotted with time (T) as the ordin te and the 

distance down the furrow (X) as the abscissa. The coordinates of each 

plotted point indicate the elap ed time that it takes the wetted fron 

to advance to point down furrow with respect to the head of the fur• 

row. Figure I ill strate a typical et of rate•of•adv nee curves. 

Criddle (3) has outlined a procedure for determining the proper 

design furrow length using a set of rate•of-advance curves. With the 

infiltration rate known, the total irrigation time to replace a given 

amount of soil moistur can be computed. Criddle has shown that for 

efficient irrig tion the wetted front should advance to the lower end 

of the furrow in 1/4 of th total irrigation time. Therefore, 1/4 of 

the total irrigation time is computed and the traight•horizontal line 

i plotted on the ame set of axe as the rate•of-advance curves. The 

value of,!! at the intersection of the straight-line curve with the 

rate-of-advance curve b comes the design furrow length. An example 

-is shown in Figure I. 

Irrigation research personnel in J pan and Au tralia hav pro• 

posed mathe tical xpres ions for the equation of the rate of advance 

of a wetted front as a function of the furrow input, furrow slope, 

distance down th furroi, time, and variable coefficients depending on 

the soil type and furrow geometry. Shibata (17) obtained the following 

e..�pres ion for water travel through a furrow on soils of Japan: 



, V g.pom. X .g.p.m. 

Typical Rate 
of Advance Curves 

y g.p o m. 
(Non-erosive) 

W g.p.m. (Erosive 

T =¾Total Irrigation Time 

D' = Design Furrow Length 

Distance 

Figure I. Typical Rate of Advance Curves 
I-" ,.... 



wh re : 

S X 

Log t = (1 . 608 - 0. 106 q) + ••------­
(K S • C) 

S = slope of furrow in per cent 

x � length of furrow in meters 

q = furrow input in liters per second 

t = time the water requires to travel distance .!. 

K, C = coefficients depending on furrow input. 

(Eq . 8 ) 

Philip (14) has also proposed a logarithmic expression for the 

rate of advance of a wetted front applicable to soils of Australia: 

where: 

X = A q0 • 72 sO. ZO log (l + B t) 

X = length of furrow in feet 

q = furrow input in cubic feet per minute 

S = slope of the furrow expressed as a decimal 

t = time in minutes for water to travel distance ! 

(Eq . 9)  

12  

A ;  B • coefficients depending on soil type and furr,ow geometry. 

The design of surface irrigation systems involves extremely com• 

pl x flow phenomena. Myer (11) stated that the major errors can 

r-esult from the use of flow equations that do not apply to the situa­

tion at hand. Ba.sic research to develop equations applicable to flow 

in irrigation furrows is needed. 

Powell (15) (16) studied flow in smooth and rough channels with 

subcri ti cal and supe-rcritical flow regimes. Powell examined the ef feet 

of discharge, roughness � and slope on the flow, but he stated that 



13 

other factors, such as tbe angle between channel s idewalls  and bottom, 

need to be  studied . Powell also did not include in his studies the 

extreme magnitude of relative roughness l ikely to be encount·ered in 

irrigation furrows. 

Hall (5) developed an equation that considered a variable in• 

filtration rate and nonuniform depth of water, the l tter reflecting 

the slope and hydraulic roughness of th soil surface. 

Bouwer (2) considered variable infi ltration rates in his equa­

tions which ,ere solved s imultaneously to determine field infiltration 

rates in borders. This method offers some advantage in its simplic ity 

and may be quite valuabl e  for determining infiltration rates in irri­

gation furrows. 

Philip (13) stated that the initial moisture content of soil 

was on of the major factors influencing its nfiltration charc c · . • 

i tics . High infiltration rates are asso�iated with low initial 

moisture content nd low rates with high moisture content . 

Thornton (21) sugge ted that if the rate of advance when plotted 

against time is a straight line, there hould theoretically be uni orm 

-flow . He also sugges ted that the intake rate of a soil should increase 

with an increase in temperature as a result of the decrease in the 

viscosity of the water . The flow into the soi l  is  usually appro}d• 

mately laminar for compact, f inely textured soils. The rate of intake 

should therefore vary inversely as the kinemati�  viscosity. On this  

bas is ,  an  increase in water temperature of 50 degrees F. should 

appro�imately double the intake rate . 

1 6 5 3 8 1  
SOUTH AtOTA STATE UN IVERSITY LIBRA 
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The stream width for a given soil has a great effect on the 

intake rate due to the wetted perimeter. Little ( 10) pointed out that 

the depth of the surface head has very little effect on the infiltra• 

t on. The volume of storage on the surface has a great effect on the 

rate of advance of the wetted front. Thus for a given furrow size and 

shape , the stream size or volume of storage should be determined. 

The Agriculture Handbook No. 107 , Conservation Irrigation, (22) 

states that the intake rate at which water enters the s oil is dependent 

upon soil• urface conditions and upon the rate at which the absorbed 

water can pass through the successive s oil layers and make room for 

more water to be absorbed. The soil layer with the lowest transmission 

rate, whether at the surface or in the s ubsoil , sets the limit on the 

intake rate. Regardless of the intake rate or opportunity for water to 

nter a s oil , limiting factors below tl e s urface , such as a hardpan, 

claypan , rock layer , sand layer , or a heavy clay subsoil , may restrict 

the downward movement of water . 

Holtan (6) discussed the possibili y of relating the pot ntial 

infiltr tion , that may be expected to occur before a constant rate is 

reached , to the available porosity and the vegetal cover. Holtan 

suggested that it may be possible to estimate the potential infiltra• 

tion by multiplying the available porosity by the basal area of the 

vegetation. The basal area is the percentage of the ground surface 

ar a occupied by roots and stems. 

Shockley (18) gave a method of approximating the average intake 

rate over the time of irrigation . His method was to multiply the final 
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intake rat by a factor that depended on  the soil type. Shockley gave 

the following table of factors for soils of different te t res : 

Table 1. Soil Infiltration Fa tors 

Soil  texture Soil factor 

Fine and moderately fine clays and clay loams 

dium and moderately coarse silt loam to 
sandy loam 

Coarse and very coarse loamy sa ds and sands 

1.50 

1. 33 

1. 20 

Frevert (4) stated that the infil tration rate of a soil was 

dependent on the size of the pas sageways etween the soil particles. 

The e pas sageways were dependent upon the size of the soil particles , 

th degree of aggregation etween the individual particl s and the 

arrang ment o f  the partic es. The infiltration rate  was affected by 

antecedent soil moisture conditions. Moisture caused the soil  

colloids to  swell and close the pas sag ways. 

Isr el sen (7) suggested that the basic variab s invo lved in 

the hydraulics of  surface irrigation are : 

1. size of streams 
2 . rate of advance 
3. length of run and time re uir d 
4. depth of f low 
5. intake rate 
6. s lope of land surface 
7. s urface roughness 
8. erosion hazard 
9. shape of f ow channel 

10. depth of water to be  applied. 

The result of improper consideration of thes e  variables will 

produce nonunifor dis tribution of water over the f ield, runoff from 



the lower end of the fields, and over•irrigation with a loss of water 

and plant nutrients by deep percolat ion. 

The d s ign of an efficient and practical surface irrigation 

system should give consideration in some way to each of the basic 

variables. Proper design and operation can resul t  fn saving water, 

soil , labor , and overall  conomy. 

16 
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LAYOUT AND PROCEDURE 

The increase of irrigation agriculture in southeastern South 

Dakota dur ing the past decade brought with it a definite need for more 

concrete reconnnendations as to design , ayout, and construction of  an 

irrigation ystem. This investigation was, therefore , designed to aid 

in an wering some of the pro lem and questions that have arisen. 

In the fall of 1962, a plot was selected near Meckling, South 

Dakota , in Clay County. This ocation was selected ecause it was 

ass umed that this soil was representative of much of the s oi l  in the 

Missouri Valley area suitab le for irrigation. Irrigation management 

practices have not been satisfactorily developed for this area , and 

climate and soil conditions are ot exactly analogous to other areas 

here irrigation practices hav� een developed and practiced. 

In order to satisfy the ob Jectives of this problem, the e_cperi• 

mental plot was d signed in a manner so  analy is of the data collected 

would evaluate the following items : 

1 .  furrow infiltration rate 

2. rate of adv nee of etted front 

3. soil moisture percentage. 

Th plot ,as appro imately 1150 eet in length and · 64 feet in 

width. The plot had been pr viously leveled to the ·tent of having 

furrows of all gradients b tween 0. 10 per cent and . 25 per cent. It 

.,as assumed that the length of 1 15 · feet would be s uf ficient to deter• 

mine maximum length permissible for varying conditions encountered . 



The plot was planted to su ar beets on April 6th with 22•inch 

row spacings. The plot �as then laid out as shown in Figure II. 

18 

Soil moisture samples were then taken approximately every week 

at twelve locations on the plot, as shown by Figure III. These samples 

were then oven dried and a record kept of the moisture percentage in 

th top four feet of soil. The moisture samples were taken at each 

foot interval. 

Approximately the first of June, after the field had been culti• 

vated once, t vo-inch Parshall flumes were installed at the lower end of 

each slope trip. The flumes were installed to obtain a record of any 

excess runoff that might occur . The runoff was recorded by instal ing 

Leupold & Stevens Type F stage recorders above the flumes with a float 

placed in the wells attached to the side of  the Parshall flumes. It 

was decided to direct hree furrows into each two-inch Parshall flume 

to obtain a etter average of the runoff. Figure IV shows a two•inch 

Parshall flume and r cord r installed at the lower end of the plot. 

The tal l r white instrument in Figure IV is a three•point temperature 

r corder. 

