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ABSTRACT 

TRIPARTITE INTERACTIONS OF LEGUMES WITH ARBUSCULAR 

MYCORRHIZAL FUNGI AND RHIZOBIAL BACTERIA: INSIGHT INTO PLANT 

GROWTH, SEED YIELD, AND RESOURCES EXCHANGE 

ARJUN KAFLE 

2018 

Under natural conditions, legumes, such as alfalfa (Medicago) and soybean 

(Glycine max) are colonized with arbuscular mycorrhizal (AM) fungi and rhizobial bacteria 

forming tripartite interactions. Legumes are important crop species due to their high 

nutritional and economic values.  Most of the previous literatures focused on experiments 

with an individual symbiont: either AM fungi or rhizobial bacteria, but not with both 

symbionts at the same time, thus our current understanding of resource exchange in 

tripartite interactions is limited. It has been reported that AM fungi primarily provide 

phosphate (P), nitrogen (N), and other nutritional and non-nutritional benefits while 

rhizobial bacteria solely supply N to their host plant. In return for the nutritional benefits 

conferred by root symbionts, the host plant reciprocally allocates a significant proportion 

of its photosynthetic carbon (C) resources to its root symbionts. In tripartite interactions, 

AM fungi and rhizobial bacteria facilitate synergistically for plant growth and nutrient 

acquisition. However, how the host plant allocates its C resources to both symbionts in 

tripartite interactions is still poorly studied. 
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More attention has been paid to AM fungal benefits in terms of nutrient acquisition 

and growth response for soybean plants under the controlled conditions using laboratory 

produced AM fungal inoculum. Due to technical difficulties to produce in a large quantity 

of AM inoculum, it is not pragmatic to apply this lab-based AM fungi for agronomic 

purpose in a larger area in the field conditions. However, effects of commercially available 

AM fungal additives on soybean cultivars in the greenhouse and field conditions have not 

well reported before despite importance of AM fungi on soybean. 

To address these questions, we conducted different experiments in a pot system, 

split root system with and without fungal access to exogenous N in a hyphal compartment. 

Medicago truncatula was kept either non-inoculated as control (none), or with only AM 

fungi, or with only rhizobial bacteria, or with dual symbionts (both with AM fungi and 

rhizobial bacteria) with different nutrient supply conditions. To tract the C allocation to 

different symbiotic partners, we labelled/exposed the host shoot with 13CO2. Similarly, to 

test how does host plant change its strategy for C allocation to symbionts if AM fungus has 

an exogenous source of N, we provided 15NH4Cl in the hyphal compartment to which only 

AM fungus had access not to host root. Moreover, in association with C allocation to 

symbiotic root halves, we examined gene expression of several plant transporters of 

Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter 

(SWEET) family. We also analysed P and N acquisition of host tissues in association with 

plant growth response. 

We used four different soybean cultivars in separate experiments that usually use 

by farmers for the seed production in this region of Upper Midwest. These soybean 
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cultivars were either non-inoculated control (none), or inoculated with only commercially 

available AM additives, or with only rhizobial bacteria, or with both AM fungi and 

rhizobial bacteria (dual inoculation). Soybean plant growth response in association with 

plant nutrient uptake, and seed yield was compared between control and AM plants of 

greenhouse and field condition experiments.  

Tripartite interactions favor the growth response in association with higher P and 

N uptake of the host plant in nutrient limited soil conditions. We found that the nutrient 

demand of the host, and the fungal access to nutrients are important factors that control the 

carbon allocation to individual root symbionts in tripartite interactions. Plant allocated 

more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner 

when exogenous nitrogen was available. The expression of genes for several SUTs and 

SWEETs transporters was consistent with the observed changes in carbon allocation. 

Exploring the full yield potential of legumes will require insights in how host plants 

regulate the substantial carbon costs of these interactions as host plant invest substantial 

amount of energy and resources to produce carbon during photosynthetic process. 

We observed soybean plant growth and seed yield was significantly higher with 

only AM inoculation than either control or only rhizobial alone inoculation. Moreover, the 

difference in seed yield of AM additives plants was notably higher in limited supply of P 

and N both in greenhouse and field conditions. Interestingly, seed yield of AM inoculated 

soybean was similar with or without fertilizer application in the field conditions. Different 

soybean cultivars had different response to AM fungal inocula for plant growth and seed 
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yield. Among commercial AM fungal additives, MycoApply outperformed other two 

commercial inocula for plant growth and seed yield.   

Taken together, tripartite interactions of legumes with AM fungi and rhizobial 

bacteria facilitate for the plant growth and seed yield in limited soil nutrient conditions 

indicating tripartite interactions may have a bigger potential role to maintain sustainable 

agriculture. 
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1. Introduction  

The plant rhizosphere and phyllosphere is colonized by a wide range of epiphytic 

and endophytic microorganisms and these microorganisms can establish beneficial, 

neutral, or detrimental associations of varying intimacy with their host plant. Recent 

developments in sequencing technologies have enabled us to study the composition and 

function of plant microbiomes, but plant microbiomes are dynamic, and differ among 

different plant tissues, and in response to the environment. The plant microbiome can also 

be seen as “the second plant genome” or pan-genome and can consist of 10 times more 

genes than typical plant genomes [1]. Beneficial microorganisms that are associated with 

plants hold enormous potential to be developed into microbial fertilizers or microbial 

pesticides [2] and new biotechnological tools to increase the nutrient efficiency and stress 

tolerance of crops, and environmental sustainability of agroecosystems. Specific 

interactions between microbes and plants, such as the Rhizobium-legume symbioses, are 

mailto:heike.bucking@sdstate.edu


2 
 

 
 

well understood, but the majority of the plant microbiome, and its contribution to the 

extended phenotype of the host, is not yet well defined. 

Soybeans form interactions with nitrogen-fixing rhizobia and this symbiosis plays 

a key role for the nitrogen (N) nutrition of the plant, but also for agricultural productivity 

since soybean root residues provide N for other plants in crop rotations [3, 4]. Arbuscular 

mycorrhizal (AM) fungi colonize the root system of the majority of land plants, including 

soybeans, and transfer nutrients such as phosphate (P), N, potassium (K), and other 

nutrients to their host plants, and improve the resistance of their host plant against abiotic 

(e.g. drought, salinity, heavy metals), and biotic stresses [5]. In addition, soybeans are 

associated with endophytes that live inside their plant host for at least part of their lives, 

without causing apparent disease symptoms as a result of this colonization. Plant 

endophytes exhibit a wide range of plant growth promoting capabilities, including the 

production of phytohormones, an improved nitrogen (N) nutrition through biological 

nitrogen fixation (diazotrophic endophytes), the biosynthesis of ACC (1-

aminocyclopropane-1-carboxylate) deaminase, the capability to solubilize phosphate, and 

also the biosynthesis and release of antimicrobial metabolites or siderophores to inhibit the 

growth of pathogenic microorganisms [6]. 

The plant microbiome is a largely unexplored resource of beneficial 

microorganisms with diverse properties and a hidden potential to manipulate plant growth 

and success in stressful environments. However, while the symbiosis of soybeans with 

rhizobia and with AM fungi is well characterized, the functional role of endophytes is only 

known for a limited number of isolates. Our functional understanding of these interactions 
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is mainly based on experiments with individual symbionts, but there is increasing evidence 

that individual symbionts can also affect the interactions of the plant with other symbionts 

[7-10]. We summarize here the effects of different beneficial microbes on nutrient uptake, 

yield and stress resistance of soybeans, and identify knowledge gaps that hinder the 

application of these interactions to their full potential in soybean production systems. 

2. Beneficial plant microbe interactions of soybean plants  

2.1 Arbuscular mycorrhizal fungi 

The arbuscular mycorrhizal (AM) symbiosis is arguably the most important 

symbiosis on Earth and is formed by more than 65% of all known land plant species (n > 

200,000), including all legumes and many other agronomically important crops, such as 

wheat, corn, and rice [11]. AM fungi are classified into the fungal subphylum 

Glomeromycota that consists of less than 350 fungal species [12]. AM fungi co-exist 

relatively morphologically unaltered with plants for more than 400 million years, and there 

is evidence that suggests that the AM symbiosis played a critical role for land plant 

evolution [13]. 

It is long known that AM fungi can increase the nutrient uptake of their host plant, 

and are able to deliver substantial amounts of P, N, K, sulfur (S), and trace elements, such 

as copper (Cu) and zinc (Zn) to the plant. Many AM fungi also provide non-nutritional 

benefits for their host that are critical for plant survival or fitness, and improve for example 

the resistance of plants against abiotic (e.g. drought, heavy metal, salinity) and biotic 

(pathogens) stresses [5]. In return for these benefits, host plants transfer up to 20-25% of 

their photosynthetically derived carbohydrates to the fungal symbiont [14]. It was generally 
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believed that carbon is transferred to the fungus in the form of hexoses [15], but recent 

evidence suggests that also fatty acids can move across the mycorrhizal interface to the 

fungal partner (Figure 1) [16-18]. 

AM fungi are ubiquitous in soils and can account for up to 50 % of the microbial 

biomass in soils [19]. AM fungi form extensive hyphal networks in soils, and the 

extraradical mycelium (ERM) of the fungus acts as an extension of the root system and 

increases the nutrient absorbing surface of the root. The ERM with its mycorrhizosphere 

(interface between fungal hyphae and the soil) acts as an important conduit between 

microbial communities and the host plant [20] and can provide soil microbial communities 

with plant-derived carbon (C) inputs in large distance from the root. The mycorrhizosphere 

represents in soils an important ecological niche for diverse microbial communities that 

are specifically adapted to this mycorrhizosphere. According to estimates, the bacterial 

density in the mycorrhizosphere is 4 to 5 times higher than in the plant rhizosphere [21]. 

However, the presence of AM fungal mycelia does not only lead to quantitative, but also 

to qualitative changes in the microbial community composition in soils [22]. The presence 

of AM fungal hyphae plays an important role in the bacterial community assembly during 

decomposition [22] and affects the access of members of these microbial communities to 

C sources during decomposition [23]. 

Within the host root, the fungus can spread intercellularly, but also penetrates the 

root cortex intracellularly, and forms here highly branched specialized structures, called 

arbuscules that are separated from the plant symplast by the plant periarbuscular membrane 

[24]. Some AM fungal species also form vesicles, thick-walled, lipid containing storage 
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organs in the roots. Arbuscules are the site of nutrient exchange between the plant and the 

fungus, and both the fungal cell membrane and the plant periarbuscular membrane are 

characterized by the presence of specific transport proteins that play a critical role for the 

resource exchange between both partners (Figure 1) [15, 25, 26]. 

The colonization of host roots by AM fungi is based on a molecular dialog between 

both partners that facilitates partner recognition and triggers responses in both partners that 

are critical for the establishment of the symbiosis [27]. After fungal spore germination, an 

extensive hyphal branching in close proximity to host roots can be observed that is 

triggered by strigolactones and other compounds in root exudates [28]. After attachment to 

the host root surface and the differentiation of a fungal hyphopodium, the fungus penetrates 

the root, and spreads with the help of a prepenetration apparatus [29], and forms arbuscules 

in the cells of the root cortex. Initiated is this process by the release of 

lipochitooligosaccharides, or Myc factors by the fungus, that are perceived by specific 

receptors on the host root surface and trigger a cascade of molecular responses in the host 

root. The pathway is called the common symbiotic signaling pathway (CSSP), since similar 

responses can be observed after the perception of rhizobial Nod factors [27, 30]. A key role 

for the perception of fungal Myc or Nod factors by the rhizodermis plays the membrane-

bound receptor-like kinase SYMRK that activates the mevalonate (MVA) biosynthetic 

enzyme HMGR1(3-hydroxy-3-methylglutaryl CoA reductase 1). A second set of CSSP 

proteins is located in the nuclear pore complex and includes the three nucleoporins 

NUP133, NUP85, and NENA, the ATP-powered Ca2+ pump MCA8, and cation channels 

encoded by CASTOR and POLLUX involved in the strong Ca2+ oscillations in the nucleus 

of rhizodermal cells that can be observed shortly after Myc factor perception. Another set 
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of proteins is located in the nucleoplasm and decodes these Ca2+ signals [30, 31]. A 

Ca2+/calmodulin-dependent protein kinase (CCaMK) phosphorylates with the help of 

calmodulin CYCLOPS, which then regulates gene expression either directly, or through 

GRAS transcription factors such as NSP1, NSP2, and RAM1 [30-32]. The elucidation of 

the CSSP is mainly based on studies in the model legumes Medicago truncatula or Lotus 

japonicus, but the fact that the proteins of the CSSP are highly evolutionary conserved, and 

even present in plants that are unable to form AM interactions, suggest that this pathway 

is also established in soybeans. 

 

Figure 1.1. Overview of the mycorrhizal nutrient uptake pathways in AM roots of soybean 

plants via the extraradical mycelium of the fungus (a), and the mycorrhizal interface 

consisting of the fungal arbuscule in root cortical cells surrounded by the periarbuscular 

membrane of the host (b). Both, fungal cell membrane and plant periarbuscular membrane 

are characterized by the presence of mycorrhiza specific transporter that play a critical role 
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for the nutrient exchange across the mycorrhizal interface of soybean plants (e.g. GmPT7 

or GmAMT4.1, see also below). 

 

Mycorrhizal plants have two pathways that are involved in the nutrient uptake from 

the soil: the ‘plant pathway’ via high- and low-affinity transporters in root epidermis and 

root hairs or the ‘mycorrhizal pathway’ that first involves the uptake of nutrients via the 

ERM of the fungus, transport to the arbuscules, and then the uptake by the plant from the 

interfacial apoplast through specialized transporters in the periarbuscular membrane. In 

response to the colonization with AM fungi, transporters that are involved in the plant 

pathway are often down-regulated, while mycorrhiza-specific transporters in the 

periarbuscular membrane are induced [33], indicating that there is a shift in the nutrient 

acquisition strategy, and that the mycorrhizal pathway can become the dominant pathway 

for nutrient uptake [34, 35]. 

2.1.1 Importance of arbuscular mycorrhizal fungi for yield and nutrient uptake of 

soybeans 

Under both greenhouse and field conditions, increases in nutrient content, yield and 

overall fitness of soybeans in response to an AM colonization have been reported [36, 37], 

and soybean yields were found to be significantly correlated to the colonization of the roots 

with AM fungi [38]. Many reports clearly demonstrate the positive effects of AM fungi on 

the nutrient uptake of soybeans, and here particularly on the uptake of phosphorus (P) and 

of nitrogen (N) [39-41]. However, the effects can differ greatly among AM fungi. Our own 

studies demonstrated for example that while the AM fungus Rhizophagus irregularis can 

increase the P nutrition of soybeans with low or high P acquisition efficiency, Glomus 



8 
 

 
 

custos had no effect and Glomus aggregatum even led to slight growth depressions under 

medium P supply conditions [39]. 

Some of the observed differences among these AM fungi seem to be related to the 

impact of the AM fungus on plant P transporter expression. Fourteen genes of the Pht1 

family have been identified in soybeans [42], and three of these transporters show high 

expression levels in mycorrhizal roots [43]. While the colonization of the roots with R. 

irregularis led to the down-regulation of GmPt4, a high affinity P uptake transporter that 

is presumably involved in the uptake of P from the soil, was the expression of GmPt9, and 

GmPt10 up-regulated in AM roots. GmPt9 andGmPt10 cluster with the mycorrhiza-

inducible P transporters OsPt11 of Oryza sativa (rice) and MtPt4 of Medicago truncatula 

that play a critical role for the P uptake from the mycorrhizal interface [26, 44]. GmPt9 

was up-regulated by G. aggregatum and R. irregularis, but GmPt10 was only upregulated 

by R. irregularis, indicating that this transporter is involved in the P uptake from the 

interface, and that GmPt10 expression can serve as an indicator for mycorrhizal P benefits 

in soybean plants. GmPt7, another soybean P transporter, shows a high expression in cells 

with mature and active arbuscules, but is not expressed in cells with collapsed and 

degenerated arbuscules, suggesting that this transporter may also play a role for the P 

transport across the AM interface. However, GmPt7 is not a mycorrhiza specific 

transporter, and is also expressed in columella cells of root caps and in lateral root 

primordia of non-mycorrhizal roots [45]. Similarly, out of the 16 ammonium (NH4
+) 

transporters of soybean, five transporters are mycorrhiza-inducible, and one of them, 

GmAMT4.1 is specifically expressed in arbusculated cells (Figure 1), indicating that this 

transporter could be involved in the NH4
+ transport across the AM interface [46]. 
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There is evidence from the model legume Medicago truncatula, that AM fungi can 

also improve the acquisition of other macronutrients such as potassium (K) or sulfur [47, 

48]. K deficiency is a common problem in soybeans and can lead to yellowing of the leaves, 

stunted growth and reduced yields and can become particularly severe under drought stress. 