Soil tension sampl a were secured at each location where oil 

moistur samples were taken, in order to obtain wilting point and field 

capacity percentage. This made it possible to estimate when the soil 

moisture was reaching the iilting point and when to irrigate. 

About the 15th of June, construction was completed on several 

tensiometers which were installed at the locations shown by Figure V. 

The tensiometers were installed at four locations and at depths of 
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igure IV . Two -inch Par hal l  l ume  nd ecorder 
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6 inches , 12 inches , 18 inches , 36 inches, and 48 inches. Figure VI 

illustrates on of the construc ted tens·ioineters , and Figure VII shows 

a group of tensiometers installed in the field. It can be noted that 

the tensiometer were installed in the beet row to make it possible to 

cultivate the beets without disturbing them. Readings were then made 

periodically and records kept to indicate when to irrigate. 

Th first irrigation , July 1, was used as a trial irrigation. 

The 11ater was supplied to the head of each furrow by gated pipe with 

2 2-inch gate spacing . Figure VIII shows the gated pipe supplying water 

to the furrows at the upper end of the fi.eld . Figure IX illustrates 

the tractor and pump used to supply water to the gated pipe. 

The second irrigation, July 22, was used for furrow infiltra• 

tion and advance studies . Before the second irrigation the field was 

again furrowed. Figure X shows the cultivator used for furrowing. 

Four-inch diameter pipes were pulled behind the Planter Junior furrow 

openers. 

The grade of each individual test furrow was then secured by 

bench l eveling to obtain a more accurate reading of the slope of each 

. furrow . The results are shown in Figure XI . The five test furrows 

were selected in the center of each slope study strip. This made it 

possible to use the remainder of each strip for border or buffer 

furrows . 

Before irrigation, soil moisture samples were s ecured at loca• 

tions stationed along the test furrow of each slope. It was assumed 

that this would make it easier to estimate how much water would be 



Figure VI . Construct d Tensiom.eter 
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Figu VII . Tens iometers Ins t 11 d in the Fie ld 
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Fi  u VIII . Gated Pipe Supp lying I t  r to  Fu r �s 
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igure IX . T r  ctor nd Pump Supplying ater 
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Figure X. Fur owin Cultivator 
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infiltrated into the furrow along its entire length. Samples were 

again secured after th irrigation and ompared with pre-irrigation 

samples to obtain the amount of water s ored. 

Cross•sections of the test furrows were then recorded to assist 

in analyzing the hydraulic characteristics of each. This was done by 

placing a straight edge across the furrow and measuring the depth and 

�idth of the furrow in relation to the straight edge. 

Par hall f lumes with a one-inch throat were placed at st tions 

located 100, 200, and · o  feet down furrow from the furrow inlet. The 

purpose of these f lumes was to obtain the quantity of flow at a given 

time to assist in obtaining data on the rate of infiltration during 

irrigation. Figure XII shows a Parshal l  flume installed in a furrow 

prior to an irrigation run . 

The slopes were then irrigated, each o succeeding days. It 

was decided to irrigate a strip approximately twelve rows wide each 

day, with the assumption that this would eliminate any border effects 

on the center test furrows. The first slope was irrigated July 22nd. 

Slope two, slope three, slope four, and slope five were irrigated on 

succeeding days. 

The tream for each furrow was upplied to the upper end from 

the gated pipe. The stream flow-rate from each gate was calculated by 

catching the water flowin from the gate in an ordinary three-gallon 

bucket. The time required to fi ll each bucket was recorded with a 

stopwatch. 



Figur XII. P r  hall F lum Installed Prior to an Irrigation Run 

1 



As the wetting front advanced down the furrow , the time was 

recorded as it passed the individual stations staked out and marked 

prior to irrig tion. As the water front reached on of the one-inch 

Parshall flumes, depth readings were started and continued until the 

depth flowing r ached a constant rate. 

When it could be determined, by observation of tensiometers 

and by use of a probe, that the soil reservoir was full, the inflo 

stream was shut off and the irrigation was completed. 

The amount of vater stored in the s oil reservoir was then 

determined by taking moisture samples again and relating them to the 

samples taken prior to ea h irrigation. 
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Periodically after irrigation , soil mois ture samples were taken 

and the tensiometers read so that the "consumptive u e0 could b 

approximated nd the time of th ne �t irrigation determined. The term 

"consumptive use' may also be termed evapo-transpiration , or the sum 

of transpiration and evaporation. In simpl terms, the " consumpt ve 

use" applies to the water requirements of a crop, field, or entire 

area. 



DISCUSSION OF FIELD PROCEDURES 

A more d tailed discussion of the field procedures seems 

advantageous, due to the varied problems encountered. 
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The plot was leveled in the fall of 19G2 to grades ranging from 

0 . 10 per ce11t to O . 2 5 per cent . Due to sett l ing of the fil l  areas and 

normal cultivation procedures, the grades were much flatter and very 

uneven when the field was furrowed. Figure XI illustrates the furrow 

slopes recorded before irrigation and JUSt after it h d been furrowed. 

The areas of settlement can be noted very readily. These areas formed 

pockets ,. and on the very flat slopes these areas caused problems in 

maintaining flow in the furrows without overtopping or flooding . 

The plot was appro,dmate ly 1 150 feet in length. The upper 400 

feet were used basically for the infiltration and rate-of-advance 

studies due to the difficulty of maintaining good flow characteristics 

in the lower end of the furrows. This extra length was also benefi• 

cial in that it provided an opportunity to extend the area of study if 

n cessary, while it also eliminated the effect of the outflow condi­

tions normally encountered at the lower ends of furrows. 

Sugar beets were planted on the plot since this crop was the 

crop normally irrigated in this area by the furrow method. The tillage 

operations , weed control , thinning , and harvesting were all done by the 

farmer in a recommended manner. The fertilization was the farmer ' s 

responsibility and was done as recommended along with the Agronomy 

Department at South Dakota State College. 
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The plot was laid out as shown by Figure II . The rows were 

paced 22 inches apart to correspond ith the tillage equipment used 

in this area. The area. used for the investigation consisted of five 

areas , each 12 rows wide. The four area , 18 rows wide , between e ch 

of the slope study areas 1ere used for moisture studies on another 

phas of the ove all proj ct. The center f ive rows of each slope area 

were used for the infiltration and rate•of"'"advance study. The remain• 

ing rows in each slope strip were used as border rows to eliminate any 

outside effects from irrigation of the moisture areas between the 

slope areas. 

After the plot was pl nted to s ugar beets on April 6th , oil 

moisture samples were taken approximately every week at the loca• 

tions shown by Figure 111 . The samples were taken at 12 locations and 

at each foot int rval down to depth of four feet . The samples were 

then taken to the laboratory where they were oven dried and moi ture 

content determined. lt is understandable that if the field capacity 

and wilting point percentage are not known for ·the particular soil, 

th moisture content Mill be almost meaningless . To obtain the wilt• 

ing point and field capacity percentages, samples of soil were removed 

at the same depths as the moisture samples. The samples ere then 

t ken to the laboratory wh re the �i lting point and field capacity 

p rcentag s were approximated by applying fifteen atmospheres and 

one•third atmosphere of tens ion respectively. 

The runoff at the lower end of the slope strips was obtained by 

Farshal l measuring flumes with s ide stilling wells. Water level 



recorders were placed on the flumes to record the time and volume of 

water flowing. It wa assumed when the recorders were installed that 
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normal rainfall may cau e runoff from the strips, 

fall during the investig tion produced no runoff. 

ut available rain• 

The only recordings 

obt ined at the outlet end were during the actual irrigation period. 

It was decided to direct three furrows into each two ... inch Parshall 

flume ; the resultant volume was then averaged for the three furrow . 

Figure XIII illustrates the total flow recorded from three furrows. 

When the construction of the tensiometers wa completed in 

June ,  they were installed at four locations and at depths of 6 inches, 

12 inches , 18 inches, 36 inches, and 48 inches. The readings were 

taken daily and recorded. The daily loss of moisture w s plotted as 

shown by Figure XIV . The tensiometer readings were used only as a 

guide in determining when the oil moisture was reaching the wilt ng 

point. When the tensio ters began to read high t soil moistur 

samples were secured and the moisture content determined by drying. 

The results could then be compared with the wilting point perc ntage 

determined in the laboratory to determine hoi near the soil moisture 

was to the wilting point. This also offered a rough checl s to the 

valu the tensiom ters would read at wilting point. 

The plot was furrowed before the first trial irrigation. The 

first trial irrigation gave an indication of many of the problems that 

should be corrected before the experimental irrigation. The range of 

inflow and the furrow carrying capacities were also estimated during 

thi time. Another important factor noted during the trial irrigation 
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was the reaction of the furrow sides and ottom to wetting. It was 

observed that the soft side of  the furrows did not hold their shape 

when the water soaked into them .. Upon wetting, the soil lost its 

structure and the s ides, very noticeably, silted downward forming a 

very flat-bottomed furrow. This changed the hydraul ic characteristic 

of the furrow. 
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The second irrigation was used as the ex.perimental irrigation 

for determining the rate of advance and the furrow infiltration. The 

problem of the furrow structure was reviewed and it was decided to 

examine the possi ility of pulling four•inch diameter pipes behind the 

Planter Junior furrow openers to aid in firming the bottom of the 

furrow and to help form a better and smoother channel for flow. Figure 

XV illustrates the four -inch diameter pipes pulled behind the furrow 

openers. It was also decided th t a  slightly deeper furrow ight be 

adv nt geous with the very flat slopes on the plot . The depth of the 

furrows were increased from four inches deep on the trial i rrigation 

to approximately six inches deep on the e,tperimental  irtigation . ig• 

ure XVI illustrates the approximate cross•sections recorded before the 

experimental irrigation. Figure XVII shows the approximate cross• 

sections recorded after the experimental irrigation. Generally , the 

furrow ides lost their structure , giving a more gradual slope to the 

sides and a flat bottom ranging from apprmdmately four inches to 

eight inches wide. The exception seemed to be at the upper end where 

the width stayed approximately the same , but the bottom of the furrow 

had washed out s lightly. This washing was probably caused by  the 
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Figure XV. our-inch Dia ter Pipes and Furro · Opener 
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greater slope o f  each furrow in the first 50 feet of the furrow. 

There was some indication that the furrow sides were generally more 

firm during the experimental irrigation . This may have been another 

factor responsible for less silting. 
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The water was supplied to the furrows by gated pipe. It was 

decided to keep the stream size for the five test furrows of each slope 

approximately the same. The stream size for each furrow was set so 

that the maximum flow occurred without erosion or overtopping of each 

furrow. The stream size or flow-rate from each gate was determined by 

catching the outflow from a gate in a calibrated bucket. The flow-rate 

was calculated by recording the time with a stopwatch. Several checks 

w re made to obtain an accurate average of  the flow from a particular 

gate. The flow was checked several times during the irrigation to 

record any change in flow•rat 

As the wetting front advanced down the furrow and re ched one 

of the one•inch Parshall flumes, depth readings were started and con• 

tinued until he depth flowing through the flume became constant. 

Figure XVIII shows the streams flowing in the five te t furrows o f  a 

te t slope. An attempt was made to place the f umes level with the 

urrow bottom in such a manner as to least interfere with the normal 

flow o f  w ter in the furrow channel . Figure XIX illustrates a furrow 

s tream flowing through a one-inch Parshall flume. The depth fiowing 

in the Parshall flumes �as measured by using a rule and pl cing it  

upright in the flume throat . Tile inflowing stream was left constant 

until the wetting front reached the lower end o f  the plot. The furrow 



Figure XVIII . Streams Flowing in Five Test Furrows of a Slope 
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Figur XIX. Furrow Stream Flowing rough a One-inch Parshall Flume 
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stream was then cut back to allow the stream front to j ust reach the 

lower end of the p ot and thus eliminate much unn cessary waste runoff. 

If any runoff did occur, it was automatically recorded by the Parshall 

flumes and recorders at the lower end of the test furrows. 

The advance rate of the wetting front was also recorded along 

with the depth reading in the one-inch Parshall flumes. The depth 

readings in the flumes were continued until the flow through the 

flumes became constant or submerged flo 1 existed in the flume. 

The cut•back stream was approximately one-fourth the flow-rate 

of the original stream that was used while the wetting front was 

advancing across the plot. When the wetting front reached the lower 

end of  the furrow, the inflow stream was normally shut down to elimi­

nate excess runof f. The time for the s tream to advance the total 1150 

feet wa quite long . It was observed that when the wetting front 

reached the lower end of the plot, the irrigation was pproximately 

50 per cent completed. When the wetting front reached the lower end 

of the plot , it was also observed that there were many areas of ponded 

water located on the plot . This was probably due to the fact that 

there were many low areas or areas where the landleveling fill l ad 

settled. Figures XX and XXI illustrate the floodin and overtopping 

that occurred in the low areas. 

The tensiometers were observed and a soil probe was sed to 

determine when the soil reservoir was completely replenished . When it 

�as assumed that the reservoir was full, the inflow stream was shut 

off and the irrigation was completed . 



Figure XX. Flooding and Overtopping 
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Figur XXI. Flooding and Overtopping 
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The amount of water stored in the soil reservoir was determined 

by taking moisture samples, oven-drying them, and relating them to the 

samples taken prior to the irrigation. 
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DERIVATION OF E ' UATIONS 

Water flowing into a furrow usually goes into three types of 

storage in the furrow. They are (1) volume infiltrated , (2) surface 

storag , and (3) surface detention volume . The volume infiltrated is 

the volume infiltrated into the soil during a period of  time. The 

surface storage i the volume of water stored above the oil surface 

durin a period of time, and surface detention is the volume necessary 

to fill the urface depr ssions and irregularities before flow can 

occur . In equation form, it may be expres ·ed as : 

where : 

VA = total volume flowing into furrow 

v
1 

volume infiltrated 

Vs = surface storage volum 

v
0 

= surface detention volume . 

(Eq .  10) 

As previously stated , the rate of intake of water into the soil 

under furrow conditions may be expressed as : 

I -=  K tn (Eq. 1) 

where : 

I =  intake rate per unit le gth of furrow 

t - time after infiltration begins, in minutes 

K, n = constants 

A discussion of Eq. (1) seems in order since it is very impor­

tant to  the approach considered here. Eq. (1) is an empirical equation 

and is generally evaluated by the inflow-outflo i method . 



Data on the rate of advance of the wetting front in furrow 

irrigation can generally be expressed by: 
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(Eq. 1 1) 

where : 

x = length of furrow w tted 

t Q time required to wet the length 

constants 

Eq. (11) is also empirical and does not have physical ignifi• 

c nee . However , it is indicated by field data that the rate  of 

advance of the wett ing front is adequately expressed by Eq. ( 1 1) , if 

the intake data are of the form of Eq. (1) . 

Smerdon (' O) indicated th t if the preceding statements are to 

be a swned , the asswnptions must also be made that the furrow s ope is 

con tant , the furrow stream is cons tant , the intak characteristics  do 

not change long the furrow , and the furrow shape is constant along 

the furrow. 

I t  seems ogical to express th quant ity of water that will 

infiltrate over a unit length of furrow after a period of t ime  ( t) by 

integrat ing Eq. (1)  over the tim from t = 0 to t = t .  

Let this total infiltration equal v1 ; then we have : 

5:
= 

VI I dt (Eq. 12)  

subst itut ing : 

= (  
= t 

VI K tn dt 
== 0 

(Eq. 1 3) 
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integrating: 

-

t �.::_:_� l
t 

(Eq . 14) 
n + 1 

= 0 

(Eq . 15) 
n + 1 

If thi Eq. ( 15) expresses the volwne infiltrated, then it 

seems practical to e� press the total volume infiltr ted into the 

furrow when a length 1S. is wetted by integrating this equation again 

from x = 0 o x = x . We can expr ss this total volume by VT
: 

(Eq .  16) 

substituting: 

= 

): : : 

K tn + 1 

VT 
-------· dx 

n + l 
(Eq . 1 7 )  

W also as ume th t if  this express ion is applicable to a 

particular soil , then Eq . (1 1) should also be applicable. By substi• 

tuting Eq. (1 1): 

(Eq . 18) 
n + 1 



integrating: 

= )X - X 

VT 
= 0 

K 

K 

n + l 
an +  1 xb (n + 1) dx 
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an + 1 :�-�:.:.��-:- � l 

x = x 

(Eq . 19 ) 
n + l b (n + l)  + 1 

X = 1 

It can be easily seen that an equation relating both ! and � 

would be advantageous. 

We know that, at any time, the sum of the volume of water in 

surface storage , detention storage , and the total volume infiltrated 

must equal the volume which has been applied to the furrow, providing 

there is no water loss by other means, such as evaporation. Expressed 

in equat ion form: 

where: 

Q = rate of f low into furrow 

t == time 

v
5 

= volume of surface storage after time ( t) 

VT a given by Eq. (19) and is a direct function of �• 

(E . 20) 

If we assume a constant or nearly constant depth of flow, w 

may then say that: 

where Vsa is the unit•length surface storage in the furrow. 

(Eq . 2 1) 



The surface storage is indirectly a function of the length of 

furrow , but is g nerally dependent on the depth of flow, the furrow 

shape , and the shape of the surface profile of the advance wetting 

front. 

If ie combine Eq. (19) , ( 20) , and (2 1), we get : 

n + 1 
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0 t = ---- - - -�-�-- -- - ------- xb (n + 1) + 1 + Vsa x 
(n + l) (b (n + 1) + 1] 

(Eq . 22 ) 

If the rate-of-advance data from a given furrow is plotted on 

log-log paper, the constants .! a d  12_ can be determined. The method of 

least squares can be applied to the data to obt in the line of best 

fit and the values of .! and !?,. 

If and Vsa are determined and the constants ! and !1 eval • 

ted , we can get an expression for the particular soil involved. 



RESULTS 

The experimental results of this invest igation are part of an 

overall tudy t o  determine the best criteria for furrow irrigation 

development and management in southeastern South Dakota. The purpose 

of this investigation was to determine a rel ationship for the rate o:c 

advanc o f  the wetting front in an irrigati on furrow and for the 

intake rate of the particular soil involved. 
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Th rate of advance of a 'Netted front down a furrow is a func• 

tion of the soil  type, moistur content of the soil , furrow input, and 

furrow grad . As indicated previous ly, this study was limited to the 

soil type that had bee graded for furrow irrigation . 

The soil on this plot was classi fied as Blencoe si ty c lay loam. 

The bulk density of the soil was determined in the field by the bal• 

loon method. Table 2 il lustrates the bulk densities : 

Ta le 2. Bulk Dens ities 

Locat ion De2th Bulk densiSI 

pper end of plot surface 1 . 245 gr/cm3 

Upper end of plot l foot  1 . 395  gr/cm3 

Lower end of plot surface 1 . 183 gr/cm 3 

Lower end of  plot  1 foot 1 . 493  gr/cm 3 

The control of the moistur variable was difficult due to the 

fact that the farmer 's irrigation equipment had to be used when avail• 

able. Therefore, an analysis of the soil moisture was secured just 



before irrigation. The soil · as sampled at four stations along each 

of the five slopes. The soil was sampled at s ixainch interval down 

to a depth of four fe t. The top 18 inche are illustrated in 

Table 3. The percentage of moisture before and after irrigation are 

given in the table. 