Although transcriptional and physiological responses to K deprivation have been studied 

in other legumes [49], whether AM fungi also play a role in the K acquisition of soybean 

plants is not yet known. 

2.1.2. Importance of arbuscular mycorrhizal fungi for the stress resistance of soybean 

AM fungi can also increase the resistance of soybeans against other abiotic stresses 

such as drought, salinity or soil contaminations. It is known for several decades that the 

AM colonization can improve the tolerance of soybeans against drought [50]. AM fungi 

can influence leaf water potential, solute accumulation, and oxidative stress of soybeans 

under drought stress [51], and delay nodule senescence triggered by water deprivation [52]. 

In AM soybeans, plasma membrane aquaporins were down-regulated in response to 

drought stress, and this could reduce the permeability of membranes for water and 

contribute to water conservation [53]. In addition, both fungal and plant mitogen-activated 

protein kinases (MAPKs) are up-regulated in AM soybean plants under drought stress. 

MAPK cascades are known to regulate many cellular processes in response to various 

stimuli, including abiotic and biotic stresses [54]. AM fungi also improve the tolerance of 

soybeans against salinity. AM plants had a higher biomass, and proline concentrations in 

roots, but reduced proline and Na concentrations in the shoot under salt stress. When the 

fungus was pre-treated with NaCl, the alleviating effects were even stronger, indicating 
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that the acclimation of the fungus to salinity may play a role for the stress response [55]. 

AM fungi can also improve the tolerance of soybeans against arsenic [56] and aluminum 

[57] by reducing the uptake of these toxic metals. 

Soybean yield and productivity is also threatened by many fungal or bacterial 

diseases, and soil inhabiting nematodes. Soybean cyst nematodes (SCN, Heterodera 

glycines), brown spot (Septoria glycines), charcoal rot (Macrophomina phaseolina), rot 

and stem rot (Phytophthora sojae), and soybean rust (Phakopsora pachyrhizi and P. 

meibomiae) are among the most important pathogens of soybeans and cause substantial 

yield losses in the U.S. [58]. SCN are often responsible for hidden yield losses, since soil 

infestations remain often undetected since they become severe. SCN can spread easily from 

field to field via soil movements with machinery, wind, or by humans, and can now be 

detected in 90% of the soybean producing states in the U.S. [59]. SCN infestations can lead 

to yield losses of more than 30% and are responsible for about $ 1.5 billion in soybean crop 

damage each year in the U.S. AM fungi can protect soybeans against a wide range of 

pathogens, including fungi, bacteria, nematodes or insects [60], and reduce the SCN egg 

population in soils by 70% [61]. The positive impact of AM fungi on biotic stresses has 

been attributed to the overall positive effect on nutrient uptake and a damage compensation 

effect, the competition for root space and soil nutrients, induced systemic resistance (ISR) 

and altered rhizosphere interactions. In addition, AM fungi form extensive hyphal networks 

in soils and can connect plants of the same or of different plant species by common mycelial 

networks (CMNs). CMNs play an important role in the plant-to-plant communication and 

can transfer infochemicals and warning signals from infested plants to uninfested plants 

and stimulate defence reactions in these plants [62]. 
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2.2. Nitrogen fixing symbiosis with rhizobia 

Most Legume plants are able to interact with N-fixing bacteria, called rhizobia that 

are able to reduce atmospheric dinitrogen (N2) into ammonia (NH3) in specialized root 

nodules. The symbiosis evolved in legumes between 25 and 50 million years ago [63, 64], 

and plays an important role for plant nitrogen (N) nutrition. Rhizobia can contribute with 

up to 70% to the total N nutrition, and grain legumes can gain up to 300 Kg N, and legume 

trees (e.g. Acacia sp.) up to 600 Kg N per ha and year from these interactions [4, 65]. Free 

living rhizobia produce Nod factors that are perceived by plant roots and act as triggers for 

the common symbiotic signaling pathway (CSSP; see above). Nod factors are also 

lipochitooligosaccharides that are composed of chitin chains with various lipid 

modifications. Chitin is the main constituent of fungal but not of bacterial cell walls, and 

the functional and structural similarities between Nod and Myc factors has led to the 

assumption that rhizobia adopted the evolutionary far more ancient (~ 450 million years) 

CSSP to establish this endosymbiotic interaction with legumes [66]. Nod factors stimulate 

the curling of root hairs, and entrapped bacteria within these curls are transported within 

infection threads, to the inner zone of developing root nodules. Inside of cortical cells, the 

rhizobia divide and multiply, and are released into vesicles, called symbiosomes, in which 

they differentiate to fully functional bacteroids. One or more differentiated bacteroids are 

surrounded by the plant symbiosome membrane, that represents a barrier by which the host 

plant can control the movement of solutes to the bacteroids through specialized transporters 

or channels [67]. 
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Bacteroids express the nitrogenase complex that consists of six protein subunits 

(two each of NifH, NifD, and NifK) and two [4Fe–4S] and two (Fe8S7) iron–sulfur clusters 

and two iron–molybdenum cofactors (Fe7MoS9N) called FeMoco, which catalyze the N2 

reduction to NH3 [68]. The nitrogenase metallo-centres are all oxygen-labile and must 

operate in an environment with a low level of free oxygen, and nodules provide their 

bacterial symbionts with this oxygen reduced environment for optimum N fixation [69]. N 

fixation by bacteroids is a highly energy consuming process, and rapid respiration in the 

bacteroids is necessary to produce the 16 ATP required for the conversion of each 

atmospheric N2 into two NH3. 

𝑁2 + 8 𝐻+ + 8𝑒− + 16 𝐴𝑇𝑃 = 2 𝑁𝐻3 + 𝐻2 + 16 𝐴𝐷𝑃 + 16 𝑃𝑖 

The product of biological N fixation (BNF) is ammonia, which diffuses out of the 

bacteroids into the acidic symbiosome space and is here protonated to ammonium. The 

symbiosome membrane is energized by an H+-ATPase, that pumps protons into the 

symbiosome space and thereby promotes the uptake of NH3/NH4
+ into the plant cytosol, 

where NH4
+ is rapidly assimilated into amino acids, and the ureides allantoin and allantoic 

acid [69]. A candidate for the uptake of NH4
+ from the symbiosome space is NOD26, that 

was first identified in soybeans [70]. NOD26 belongs to the major intrinsic 

protein/aquaporin (MIP/AQP) channel family, and is exclusively localized in the 

symbiosome membrane [67]. The ureides allantoin and allantoic acid serve as the dominant 

long-distance transport of N from the root nodules to the shoots [71, 72]. Cortex cells and 

the vascular endodermis of nodules express GmUPS1—1 and GmUPS1-2, which play a 

role for the transport of allantoin and allantoic acid out of the root nodules to the sink 
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organs. RNAi knockouts of these proteins accumulate ureides in the root nodules, and show 

a reduced N transport to the shoots [73]. 

BNF is an energy expensive process, which requires 16 ATP to fuel the reduction 

of one N2. Plants allocate up to 30% of their photosynthetically fixed C to rhizobia [74], 

which is oxidized in the bacteroids to ATP. The N2 fixation rate of rhizobia is higher when 

the nodules receive more C, suggesting that the allocation of C to nodules is a limiting 

factor for BNF. Transgenic Medicago sativa plants that over-express a sucrose phosphate 

synthase, a key enzyme for sucrose biosynthesis in plants, show higher C contents in 

nodules, more and larger nodules per plant and an enhanced nitrogenase activity of the root 

nodules [75]. Free living rhizobia can grow on a variety of different sugars, including 

mono- and disaccharides, but the absence of transporters for these sugars in bacteroids 

suggests that rhizobia in symbiosis take up dicarboxylates, and here particularly malate 

from the symbiosome space. The C4-dicarboxylate transport system that is localized in the 

inner bacteroid membrane is encoded by the dctA gene, has a high mobility for malate, and 

is essential for symbiotic nitrogen fixation [76]. Although the mechanisms of N fixation 

and assimilation are well documented, key steps are still unknown. For example, little is 

known about the C metabolism inside nodules, the regulatory steps that control the C export 

to rhizobia, and the proteins involved in the C and N transport between partners. Recent 

evidence in the model legumes M. truncatula and Lotus japonicus suggest that sucrose 

transporters from the Sugar Will Eventually be Exported Transporter (SWEET) family 

could be involved in the sucrose efflux from the phloem towards nodulated cells [77]. 
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2.2.1. Significance of rhizobia for soybean agriculture 

According to estimates, soybeans with their rhizobia populations fix around 20 

million tons of N each year, and this has an enormous influence on agricultural 

productivity, not only on soybeans, but also for other crops in crop rotation systems [3, 4]. 

Soybean residues in the soil enrich the soil with N, improve soil organic matter and can 

lead to yield increases in non-legume crops that follow soybeans. Crop rotations or 

intercropping systems of cereals with legumes can result in higher crop yields without 

fertilizer additions [78]. However, conventional agricultural management practices and 

other anthropogenic factors can have a negative impact on rhizobial function. In addition, 

excessive tillage, applications of higher N fertilizer dosages, extended fallow periods can 

also have detrimental effects on rhizobia populations in soils. As a consequence, 

integrating this symbiosis more efficiently in modern agricultural practices is crucial to 

limit the amount of fertilizers used and to make agriculture more environmentally 

sustainable. Exploring ecologically best fitted ecoregions for soybeans and best adapted 

soybean cultivars will help farmers to produce more yield with reduced inputs. Rhizobial 

strains differ in their efficacy in symbiosis with different soybean cultivars, and the input 

of N into agricultural systems can be increased by the inoculation of legumes with 

optimized rhizobia for different environments [65]. The development of better inoculation 

strategies, and specifically adapted rhizobia for different soybean cultivars could reduce 

the dependency of farmers on agrochemicals and enhance food security [65]. 
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2.3. Tripartite symbiosis with arbuscular mycorrhizal fungi and rhizobia 

In natural environments, legume roots form tripartite interactions, and are 

simultaneously colonized by both AM fungi and rhizobia [7, 79]. Tripartite interactions 

have been shown to improve plant productivity, seed yield, P and N acquisition, and 

photosynthetic rates [10, 80, 81]. The rhizobial nitrogenase complex requires at least 16 

ATP to reduce one N2 molecule into two NH3. Consequently, nodules act as strong P sinks 

in legume root systems to provide sufficient P resources to the bacteroids for optimum 

BNF [79, 82]. Since AM fungi are able to improve the P nutrition of legume plants, AM 

fungi can increase the BNF by root nodules by at least 50% [10]. Non-mycorrhizal soybean 

plants have lower nodule numbers and weights, and particularly under low P supply lower 

N fixation rates [7, 83]. AM fungi can also provide their hosts with microelements that are 

essential for N2 fixation, including zinc, iron, manganese and molybdenum [84, 85]. 

AM fungi and rhizobial bacteria can act synergistically and can improve plant 

productivity, seed yield, and grain quality [7, 10, 81]. However, the prior inoculation by 

either rhizobia or AM fungi can also reduce the subsequent colonization by the other 

symbiont [86]. Plants control the extent of root colonization by both symbionts by an 

autoregulatory mechanism, possibly to limit the high C costs associated with these 

interactions [83, 87]. Whether AM fungi and rhizobia interact antagonistically or 

synergistally depends on the environmental context [81], and the compatibility between 

symbiotic partners [10, 88]. For example, the rhizobial strain STM 7183 is more 

compatible with the AM fungus Rhizophagus clarus, and leads to higher nodulation rates, 

nitrogenase activities, and plant growth responses than STM 7282 [10]. Similarly, plant 
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productivity and seed yields of nodulated soybeans were higher when the plants were co-

inoculated with the AM fungus Rhizophagus irregularis, than with Acaulospora 

tuberculata or Gigaspora gigantea [88]. Soybean cultivars also differ in their ability to 

benefit from their microbial communities [89]. Consequently, the symbiotic efficiency 

should be integrated into soybean breeding programs, and AM fungi and N-fixing bacteria 

with high compatibility should be identified to improve the productivity and stress 

resistance of soybeans and other legumes. 

Both interactions are costly, and the host plant allocates up to 20% of its 

photosynthetically fixed C to its fungal [14, 90], and up to 30% to its N-fixing symbionts 

(Figure 2) [74]. C acts as an important trigger for symbiotic functioning, and a reduction 

in the C fluxes to the symbionts decreases BNF by rhizobia [91], and P and N uptake and 

transport by AM fungi [92-94]. Considering the high C costs of these symbioses for the 

host, plants are under a selective pressure to strongly regulate the C fluxes to both root 

symbionts, but these control mechanisms are currently poorly understood. Resource 

exchange between host and AM fungi are controlled by a reciprocal reward mechanism 

that is driven by biological market dynamics [95]. Our own results recently demonstrated 

that similar mechanisms may also control the resource to C exchange in tripartite 

interactions, and that Medicago plants allocate C to the different root symbionts in tripartite 

interactions in response to nutrient demand conditions, and that the AM fungus becomes a 

stronger competitor for C resources from the host, when the fungal partner has access to N 
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79].

 

Figure 1.2 Transport and nutrient exchange pathways in the symbiosis with N-fixing 

bacteria (BAC) and AM fungi (IRM and ERM). Abbreviations: BAC-N-fixing bacteroids; 

BM-bacteroid membrane; ERM-extraradicle mycelium; FA-fatty acid; FM-fungal plasma 

membrane; IRM-intraradical mycelium; PM-periarbuscular membrane; SM-symbiosome 

membrane. 

AM fungi have stronger effects on plant gene expression than rhizobia [96], but our 

current understanding of the molecular mechanisms involved in the C allocation to 

individual root symbionts is limiting. An overexpression of a leaf sucrose phosphate 

synthase of M. truncatula increases starch production, allowing the plant to allocate more 

photosynthates to root nodules and consequently improved nitrogenase activity and overall 

plant growth [75]. There is evidence that suggests that sucrose transporters (SUT) could be 

involved in the regulation of beneficial C fluxes towards the fungal symbiont [97], and the 

expression of MtSUT2 and MtSUT4-1 has been shown to be positively correlated to the C 

allocation to different symbiotic partners in tripartite interactions [79]. MtSWEET1b and 

MtSWEET6 of the Sugars Will Eventually be Exported Transporter family (SWEET) are 

highly expressed in AM roots, and preferentially transport hexoses such as glucose, and 

could be involved in the transport of hexoses or fatty acids across the mycorrhizal interface 
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to the fungal partner [79, 98]. MtSWEET11 is specifically expressed in root nodules, and 

could be involved in the sugar distribution within root nodules, but loss-of-function 

mutants indicate that MtSWEET11 is not essential for BNF [99]. A better understanding of 

these processes is critical, because it may be key to improve the resource exchange between 

plants and symbionts, and ultimately to enhance productivity of agronomically important 

legumes. 

2.4 Symbiosis with endophytic bacteria or fungi  

Endophytes are defined as organisms that live inside plant hosts for at least part of 

their lives, without causing apparent disease symptoms in the host as a result of this 

colonization [100]. Fungal and bacterial endophytes are nearly ubiquitous across all groups 

of vascular plants [101], but there is a large biological diversity among endophytes, and it 

is not rare for some plant species to host hundreds of different endophytic species [102]. 