Rate of Advance 
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Many efforts have been made to predict the rate of advance of 

wetting surfaces in furrow irrigation. Most of these procedures 

require that the intake characteristics of the soil be known. This 

would be relatively simple to do if it were not for the fact th t most 

fields are not homogeneous . The variations within fields due to cut 

and fill areas, resulting from land forming and from persi tent crack• 

ing of some soils , make determination of infiltration from infi trome• 

ter observations difficult. Another factor that can not be evaluated 

by a furrow infiltrometer is the effect of w ter movement in the 

furrow on infiltration. 

It seems that if the intake characteristics of a soil could e 

determined by taking measurement of t e wetting front during actual 

irrigation, the results may be more reliable. By observing an entire 

furrow, the size of the area being used for the infiltration determi• 

nation is made sufficiently large so that the variability caused by 

badly cracked soils is reduced. 

The rate0of•advance curves are very important in determining 

the size furrow stream and length of run to use. The rate-of-advance 



Location 

Slope l 

0 + 10 
l + 00 
2 + 00 
3 + 00 

Slope 2 

0 + 10 
1 + 00 
2 + 00 
3 + 00 

0 + 10 
1 + 00 
2 + 00 
3 + 00 

S lop 4 

0 + lO 
l + 00 
2 + 00 
3 + 00 

Sl2;ee � 

0 + 10 
1 + 00 
2 + 00 
3 + 00 

6 
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Table 3. Moisture Percentage 
* 

Before irrigation 
in. 

26 
24 
23 
26 

19 
23  

4 
2 3  

22 
23 
24 
25  

22 
25 
24 
24 

20 
2 3  
26  
24 

12 in . 

27 
23 
26 
28 

20 
21 
24 
2 1  

21 
22 
24 
25 

2 1 
24 
2 7 
24 

22 
23 
25 
26 

18 in. 

22 
22 
25 
27 

2 3  
22 
23  
22  

22 
23  
26 
27 

19 
7 

2 7  
2 7  

21 
25 
28 
26 

After irrigation 
6 in. 

33 
35 
36 
36 

29 
3 1  
31 
33 

3 
37 
34 
35 

33 
36 
36 
37 

32 
33 
35 
35 

12 in . 

32 
33 
35 
35 

29 
30 
33 
34 

28 
32 
34 
33 

32 
33 
34 
33 

32 
33 
36 
29  

18 ign. 

31 
33 
35 
34 

26 
31 
32 
29 

27 
31 
35 
39 

33 
36 
35 
33 

29 
3 3  
36 
36 

*Second irrigation, July 22 , 1963 ; taken along tes t  furrow 
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d ta is summarized in able ll of Appendix B for each slope. In order 

to arrive at the mos accurate rate•of•advance curve, the time distance 

measure nts for the center test furrow of each slope were plotted on 

logarithmetic paper. The method of least squares was then applied to 

the data to determine the curve of best fit for the points. The log 

plot of these points suggested a straight line on log paper of the 

form: 

(Eq . 1 1) 

The advance curves and equations are shown in Figures XXIX, XXX, XXXI , 

XX.XI I, and XXXIII of Appendix A . 

The equation determined for each slope was then used to plot 

the rate•of•advance curves on rectangular coordinates. Figure XXtl. 

The s t  of rate-of-advance curves were generally parabolic in shape 

and followed the expected pattern with respect to the furrow inputs. 

It can be noted that the small r stream size produced a steeper line 

on the graph. If  the rate-of-advance curves of Figure XXII are com• 

pared to the elope of the line of Figures XXIX , XXX, XXXI , XXXII,  and 

XXXIII of Appendix A ,  it can be seen that the rate•of•advance curves 

of - Figure XXII that tend to straighten are the same furrows that give 

the gr ater slope to the lin s of Figures XXIX , XXX, XXXI, XXXII, and 

XXXIII of Appendix A. This indicates continued advancement of the 

wetted front at a more rapid rate. 
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Infiltration From Differential Between F lumes 

The field intake rate , or infiltration rate, is very important 

in design procedure. As indicated previously, flow measurements were 

made at the f umes in a manner which enabled computation of the furrow 

infilt ation rate in the section between the flumes. Th is rate was 

determined in gallons per minute per 100 feet, gal lons per minute per 

foot, and then converted to inches per hour, based on a 22 -inch furrow 

spacing. It is recognized that as the head of water increased in the 

flume, some water went into furrow storage . It was very difficult to 

obtain rel iable results a to the amount of storage within a section 

of furrow at a given time. Investigations by Beer (1)  indicate that 

the amount of storage witl in a flume station was found to be approxi• 

mately  three per cent of the water infiltra ed for 40-inch row . 

As the time of infiltration is increased, the percent ge of 

storage with respect to total infiltration will become less. The e• 

fore, it may be possible to assume the storage volmne to be almost 

negligible . For the analysis of this investigation, the storage 

volume will  therefore be assumed negligible, for the lack of any 

definit supporting data. Therefore, the infilt ation rate as based 

directly on the differential rat of flow as determined between flumes 

or between the water source and a flume . 

The infiltration data is shown for each slope in T ble 12 of 

Appendix B. The inflow rate is the infloi rate determined as the 

water f lowed from the gated pipe at the head of the furrow. The read­

ings are illustrated as they were recorded at each of the three 
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100-foot stations down f rrow . The data for each slope wa s then 

plot ted on log•log pa.per in inches per hour as the ordinate and elapsed 

t ime i n  minutes as t he abscissa. It has been point ed out by  many 

inves t igators that the int ke ··a te for most soi ls can be adequately 

expressed in t he form: 

(Eq. 1 )  

i f  the rate of advance of  the wetting front i s  adequately e:<:pressed by 

the equat ion : 

(Eq. 11) 

Bot h of these equations are empirical and do not have t heoret i• 

cal significance. With t his assumption, t hat t he infilt ration fit s  t he 

form of  the equation (I = K tn) ,  the data for each slope was analyzed 

by t he met hod of least squares t o  det ermine an equat ion for t he curve 

of  best fit. The dat a is plott ed in Figures XXXIV, XXXV, XXXVI, 

XXXVII, and XXXVIII of Appendix A for each slope. 

In general , the greater t he slope of the infi ltrat ion curve, 

t he st eeper the s lope of t he graph for the rate-of-advance curves. 

This is in agreement with the theory that with a given constant i f l ow ,  

t he rate of advance should be relat ed t o  t he infiltration if all other 

fact ors are cons tant . 

Infiltrat ion From Rate of Advance of Wett ing Front 

The intake of t he soil may also be approximated from the rate 

of the advance of the wetting front alone, assuming no st orage. The 

dat a and computations are shown in Table 13 of Appendix B. The dat a  
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was then analyzed by  the method of  least squares and the line of best 

fit was plotted on og�log paper. Figures XXXIX , XL , XLI, XLII , and 

XLIII of Appendb· A. In comparison of the graphic plot of the infil• 

tration determined by the flumes (Figures XX.XIV , XXXV , XXXVI, XXXVII, 

and XXXVIII of Appendix A) and the graphic plot determined by the rate 

of advance {Figures XXXIX, XL , XLI, XLII , and XLIII of Appendix A) , 

it can be observed that the infiltration data from the flume determi• 

nation is much more scattered than the infiltration data from the 

advance rate alone . 

Infiltration From Rate of Advance as a Border 

It is the observation of the author that  the equations ob• 

tained by these two methods indicate r elatively high infiltration 

rates. Therefore , it was decided to analyze each slope as a border in 

an attempt to obtain more supporting evidence . The total inflow to the 

center five furrows of each slope was used to calculate the infiltra• 

tion in a similar manner as was done with the individual furrows pre• 

viously . The advance times of the fiv furrows for each slope were 

averaged and this tim was used for figuring the infiltration in inches 

per hour . The data is illustrated in Table 14 .of Appendix B. It was 

analyzed by the method of least squares and the line of best fit was 

plotted in Figures XLIV, XLV, XLVI, XLVII, and XLVIII of Appendb: A. 

It can be noted that the infiltration rates obtained by considering 

the slopes  as a border are lower and generally fall less s cattered 

than those of the previous two methods : by flumes and advance in 
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individual furrows . The rate-of-advance curves are plo ted in Figures 

XLIX, L , LI, LIi, and III of Appendix A for each border. 

The following tab les are a summary of the infiltration equations 

obtained by each of the three methods : 

Tab le 4. Determination by Differential  of 
Flow Between Flumes 

Slope Equation 

1 I = 9 .9 1 T-. 1552 

2 I == 44 . 10 t• • 6640 

3 I = 158 . 00 t•l . 2 300 

4 I == 13 .45 T- . 3390 

5 I = 53 . 00 T- . J l09 

Table 5. Det rmination by Rate of Advance of Wetting Front 
in Individual Test Furrow of Each Slope 

lope Equation 

1 1 = 83 . 9 T- . 7609 

2 t = 32 . 1 T-.4640 

3 I = l . ' T-.4316 

4 I 40.0 T• . 4733 

5 I = 84. 5 T-. 6650 



Table 6. Determination by Rate of Adv nee Considering the Flow 
n Five Furr w of Each Slope a Border 

Slope Equation 

l I = 13. 70 T-. 5875 

2 I = 8. 82 T•.4390 

3 I = a. go r•.4650 

4 I = 1 1. 70 T•. 5080 

I = 18. 00 T-. s93o 

The equations were averaged for each method and the standard 

deviations calcul ted for ! and !!.: 

Table 7. Summary of Equations 

St  ndard devi 
Method uations K n 

Flume data I = 55. 69 T• · 6198 53. 81 . 3878 

Advance single furrow I 54 . 34 - . 589  24. 58 . 2053 

Advance by border I 12. 22 T-. SlSS 3 . 42 . 1975 

The following tables show the rate•of•adv nee equation of the 

wetting front for the two methods: 
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Table 8. Determination by Individual Test Furrows 

S lope Equation 

Table 9. 

l 

2 

4 

5 

T = .0068 X 
1 . 57 

T = • 003 x2 • 24 

T = . 0003 x2 · 22 

1. 63 T :c:r . 0078 x 

T - . 0 124 x l . SS 

Determination by Considering Five Furrows 
of Each Slope as a Border 

Slope Equation 

1 T = . 0062 X 1 . 68 

2 T = .0012 2 . 12 

3 T = .0004 2. 27 

4 T = .0096 X 
1 . 67 

5 T = . 0 142 1 . 64 

The rate -of-advance equations were averaged and the standard 

devi tion calculated for each of th two methods : 

Table 10. Suunnary of Equation 

64 

tandard deviations 
Method a b 

Single furrow T = . 0055 x l . BS . 0047 . 3128 

Border T == . 0063 X 1 . 88 . o 52 . 2650 



The values obtain d for the infiltration rate and rat of 

advance do not correlate with the actual slopes of the study area. 
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The valu s in Tables 4, 5 , and 6 for infiltration, and Tables 8 and 9 

for rate of advance do not follow the slope trend of the test furrows 

as illustrated in Figure XI. It is difficult to di tinguish any trend 

or correlation between the degree of s lope of the furrows and the 

equations obtained . This 1 ck of trend may lie in the fact that the 

slopes in general are relatively flat and there are many low areas of 

settlement wher water ponded . The first 50 feet of each slope strip 

was also relatively steep, which can be seen in Figure XI. This may 

have also een a factor in removing a trend or correlation bet een the 

slope and rate of advance and infiltration. 

Application to a Specific Des gn Problem 

The application of the infiltration and advance equations may 

e t  be i lustrated by a typical design problem : 

was: 

Prob em : De·termine an approximate furrow length and irri• 
gation time to r place five inches of moisture 
on this type of Blencoe soil. The furrow input 
will be approximately 2 3  - 28  gallons per minute . 

The average r te-of•advance equation will be used: 

T = . 0063 x · 88  (Eq . 23) 

The average infi tration equation for the border-flow method 

I 12 . 2 T•. 5185 (Eq. 24) 

lJhere .! is in inches per hour and I is in minutes . 



Eq. (4), p ge 6 , and Eq. (15) , page 5 1, may now be applied to 

find the total time to replace five inches of moisture . 

Eq. (15) may b obtained by considering the area under the 

curve of the inches per hour of infiltration . 

The expression for the area under the curve is: 
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Area =- ): K Tn dt (Eq. 25) 

and : 

Area 
= D = Surface inches of water applied (Eq . 26) 

60 

If  the v lue of .&....!, is sub tituted and the integration per• 

formed from T � 0 to T = T, we obtain : 

(T) n + 1 
60 D = --�-----�• (Eq. 3, 15) 

n + 1 

or: 

1 

T = l�� -�-r�-�� l n + 1 
(Eq . 4) 

where I =  time in minutes . 

pplying : 

1 

= (11. 82)2 .08 

= 172 minutes • 
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The criteria that the wetted front should reach the end of t he 

furrow in approximately 1/4 of the total irrigation may now be applied : 

1/4 of 172 minutes = 43  minutes 

172 + 43 = 195 minutes that water is applied to head of furrow . 

The design furrow length may now be determined from the rate-of­

advance equation : 

T = . 0063 x1 . as 

43 = . 0063  x l. BB 

X = (6830) • 5320 

= llO feet. 

This illustrates the method used for design procedure using the 

infiltration and advance equations. The value obtained for design 

furrow length is obviously too limited for any practical value . 

The use of this design method also verifies the assumption that 

excessive lateral subsurface movement probably occurred. This is 

largely evidenced in the fact that the constant .2. of the advance equa• 

tion : 

b T == a x  (Eq. ! l )  

is too large. The large value of £. indicates oo great a slope of the 

advance li e on log paper, or an advance rate that is too slow to be 

practical . It can be seen that the constant h., or advance rate, has 

the greatest inf luence on Eq. (1 1) in the determination of the design 

length . 

The use of a cutback st ream makes the application time of 195 

minutes slightly impractical. When the furrow stream reaches the 
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lower end of the furrow , the inflow stream is usually cut back to 

approximately l/4 the normal inflow rate . This will increase the time 

that i t  takes to fill the soil reservoir but will economize on water . 

Investigations by Beer (1) in Harrison County, Iowa, on Blencoe 

soils  with a lope of  .1 per cent, obtained an infiltration equation 

of : 

1 =- 15 . 5 T•O • 33 (Eq. 27) 

and an advance equation of: 

T = . 0001 x2 • 50 (Eq . 28) 

Using these equations (Eq. 27, 28) obtained by Beer and apply­

ing the preceding method, the results obtained for Beer's equations 

give approximately the same design length as that obtained for die in• 

vestigated plot in southeastern South Dakota . 

Infiltration From Rate of Advance With and Without lnfiltratio:n 

The infiltration rate for a given furrow may also be determ.ined 

if  the rate of advance can be determined with little or no infiltre• 

tion in the furrow. By using equations for the rate  of advance of the 

wetted fronts with infiltration and without infiltration.  the infil­

tration rate of  the soil may be determined . The biggest obs tacle in 

this analysis was to determine the rate of advance for no infiltration. 

Several methods could possi ly be employed to estimate this non• 

infiltration flow, such as sealing the furrow with a spray or using a 

liner in the furrow . Neither of these methods was employed in this 

investigation . It was noted during field tests that the advance of the 
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wetted front was quite rapid for the first 25 to 50 feet of the furrow . 

This was as sumed to be a period of little  infiltration , due to the fact 

that the input is high relative to the rate at hich water can be in• 

fil trated into the soil . It was therefore assumed that a s traight l ine 

tangent to the curve of the rate of advance of the wetting front at 

this point should be the appro imate curve of  a wetting front with 

little or no infi ltration . The best es timate of this tangent l ine was 

o tained by using the origin and the firs t s tation at which the rate 

of advance was determined . A s traight l ine was drawn through these 

two points and the equation of this line was assumed to be the equation 

of a wett ing front in a furrow with lit t le inf il trat ion . The equation 

of the l ine w s determined to be of the form : 

T = a ' x (E • 29 ) 
0 

We now have two equations for each furrow . They are : 

b T - a x (E • 1 1 ) 

for a furrow with infil tration , and : 

(Eq . 29)  

for a furrow with no infil tration . 

It seems logical to as sume that the eas iest  way to f ind the in­

fi ltr tion would be in uantity of infil tration per length of furrow . 

We then can us t ie expression : 

= _ _ __ _ __  .. _ _ _ _  _ 
L Tl (x/ 100) 

(Eq . 30) 



where: 

Q/L = average infiltration rate in gallons per minute per 
100 feet of furrow 

T1 time at which infiltration rate is d sired 

x = distance front would travel in time Ti with infiltration 

T 
0 time for front to travel distance � with little or no 

infiltration. 

7 

Thus an average infiltration-rate curve may be determined for the soil. 

An example will be given to clarify the procedure. It is 

desired to know the av rage furrow i filtration rate at Ii = 60 minutes 

for slope three . The rate•of-advance equation for s lop three is. : 

T = . 0003 x2 • 22 

If Ii = 60 minutes is substituted in this equation, the distance can 

be c mputed . 

60 = .. 0003 x2 • 22 

[ 60 ] .45 
x = ••--- = 2 50 feet • 

• 0003 

The equation T = a1 x can be obtai ed by using the origin and 

the first control point and drawing a straight line tangent to the 

curve through these two points . Figure XXIII. The equation ob ·ained 

wa found to  be: 

T0 = . 067 x 

Sub t itution of · into this equation yields the time !2= 

T
0 = . 067 (250) 

= 17 minutes. 

(Eq . 3 1)  
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This now permits the calculation of Ii - T or he difference in time 

it would take a wetted front to travel the same distance under the two 

different conditions. By multiplying the furrow input by t his time 

difference, the total volum assumed to be infiltrated can be computed . 

The denominator of th Eq. (30)  c nverts the total volume to a rate 

b sed on time 1 and a dist nee �= 

(Tl . To) Q --- = --- - � � � - ---
L T1 (x/100) 

(60 - 17) (24 gpm) 
= --- - � � - � - -- - - - · ---

(60) (250/ 100) 

= 6.75 gpm/100 feet . 

(Eq . 30) 

Thi indicat s that the water infiltrates into the oil t the rate of 

6 . 75 gpm per 100 feet or t the rate of . 0675 gpm per foot wh n 60 

minutes h v el psed. This same procedure may be repeated for any 

valu of !.!: us an averag infiltration•rate curve may be determined 

for any furrow i put, providing the constants for t he rate•of•advance 

quation are known. 

Dtscbarge•Time Curves 

Another method for d termining the infiltration r te is to plot 

the discharge-time curve for each flume tation on coordinate graph 

paper. The curves for lower tations should be successively lower th n 

the upper s tations. Figures XXIV , XXV, XXVI , XXVII , and XXVIII illus� 

trate the plotted curves for each slope. The area between the curves 
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represents the a.mount of water that infiltrated into the soil betti-1een 

the tations. The difference between the ordinates etween any two 

stations at a given time is the sum of the infi tra i on rate and the 

instantaneous change in storage between the two stations at that time. 

lt can be oted that the curv s follow the e�pected pattern except that 

for slop No. 1 . The curves for the 200•foot and 300 -foot stations 

cros the curve for the 100 foot station. This condition might be 

explained by the fact that the 200•foot and 300•foot flumes became 

submerg d when 1ater ponded in low areas around the flume stations. 

Therefore , the depth re dings taken in the flume throat were probably 

increas d as a result of this condition . 