Fungal endophytes have been shown to enhance growth and seed production or protect 

against environmental stresses such as drought or P deficiency or provide defense against 

herbivory through the synthesis of various biologically active metabolites, such as 

alkaloids. In soybeans diverse communities of fungal endophytes can be found, and several 

of these endophytes have plant growth promoting capabilities, and enhance for example 

soybean growth in nickel or copper contaminated soils by reducing the levels of stress-

related phytohormones such as abscisic acid and jasmonic acid [103], and increase 

glutathione activities and thereby reduce oxidative stress [104]. The inoculation of soybean 

plants with fungal endophytes can also lead to higher shoot biomasses, chlorophyll 
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contents, and photosynthetic rates compared to non-inoculated soybeans under salt stress 

and decrease the abundances of SCN in soils [105]. 

Soybeans Soybeans host also a diverse group of bacterial endophytes, and many 

endophytic bacteria have plant growth promoting capabilities [106], such as the ability to 

produce plant growth hormones, or ACC (1-aminocyclopropane-1-carboxylate) 

deaminase, to solubilize phosphate, or to release antimicrobial metabolites or siderophores 

that can inhibit the growth of pathogenic microorganisms. ACC deaminase reduces the 

levels of ethylene, an important stress hormone in plants. Several endophytic bacteria are 

also diazotrophs, and have like rhizobia bacteria the ability to fix N. Bacterial endophytes 

also interact with rhizobia bacteria, and can enhance root nodulation, and activity, and as a 

consequence the N content of soybean plants [107]. The dual inoculation with rhizobia and 

a salt tolerant bacterial endophyte led to synergistic responses and promoted the fitness of 

soybean plants under salt stress [108]. 

3. Important research gaps and future challanges 

Beneficial plant microbe interactions with AM fungi, rhizobia, or bacterial and 

fungal endophytes have enormous potential to improve plant growth and nutrient uptake 

in stressful environments and to increase the environmental sustainability of soybean 

agriculture. However, while the beneficial effects of AM fungi and rhizobia on soybean 

productivity are long known, the effect of only a small number of endophytes is currently 

known. The plant microbiome is a still unexplored resource of microorganisms with a so 

far hidden potential to promote plant growth, and success under abiotic or biotic stress 

conditions, and with unknown effects on the plant phenotype. 
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The obligate lifestyle of AM fungi, has made for a long time the production of 

fungal inoculum in large quantities difficult, but the development of sterile transgenic root 

organ cultures has led to an increased commercialization of AM fungal inocula for the 

utilization in agroecosystems [109]. Although increases in yield and biomass have been 

reported in different crops after inoculation with these inocula [36, 110], in other studies 

inconsistent or neutral effects were observed [111]. AM fungi differ in the benefit that they 

provide for their host plant [112], and mycorrhizal growth responses are highly context-

dependent. Several factors can alter the success of AM fungal inoculation in 

agroecosystems, including plant/fungal compatibility, degree of competition with the 

native microbial population, or timing of inoculation [113]. All these aspects need to be 

taken into consideration to find the most adapted and specific conditions for an efficient 

use of AM fungal inocula in a given field, or for a certain crop. Our current understanding 

of the effect of beneficial plant microbes on soybeans is mainly based on studies with single 

symbionts, but plant productivity and stress resistance in agroecosystems depends on 

diverse microbial communities, and the interactions among the different microorganisms 

in these communities. 

Identifying and characterizing the molecular mechanisms responsible for the 

functioning of different plant microbe interactions is crucial to harness these symbiotic 

microorganisms in agroecosystems. Currently, most knowledge is gathered on model 

legumes, such as Medicago truncatula, but the information about soybeans is limited. 

However, the accumulation of genomic and transcriptomic data, along with the 

development of molecular tools such as stable transformations [e.g. 114], CRISPR-Cas9 
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system [115], or mutant populations will provide us with a better understanding of these 

interactions in soybeans. 
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2.1 Abstract 

Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and 

rhizobia, and both root symbionts exchange nutrients against carbon from their host. The 

carbon costs of these interactions are substantial, but our current understanding of how the 

host controls its carbon allocation to individual root symbionts is limited. We examined 

nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula 

under different nutrient supply conditions, and when the fungal partner had access to 

nitrogen, and followed the gene expression of several plant transporters of the SUT and 

SWEET family. Tripartite interactions led to synergistic growth responses and stimulated 

the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access 

to nutrients played an important role for the carbon transport to different root symbionts, 

and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon 

to the fungal partner when nitrogen was available. These changes in carbon allocation were 

consistent with changes in the SUT and SWEET expression. Our study provides important 

insights into how the host plant controls its carbon allocation under different nutrient 

supply conditions and changes its carbon allocation to different root symbionts to 

maximize its symbiotic benefits.   

 

Keywords: arbuscular mycorrhizal symbiosis, carbon transport, Ensifer meliloti, legumes, 

nitrogen uptake, Rhizophagus irregularis, rhizobia, sucrose transport, Sucrose Uptake 

Transporter (SUT), Sugars Will Eventually be Exported Transporter (SWEET).  
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2.2 Introduction  

Legumes, such as soybean, cowpea and Medicago, are among the most important 

crop species worldwide. They account for 27% of the world´s primary crop production, for 

33% of the dietary nitrogen (N) needs of humans (Vance, 2001), and play a significant role 

in crop rotations and in the soil nitrogen cycle. The majority of legumes form tripartite 

interactions and are simultaneously colonized with N-fixing bacteria and arbuscular 

mycorrhizal (AM) fungi. It is well known that these interactions can substantially 

contribute to the nutrient efficiency of legumes and increase the fitness of both the host and 

the different root symbionts (Mortimer, Pérez-Fernández & Valentine, 2009; Ossler, 

Zielinski & Heath, 2015). 

N-fixing rhizobia bacteria reside within specialized root nodules that provide them 

with an oxygen-reduced environment for biological N2-fixation (BNF). Within nodules, 

rhizobia differentiate into bacteroids that are able to convert atmospheric N2 to NH3 through 

their nitrogenase complex. NH3 is exported together with amino acids through the bacteroid 

membrane towards the host cells (Udvardi & Poole, 2013), and can contribute with up to 

99% to the total N uptake of the plant under low N supply conditions (Burchill et al., 2014). 

AM fungi, on the other hand, form an extensive extraradical mycelium in the soil that takes 

up water and nutrients, such as phosphate (P), nitrogen (N) and potassium, and transfers 

them to the host via specialized fungal structures in root cortical cells, called arbuscules 

(Smith & Read, 2008; Bücking & Kafle, 2015; Garcia, Chasman, Roy & Ané, 2017). In 

addition, AM fungi improve the resistance of their host plant against abiotic (e.g. drought, 

salinity) and biotic stresses (pathogens) (Smith & Read, 2008). 
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It is well established that a synergy of benefits can occur, and that the host plant 

can gain more from tripartite interactions than from single inoculations with either 

symbiont (Antunes, de Varennes, Zhang & Goss, 2006; Yasmeen, Hameed, Tariq & Ali, 

2012; Meng et al., 2015; Bournaud et al., 2017). The N-fixing capability of rhizobia is 

often limited by the P availability and AM fungi can stimulate root nodulation, nitrogenase 

activity and BNF through their positive effect on plant P nutrition (Owino-Gerroh, Gascho 

& Phatak, 2005; Vesterager, Nielsen & Hogh-Jensen, 2006; Ding et al., 2012; Püschel et 

al., 2017). Plants can simultaneously benefit from N that is provided by both root 

symbionts, and nodulated legumes colonized by AM fungi with access to an external NH4
+ 

source became less reliant on BNF (Mortimer, Perez-Fernandez & Valentine, 2012). 

Similarly, Nod factors produced by rhizobia have been shown to enhance AM colonization 

(Xie et al., 1995; Xie, Muller, Wiemken, Broughton & Boller, 1998) and both symbiotic 

interactions share parts of a common signal transduction pathway (Kistner et al., 2005; 

Zhu, Riely, Burns & Ané, 2006; Delaux, Séjalon-Delmas, Bécard & Ané, 2013). However, 

negative effects have also been observed, and the prior inoculation by either rhizobia or 

AM fungi can limit the subsequent colonization by either symbiont (Catford, Staehelin, 

Lerat, Piché & Vierheilig, 2003; Catford, Staehelin, Larose, Piché & Vierheilig, 2006; 

Valentine, Mortimer, Kleinert, Kang & Benedito, 2013). It has been suggested that plants 

control the extent of root colonization by both symbionts by an auto-regulatory mechanism, 

possibly to limit the high carbon (C) costs associated with these interactions (Mortimer, 

Pérez-Fernández & Valentine, 2008; Reid, Ferguson, Hayashi, Lin & Gresshoff, 2011b; 

Kassaw, Jr. & Frugoli, 2015). Both interactions are costly, and AM fungi can receive up to 

20% (Snellgrove, Splittstoesser, Stribley & Tinker, 1982; Jakobsen & Rosendahl, 1990; 
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Wright, Read & Scholes, 1998), and rhizobia up to 30% of the host photosynthates 

(Provorov & Tikhonovich, 2003). 

In plants, sucrose is the main carbohydrate for long-distance transport, and is loaded 

in the leaves into the phloem, and then transferred to the sink tissues. In root nodules, 

sucrose is mainly converted to malate, which is considered to be the primary C source 

transferred across the symbiosome membrane to the bacteroids (Oldroyd, Murray, Poole 

& Downie, 2011; Udvardi & Poole, 2013). Hexoses were long seen as the major C form 

that is transferred across the interface to the AM fungus (Helber et al., 2011), but recent 

reports revealed that fatty acids can also be exported out of the root cell and transported to 

the fungal symbiont (Bravo, Brands, Wewer, Dörmann & Harrison, 2017; Jiang et al., 

2017; Keymer et al., 2017; Luginbuehl et al., 2017; Rich, Nouri, Courty & Reinhardt, 

2017). This C supply plays a critical role for symbiont function (Kiers, Rousseau, West & 

Denison, 2003; Kiers et al., 2011; Fellbaum et al., 2014), but how C is partitioned and 

directed to different symbiotic partners is still unknown. It has been suggested that Sucrose 

Uptake Transporters (SUT) could be involved in the regulation of beneficial C fluxes 

towards the fungal symbiont (Doidy et al., 2012; Garcia, Doidy, Zimmermann, Wipf & 

Courty, 2016), and recently, Sugars Will Eventually be Exported Transporters (SWEET) 

have been identified in AM and nodulated roots (Kryvoruchko et al., 2016; Manck-

Götzenberger & Requena, 2016; Sugiyama et al., 2017). The SWEET family mediates the 

influx and efflux of sugar molecules from cells and plays a role in phloem loading and 

unloading (Lemoine et al., 2013). In Medicago, MtSWEET11 is specifically expressed in 

root nodules, but loss-of-function mutants were not compromised in BNF, indicating that 
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this transporter could be involved in sugar distribution within root nodules, but may not be 

a critical component for BNF (Kryvoruchko et al., 2016). 

Despite their importance for nutrient uptake and crop yield, nutrient to C exchange 

dynamics in tripartite interactions are only poorly understood. Exploiting the full yield 

potential of legumes will require a better understanding of these interactions, but functional 

insights into these interactions are currently mainly derived from experiments of plants 

associated with a single symbiont. The goal of our study is to contribute to a better 

understanding on how host plants regulate their C allocation to their different root 

symbionts in tripartite interactions, since this knowledge is critical to improve the nutrient 

efficiency and symbiotic benefits in agriculturally important legumes. 

2.3 Material and methods 

2.3.1 Plant, fungal, and bacterial material 

Medicago truncatula (A17) seeds were scarified with concentrated H2SO4, and 

surface sterilized with 8% bleach for two minutes. The plants were pre-germinated on 

moist filter paper in Petri dishes for 3 days in the dark, followed by 7 days under light. To 

facilitate lateral root development, we cut the primary roots of the germinated seedlings 

before transferring them for 20 days into a hydroponic solution containing 0.05 mM 

KH2PO4, 0.125 mM NH4NO3, 0.30 mM KCl, 0.5 mM CaCl2 x 2H2O, 0.312 mM MgSO4 

x 2H2O, 6.8 µM Fe-EDTA, 1.50 µM MnCl2 x 2H2O, 8.08 µM H3BO3, 0.05 µM Zn-EDTA, 

0.14 µM CuCl2 x 2H2O, 0.01 µM Na2MoO4 x 2H2O (Ingestad, 1960). Twice daily, the 

solution was stirred, and replaced once after 10 days.  
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We then transferred the seedlings into custom-made multi-compartment systems 

(12 cm x 8 cm x 8 cm, L x H x W) with three compartments, two root compartments (RC) 

and one hyphal compartment (HC) (Figure S2.1). All compartments were filled with 200 

mL soil substrate consisting of 60 % turface (Profile Products LLC, IL, USA), 30 % sand, 

and 10 % organic soil (13.05 mg/l nitrate, 2.28 mg/l ammonium, and 24.19 mg/l available 

phosphate, Olsen’s extraction) (experiment 1) or 80 % sand, 10 % perlite, and 10 % organic 

soil (14.77 mg/l nitrate, 9.03 mg/l ammonium, and 20.77 mg/l available phosphate, Olsen’s 

extraction) (experiment 2). Both RCs were separated by a 0.1 cm thick plastic sheet that 

was sealed at all sides by silicone (Aqueon, Franklin, WI, USA) to prevent any cross-

contamination between the RCs. The HC was separated from the RC by a plastic sheet with 

a hole (~3.12 cm diameter) that was closed on both sides with a 50 µm nylon mesh. In 

between the two fine mesh layers, we placed a coarse nylon mesh with a pore size of 1000 

µm to form an air gap and to prevent mass flow from the HC to the RC. The mesh layers 

prevented the crossover of roots from the RC to the HC, but allowed in the AM colonized 

growth systems the crossover of the fungal mycelium into the HC. We divided the root 

system of the plants equally into two root halves, and each root half was transferred into 

an independent RC. After transplanting, the plants were grown in a controlled-environment 

chamber with a 25oC/20oC day and night cycle, 30% humidity, and a photosynthetic active 

radiation of 225 µmol m-2 s-1.  

We produced the fungal inoculum of Rhizophagus irregularis Schenck & Smith 

(DAOM 197198) in axenic Ri T-DNA transformed carrot (Daucus carota clone DCI) root 

organ cultures in Petri dishes filled with mineral medium (St-Arnaud, Hamel, Vimard, 

Caron & Fortin, 1996). After approximately eight weeks of growth, the spores were 
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isolated by blending the medium in 10 mM citrate buffer (pH 6.0). The bacterial inoculum 

was produced by growing Ensifer meliloti Dangeard (1021; previously Sinorhizobium 

meliloti) in tryptone yeast media on a rotatory shaker at 250 rpm at 28oC for 20 h. Before 

the inoculation, the bacteria were centrifuged and resuspended in autoclaved tap water. 

Fungal and bacterial inocula were added into a hole in the soil close to the root 

approximately 5 cm below the soil surface. 

2.3.2 Experimental design 

We conducted two experiments and examined the C allocation to different root 

symbionts depending on whether the fungal partner had access to an exogenous nitrogen 

supply (experiment 1), and depending on the nutrient demand conditions of the host 

(experiment 2) (Figure S2.1). In experiment 1, we studied the C allocation in four different 

systems with: (1) two non-inoculated root halves (Ø/Ø), (2) one non-inoculated root half 

and one inoculated with Rhizophagus irregularis (Ø/AM), (3) one non-inoculated root half 

and one inoculated with Ensifer meliloti (R/Ø), and (4) two inoculated root halves, one 

inoculated with Ensifer meliloti and one inoculated with Rhizophagus irregularis (R/AM) 

(Figure S2.1). The AM root halves were inoculated with 500 spores at transplanting and 

the rhizobia root halves three weeks after transplanting. Since the root system of one 

sacrificed plant did not show clear signs of AM inoculation after three weeks, we repeated 

the AM inoculation with 100 spores four and seven weeks post transplanting. To induce 

nutrient demand, the plants were fertilized three times with relatively low P and N 

concentrations (125 µM N as NH4NO3, and 50 µM KH2PO4 in the soil) in a modified 

Ingestad nutrient solution (Ingestad, 1960). To test whether the access of N for the AM 
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fungus has an effect on the C allocation, we added 4 mM of 15NH4Cl (Sigma Aldrich, St. 