General Discuss · on 

The val es obtained for the infiltration equati ons in this in• 

vestigation are slightly higher than might normally be expected for 

this type of soil. e equations obtained b us ing the differential 

rate of flow between flt.nnes and using the rate of advance from the 

s ingle test furrow of each s lope gave the largest values . An explana• 

tion for this may b in the fact that surface storage was considered 

negligible when in fact it actually has some effect on the equation. 

Another v ry noticeable factor was the lateral movement of subsurface 

water from the area of the te t furrows. This factor wa quite notice• 

able when water appeared in furrows s ix • eight rows laterally from the 

te t furrows with no overtopping of furrows taking place . The theory 

that extensive lateral movement had taken pl ce was verified somewhat: 



when the adJace t areas to the test furrows were irrigated. The rate 

of advance of the wetting front in these areas was genera ly more 

rapid than on the previously irrigated test areas. This indicated 

that some water probably moved laterally from the test area 

The slope areas were analyzed as a border and the infiltra• 

tion figured from the advance of the border wetting front. The equa• 

tions obtained by this method indicated a more practical infiltration 

rate for this soil type. It was assumed by this method that more of 

the lateral movement effect of the subsurface water could be elimi• 

nated. When the equations considering border flow were analyzed , the 

standard deviations of the constants ! and !! of Eq. (11} were notice• 

ably smaller. This would indicate that the resul ts obtained by the 

border method were more consistent and le s variance occurred etween 

the results for each of the test slopes. 
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The relative agreement of the results in this investigation and 

by Beer (l) in Harrison County, Iowa, on Blencoe soils indicates that 

the values obtained may be approximately representative of the Blencoe 

soi l type . 



SUMMARY 

A furrow-irrigated plot has been investigated for the purpose 

of obtaining relationships for the rate of advance of the wetting 

front and for the rate of infiltration. 

An efficient furrow-irrigation system requires a properly 

designed length of  furrow and knowledge of the average furrow infil• 

tration rate over the entire length of furrow. 

It was shown that for a given furrow grade, furrow input , and 

soil type the wetted front moved through the furrow according to the 

equation T = a ..,,.b where I is the time in minutes after furrow input 

has been introduced , and !. is the distance in feet down the furrow 

that the wetted front has progressed in time I· It w s also shown 
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that two slightly dif ferent systems of equations can be developed by 

first determining the rate-of-advance equations in a single test furrow 

and by secondly considering a system of five adjacent furrows as a 

border. The average equatio s for 

Single test furrow 

Five furrows as a border 

the five slopes studied 

-·· T = 
.... T = 

. 0055 
l . 85 

X 

. 006 3 x 1 . BB 

are : 

(Eq . ' 2 ) 

(E q . 3 3) 

The rate of advance of th wetting front was expressed as a 

straight line on log-log paper and as a parabolic curve on r ctangular 

graph paper . 

Several approaches for determining the furrow infiltration rate 

of the Blencoe soil were presented. They were : 



Me thod 1. Using the differential rate of flow as determined 

between Parshall f lumes placed at measured 

stations in the test furrows. 

Me thod 2. Using the rate  of advance of the wetting front in 

the tes t  furrow , assuming no storage. 

Method 3. Using the rate of advan ce of the wetting front 

considering five adjacent furrows of each slope 

as a border , assuming no storage. 

Method 4. Using the discharge-time curves plotted for each 

station of the test furrow on each slope. 

Me thod 5. Using the two conditions : rate  of advances with 

infiltration and rate of advance with little or 

no infiltrat ion. 

The infiltration curves for the differential rate of flow be• 

tween flumes were plot ted on log•log paper. They are illustrated in 

Figures XXXIV ,  XXXV , XXXVI, XXXVII, and XXXVIII of Appendix A. The 

average infiltration equation obtained by this method was: 
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I =  55 . 69 T• · 6198 (Eq . 34) 

The infiltration rates as determined from the rate of advance 

of the wetting front in the single test furrow of each slope are 

illustrated in Figures XXXIX, XL, XLI, XLII, and XLIII of Appendix A . 

The verage equation obtained was: 

I = 54. 34 T- • 5896 (Eq . 35) 

The infiltration rates as determined from the rate of advance 

of five adjacent furrows of each s lope are illustrated in Figures XLIV , 



XLV. XLVI , XLVII , and XLVIII of Appendix A . The average equation 

obtai11ed was :  
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I =  12 . 22 T- . SlBS (Eq . 36) 

When the results obtained for the rate of advance and for the 

rate of infiltration are correlated with the five different slopes, 

there seems to be  no well defined correlation. This indicates that 

the slopes were too flat and uneven and that there was not enough 

distinction between slopes in this investigation to make a definite 

correlation of these factors pos sible . 

The discharge-time curves can be used to obtain the amount of 

water that infiltrated between stations. The difference between the 

ordinates between any two stations at a given time is the sum of the 

infiltration rate and the instantaneous change in storage at that time . 

The infiltration rate may be determined at any desired time if 

the advance rate can be found with infiltration and without infil tra• 

tion . The furrow input multiplied by the difference in time that each 

wetted front passes a particular distance gives the volwne that has 

infiltrated . The equation for this application is : 

Q (T l - T ) Q 
--- = __ _ .. _ _ _ __ .., _ _  (Eq . 30)  

Tl (x/ 100 ) 

Therefore, an average infiltration equation can be determined 

for any furrow input , providing the constants for the rate•of•advance 

equations are known. 

The variations within the plot due to cut and fill areas, which 

resulted from land forming , made reliable infiltration studies very 



difficult . There was no doubt that the infiltration results were 

affected somewhat by uneven field conditions. 
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CONCLUSIONS 

The following conclusions can be drawn from the preceding 

investigation : 

1. It can be concluded that the average rate-of-advance 
equations obtained by the single furrow method and the 
border method are approximately similar. They may be 
assumed to be approximately representative of the Blencoe 
soil under conditions similar to those of  this investi• 
gation. The equations obtained were: 
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Single test furrow 

Five furrows as a border 

T = .0055 1. 85 
X 

T = .0063 x 1 • 88 

(Eq . 32 ) 

(Eq .  33) 

2 . It can be concluded that the infiltration equations 
obtained by considering the five furrows of each s lope as 
a border are most representative of the Blencoe s oil 
involved. The average equation for the borders was: 

I - 12 . 22 T-.SlBS (Eq . 36) 

3. It can be concluded that the infiltration equations 
obtained by the differential rate between Parsha l l  flumes 
and by the rate of advance in the single test furrows 
produced rates impractical to this soil type and soil 
conditions . The average equation� were: 

Differential between flume I =  55 . 69 T- · 6198 (Eq. 34) 

Advance in single test furrow I 54. 34 T• ·589 6 (Eq. 35) 

It can also e concluded that these high values obtained 
may be due to the unevenness o f  the furrow grade and the 
excessive lateral movement of subsurface water. 

4. It can e co eluded that the slopes wer too flat and 
uneven in this investigation to obtain a correlation 
between the dif ferent s lopes and the values obtained for 
the rate of advance a d the rate o f  infiltration. 

5 .  It can be concluded that the discharge-time curves plotted 
for each station of the test furrow on each s lope resulted 
in an approximate figure for the quantity of water infil ­
trated at a particular time. This procedure il lustrated 
trends between f lume stations along the test furrow. 



6. It can be concluded that the procedure using the two con• 
ditions••rate of advance with infiltration and rate of 
adva ce with little or no infiltration••produced a rela• 
tively accurate value for the infiltration rate. The 
expres sion: 

Q (T - T ) Q 
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...... l o = --- - - -- � -- · - ·• (Eq . 30) 
L T1 (x/1 0) 

requires only a knowledge of the furrow inflow rate and 
the rate-of-advance equation with infiltration. The rate• 
of-advance equation for little or no infiltration may be 
approximated by graphical methods. 



SUGGESTIONS FOR FURTHER INVESTIGATIONS 

1. Investigate the volume of surface storage in the furrows 

and attempt to find a surface storage function applicable to the con• 

ditions in the irrigation furrows encountered in southeastern South 

Dakota. 

2. Investigate the possibility of lateral subsurface movement 

of water and the extent to which it affects the infiltration and the 

rate•of•advance equations for the furrows on the Blencoe silty clay 

loam. 
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3. Investigate methods and procedures for obtaining irrigation 

furrows with better hydraulic characteristics and sta · ility on flat 

slopes and on Blencoe silty clay loam soils . 

to: 

4. Investigate the us of different size furrow inflow streams 

(a) de

t

ermine the optimum stream ize, 

(b) determine the relationship between the stream sizes 
and the infiltration rates , 

(c) obtain data so that the infiltration and rate of 
advance can be determined for a given time, stream 
size , and length of furrow. 

5. Investigate the effects of initial moisture content on the 

infiltr tion rate and the rate of advanc of the water in the furrows 

with Blencoe silty clay loam soil. 

6. Investigate the change iu the infiltration rate of the soil 

due to change of temperature of the soil and water . Determine the 



amount of increase of the intake rate with increase in temperature on 

the Blencoe silty clay loam . 

7. Investigate the methods for obtaining more uniform slopes 

on the very flat grades . Attempt to eliminate the problem of ponded 

areas. 

8. Investigate the use of modified borders for irrigation in 

this area of southea tern South Dakota . 
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APPENDIX B. DATA TABLES 



Station. 

Slope l 

0 + 00 
0 + 50 
l + 00 
1 + so 
2 + 00 
2 + 50 
3 + 00 
4 + 00 
5 + 00 
6 + 00 
7 + 00 
8 + 00 

Slope 2 

0 + 00 
0 + so 
1 + 00 
1 + 50 
2 + 00 
2 + 50 
3 + 0 0  
4 + 00 
5 + 00 

S lope ;-> 

0 + 00 
0 + 50 
1 + 00 
1 + 50 
2 + 00 
2 + 50 
3 + 00 
4 + 00 

Table 11. Rate of Advance Data 

Furrow number 
1 2 3 4 

Elapsed Elapsed Elapsed Elapsed 
time time time time 

,min .) (rain .) (min .) (min .) 

start start start start 
5 5 5 6 

10 26 8 12 
20 45 16 22 
45 2 3  45 
80 85 30 

1 16 115  50 85 
90 150 

128 
280 173 
350 70 390 
480 5 10 5 15 

s tart s tart s tart s tart 
4 4 2 4 

1 1  31 9 2 7  
4 1  74 29 87 
84 129 39 

1 39 179 55 204 
194 89 
384 204 

379 

s t art start start s tart 
2 5 2 3 
5 26 6 22 

19 53 22 52 
47 77 45 89 
82 7 2  142 

1 14 162 97 188 
168 

1 18 

5 
Elapsed 
time 

(min .) 

s tart 
6 

14 
30 
50 
80 

1 10 
190 

317 

start 
4 

24 
8 1  

174 

start 
4 

23 
.55 
99 

153 
198 



Tab le 1 1 . 

Station 

S lope 4 

0 + 00 
0 + 50 
1 + 00 
1 + 50 
2 + 00 
2 + 50 
3 + 00 
4 + 00 

Slope 5 

0 + 00 
0 + 50 
1 + 00 
1 + 50 

+ 00 
2 + 50 
3 + 00 
4 + 00 

(Continued) 

1 
Elapsed 

time 
(min .) 

s tart 
5 

12 
30 
50 
80 

110 
200 

s tart 
8 

25 
53 
95 

1 10 
150 
290 

2 
Elapsed 

time 
(min .) 

s tart 
9 

23  
40 
62 
85 

135 

s tart 
9 

14 
52 
90 

1 1 5  
152 

119 

Furrow number 
3 4 5 

Elapsed Elapsed Elapsed 
time time time 

(min .) (min .) �min .) 

start start s tart 
6 7 8 
2 2 1  30 

22 45 51 
45 75 90 
65 140 135 
82 1 88 195 

180 

start start start 
7 15 6 

16 35 45 
29 60 7 5 
45 105 120 
67 120 145 

105 165 
85 
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Table 1 . Infiltration Data by Differential Between Flumes 

El ;esed time �min .l Inflow Loss in 
at head Outflow furrow 

Station Station Average {gpm) (gpm) (gpm) gpm/ft, in ./hr, 

Slo2e l 
0 + 00 l + 00 

start 2 7 . 9 
1 5  7 1 1  27 . 6 13 . 4 14 . 2 . 142 7 .45 
36 28 32 28 . 6 1 5 . 6 1 3. 0 . 130 6 . 82 
43 35 39 8 . 6 16 . 5 12 . 1 . 12 1 6 . 35 
60 52 56 28 . 4 17 . 6 10. 8 . 108 5. 65 
74 66 70 28 . 6 19 . 6 9 . 0 . 090 4 . 71 
95 87 91 28 . 6 20 .4 8 . 2 . 082 4 . 27 

133 125 1 9 28 . 6 20 .4 8 . 2 . 082 4. 27 
18S 177 18 1 28 . 6 20 .4 6 . 2 . 062 3 . 26 
300 292 296 28. 6 20 .4 8 . 2 . 082 4 . 27 
401 39 3 39 7 28 . 6 20 . 4 8 . 2 . 082 4 . 27 

0 + 00 + 00 

start 27. 9 
15 27 . 6 
36 l3 24 . 5 28 . 6 13 . 4 15 . 2 . 076 4 . 71 
43 20 31 . 5  28 . 6 17 . 5 1 1 . 1 . 056 2 . 94 
60 37 48 . 5  28 . 4 2 3 . 0 5 . 4 . 02 7 1.41  
74  51 6 . 5  28 . 6 2 8 . 6* o .o 

9 5  72 83  .. 5 28 . 6 30 . 2* - 1 . 6 
133  llO 121 . 5 28 . 6 33 .0* -4 . 4  
185 162 1 7 3 . 5 26 . 6 33 . 0* -6 . 4  *Submergence 

0 + 00 3 + 00 

s tart 
15 
36 
43 
60 10 35 28 . 4 9 . 3 19 . 1 . 064 3 . 37 
95 45 70 28 . 6 17 . 0 11 . 6  . 039 2 .04 

133  83 108 28 . 6 2 1 .9 6 . 7 . 022 1 . 14 
185 135 160 28 . 6 22 . 6 4 . 0  . 0 13 0 . 66 
300 250 275 28 . 6 2 3 . 0 5 . 6 . 0 19 0 .9 8  
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Tab le 1 2 . (Continued) 

E l aJ?sed t im� (min .}  Inf low Loss in 
a t  head Outflow furrow 

Station Stat ion Average (gpm) (gpm) (gpm) gpm/ ft. in./hr. 

S lope 2 
0 + 00 1 + 0 

start 22. 2 
13 4 8.5 2'' 

L e 3 • r 19. 0 . 190 9. 95  
31 22 26 .5 22. 2 1 1 . 3 10. 9 . 109 5. 7 3 
40 3 1  35 . 5 2'.! . 14 . 2 8. 0 . 080 4. 19 
58 49 53 . 5 22. 2 17. 0 5. 2 . OS' 2. 70 
79 70 74 .5 24. 2 20. 4 3. 8 . 0 38 . oo 

121  112 116 . 5 23.5 20. 4 3. 1 . 0 31 1. 61 
.;85 376 380 . 5 24 . 0 21.7 2.3 . 02 3  1 . 2 1  
449 440 444 .5 24.0 2 1. 7  2. 3 . 02 ' 1 . 2 1  

0 + 00 2 + 00 

start 
13  22. 2 

1 ' 2. • 
58 19  38 . 5 2 2 . ' 7. 2 15. 0 .075 3. 9 2 
79  40 59 . 5 24. 2 12. 3 1 1. 9  . 0 59 3. 10 

l 1 8 2  10 1 . 5 23. 5 14 . 2 9 . 3 . 047 .47 
149 1 10 129 . 5 l 3 . 6 17. 6  6. 0 . 030 1. 57 
325 286 305 .5 2 3.7 20. 4 3. 3 .0 17 0 . 90 
385 346 365 . 5 24. 0 21.7  2. 3 .012 0. 63 
454 415 434 .5 24. 0 21. 7 2. 3 . 0 12 0. 63 

0 + 00 3 + 0 

s tar t 
1 3  
3 1  
58 
7 9  

12 1 ' 2  76.5  2 . 5  6 . 8 1 6. 7 .056  2. 94 
149 60 104.5 3 . 6 7. 7  1 5. 9  . 053 2. 78 
32 5 236 280.5 2 3.7 13. 4 10 . 3 . 034 1 . 76 
385 2 96 340 .5 24. 0 13 . 4 10. 6 . 035 1 .84 
454 365 409 . 5 24.0 13 . 4 10. 6 . 0 35 1. 84 
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Table 12 . (Continued) 

Ela:esed time {min .l Inflow Lo s in 
at head Outflow furrow 

Station Station Average (gpm) (gpm) (gpm) gpm/ft. in./hr . 

Slope 3 
0 + 00 1 + 00 

start 2 3 . 6 
10 4 7 23 . 6 1 . 1 15 . 9  . 159 8 . 82 
2 1  1 5  18 2 3 . 6 12. 3 1 1. 0  . 1 10 5 . 77 
42 36 39 2 3 . 6 17 . 6 6. 0 . 060 3 . 14 

57  5 1  54 23 . 6  17. 6 6. 0 . 060 3. 14 
78 72 75 24 . 0 22. 6 1 . 4 .0 14 0 . 7 1 

102  96  99 24 .0 23 . 6 0 . 4 . 004 0 . 20 
138 1 32 135 24 .0 2 3. 6 0 . 4 . 004 0 . 20 
157  151 154 24 .0 23 . 6 0 .4 . 004 0. 20 

0 + 00 2 + 00 

start 
10 
2 1  2 3. 6 
4 23. 6 
50 5 27 .5 2 3 . 6 1 1 . 3  12 . 3 . 062 3 . 22  

57  l:l 34 . 5 23  . 6 1 7. 5 6.1 . 0 31 1 . 59 
102 57 79 .5  24 .0 22. 6 1 . 4 . 007 0 . 37 

138 93  115 . 5  24 .0 23 . 3 0 . 7 . 004 0. 1 8  

157 1 12 1 34 . 5  24.0 23 . 6 0 . 4 . 002 0 . 1 1  

0 + 00 3 + 00 

start 
10 
2 1  
4 

50 
57 

102 5 53 . S 24. 0 
108 1 1  59 .5 24. 0 1 1 . 3 12 . 7 . 042 2 . 22 

138 41  89 . 5 24. 0 10 . 3 13. 7 . 046 2 . 40 

167 70 1 18 . 5 24. 0 15. 6 8. 4 .028 1 .47 

1 73 76  124.5 24. 0 17. 5 6 . 5 . 022 1 . 14 

2 12 1 15 163.5 24 . 5 2 3. 0 l . 5 . 005 0 . 26 
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Table 12. (Continued) 

Ela:esed time {min:l Inf low Loss  in 
at head Outflow furrow 

Station Station Average {gpm) (gpm) (gpm) gP,m/ft. in./hr. 