Louis, USA) (+ N) in a modified nutrient solution (Ingestad, 1960; no other P or N source) 

to the HC of half of the systems 12 weeks after transplanting. The controls (- N) received 

the same nutrient solution but without 15N. To control for any leakage or any mass flow 

from the HC to the RC, we also added 15NH4Cl to the control treatments (Ø/Ø), and to 

systems that were only inoculated with E. meliloti (R/Ø). Since none of these systems 

showed any 15N labeling, we later considered them as - N. Four weeks later (16 weeks post 

transplanting), the plants were labeled with 13CO2 as described below.  

In experiment 2, we examined the C allocation to both root symbionts in tripartite 

interactions under different nutrient demand conditions for the host. We inoculated one of 

the RCs at transplanting with ~1000 spores of R. irregularis, and the other RC three weeks 

later with 1 mL (O.D. of 0.28) of a bacterial suspension with E. meliloti. Until the final 

nutrient treatment, we fertilized each RC every week with a modified Ingestad (1960) 

nutrient solution containing 250 µM NH4NO3 and 50 µM KH2PO4. The nutrient 

concentrations were relatively low to induce P and N demand conditions, and to stimulate 

the AM and rhizobial colonization of the root systems. Ten weeks after transplanting, the 

nutrient demand conditions of the plants were varied by adding a modified Ingestad (1960) 

nutrient solution with combinations of low (L) or high (H) P or N concentrations to both 

RCs (LPLN, LPHN, HPLN, HPHN). The nutrient levels in the soil were 50 µM or 650 µM 

KH2PO4 (LP or HP), or 0.25 mM or 1.8 mM NH4NO3 (LN or HN), respectively. Three 

weeks later (13 weeks post transplanting), the plants were labeled with 13CO2.  
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For the labeling with 13CO2, we covered the soil in the growth chambers with a 

transparent plastic foil, transferred all plants into an air tight chamber (76 x 61 x 15.6 cm), 

in which 118 µL mL-1 13CO2 was released for two hours. A fan ensured a homogenous 

distribution of 13CO2 within the chamber during the labeling. The plants were harvested 24 

h after labeling and were analyzed for their biomass characteristics, fungal and bacterial 

colonization rates, nutrient contents, 13C-labeling and gene expression. 

2.3.3 Biomass characteristics, and quantification of rhizobial and AM root colonization 

After harvest, each root half was weighed and divided into three aliquots; one 

aliquot was flash frozen in liquid nitrogen, and stored at -80°C for gene expression analysis, 

one aliquot was stored in 50 % ethanol (v:v) to determine the fungal and bacterial root 

colonization, and one aliquot and the plant shoots were dried in an oven at 70oC for 48 h. 

Based on the fresh to dry weight ratio of this root aliquot, the total root biomass was 

determined. Root nodules were removed, counted and dried in an oven at 70oC for 48 h. 

To determine the AM colonization, the roots were cleared with 10 % KOH solution at 80oC 

for 30 min, rinsed, and stained with 5% ink at 80oC for 15 min (Vierheilig, Coughlan, Wyss 

& Piché, 1998). We analyzed a minimum of 150 root segments to determine the percentage 

of AM root colonization by the gridline intersection method (McGonigle, Miller, Evans, 

Fairchild & Swan, 1990). 

2.3.4 Measurements of nitrogenase activity  

To measure the nitrogenase activity of the root nodules, we carefully removed an 

aliquot of the nodulated root half at plant harvest, loosely wrapped it in moist filter paper 
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and transferred the samples into airtight 30 mL tubes sealed with rubber cork. We injected 

10 % (3 mL) acetylene gas and measured the production of ethylene after 24 h using an 

Agilent Technologies 7890A Gas Chromatography System (Santa Clara, CA, USA). 

Sample peak areas were fitted to a calibration curve and the ethylene production was 

normalized to the nodule number of the root aliquots. 

2.3.5 Quantification of P, 13C and 15N in plant tissues 

Aliquots of shoot and root tissues were first pulverized with a tissue homogenizer 

(Precellys 24, Cayman Chemical Company, Ann Arbor, MI, USA). We digested the plant 

tissues with 2N HCl for 2 h at 95°C, and determined the P content spectrophotometrically 

at 436 nm after adding ammonium molybdate vanadate solution (Fisher Scientific, 

Pittsburgh, USA). 13C in the shoot and root tissues was quantified using a Costech 4010 

and Carlo Erba 1110 Elemental Analyzer coupled to a Thermo Delta Plus XP IRMS at the 

stable isotope facility of the University of Wyoming (Laramie, WY, USA). The conversion 

of δ13C into the C contents in plant biomass was conducted according to Ruehr et al. (2009). 

For the 15N analysis by quantitative NMR spectroscopy, we first digested 10-15 mg 

aliquots of homogenized and oven-dried root and shoot material in 750 µL concentrated 

H2SO4. Samples were then heated for 2 h at 225°C followed by an addition of 36 drops of 

30% H2O2 (three drops at a time every 30 sec) as previously described (Fellbaum et al., 

2012). The solution was then heated for an additional 3 h at 225°C to remove any traces of 

water and allowed to cool. Forty µL of the resulting clear solution of (NH4)2SO4 in H2SO4 

was dissolved into 600 µL of 99.9 % d6 DMSO containing 0.05% (v:v) TMS reference 

(Norell Scientific, Vineland, NJ). The 1H spectrum was obtained in a 5 mm tube placed in 
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a z-axis pulsed field gradients probe on a 14.1 Tesla Agilent NMR spectrometer (Santa 

Clara, CA, USA) operating at 600 MHz. The spectra were acquired using ~1400 transients 

with a 90° (10.8 µsec) pulse width, spectral width of 12 ppm, pulse delay of 2.0 seconds, 

acquisition time of 1.7 seconds at 25C. The percentage of total N labeled with 15N in the 

tissue was determined by dividing the integrated area of the 1H-15N doublet resonances by 

the sum of the integrated doublet and triplet resonance areas. 

2.3.6 Gene expression analysis 

We determined the transcript levels in the roots of two AM-inducible plant genes, 

the P transporter MtPT4 (Chiou, Liu & Harrison, 2001; Harrison, Dewbre & Liu, 2002; 

Javot, Penmetsa, Terzaghi, Cook & Harrison, 2007) and the ammonium transporter 

MtAMT2;3 (Straub, Ludewig & Neuhäuser, 2014; Breuillin-Sessoms et al., 2015). In 

addition, we analyzed the expression levels of three plant sucrose transporters from the 

SUT family, MtSUT1-1, MtSUT2 and MtSUT4-1 (Doidy et al., 2012), and seven 

transporters of the SWEET family, MtSWEET1b, MtSWEET6, MtSWEET9, MtSWEET11, 

MtSWEET12, MtSWEET15c, and MtSWEET15d. Since MtSWEET9 showed only low and 

very inconsistent levels of expression in our experiments, the results of this transporter are 

not shown. All steps were performed according to the manufacturer's instructions unless 

stated otherwise. We homogenized the root samples with a mortar and pestle cooled with 

liquid nitrogen, and extracted total RNA using the PureLinkTM RNA Mini Kit (Thermo 

Fisher Scientific, Waltham, MA, USA). The extracted RNAs were treated with TURBO™ 

DNase (Thermo Fisher Scientific) and quantified by a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific). cDNAs were synthesized from 400 or 600 
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ng of DNase-treated RNAs using the RNA Maxima First Strand cDNA Synthesis Kit with 

dsDNase (Thermo Fisher Scientific) and diluted with RNase-free water to a final 

concentration of 20 ng µl-1 if needed. qPCRs were performed using the iTaq™ Universal 

SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA), 1 μl of 20 ng µl-1 cDNAs, and 5 

µM of forward and reverse primers (Table S1) for each gene in a 20 μl reaction mix using 

a QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific). The PCR 

conditions were as follows: 50°C for 2 min; 95°C for 15 min; 40 cycles at 95°C for 10 s, 

60°C for 15 s, and 72°C for 20 s; dissociation at 95°C for 15 s; 60°C for 15 s; and 95°C for 

15 s. We used MtTef1α as a reference gene (Gomez et al., 2009) and the expression 

coefficients were calculated using the 2-ΔCt method. The results are based on three to four 

biological replicates and three technical replicates. 

2.3.7 Statistical analysis 

The data of experiment 1 are based on three to seven biological replicates (plants 

that showed any sign of a cross contamination between the two root compartments were 

removed, on average 5 biological replicates), and the data of experiment 2 are based on 

three biological replicates. We used one-way ANOVA (p ≤ 0.05) with colonization type or 

nutrient treatment as fixed factor followed by the Least Significance Difference (LSD) or 

the Student´s t-test when the data passed Leven´s test for homogeneity of variance and the 

Shapiro-Wilk normality test. If the data set failed these tests, the data set was log-

transformed prior to the analysis. An ANCOVA was used to confirm the results of the 

ANOVA analysis and to account for the effects of the covariate (biomass) in experiment 1 

on the statistical evaluation of the nutritional benefits. To identify statistical significant 
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differences between the means, the statistical software Statistix 9 Analytical Software 

(Tallahassee, Florida, USA) or R was used. The regression analysis of the SUT transporter 

expression and 13C allocation was conducted by R using one standard deviation from the 

mean for the analysis. The results of the statistical analysis are provided in Table S2 and 

S3 (supplementary information).   
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2.4 Results 

2.4.1 Tripartite interactions can act synergistically on biomass and nutrient uptake of 

plants 

In experiment 1, we examined plants that were colonized with different symbiotic 

partner combinations (Ø/Ø, R/Ø, Ø/AM, R/AM), and in which the fungal partner of half 

of the systems had access to 15N-NH4Cl via the HC (+N). The plant biomass data 

demonstrate that the host plants were under N demand (Figure 2.1). The plants that were 

inoculated with E. meliloti (R/Ø, R/AM) had a significantly higher shoot and root biomass 

than control plants (Ø/Ø), or plants that were only inoculated with R. irregularis (Ø/AM). 

However, plants that were co-inoculated (R/AM) had a higher shoot and root biomass than 

plants that were inoculated with E. meliloti alone (R/Ø). Colonized root halves were larger 

than non-colonized root halves, and rhizobial root halves were larger than AM root halves 

(Figure 2.1b). Fungal access to N led to an increase in shoot biomass, but only in plants 

that were inoculated with R. irregularis alone (Ø/AM) (Figure 2.1a). In contrast, plants 

that were co-inoculated with both symbionts (R/AM) showed a slight decrease in shoot 

biomass when the fungus had access to N.  
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Figure 2.1. Shoot (a) and root (b) dry weights of Medicago truncatula depending on the 

colonization with different root symbionts and under different N supply conditions for the 

fungal partner (+ N, black bars in (a) – addition of 15NH4Cl to the hyphal compartment; - 

N, white bars in (a) – no addition of 15NH4Cl to the hyphal compartment) (Experiment 1). 

Root colonization abbreviations: Ø/Ø – controls, both root halves non-inoculated; R/Ø - 

one root half colonized by Ensifer meliloti, one root half non-inoculated; Ø/AM - one root 

half colonized by Rhizophagus irregularis, one root half non-inoculated; R/AM – one root 

half colonized by R. irregularis, one root half colonized by E. meliloti. Different letters on 

the bars (means ± SEM) indicate statistically significant differences within each graph 

according to the least significant difference (LSD) test (p ≤ 0.05). ANOVA results are 

shown in Table S2.2. 

 

We compared the root colonization and the activity of N-fixing root nodules in 

single (Ø/AM or R/Ø) or dual inoculated systems (R/AM), and found that the AM 

colonization in dual inoculated systems was significantly lower than in Ø/AM systems 

(Figure S2.2a). In contrast, the total nodule number per root system was not affected (not 

shown), but the dry weight of individual root nodules and the N fixing activity of these 

nodules were significantly higher in dual inoculated systems than in R/Ø systems (Figure 

S2.2b, c). The addition of 15N to the hyphal compartment did not have an effect on the root 

colonization patterns, or the N fixing activity of the root nodules. 
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Figure 2.2. Phosphate (a, b) and nitrogen (c, d) tissue concentrations in the shoots (a, c) or 

roots (b, d) of Medicago truncatula plants depending on the colonization with different 

root symbionts and under different N supply conditions for the fungal partner (+ N, black 

bars in (a) and (c) – addition of 15NH4Cl to the hyphal compartment; - N, white bars in (a) 

and (c) – no addition of 15NH4Cl to the hyphal compartment) (Experiment 1). Root 

colonization abbreviations: Ø/Ø – controls, both root halves non-inoculated; R/Ø - one root 

half colonized by Ensifer meliloti, one root half non-inoculated; Ø/AM - one root half 

colonized by Rhizophagus irregularis, one root half non-inoculated; R/AM – one root half 

colonized by R. irregularis, one root half colonized by E. meliloti. Different letters on the 

bars (means ± SEM) indicate statistically significant differences within each graph 

according to the least significant difference (LSD) test (p ≤ 0.05). ANOVA results are 

shown in Table S2.2. 

 

Control plants (Ø/Ø) and plants that were only inoculated with R. irregularis 

(Ø/AM) showed higher levels of P in their tissue than plants that were dual-inoculated 

(R/AM) or inoculated with E. meliloti alone (R/Ø) (Figure 2.2a, b). This is likely the result 
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of a dilution effect caused by the higher biomass in E. meliloti inoculated systems and 

suggests that N was a more limiting factor than P for plant growth during the experiment. 

The AM symbiosis increased the P contents in the mycorrhizal root halves of Ø/AM 

systems, and in the shoots of dual-inoculated plants (R/AM) compared to all the other plant 

systems (Figure S2.3a, b). Consistent with the higher N fixing activity of the nodules in 

tripartite interactions, we found an increase in the N concentrations in the shoots and the N 

contents of shoots and rhizobial root halves of dual inoculated plants (R/AM) compared to 

plants that were only inoculated with E. meliloti (R/Ø) (Figure 2.2c, d and S2.3c, d). 

However, single or dual inoculated systems with E. meliloti (R/Ø, R/AM) had higher N 

root and shoot concentrations and contents than control plants (Ø/Ø) or systems that were 

only AM inoculated (Ø/AM). Fungal access to N increased the root and shoot N 

concentrations in single inoculated (Ø/AM), but not in dual inoculated systems (R/AM) 

(Fig. 2.2c, d). 
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Figure 2.3. Labeling with 15N (a, b) or 13C (c, d) in the shoots (a, c) or roots (b, d) of 

Medicago truncatula plants depending on the colonization with different root symbionts 

and under different N supply conditions for the fungal partner (+ N, black bars in (a) and 

(c) – addition of 15NH4Cl to the hyphal compartment; - N, white bars in (a) and (c) – no 

addition of 15NH4Cl to the hyphal compartment) (Experiment 1). Root colonization 

abbreviations: Ø/Ø – controls, both root halves non-inoculated; R/Ø - one root half 

colonized by Ensifer meliloti, one root half non-inoculated; Ø/AM - one root half colonized 

by Rhizophagus irregularis, one root half non-inoculated; R/AM – one root half colonized 

by R. irregularis, one root half colonized by E. meliloti. Different letters on the bars (means 

± SEM) indicate statistically significant differences within each graph according to the 

least significant difference (LSD) test (p ≤ 0.05). ANOVA results are shown in Table S2.2. 
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2.4.2 Carbon allocation to root symbionts depends on the pathway for symbiotic nitrogen 

uptake 

We added labelled 15N-NH4Cl to the hyphal compartment and found labeling 

exclusively in the roots and shoots of plants that were colonized with AM fungi (Figure 

2.3a, b). The labeling in the shoots and in the roots with 15N, however, was significantly 

higher in single inoculated (Ø/AM) than in dual inoculated (R/AM) systems. The relatively 

low labeling with 15N in the R/AM systems can be explained by a dilution effect caused by 

the strong increase in biomass, and the relatively low root colonization of these plants 

(Figure 2.3 and S2.2a). The transport of 15N through the extraradical mycelium to the host, 

led also to a higher labeling in the second root half (non-mycorrhizal root half in Ø/AM 

systems or nodulated root half in R/AM systems). Consistent with an 15N-isotope dilution 

effect through the BNF activity of root nodules, the 15N labeling in the control roots of non-

inoculated systems (Ø/Ø) was slightly higher than in systems inoculated with E. meliloti 

(significant according to the non-parametric Wilcoxon Mann Whitney´s Rank Sum test). 

None of the control plants (Ø/Ø), or plants that were only inoculated with rhizobia (R/Ø), 

showed any 15N labeling above natural abundance in roots or shoots, indicating that there 

was no mass flow from the HC to the RCs. Therefore, these systems are considered as – N 

treatments. 

Plants that were inoculated with E. meliloti had significantly higher δ13C levels in 

their shoots than non-inoculated (Ø/Ø) or AM inoculated (Ø/AM) systems (Figure 2.3c). 

Nodulated root halves acted as strong C sinks and showed a significantly higher δ13C 

labeling than the non-inoculated root halves in R/Ø systems, or the mycorrhizal root halves 
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in R/AM systems (Figure 2.3d). When the fungus had no access to N, plants allocated more 

C to the nodulated root half and the δ13C labeling in the AM root half was significantly 

lower. The C allocation to the nodulated root half, however, was significantly lower when 

the fungus had access to an exogenously supplied N source and did not differ from the C 

allocation into the AM root halves. Expressed on a percentage base, plants that were 

colonized with rhizobia (R/Ø; R/AM) allocated only 19.7% of the assimilated C to their 

root system, while AM plants invested 38.9 %, and control plants 52.5 % of their 

assimilated C into their root systems. 

2.4.3 Fungal access to nitrogen affects the expression of sucrose transporters in the roots 

of tripartite interactions 

In order to identify the molecular mechanisms that control the C allocation to AM 

or nodulated roots, we evaluated the expression levels of the three sucrose transporters, 

MtSUT1-1, MtSUT2, and MtSUT4-1, and of seven SWEETs from M. truncatula, 

MtSWEET1b, MtSWEET6, MtSWEET9, MtSWEET11, MtSWEET12, MtSWEET15c, and 

MtSWEET15d. Since MtSWEET9 showed only low and inconsistent expression levels in 

our experiments, we did not further consider this transporter in the analysis. With the 

exception of MtSWEET11 that was exclusively expressed in rhizobial roots, all other 

transporters were expressed in non-inoculated, mycorrhizal, and in nodulated roots, but 

their transcript levels were dependent on the root colonization and on the nutrient 

availability for the fungal partner. Compared to control roots (Ø/Ø), rhizobial roots in 

single inoculated systems (R/Ø) showed higher transcript levels of MtSUT2 and MtSUT4-

1 (Figure S2.4b,c). The rhizobial and AM root half of single inoculated systems showed 
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higher expression levels of MtSWEET1b and MtSWEET6 than the non-inoculated root 

halves (Figure S2.5), but in dual inoculated systems the transcript levels were down-

regulated in the AM root halves (Figure 2.4).  

 

Figure 2.4. Relative expression of three sucrose transporters (MtSUT1-1, MtSUT2 and 

MtSUT4-1) and of six SWEETs (MtSWEET1b, MtSWEET6, MtSWEET11, MtSWEET12, 

MtSWEET15c, MtSWEET15d) in Medicago truncatula roots depending on the colonization 

with different root symbionts and under different N supply conditions for the fungal partner 

(+N – addition of 15NH4Cl to the hyphal compartment; -N – no addition of 15NH4Cl to the 

hyphal compartment) (Experiment 1). Shown is the expression of R/AM systems (rhizobial 
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root halves – black bars; AM root halves – grey bars) compared to control roots of Ø/Ø 

systems (C). Data (means ± SEM) are expressed in arbitrary units (a.u.). Independent 

statistical analyses were performed for each split-root system compared to the control, with 

letters indicating statistically significant differences (LSD-test, P<0.05). ANOVA results 

are shown in Table S2. 

 

The transcript levels of several transporters were consistent with the observed 

changes in C allocation to the AM or rhizobial root halves in tripartite interactions (Figure 

2.4). MtSUT1-1, MtSUT2, MtSUT4-1, MtSWEET12, MtSWEET15c, and MtSWEET15d 

were significantly up-regulated in the AM roots of dual-inoculated systems when the 

fungus had access to N. When the fungus was unable to provide N, nodulated root halves 

showed higher transcript levels, but when the fungus had access to an exogenous N supply, 

the transcript levels of all transporters increased in the AM root halves. The transcript levels 

of the AM root halves were now higher than in the rhizobial root halves (MtSUT1-1, 

MtSWEET12, MtSWEET15c, and MtSWEET15d), comparable to the rhizobial root halves 

(MtSUT4-1), or only slightly lower than in rhizobial root halves (MtSUT2) (Figure 2.4). 

MtSUT2 and MtSUT4-1 were also up-regulated in the nodulated root halves of R/Ø 

systems, indicating that these transporters do not only play a role in the C allocation to AM 

colonized roots, but also to the roots colonized with the N-fixing symbiont (Figure 2.4).  

Significant transcript levels of the AM-specific phosphate transporter MtPT4 and 

the NH4
+ transporter MtAMT2;3 were only detected in the mycorrhizal root halves of the 

Ø/AM systems, independent on whether the fungus had access to 15N or not. The low 

expression levels of both transporters in the mycorrhizal root halves of dual-inoculated 

systems (R/AM), are consistent with the strong reduction of the AM colonization in these 

systems (Figure S2.6a, b).  
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2.4.4 Plants allocate carbon resources to their symbiotic partners depending on their 

nutrient demand 

We examined the effect of different nutrient demand conditions on the C allocation 

to different root symbionts in tripartite interactions of M. truncatula. Three weeks before 

the plants were labeled with 13CO2, we changed the nutrient demand conditions of the host 

plant by adding low (L) or high (H) P or N concentrations to both RCs (LPLN, LPHN, 

HPLN, and HPHN). The nutrient treatments did not have a significant effect on shoot 

biomass, AM colonization (76.2 ± 4.2 %, mean ± SEM) or nodule dry weights of the roots 

(51 ± 2.4 mg, mean ± SEM) (Fig. S7). We only observed that the biomass of the AM root 

half was smaller than the rhizobial root half under LPLN conditions (Figure S2.8). 

The P and N concentrations of the shoots were not significantly affected by the 

different nutrient treatments (Figure 2.5a, c). There were, however, indications for an 

increase in the P and N shoot contents with higher nutrient availabilities (significant 

according to the non-parametric Wilcoxon Mann Whitney´s Rank Sum test, Figure S2.9a, 

c). Root nodules acted as strong P sinks, and the tissue concentration of P and N in the root 

nodules was higher than in the AM roots or in the rest of the rhizobial root halves (Figure 

2.5b, d). The AM root halves had, however, higher P concentrations and contents than the 

rhizobial root halves (Figure 2.5b, Figure S2.9b). While the P and N tissue concentrations 

and contents in the rhizobial root half and the root nodules were generally not affected by 

the nutrient treatments, the N tissue concentration and the N and P contents of the AM root 

halves increased when the plants were supplied with higher P and N concentrations (Figure 
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2.5d and S2.9b, d). We found, however, a lower N tissue concentration in the root nodules 

at LPLN, indicating reduced N fixation rates of the nodules at low P supply conditions 

(Figure 2.5d). 

 

Figure 2.5. Phosphate (a, b) and nitrogen tissue concentration (c, d) in shoots (a, c) and 

different root fractions (b, d) of Medicago truncatula in symbiosis with the AM fungus 

Rhizophagus irregularis and the nitrogen-fixing diazotroph Ensifer meliloti under different 

nutrient supply conditions (low – L, or high – H, phosphate – P, nitrogen - N) (Experiment 

2). Root fractions in b, d: AM root halves – light grey, rhizobial root halves – middle grey, 

root nodules – dark grey. Different letters on the bars (means ± SEM) indicate statistically 

significant differences within each graph according to the least significant difference (LSD) 

test (P ≤ 0.05, n = 3). ANOVA results are shown in Table S2.3.  

 

The different nutrient demand conditions had a clear effect on the C allocation in 

tripartite interactions of M. truncatula. While under low N supply conditions (LPLN and 

HPLN) significantly more assimilated 13C could be recovered from the rhizobial root half, 

the 13C contents in the AM root halves increased under high N supply conditions (LPHN 

and HPHN) (Figure 2.6b). When the N supply for the plants was low, only 19.7 ± 5.0 % 
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(LPLN) or 23.3 ± 4.3 % (HPLN) of the total 13C that was allocated to the root system, was 

transferred to the AM root halves, but under high N supply conditions, this percentage 

increased to 29.9 ± 5.3 % (LPHN) or 35.4 ± 2 % (HPHN), respectively (data not shown). 

 

Figure 2.6. Recovered 13C contents in shoots (a) and different root fractions (b) of 

Medicago truncatula in symbiosis with the AM fungus Rhizophagus irregularis and the 

nitrogen-fixing diazotroph Ensifer meliloti under different nutrient supply conditions (low 

– L, or high – H, phosphate – P, nitrogen - N) (Experiment 2). Root fractions in b: AM root 

halves – light grey, rhizobial root halves – middle grey, root nodules – dark grey. Different 

letters on the bars (means ± SEM) indicate statistically significant differences within each 

graph according to the least significant difference (LSD) test (P ≤ 0.05, n = 3). ANOVA 

results are shown in Table S2.3.  

 

2.4.5 The expression of plant SUT and SWEET transporters is consistent with the 

observed differences in carbon allocation under different nutrient demand conditions for 

the host  

The observed changes in the C allocation to both root symbionts in response to 

different nutrient supply conditions, are consistent with changes in the plant sucrose 

transporter expression. The transcript levels of MtSUT1-1 in the AM root halves were 

significantly higher than in the nodulated root halves under all nutrient supply conditions, 

indicating that this transporter may play a role for the C transport to AM roots (Figure 

2.7a). The expression of MtSUT1-1 in AM roots was particularly high under LPHN 
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conditions. However, the transcript levels of MtSUT1-1 were not correlated to the 

measured C allocation. By contrast, changes in the expression levels of MtSUT2 and 

MtSUT4-1 were clearly correlated to the amount of C that was allocated into the different 

root halves. While nodulated roots had significantly higher transcript levels of MtSUT2 

than AM roots under low N supply conditions (LPLN and HPLN), there were no significant 

differences under high N supply conditions (LPHN and HPHN) (Figure 2.7b). In contrast, 

the expression levels of MtSUT4-1 were not affected by different nutrient supply 

conditions, and also did not differ between AM and nodulated root halves (Fig. 2.7c).  
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Figure 2.7. Relative expression of MtSUT1-1 (a), MtSUT2 (b) and MtSUT4-1 (c) in the 

roots of Medicago truncatula in symbiosis with the AM fungus Rhizophagus irregularis 

(light grey bars) and the nitrogen-fixing diazotroph Ensifer meliloti (middle grey bars) 

under different nutrient supply conditions (low – L, or high – H, phosphate – P, nitrogen - 

N) (Experiment 2). Data are expressed in arbitrary units (a.u.). Figures on the right show 

the correlation between the means in the expression level of each transporter and the 

measured carbon allocation into the root halves. Different letters on the bars (means ± 

SEM) indicate statistically significant differences within each graph according to the least 

significant difference (LSD) test (P ≤ 0.05, n = 3). ANOVA results are shown in Table S3. 
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Figure 2.8. Relative expression of MtSWEET1b, MtSWEET6, MtSWEET11, MtSWEET12, 

MtSWEET15c, and MtSWEET15d in the roots of Medicago truncatula in symbiosis with 

the AM fungus Rhizophagus irregularis (light grey bars) and the nitrogen-fixing 

diazotroph Ensifer meliloti (dark grey bars), under different nutrient supply conditions (low 

– L, or high – H, phosphate – P, nitrogen - N) (Experiment 2). Data are expressed in 

arbitrary units (a.u.). Different letters on the bars (means ± SEM) indicate statistically 

significant differences within each graph according to the least significant difference (LSD) 

test (P ≤ 0.05, n = 3). ANOVA results are shown in Table S3. 

 



61 
 

 
 

The transcript levels of MtSWEET1b, MtSWEET15c, MtSWEET15d, and also of the 

rhizobial specific transporter MtSWEET11 were down-regulated in the AM or rhizobial 

root halves under high nutrient supply conditions for the host (Figure 2.8). MtSWEET1b 

showed high expression levels in the rhizobial root halves, and MtSWEET15c and 

MtSWEET15d in the AM root halves. In contrast, MtSWEET6 and MtSWEET12 showed 

similar transcript levels in both root halves, and the expression levels were not affected by 

the nutrient demand conditions of the host. We also examined the expression of the AM-

inducible P transporter MtPT4 and NH4
+ transporter MtAMT2;3. We found an expression 

of these transporters only in the roots colonized by R. irregularis, but not in nodulated roots 

(Figure S2.10a, b). The exclusive expression of MtPT4 and MtAMT2;3 in the AM root 

halves, and of MtSWEET11 in the rhizobial root halves (Figure 2.4 and 2.8) indicates that 

there was no cross-contamination between both RCs.  
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2.5 Discussion 

Legumes form tripartite interactions with AM fungi and rhizobia, and both 

symbionts play a key role for the nutrient efficiency of this agronomically important group 

of plants. Both symbionts affect the interactions of the plant with the other partner (Xie et 

al., 1998; Larimer, Clay & Bever, 2014), but our functional understanding of these 

complex interactions is mainly based on experiments with individual symbionts, either AM 

fungi or rhizobia. We analyzed nutrient transport, C allocation, and plant gene expression 

in different interactions when the fungal partner had access to an exogenous N supply, and 

in tripartite interactions under different nutrient demand conditions for the host, to better 

understand how host plants control the C costs of these interactions to maximize their 

symbiotic benefits. 

Tripartite interactions can have a synergistic effect on plant biomass particularly 

under low N conditions. We found that plants in tripartite interactions had a significantly 

higher root and shoot biomass, N tissue concentrations and contents, and P contents than 

plants that were only colonized by rhizobia or AM fungi (Figure 2.1a, b; Figure 2.2c, d; 

S2.3a, c). Synergistic responses in tripartite interactions have also been described by other 

authors especially under low P and N supply conditions (Larimer et al., 2014; Bournaud et 

al., 2017). The dual inoculation with rhizobia and AM fungi can lead to higher 

photosynthetic rates and improves the harvest index (proportion of seed yields in relation 

to the total plant biomass) of legumes (Kaschuk, Kuyper, Leffelaar, Hungria & Giller, 

2009). In our study, the positive impact of tripartite interactions on plant growth was 

mainly the result of a higher BNF activity of the nodules and the improved plant N nutrition 
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(Figure S2.2b, c). Higher BNF rates in tripartite interactions have mainly been attributed 

to an improved P supply by the colonization with AM fungi (Kucey & Paul, 1982; 

Mortimer et al., 2009; Püschel et al., 2017). Root nodules act as very strong P sinks (Figure 

2.5b), and P deficiency can cause lower BNF rates of root nodules and inhibit nodule 

growth (Kleinert, Venter, Kossmann & Valentine, 2014). 

While the positive effect of the AM symbiosis on P nutrition is long known, the 

contribution of AM fungi to N nutrition of their host plant is still under debate (Smith & 

Smith, 2011). However, there is increasing evidence that AM fungi can deliver substantial 

amounts of N to their host plant, even if the percentage contribution to total N nutrition of 

the host can vary considerably, and is context dependent (Ngwene, Gabriel & George, 

2013). We found that when the fungus had access to an exogenous 15N source, 15N was 

delivered to the host, and the shoot biomass and N concentrations in the roots increased 

(Figure 2.1a, Figure 2.2d and Figure 2.3a, b). The capability of some AM fungi to deliver 

N can even lead in legumes, such as Medicago sativa, to strong growth responses (Mensah 

et al., 2015). There is evidence suggesting that fungal N uptake and transport to the host 

make legumes less reliant on BNF and can inhibit the development of nodules (Mortimer 

et al., 2008; Mortimer et al., 2009). 