S lQJ?e 4 
0 + 00 1 + 00 

start 
15 3 9 24.0 9. 14. 7 . 147 7 .  72 
22 10 16 24 .0 13 . 4 10. 6 . 106 5 . 56 

l 19 25 24. 0 16. 5 7 . 5 . 075 3.92 
41 29 35 24.0 16. 5 7 . 5 . 075 3.92 
5 40 46 24.0 17. 6 6 . 4 . 064 3 . 37 
67 55 61 24 .0 20.4 3. 6 . 036 1 . 88 
95 8 3  89 2 7. 2 22. 6 4 . 6  . 046 2. 55 

120 108 1 14 28. 6 22 . 6 6. 0 . 060 3 . 14 
150 l 8 144 28. 6 2 3 . 0 5 . 6 . 056 2.94 
175 163 169 28. 6 23. 3 5. 3 . 053 2. 78 
200 188 194 29. 2 26. 4 2. 8 . 028 1 . 45 

0 + 00 2 + 00 

start 
52 7 29. 5 24. 0 5 . 7 18. 3 . 092 4.78 
65 20 42. 5 24. 0 10 . 3 13 . 7 . 069 3. 63 
75 30 52 . 5 24. 0 1 1 . 8 12. 2 . 061 3. 22 
93 48 70. 5 2 7. 2 16. 5 10. 7 . 054 . 78 

123 78 1 0. 5 28 . 6 7 . 5  1 1 . l  . 056 2. 90 
1 50 105 127. 5 28 . 6 17. 6 1 1 . 0  . oss 2.86 
172 127 149. 28 . 6 1 7. 6 1 1 . 0 . 055 2 . 86 
194 149 171. 5 29. 2 17 . 6  1 1 . 6  . 052 2 . 7 7  
300 255  277. 5 29. 2 23. 3 5 . 9 . 030 1 . 53 

0 + 00 3 + OQ 

start 
88 6 47 27. 2 4. 2 2 3 .0 . 077 4 . 04 

128 46 87 28 . 6 8. 6 20.0 . 067 . 49 
146 64 105 28. 6 9.9 18 . 7 . 062 3 . 16 
178 96 135 28. 6 12. 3 16 . 3 . •  054 2.84 
195 1 1 3  154 29  . 2 1 3 . 4 15. 8 . 053 2. 76 
425 443 402 29. 2 17. 5 11. 7 . 039 2.04 



124 

Tab le 12 . (Cont inued) 

E lal?sed t ime {min .l  Inflow Loss in 
at head Outflow furrow 

Station S tat ion Average {gpm) (gpm) (gpm) gpm/ft . in./hr, 

S lo:ee 5 
0 + 00 l + 00 

s tart 24.0 
19 3 11 24.0 6 . 4 17 . 6  . 176 9. 20 
27 11 19  24.0 12 . 3 1 1 .  7 . 1 17  6 . 11 
35 19 27  24 .0 16 . l 7 . 9 . 079  4 . 17 
56 40 48 24 .0 17 . 5  6 . 5 . 065 3. 41 
65 49 57 24.0 17 . 6 6. 4 . 064 3 . 35 

100 84 92 24 .0 19 . 6 4 . 4 .044 2 . 30 
1 18 10' 110 24.0 2 1 . 7  2 . 3 . 023 1 . 21 
137 12 1 129 23 . 5 20. 4 3. 1 .031 1. 62 
242 226 2 34 24.0 20 . 4 3. 6 .036 1 .89 
290 274 282 24.0 2 1 . 7  2. 3 . 023 1 . 21 

0 + 00 2 + 00 

start 
54 9 3 1 . 5  24.0 5. 3 18. 7 .093 4 . 88 

67 22 44. 5 .- 4.0 10. 3 1 3. 7 . 069 3. 48 
101 56 78 . 5 24 .0 14. 2 9 . 8 .049 2 . 56 
120 75 97. 5 24.0 17 . 6 6 . 4 .032 1. 68 
138 93 117  . 5  23 . 5 16. 5 7.0 .035 1 . 83 
243 198 220. 5 24 .0 17 . 6 6. 4 .032 1 . 68 

288 243 265 . 5 23. 5 20 . 4 3. 1 .016 0. 81 

0 + 00 3 + 00 

start 
121 16 68 . 5 24.0 5 . 3 18. 7 .062 3. 26 

140 35 87 . 5 23. 5 8 . 6 14. 9 .050 2. 60 

245 140 192. 5 24.0 17 . 5 6. 5 .022 1 . 14 

286 18 1 23 . 5  23. 5 20 . 4 3. 1 . 010 0. 54 
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Table 13 . Infiltration From Rate of Advance of Wetting Front 

X t t Intake 
{ft.) (min.) (ft . ) (ft.3/ ft. ) 

Slo2£ 1 
== 28 gpm = 3. 74 ft. 3/min. 

50 5 18. 6 . 372 
100 8 29.9 .299 
150 16 60.0 .400 
200 23 86.1 .431 
2 50 30 1 12 . 1  .449 
300 50 187. 0 . 623  

S l ol?e 2 
gpm = 2.97 ft. 3/min. = 22. 2 

50 2 
100 8 
150 29 
200 39 
250 55 
300 89 

Slo:ee 3 
Q = 24 gpm = 3. 2 1  

50 2 
100 6 
150 22 
200 45 
250 72 
300 97  

S lo2e 4 
=- 24 gpm = 3. 2 1 

50 6 
100 12 
150 22 
200 45 
2 50 65 
300 82 

5 . 9 
2 3. 8 
86.1 

1 1 5 .8 
163. 3 
264. 1 

3 ft. /min. 

6.4 
19. 3 
70. 6 

144 . 5 
2 3 1 . 0  
3 1 1 . 5 

3 ft. /min. 

19. 2 
38. 6 
70. 6 

144.5 
208.5 
263.4 

. 1 19 
. 238 
. 574 
.578 
. 653 
. 880 

. 128 

. 19 3  

. 472 
• 722 
. 923 

1. 038 

. 384 
. 386 
. 471  
• 723 
. 834 
.878 

{aesning no storage} ·. . . -
{ft . /min./ft.) (in,/hr.) 

. 0745 29. 29 

. 0374 14 . 70 

. 0250 9. 81 
. 0188 7. 38 
. 0149 5. 84 
. 0125 4.91 

. 0594 23. 29 
. 0298 11. 69 
. 0198 7. 77 
. 0 148 5.81 
. 0119 4. 66 
. 0099 3. 88 

. 0640 25.10 

. 0322 12. 62 

. 02 14 8 . 40 

. 0161 6 . 32 

. 0128 5. 02 

. 0107 4. 2 1 

. o 40 25. 10 
. 0322 12 . 6 
. 0214 8 . 39 
. 0161 6. 31 
. 0128 5. 02 
. 0 107 4 . 19 



Table 13. (Continued) 

X 
(ft .)  

t 
(min .) 

Slope 5 
Q = 24 gpm m 3. 2 1 ft. 3/min. 

50 7 22 .4 
100 16 51. 4 
150 29 9 3 . 2 
200 45 144 . 5 
2 50 67  2 15 .0 
300 105 337 . 8 

126 

Intake {assuming no s torage.) 
(ft .3/ft .) · (ft ,.3/min ./ft .) . (in. /hr .} 

.448 .0641 25. 75 
. 5 14 . 032 1 12. 59 
. 622 . 02 14 8. 39 
• 72 3 . 0161 6. 31 
. 861 . 0 129 5.06 

1 . 124 . 0 1 12 4. 39 
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Table 14. Infiltration From Rate of Advance as a Border 

X t* t Intake ,assuming no storage) 
{ft .) (min.) (gal .) (ga l . /ft .) (gal ./min. /ft .) (in ./hr .) 

S toEe 1 
Average Q = 28. 3 gpm 

5 5 142 2. 83 . 566 5.94 
100 14 396 3 . 96 . 283 2 . 97 
150 2 1  595 3. 97 . 189 1 . 98 
200 41  1160 5. 80 . 141 1 .48 
2 50 69 1953 7. 82 . 1 13 1 . 17 
300 95 2685 8.95 . 094 0. 99 
400 143 4050 10 . 1 3  . on () . 7 5 

Slo:2e 2 
Average =- 23. 3 gpm 

50 4 9 3  1 . 86  . 465 4. 88 
100 2 1  489 4 . 89 . 2 33 2.45 
150 62 1445 9. 63 . 155 1 .63 
200 107 2493 12 .47 . 117 1 . 2 3  
250 144 3355 1 3.42 . 093 0.98 
300 180 4194 1 3. 98 . 078 0. 82 
400 294 6850 17. 10 . 0 58 0. 6 1  

S lo;ee 3 

Average Q = 2 3. 8 gpm 

50 3 7 1  1. 43 . 476 5 . 00 

100 16  381 3. 81  . 2 38 2 .50 
1 50 40 952 6. 35 . 159 1 .67  
200 7 1  1690 8.50 . 1 19 1 . 2 5 
2 50 1 12 2666 10. 66 . 095 1 . 00 
300 152 36 18 12. 06 . 0 79 0. 83 
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Table 14 . (Cont inued) 

X t* Qt Intake (assuming no storage) 
{ft . ) (mil1 .) (ga l . ) (gal . /ft . ) {gal./min ./ft .) (in . /hr .) 

S lo:2e 4 
Average = 26. 0 gpm 

50 7 182 3. 64 .520 5. 46 
1 0 20 520 5 . 20 . 260 2. 73 
150 38 988 6.59 . 173 1 . 86 
200 64 1664 8. 32 . 130 1 . 37 

250 101 2626 10 .50 . 104 1 . 09 

300 142 3692 12 . 3 1  . 087 0. 91 
400 190 4940 12. 35 . 065 0. 68 

S loEe 5 
Average = 24. 0 gpm 

50 9 2 16 4 . 32 . 480 5 . 04 
100 2 7  648 6 . 48 . 240 2 . 52 
150 54 1296 8.64 . 16 1 . 68 

200 91 2 184 10. 92 . 120 1 . 26 
2 50 1 1 1  2664 10. 66 . 096 1. 08 
300 143 3432 1 1. 44 . 080 0. 84 
400 288 69 12 17 . 28 . 060 0. 63 

t* = average time (min . )  for five test furrows of each slope 
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