In our experiments, we found no evidence for a suppression of root nodulation or 

nodule growth in the presence of AM fungi. However, we found a suppression of AM 

colonization in the dual inoculated systems of experiment 1 (Figure S2.2a). This reduced 

AM colonization was likely the reason why the 15N transport in these systems was much 

lower than in the Ø/AM systems (Figure 2.3a, b). The reduced AM root colonization likely 
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caused a reduced exploration of the hyphal compartment to which the 15N was supplied, 

and the low expression of MtPT4 and MtAMT2;3 (that are specifically expressed in 

arbusculated cells) suggest that less arbuscules were formed in the R/AM systems (Figure 

S2.6). However, the C allocation to different root halves and gene expression data indicate 

that N was transferred across the AM interface in R/AM systems, and that the 15N labeling 

is partly hidden by a dilution effect due to the strong increase in biomass (Figure 2.1a, b). 

The transport of 15N labelled ammonium across the AM interface, despite the low 

expression of MtAMT2;3 in the roots of R/AM systems, could be due to the functional 

redundancy of mycorrhiza inducible AMT transporters in mycorrhizal roots. Although 

only in knock out mutants of MtAMT2;3 a premature degeneration of arbuscules was 

observed, MtAMT2;4 and MtAMT2;5 were also up-regulated in mycorrhizal roots, and 

MtAMT2;4 was able to complement NH4
+ uptake of yeast mutants (in contrast to 

MtAMT2;3) (Breuillin-Sessoms et al., 2015). 

A suppression of the other root symbiont by a prior colonization of the root system 

by AM fungi or rhizobia has also been reported by other authors (Catford et al., 2003; 

Catford et al., 2006; Mortimer et al., 2013; Sakamoto, Ogiwara & Kaji, 2013). It is well 

established that a prior exposure to rhizobia can limit the subsequent formation of root 

nodules on the root system (Ferguson et al., 2010; Foo, Heynen & Reid, 2016). This 

process is known as autoregulation of nodulation (AON) and involves a root-derived signal 

that is perceived by a CLAVATA1-like leucine rich repeat receptor kinase (MtSUNN in 

Medicago) and triggers the production of a shoot-derived inhibitor that suppresses further 

nodule development (Reid, Ferguson & Gresshoff, 2011a; Reid et al., 2011b). Loss-of-

function mutations in these genes lead to a “supernodulation” phenotype with increased 
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nodulation, and their overexpression prevents nodulation (Reid et al., 2011a). However, 

since this supernodulation phenotype is dependent on the nitrate supply levels, it has been 

suggested that an additional regulatory pathway exists in M. truncatula, and that the 

transport of N or of a N derivative or changes in C partitioning could also be involved in 

AON (Schnabel et al., 2011; Kassaw et al., 2015). Whether this autoregulatory pathway is 

also active in the regulation of AM colonization in tripartite interactions is not well 

understood, but mutants defective in elements of this pathway also showed elevated levels 

of AM root colonization (Staehelin, Xie, Illana & Vierheilig, 2011). We observed a 

suppression of the AM colonization in nodulated root systems only in experiment 1, but 

not in experiment 2. This discrepancy could be due to different time points of colonization 

by both root symbionts or could be caused by differences in the P demand conditions of 

the plants. There is reason to believe that in experiment 1 the AM colonization of the plant 

was delayed, and the earlier colonization with N fixing bacteria could have suppressed the 

subsequent colonization with AM fungi more strongly (Catford et al., 2003; Catford et al., 

2006). However, the high P tissue concentrations of the non-inoculated control plants 

compared to the nodulated plants also indicate that plant growth in experiment 1 was 

primarily limited by the N supply (Figure 2.2a, b). By contrast, the increase of the P 

contents of the dual inoculated plants under high nutrient supply conditions, suggests that 

the plants in experiment 2 were also limited by the P supply (Figure S2.9a, b). 

Root symbionts compete with their nutrient resources for host plant C. Our results 

demonstrate that the nutrient demand of the host plays a significant role in the C allocation 

to AM fungi or rhizobia in tripartite interactions. Plants under N demand preferentially 

allocated C to their nodulated root system, while plants that were supplied with N allocated 
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proportionally more C to their AM root system (Figure 2.6d). Given the large C investment 

entailed in symbiotic associations, with estimates of up to 20% of the assimilated C for the 

AM symbiosis (Snellgrove et al., 1982; Jakobsen & Rosendahl, 1990; Wright et al., 1998), 

and up to 30% for N-fixing root nodules (Provorov & Tikhonovich, 2003), plants have to 

strictly control the extent of microbial colonization to limit their C investment into these 

interactions. Our current understanding of how the host plant controls its C supply in 

tripartite interactions is limited. It has, however, been shown that N demand is a driver for 

C partitioning in plants. Legumes preferentially expand root nodules of efficient N-fixing 

rhizobia, and selectively transfer more C to active than to inactive root nodules (Singleton 

& van Kessel, 1987; Laguerre et al., 2012). Host plants penalize rhizobia that fail to fix N2 

inside their root nodules (Kiers et al., 2003), and arbuscules of AM fungi that are unable 

to provide P for the host plant are prematurely degenerated (Javot et al., 2007; Javot et al., 

2011). Carbon acts as an important trigger for symbiotic functioning, and a reduction in 

the C supply reduces BNF by rhizobia (Kleinert et al., 2014), and P and N uptake and 

transport by AM fungi (Fellbaum et al., 2012; Fellbaum et al., 2014; Konvalinková & 

Jansa, 2016). It has been shown that resource exchange between host and AM fungi are 

controlled by a reciprocal reward mechanism that is driven by biological market dynamics 

(Kiers et al., 2011). Our results demonstrate that similar mechanisms may also control the 

resource to C exchange in tripartite interactions. In agreement, we observed that the fungus 

became a stronger competitor for host plant C when the fungus had access to an exogenous 

N source (Figure 2.3d). This is consistent with a biological market model, since N derived 

from AM symbionts is less costly for the host than N from BNF (Mortimer et al., 2009). 
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To unravel the molecular mechanisms by which the C transport to different 

symbiotic partners is controlled, we analyzed the expression of three sucrose transporters 

of M. truncatula and found that the expression levels of MtSUT2 and MtSUT4-1 were 

positively correlated to the C allocation to different symbiotic partners (Figure 2.7). These 

transporters are not symbiosis-specific transporters, and are expressed in non-inoculated 

roots, and in AM and nodulated roots. MtSUT1-1 encodes a H+-sucrose symporter and is 

putatively involved in phloem loading and unloading (Doidy et al., 2012). The high 

transcript levels of MtSUT1-1 particularly in AM roots (Figure 2.7a), and its upregulation 

in AM roots when the fungus had access to an exogenous N source (Figure 2.4) supports a 

possible role of this transporter in phloem unloading towards AM-colonized sink roots 

(Doidy et al., 2012). MtSUT4-1 shows similarities with the sucrose transporter of Lotus 

japonicus LjSUT4, that is involved in the transport of glucosides from the vacuole into the 

cytoplasm (Reinders, Sivitz, Starker, Gantt & Ward, 2008). Therefore, this transporter 

could play a role in the release of stored C sources from the vacuole towards symbiotic 

root sinks (Doidy et al., 2012). MtSUT4-1 shows a higher expression in cortical cells 

adjacent to arbusculated cells (Gaude, Bortfeld, Duensing, Lohse & Krajinski, 2012), and 

the high correlation of its transcript levels with the observed carbon allocation pattern 

(Figure 2.7c) clearly suggests a role of this transporter in symbiotic carbon flux to both 

root symbionts. Consistent with a role of MtSUT4-1 in the remobilization of C from 

vacuolar C storage pools, we found that MtSUT4-1 was down-regulated in AM roots, when 

the fungus was unable to provide N (Figure 2.4c). The functional role of MtSUT2 on the 

other hand has not yet been deciphered (Doidy et al., 2012). In our experiments, MtSUT2 

shows a higher expression in nodulated roots under N stress, as well as in AM roots in 
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response to an exogenous supply of N (Figure 2.4 and 2.7b). This suggests that also this 

transporter might play a role in the C transport towards both beneficial root symbionts.  

We also determined the expression of six SWEETs in the roots of Medicago 

truncatula after colonization with different root symbionts. SWEETs can not only catalyze 

the efflux of carbohydrates but also their uptake (Chen, 2014), and it has recently been 

suggested that members of the SWEET family could be involved in the symbiotic C flux 

(Kryvoruchko et al., 2016; Manck-Götzenberger & Requena, 2016; Sugiyama et al., 2017). 

In contrast to MtSWEET11 that is specifically expressed in root nodules, none of the other 

SWEETs we tested showed a mycorrhiza-restricted induction, but three of the SWEETs, 

MtSWEET1b, MtSWEET6, and MtSWEET15d, were upregulated in AM roots compared to 

control roots (Figure S2.5). According to the Medicago truncatula gene expression atlas 

(MtGEA; http://mtgea.noble.org/v3/), MtSWEET1b and MtSWEET6 are highly expressed 

in arbusculated cells, and their putative orthologs StSWEET1a, StSWEET1b and StSWEET 

7a from potato also show high transcript levels in mycorrhizal roots (Manck-Götzenberger 

& Requena, 2016). Although MtSWEET1b and MtSWEET6 are also highly expressed in 

rhizobial roots, the downregulation of both transporters in the tripartite interactions of 

experiment 1 (Figure 2.4), in which a suppression of the AM colonization by rhizobia was 

observed (Figure S2.2a), is an agreement with a potential role of both transporters for the 

sugar transport in arbusculated cells. Both MtSWEET1b and MtSWEET6 belong to the 

SWEET clade I and II, and preferentially transport hexoses, mainly glucose (Chen, 2014), 

what is consistent with an induction of a monosaccharide transporter MST2 with a high 

affinity for glucose in the fungal membrane of arbuscules (Helber et al., 2011). The 

significance of hexoses for C transport to the AM fungus has recently been questioned by 
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reports revealing that fatty acids can also be exported out of the root cell and transported 

to the fungal symbiont. However, the transport of hexoses to the arbusculated cells, will 

also provide the host cells with the precursor of the biosynthesis of fatty acyl groups that 

can be translocated to the fungal partner (Bravo et al., 2017; Keymer et al., 2017; 

Luginbuehl et al., 2017). 

MtSWEET11, MtSWEET12, MtSWEET15c and MtSWEET15d are clustered in clade 

III, which presumably encodes primarily sucrose transporters, and play an important role 

for sucrose translocation from source to sink tissues. MtSWEET11 is exclusively expressed 

in nodulated roots, and its expression is down-regulated in response to high nutrient supply 

conditions (Figure 2.8), which is consistent with a reduced carbon transport from the host 

to the root nodules under high nutrient supply conditions. Similar to the changes in the 

gene expression patterns that were observed for the SUTs, MtSWEET12, MtSWEET15c, 

and MtSWEET15d were upregulated in the mycorrhizal roots of tripartite interactions when 

the fungus had access to N (Figure 2.4) or were down-regulated in AM roots when the host 

plant itself had access to nutrients (Figure 2.8). This is in agreement with the observed 

changes in the C allocation to AM or rhizobial roots (Figure 2.3d, 2.6b), and suggests that 

these transporters play an important role for the sucrose transport to symbiotic sink tissues. 

The fact, however, that all MtSWEET12, MtSWEET15c, and MtSWEET15d show similar 

changes in their expression patterns, also indicates some level of redundancy in the 

function of these transporters. This redundancy in the SWEET family has also been 

discussed as the reason, why loss of function mutants of MtSWEET11 and LjSWEET3 that 

are highly expressed in the nodules of wild-type roots, did not show an impairment in 

nodular function (Kryvoruchko et al., 2016; Sugiyama et al., 2017).  
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We used in this study recovered 13C from roots as an indicator for the C allocation 

to different symbiotic partners but did not consider the 13C that was integrated into the 

fungal or rhizobial biomass or respired by the symbiotic partners from the soil (Kucey & 

Paul, 1982). To exactly measure the fungal or bacterial biomass in colonized roots is 

challenging, but the alignment of the recovered 13C from individual root halves with the 

observed shifts in plant gene expression suggests that in the recovered 13C in the root halves 

was a sufficient indicator for the carbon allocation to different symbiotic partners. Further 

biochemical, spatial, molecular and physiological analyses will be required to profile the 

role of all transporters for symbiotic functioning, and to identify the shared and specific 

mechanisms for C allocation towards AM fungi and N-fixing bacteria. A better 

understanding of these processes may prove critical in maximizing the benefits of 

symbionts for agricultural legumes. 
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Figure S2.1. Schematic model of the growth chamber systems and the design of experiment 

1 and 2. Abbreviations of the root chamber systems used in experiment 1: Ø – non-

inoculated root half, AM – root half inoculated with Rhizophagus irregularis, R – root half 

inoculated with Ensifer meliloti. Abbreviations of the different nutrient supply conditions 

in experiment 2: LP – low phosphate, HP – high phosphate, LN – low nitrogen, and HN – 

high nitrogen.  
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Figure S2.2. Root colonization of Medicago truncatula by the AM fungus Rhizophagus 

irregularis (a) or nodule dry weight (b) and BNF rate of root nodules (c) depending on the 

colonization with root symbionts and under different N supply conditions for the AM 

fungus (Experiment 1) (white bars – without 15NH4Cl supply to the hyphal compartment, 

black bars – with 15NH4Cl supply to the hyphal compartment). Growth chamber system 

abbreviations: Ø/AM - one root half inoculated with R. irregularis; Ø/R - one root half 

inoculated with Ensifer meliloti; R/AM - both compartments inoculated by either R. 

irregularis or E. meliloti. Different letters on the bars (means ± SEM) indicate statistically 

significant differences within each graph according to the least significant difference (LSD) 

test (P ≤ 0.05, n = 4 to 7). 
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Figure S2.3. Phosphate (a, b) or nitrogen (c, d) contents in shoots (a, c) and roots (b, d) of 

Medicago truncatula depending on the colonization with different root symbionts and 

under different N supply conditions for the AM fungus (Experiment 1). In (a) and (c): white 

bars – without 15NH4Cl supply to the hyphal compartment, black bars – with 15NH4Cl 

supply to the hyphal compartment). Growth chamber abbreviations: Ø/Ø – both root halves 

non-inoculated, Ø/R - one root half inoculated with Ensifer meliloti; Ø/AM - one root half 

inoculated with R. irregularis; R/AM: both compartments inoculated by either R. 

irregularis or E. meliloti. Different letters on the bars (means ± SEM) indicate statistically 

significant differences within each graph according to the least significant difference (LSD) 

test (p ≤ 0.05, n = 3 to 7). ANOVA results shown in Table S2.2. 
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Figure S2.4. Relative expression of MtSUT1-1 (a), MtSUT2 (b) and MtSUT4-1 (c) in 

Medicago truncatula roots depending on the colonization with different root symbionts 

and under different nitrogen supply conditions for the fungus (+N – 15NH4Cl addition to 

the hyphal compartment, -N – no addition of 15NH4Cl to the hyphal compartment) 

(Experiment 1). Shown is the expression in R/Ø systems (rhizobial root half – black bars; 

non-inoculated root half – light grey bars) and Ø/AM systems (non-inoculated root half – 

light grey bars, AM inoculated root half – middle grey bars) compared to control roots of 

Ø/Ø systems (C). Data (means ± SEM) are expressed in arbitrary units (a.u.). Independent 

statistical analyses were performed for each split-root system compared to the control, with 

letters indicating statistically significant differences (Student’s t-test, p ≤ 0.05). ANOVA 

results are shown in Table S2. 
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Figure S2.5. Relative expression of MtSWEET1b, MtSWEET6, MtSWEET11, MtSWEET12, 

MtSWEET15c, and MtSWEET15d in Medicago truncatula roots depending on the 

colonization with different root symbionts and under different nitrogen supply conditions 

for the fungus (+N – 15NH4Cl addition to the hyphal compartment, -N – no addition of 
15NH4Cl to the hyphal compartment) (Experiment 1). Shown is the expression of R/Ø 

systems (rhizobial root half – black bars; non-inoculated root half – light grey bars) and 

Ø/AM systems (non-inoculated root half – light grey bars, AM inoculated root half – 

middle grey bars) compared to control roots of Ø/Ø systems (C). Data (means ± SEM) are 

expressed in arbitrary units (a.u.). Independent statistical analyses were performed for each 

split-root system compared to the control, with letters indicating statistically significant 

differences (Student’s t-test, p ≤ 0.05). ANOVA results are shown in Table S2.2. 
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Figure S2.6. Relative expression of MtPT4 (a, c) and MtAMT2;3 (b, d) in Medicago 

truncatula roots depending on the colonization with different root symbionts and under 

different nitrogen supply conditions for the fungus (+N – 15NH4Cl addition to the hyphal 

compartment, -N – no addition of 15NH4Cl to the hyphal compartment) (Experiment 1). 

The left panels (a, c) show the expression levels of control roots (Ø) and of both root halves 

of AM/Ø systems (one compartment inoculated with Rhizophagus irregularis, one 

compartment non-inoculated); the right panels (b,d) show the expression levels of control 

roots (Ø) and of both root halves of R/AM systems (one compartment inoculated with R. 

irregularis, one compartment inoculated with Ensifer meliloti). A gene expression above 

the threshold was only found in the AM root halves (grey bars). Data (means ± SEM) are 

expressed in arbitrary units (a.u.). Independent statistical analyses were performed for each 

split-root system compared to the control, with different letters indicating statistically 

significant differences to the control (LSD test, p ≤ 0.05, n = 3 to 4). ANOVA results are 

shown in Table S2.2. 
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Figure S2.7. Root colonization of Medicago truncatula by the AM fungus Rhizophagus 

irregularis (a) and the nitrogen-fixing diazotroph Ensifer meliloti (b) under different 

nutrient supply conditions (Experiment 2). Abbreviations of the different nutrient supply 

conditions: LP – low phosphate, HP – high phosphate, LN – low nitrogen, and HN – high 

nitrogen. Different letters on the bars (means ± SEM) indicate statistically significant 

differences within each graph according to the least significant difference (LSD) test 

(p ≤ 0.05, n = 3). ANOVA results are shown in Table S2.3. 

  



87 
 

 
 

 

Figure S2.8. Shoot (a) and root (b) biomass of Medicago truncatula in tripartite interactions 

under different nutrient supply conditions (Experiment 2). In (b): nodulated root half in 

dark grey, and AM root half in light grey. Abbreviations of the different nutrient supply 

conditions: LP – low phosphate, HP – high phosphate, LN – low nitrogen, and HN – high 

nitrogen.  Different letters on the bars (means ± SEM) indicate statistically significant 

differences within each graph according to the least significant difference (LSD) test 

(p ≤ 0.05, n = 3). ANOVA results are shown in Table S2.3. 
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Figure S2.9. Phosphate (a, b) and nitrogen (c, d) contents in the shoots (a, c) and different 

root fractions (b, d) of Medicago truncatula plants in tripartite symbiosis with the AM 

fungus Rhizophagus irregularis and the nitrogen-fixing diazotroph Ensifer meliloti under 

different nutrient supply conditions (Experiment 2). The different root fractions in (b), and 

(d) represent the AM colonized root halves (light grey), the rhizobia colonized root halves 

(middle grey), and root nodules (dark grey). Different letters on the bars (means ± SEM) 

indicate statistically significant differences within each graph according to the least 

significant difference (LSD) test (p ≤ 0.05, n = 3). ANOVA results are shown in Table 

S2.3. 
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Figure S2.10. Relative expression of MtPT4 (a) and MtAMT2;3 (b) in mycorrhizal (light 

grey bars) and nodulated root halves of Medicago truncatula under different nutrient 

supply conditions (Experiment 2). Only the AM root halves showed a gene expression 

higher than the detection limit of these mycorrhiza-inducible transporters. Data (means ± 

SEM) are expressed in arbitrary units (a.u.). Different letters on the bars indicate 

statistically significant differences within each graph according to the least significant 

difference (LSD) test (p ≤ 0.05, n = 3). ANOVA results are shown in Table S2.3. 

  



90 
 

 
 

Table S2.1 List of primers used for the gene expression analysis by RT-qPCR. Publication 

where these sequences were taken is mentioned in the reference column. 

Gene Gene Bank ID Primer sequence Reference 

MtSUT1-1 F JN255789 AGTGGCATATTATCCGTAGTC 

Doidy et al. 

(2012) 

MtSUT1-1 R  TGAAGAAAATGTTCCACACTG 

MtSUT2 F JN255792 AACTGCCAAACCTTTCTAGC 

MtSUT2 R  CACAATCAACGTGCCTACTC 

MtSUT4-1 F JN255793 GCAGATTGTGGTATCACTG 

MtSUT4-1 R  TAAGTGCCAAAAGAAAACAGC 

MtPT 4 F AY116211.1 GACACGAGGCGCTTTCATAGCAGC 

MtPT4 R  GTCATCGCAGCTGGAACAGCACCG  

MtAMT2;3 F XM_003629175 TGTCCGGTTCAATTCCATGG Breuillin-

Sessoms  

et al. (2015) 

MtAMT2;3 R  TGGCAAACACACCAGAAAGG 

MtSWEET1b F XM_013605920.1 GTGTTTCTTTGCGGCAGTTC 

Kryvoruchk

o  

et al. (2016) 

MtSWEET1b R  ACCATTAGGTACAGCAACAAATAGG 

MtSWEET6 F XM_003601416.1 ACCCAAGAACAGATAGCAGCA 

MtSWEET6 R  TCTTCTTGTTGTCTTGTACAGTAGC 

MtSWEET9b F XM_013592024.1 GTAGAAACTAATTCAACTGAGGAGCA 

MtSWEET9b R  CATTCCCCCCACCACTACAG 

MtSWEET11 F XM_003602732.2 TATCGACGACTTTTATATCGCTATACC 

MtSWEET11 R  GTTGACTCTAGTGGAATGGCATC 

MtSWEET12 F XM_013591502.1 GTGGTGGTCATATAATTGATGTTGTG 

MtSWEET12 R  CTACCAGCACCTCCACCTG 

MtSWEET15c F XM_013592326.1 CGTATTGGGGTTACTTCAGATGC 

MtSWEET15c R  TTTGGGTGGCTCAATTGGTG 

MtSWEET15d F XM_013592325.1 ACAGAAATGGTGATAAGAAGAAGGC 

MtSWEET15d R  TCTTCTTCTCCATCATTTTTCTCGAC 

MtTef1a F TC106485 ACTGTGCAGTAGTACTTGGTG Doidy et al. 

(2012) MtTef1a R  AAGCTAGGAGGTATTGACAAG 
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Table S2.2. ANOVA and ANCOVA results of Experiment 1. Analysis of covariance 

(ANCOVA) was conducted by including tissue biomass as covariable (effect of shoot 

biomass on P and N content in the shoot tissues, effect of AM root biomass on P and N 

concentration and content in AM roots, effect of rhizobial root biomass on P and N 

concentration and content).  

Plant characteristic F  P 

Shoot biomass (g) (Figure. 1a), ANOVA F5,26 =  287.26 0.001 

Root biomass (g) (Fig. 1b), ANOVA F11,53 =  40.15 ≤ 0.001 

AM colonization (%) (Fig. S2a), ANOVA F3,19 = 33.44 ≤ 0.001 

Nodule dry weight nodule-1 (mg) (Fig. S2b), ANOVA F2,12 = 4.65 0.037 

C2H4 production by nodules (%) (Fig. S2c), ANOVA F2,12 = 4.08 0.050 

Shoot P concentration (mg/g) (Fig. 2a), ANOVA F5,24 =  97.36 ≤ 0.001 

Shoot P concentration (mg/g) (Fig. 2a), ANCOVA F5,24 =  5.70 0.002 

Root P concentration (mg/g) (Fig. 2b): ANOVA F11,49 =  73.57 ≤ 0.001 

Root P concentration (mg/g) (Fig. 2b): ANCOVA F11,49 =  51.65 ≤ 0.001 

Shoot N concentration (mg/g) (Fig. 2c), ANOVA F5,26 =  15.99 ≤ 0.001 

Shoot N concentration (mg/g) (Fig. 2c), ANCOVA F5,26 =  1.54 0.221 

Root N concentration (mg/g) (Fig. 2d): ANOVA F11,51 =  14.63 ≤ 0.001 

Root N concentration (mg/g) (Fig. 2d): ANCOVA F11,51 =  10.47 ≤ 0.001 

Shoot P content (mg/plant)(Fig. S3a), ANOVA F5,24= 23.06 ≤ 0.001 

Shoot P content (mg/plant) (Fig. S3a), ANCOVA F5,24= 13.02 ≤ 0.001 

Root P content (mg/plant) (Fig. S3b): ANOVA F11,49 = 20.80 ≤ 0.001 

Root P content (mg/plant) (Fig. S3b): ANCOVA F11,49 = 43.07 ≤ 0.001 

Shoot N content (mg/plant)(Fig. S3c), ANOVA F5,26 = 72.67 ≤ 0.001 

Shoot N content (mg/plant)(Fig. S3c), ANCOVA F5,26 = 1.69 0.182 

Root N content (mg/plant) (Fig. S3d): ANOVA F11,51 = 39.82 ≤ 0.001 

Root N content (mg/plant) (Fig. S3d): ANCOVA F11,51 = 13.49 ≤ 0.001 

Shoot N content (% of total N) (Fig. 3a) F5,26 =  253.26 ≤ 0.001 

Root 15N (% of total N) (Fig. 3b) F11,53 =  205.19 ≤ 0.001 

Shoot δ13C (Fig. 3c) F5,26 =  11.58 ≤ 0.001 

Root δ13C (Fig. 3d) F11,53 =  7.05 ≤ 0.001 

MtSUT1-1 (Fig. 4a) F3,31 =  8.995 ≤ 0.001 

MtSUT2 (Fig. 4b) F3,31 = 5.202 0.0127 

MtSUT4-1 (Fig. 4c) F3,31 = 17.633 ≤ 0.001 

MtSWEET1b (Fig. 4e, f) F3,31 = 17.761 ≤ 0.001 

MtSWEET6 (Fig. 4e, f) F3,31 = 5.204 ≤ 0.001 

MtSWEET11 (Fig. 4e, f) F3,31 = 14.86 ≤ 0.001 

MtSWEET12 (Fig. 4e, f) F3,31 = 6.264 ≤ 0.001 

MtSWEET15c (Fig. 4e, f) F3,31 = 9.601 ≤ 0.001 

MtSWEET15d (Fig. 4e, f) F3,31 = 2.476 0.049 

MtPT4 (Fig. S4a, b) F3,31 =  24.794 ≤ 0.001 

MtAMT2;3 (Fig. S4c, d) F3,31 = 1.079 0.0387 
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Table S2.3. ANOVA results of Experiment 2.  

Plant trait F  P 
AM colonization (%) (Fig. S6a) F3,11=  0.74 0.554 

Nodule dry weight (g) (Fig. S6b) F3,11 =  0.65 0.605 

Shoot dry weight (g) (Fig. S7a) F3,11 =  1.08 0.411 

Root dry weight (g) (Fig. S7b) F7,23 =  2.75 0.044 

Shoot P concentration (mg/g) (Fig. 5a) F3,11 =  1.17 0.378 

Root P concentration (mg/g) (Fig. 5b) F3,35 =  20.37 ≤ 0.001 

Shoot N concentration (mg/g) (Fig. 5c) F3,11 =  0.7 0.579 

Root N concentration (mg/g) (Fig. 5d) F3,35 = 54.15 ≤ 0.001 

Shoot 13C content (mg) (Fig. 6a) F3,11 = 0.73 0.563 

Root 13C content (mg) (Fig. 6b) F11,35 = 10.51 ≤ 0.001 

Shoot P content (mg/plant) (Fig. S8a) F3,11 = 1.65 0.254 

Root P content (mg/plant) (Fig. S8b) F11,35 = 11.28 ≤ 0.001 

Shoot N content (mg/plant) (Fig. S8c) F3,11 = 2.33 0.150 

Root N content (mg/plant) (Fig. S8d) F11,35 = 29.10 ≤ 0.001 

MtSUT1-1 (Fig. 7a) F3,31 =  8.259 ≤ 0.001 

MtSUT2 (Fig. 7b) F3,31 = 7.466 ≤ 0.001 

MtSUT4-1 (Fig. 7c) F3,31 = 3.857 0.012 

MtSWEET1b (Fig. S9c) F3,31 = 21.2 ≤ 0.001 

MtSWEET6 (Fig. S9c) F3,31 = 1.851 0.182 

MtSWEET11 (Fig. S9c) F3,31 = 7.777 ≤ 0.001 

MtSWEET12 (Fig. S9c) F3,31 = 0.768 0.622 

MtSWEET15c (Fig. S9c) F3,31 = 3.418 0.0198 

MtSWEET15d (Fig. S9c) F3,31 = 3.137 0.0326 

MtPT4 (Fig. S9a) F3,31 =  4.395 0.00775 

MtAMT2;3 (Fig. S9b) F3,31 = 7.385 ≤ 0.001 
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CHAPTER 3: NEUTRAL OR REDUCED GROWTH OF MEDICAGO TRUNCATULA 

IN TRIPARTITE INTERACTIONS: WAS IT ONLY CARBON COST? 

 

This chapter is formatted and in preparation for submission to “Mycorrhiza”  

3.1 Abstract 

Legume plants form tripartite interactions with arbuscular mycorrhizal (AM) fungi 

and rhizobial bacteria. The nutritional benefit of the AM fungi is context dependent. 

However, the underlying mechanism of the context dependency is largely unknown. 

Medicago truncatula plants were inoculated with either Rhizophagus irregularis, or 

Ensifer meliloti, or both symbionts and grown for nine weeks at low (L) or high (H) 

phosphate (P) and nitrogen (N) nutrient supply conditions. Despite higher P response in 

shoot and root tissues of the AM inoculated plant across the nutrient regimes, there was 

high a variability in the plant growth response. Mycorrhization and nodulation was slightly 

higher in the dual inoculated roots. Interestingly, there was higher carbon and nitrogen 

concentration in AM roots of those plants which had negative growth response. This higher 

demand of carbon by the AM roots could be for the assimilation of nitrogen before 

delivering to the host or to retain within the fungal bodies. To retain some of available 

nutrients within fungal bodies may be for their survivability/ adaptability, or to offer some 

nutrients during initial stage of symbiosis with upcoming host plant, or a biological factor 

to balance the biogeochemical cycle and ecosystem stability.    

Keywords Medicago truncatula, Rhizophagus irregularis, Ensifer meliloti, tripartite 

interactions, growth response, phosphate, nitrogen, carbon 
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3.2 Introduction 

The majority of land plants form a symbiotic relation with arbuscular mycorrhizal 

(AM) fungi. AM fungi provide nutritional benefits such as phosphate (P), and nitrogen (N) 

(Bücking and Kafle, 2015; Fellbaum et al., 2012; Hodge and Storer, 2015; Mäder et al., 

2000; Ngwene et al., 2013; Püschel et al., 2016; Tanaka and Yano, 2005; Toussaint et al., 

2004). In return, AM fungi get photosynthetic carbon (C) from the host to maintain their 

metabolic and reproductive processes. Plant needs substantial amounts of P, but P is not 

readily available in soils due to its soil immobility and complex formation with soil 

substrates. Thus, plants form symbiotic interactions with AM fungi to overcome this P 

limitation. AM hyphae, because of their small diameter, can penetrate smaller soil 

compartments, and have access to soil beyond the root depletion zones to scavenge P 

resources. Besides P and N nutrients, the AM fungi also offer other nutrients to host plants 

(Nouri et al., 2014) and non-nutritional benefits (Augé, 2001; Gallou et al., 2011; Jung et 

al., 2012).  

The degree of mutualistic association between these two partners depends on the 

host nutrient demand and soil nutrient condition. For instance, if the host demands more P 

or N, the AM fungus confers accordingly. In return, the fungus reciprocally receives C 

from the host to make the mutualism more sustainable (Bücking and Shachar-Hill, 2005; 

Fitter, 2006; Kiers et al., 2011; Lendenmann et al., 2011). However, sometimes the 

symbiosis becomes neutral or antagonistic (Jin et al., 2017; Li et al., 2008; Li et al., 2006) 

particularly when the soil contains high concentration of nutrients. In this context, the 

symbiosis is not beneficial for the host as root has easy access to available nutrients, but 
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the host plant allocates C to AM fungi to maintain the symbiosis (Jin et al., 2017; Johnson 

et al., 1997; Li et al., 2008). The host plant cannot completely remove the AM fungus from 

its roots once the symbiosis is established even in high soil nutrient conditions but allows 

a base level of colonization by the fungus for other non-nutritional purposes. In this 

context, the maintenance of the symbiosis becomes expensive because the host invests C 

continuously to the fungus. So, this loss of C can cause growth depressions of the host if 

the AM symbiosis is not beneficial. The variation of the benefits of AM symbiosis from 

mutualism to antagonism are therefore context dependent, for instance: light and shade 

(Zheng et al., 2015), nutrient conditions in host and soil (Johnson et al., 2010; Ngwene et 

al., 2013; Nouri et al., 2014; Püschel et al., 2016). In addition, other factors for example: 

length of the time for plant growth, pot size, soil pH, and soil water also affect the plant 

growth response (Koide R.T. 1991; Poorter et al., 2012). Moreover, the degree and extend 

of mutualism also depends on the functional niche of AM fungi to the host as some fungi 

are host specific (Lendenmann et al., 2011; Mensah et al., 2015; Wang et al., 2016b).  

A few plants especially legumes (Fabaceae family) form symbiotic associations 

with diazotrophs, generally called rhizobia (R). Rhizobia, localized within a host 

specialized structure called nodule, convert atmospheric free nitrogen (N2) into plant 

useable inorganic N (NH4
+) using the nitrogenase enzyme (Udvardi and Poole, 2013). 

Nodules have almost three times higher P concentration than surrounding root tissues, 

indicating that the bacteria inside the nodules have a high P demand for enzymatic activity 

(Kafle et al., 2018). The host plant invests between 6% to 30% of recently fixed C to the 

bacteria for the enzymatic reactions and to maintain bacterial cell mass within the nodule 

(Provorov and Tikhonovich, 2003). However, benefits from this interaction decreases 
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when the soil has higher N and consequently lower nodulation (Wang et al., 2016a). The 

host plant gets benefit from this mutualistic association to meet its N demand under N 

limiting conditions which has substantial implications in agriculture, economics, and 

environment (Peoples et al., 2009) 

Under natural conditions, legume plant roots are colonized by both AM fungi and 

rhizobia forming tripartite interactions and interact with each other. Functionally active 

bacteria/bacteroids, demand a considerable amount of P to maintain their enzymatic 

activity to fix free nitrogen. Thus, rhizobia and their enzymatic activity in legume nodules 

are facilitated by the presence of AM fungi. Consequently, these symbionts have 

synergistic effects to each other and on host plant growth compared to inoculations with 

only one symbiont (Afkhami and Stinchcombe, 2016; Bournaud et al., 2017; Jia et al., 

2004; Kaschuk et al., 2010; Larimer et al., 2014; Mortimer et al., 2008; Wang et al., 2011). 

However, antagonistic effects of one symbiont to other have also been reported (Catford et 

al., 2006; Mortimer et al., 2013). Growth responses in tripartite interactions depend on the 

stage of the symbioses (Mortimer et al., 2008), specificity between host and symbionts (Ide 

Franzini et al., 2010), soil nutrient status and host nutrient demand conditions. Thus, 

compatibility and context determine the degree of interaction which can vary from 

mutualism via neutralism to parasitism (Bournaud et al., 2017; Larimer et al., 2014; 

Mensah et al., 2015; Mortimer et al., 2008; Ossler et al., 2015; Walder and van der Heijden, 

2015; Wang et al., 2016b).  

Sucrose from the host photosynthetic leaves is uploaded actively via sucrose 

transporters (SUTs) and sugars will eventually be exported transporters (SWEETs) into the 
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phloem for long distance transport. In the root tissues, sugars are unloaded into the cortical 

cells as energy source and substrates either for root elongation or for transport to different 

symbiotic partners. During this unloading, many SUT and SWEET transporter are involved 

in the translocation of sucrose from cell to cell as previously reported (Doidy et al., 2012; 

Kryvorunchko et al., 2016; Roth et al., 2018). These transporters play an important role to 

maintain the symbiotic association with AM fungi and rhizobial bacteria as they depend 

on host carbon for their metabolic activities. How these sucrose transporters are regulated 

in AM and rhizobial symbioses with legumes in different nutrient supply conditions is 

currently not well understood. 

Considerable amount of information exists on interactions between host and one 

type of symbiont, either AM fungi (Bonneau et al., 2013; Breuillin-Sessoms et al., 2015; 

Fellbaum et al., 2014; Javot et al., 2011; Li et al., 2008; Mensah et al., 2015; Wang et al., 

2016b) or rhizobia (Jeudy et al., 2010; Sulieman et al., 2013; Udvardi and Poole, 2013).  

However, there is less information on tripartite associations of the host that are associated 

with both symbionts under different nutrient supply conditions. Moreover, previous reports 

have demonstrated the context dependency of host plant growth responses but did not 

provide information about the underlying mechanism of growth variability. Here, we 

assessed the growth response, nutrient acquisition, carbon allocation to symbiotic roots in 

tripartite associations among Rhizophagus irregularis, Ensifer meliloti (formerly known as 

Sinorhizobium meliloti), and the host Medicago truncatula under four different soil nutrient 

supply conditions as low and high phosphate and nitrogen concentrations. 
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3.3 Material and methods 

3.3.1 Plant, fungal and rhizobial materials 

Medicago truncatula A17 seeds were scarified with conc. H2SO4, rinsed, and kept 

at 4oC overnight. On the next day, the seeds were transferred onto sterilized moist filter 

paper in a Petri plate, sealed with parafilm and kept in the dark until germination/sprouting. 

These plates, then were kept on the table top to expose the seedlings to light for 5 days 

until the first single leaflets appeared. Three seedlings were planted (days after planting 

DAP) into each 700 mL transparent plastic cups containing 500 mL of autoclaved soil 

substrate containing sand, perlite,vermiculite mix, and organic soil in the ratio of 6:2:1:1 

by v: v:v: v. The soil substrate contained 0.134 mM Olsen phosphate, 0.006 mM nitrate, 

and 0.073 mM ammonium (Ag Lab Express, Sioux Falls, South Dakota, U.S.) at pH 8.7. 

At the base of the seedlings, 500 spores along with ~0.5g of mycorrhizal root segments or 

double autoclaved spores and root segments were added to mycorrhizal and non-

mycorrhizal pots, respectively. One week after planting, one seedling was removed, so 

each pot had two seedlings. At DAP 8, the plants were fertilized with modified nutrient 

solution (Ingestad, 1960) containing 0.005 mM NH4NO3 as nitrogen (N) and 0.002 mM 

KH2PO4 as phosphate (P) in the soil substrate. We provided relatively low nutrient 

concentrations in the soil to facilitate host nutrient demand and therefore stimulate AM 

fungal and rhizobia bacterial benefits for the host plants. Rhizobia (R) bacteria, Ensifer 

meliloti (formerly Sinorrhizobium meliloti) were cultured in sterilized tryptone yeast broth 

media for 16 hours at 28oC in a shaker at 250 rpm, centrifuged at 5000 rpm at 20oC for 5 

minutes, and the bacterial pellet was re-suspended by a vortex with autoclaved tap water, 

and a measured OD of 1.08 at 600 nm. Each plant (at the base of stem) received one mL 
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of this bacterial solution along with 10 mL of milliQ water at DAP 10 or double autoclaved 

solution, respectively.  

3.3.2 Experimental design and growth conditions 

The plants were either inoculated with AM fungus alone, rhizobia alone, or dual 

inoculated (AM fungus and rhizobia), or non-inoculated controls to compare the effects of 

individual root symbionts for plant growth response and nutrient acquisition. There were 

four nutrient regimes: low phosphate and low nitrogen (LPLN); low phosphate and high 

nitrogen (LPHN); high phosphate and low nitrogen (HPLN); and high phosphate and high 

nitrogen (HPHN). Each treatment had six replicates except the treatment with rhizobia 

alone at LPHN that had five replicates, thus totaling 95 pot systems. Nutrients solution was 

supplied at DAP 17, 24, 38, and 45. The final soil P concentration in the soil at LP or HP 

conditions was 0.18 mM and 0.70 mM respectively as KH2PO4 including original P 

concentration present in the soil substrate. Similarly, final nitrogen concentration in the 

soil as LN and HN was 0.5mM and 4 mM respectively as NH4NO3. To reduce nutrient 

leaching, we supplied water to the tray in which the pots were kept so that water could 

percolate to the pot substrate through the hole at the base of the pots.  Plants were allowed 

to grow in the growth chamber (model TC30; Conviron, Winnipeg, MB, Canada) at a 14 

h photoperiod of photosynthetically active radiation of 225 µmolm-2S-1, 25°C: 20°C, day: 

night cycle, and 30% humidity as Fellbaum et al. (2014) until harvest at DAP 65. One day 

before harvest, the center of the most recent fully exposed leaf was chosen from each plant 

to measure the chlorophyll content using a SPAD probe.  
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3.3.3 Biomass, nodule, and AM colonization quantification 

After harvest, shoots and roots were kept separately in paper bags. The roots were 

washed carefully with tap water to remove soil particles. Root aliquots were taken in 

separate tubes for AM colonization and nodulation assays. The rest of the roots were kept 

in the paper bags and dried at 70oC for 48 hours. Root aliquots for AM colonization assay 

were preserved in 50% alcohol during harvesting and kept at 4oC until measurement. For 

AM fungal colonization assays, the alcohol was discarded, roots were rinsed several times 

in tap water, and then cut ~2cm length, kept in a water bath at 80oC in 10% KOH for 40 

minutes, and stained with 5% ink-vinegar solution at 80oC for 15 minutes as described 

previously (Vierheilig et al., 1998). The AM fungal colonization rate was determined 

following the grid line intersection method as percentage of root length colonized 

(McGonigle et al., 1990). Mycorrhizal growth responses (MGR) were calculated using the 

formula: MGR (%) = (dry biomass of AM plant-mean dry biomass of non-AM plant/ mean 

dry biomass of non-AM plants) x 100. A similar approach was used for the dual inoculated 

plants against rhizobia bacteria alone plants.  

3.3.4 Phosphate, carbon, and nitrogen analysis  

Dry shoot and root samples were separately grounded and homogenized using a 

tissue homogenizer (Precellys 24, Cayman Chemical Company, Ann Arbor, USA). For the 

phosphate (P) measurement, aliquots of the dry powder were digested in 1 mL of 2N HCl 

at 95oC for 2 hours and later treated with ammonium molybdate as previously described 

(Kafle et al., 2018; Wang et al., 2016b). Shoot and root total nitrogen (N) and carbon (C) 

were measured from five gram of dry tissue powder using a ThermoFlash EA1112 flash 
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analyzer (Department of Soil Science, University of Wisconsin, Madison, Wisconsin, 

USA). Mycorrhizal phosphate response (MPR) and mycorrhizal nitrogen response (MNR) 

were calculated as described above for the MGR. Moreover, we measured the C 

concentration in the root to understand how the host plant allocate carbon to different 

symbiotic root tissues under different nutrient supply conditions.   

3.3.5 Gene expression analysis 

We determined the transcript levels in the roots of two AM-inducible plant genes, 

the P transporter MtPT4 (Chiou, Liu & Harrison, 2001; Harrison, Dewbre & Liu, 2002; 

Javot, Penmetsa, Terzaghi, Cook & Harrison, 2007) and the ammonium transporter 

MtAMT2;3 (Straub, Ludewig & Neuhäuser, 2014; Breuillin-Sessoms et al., 2015). In 

addition, we analyzed the expression levels of three plant sucrose transporters from the 

SUT family, MtSUT1-1, MtSUT2 and MtSUT4-1 (Doidy et al., 2012), and seven 

transporters of the SWEET family, MtSWEET1b, MtSWEET6, MtSWEET9, MtSWEET11, 

MtSWEET12, MtSWEET15c, and MtSWEET15d. Since MtSWEET9 showed only low and 

very inconsistent levels of expression in our experiments, the results of this transporter are 

not shown. All steps were performed according to the manufacturer's instructions unless 

stated otherwise. We homogenized the root samples with a mortar and pestle cooled with 

liquid nitrogen, and extracted total RNA using the PureLinkTM RNA Mini Kit (Thermo 

Fisher Scientific, Waltham, MA, USA). The extracted RNAs were treated with TURBO™ 

DNase (Thermo Fisher Scientific) and quantified by a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific). cDNAs were synthesized from 400 or 600 

ng of DNase-treated RNAs using the RNA Maxima First Strand cDNA Synthesis Kit with 
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dsDNase (Thermo Fisher Scientific), and diluted with RNase-free water to a final 

concentration of 20 ng µl-1 if needed. qPCRs were performed using the iTaq™ Universal 

SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA), 1 μl of 20 ng µl-1 cDNAs, and 5 

µM of forward and reverse primers (Table S1) for each gene in a 20 μl reaction mix using 

a QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific). The PCR 

conditions were as follows: 50°C for 2 min; 95°C for 15 min; 40 cycles at 95°C for 10 s, 

60°C for 15 s, and 72°C for 20 s; dissociation at 95°C for 15 s; 60°C for 15 s; and 95°C for 

15 s. We used MtTef1α as a reference gene (Gomez et al., 2009) and the expression 

coefficients were calculated using the 2-ΔCt method. The results are based on three to four 

biological replicates and three technical replicates. 

3.3.6 Statistical analyses 

Data set of mean ± sem from six independent biological replicates, if not stated 

otherwise, were analyzed using Statistix analytical software (Statistix9, Tallahassee, 

Florida, U.S.A.). Prior to statistical analyses, the data set were tested for the assumption of 

normality and homogeneity using Shapiro-Wilk and Leven’s testn respectively. The 

variability among the data sets were measured by ANOVA and at p ≤ 0.05, further multiple 

pairwise comparisons were conducted using the LSD test. The same analytical package 

was used for the regression analyses between shoot P acquisition and root C concentration; 

and root N and C concentration. 
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3.4 Results 

3.4.1 Effect of symbionts and nutrient regimes on shoot, root biomass, AM colonization, 

and nodulation 

Plants inoculated with rhizobia alone or with AM fungi and rhizobia had a higher 

shoot and root biomass compared to plants that were non-inoculated or plants that were 

only inoculated with AM fungi at LPLN, LPHN, and HPLN (Figure 3.1). When plants that 

were only inoculated with AM fungi were compared to non-inoculated plants, AM fungi 

had a neutral effect on shoot and root biomass or reduced plant biomass under HPHN 

conditions (Figure 3.1, Table 3.1, Table S3.1). Interestingly, dual inoculated plants had a 

lower biomass than R plants at LPHN, whereas dual inoculated plants at HPHN conditions 

had a higher biomass (p ≤ 0.05) than R plants (Figure 3.1, Table S3.1). The highly 

significant interaction between symbionts (none, AM alone, R alone, and dual) and nutrient 

regimes (LPLN, LPHN, HPLN, and HPHN) indicates that the symbionts respond 

differently to the nutrient supply conditions (Table S3.3). 
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Figure 3.1.  Shoot (above) and root (below) dry biomass of Medicago truncatula grown for 

nine weeks in 500 mL of soil substrate. Plants were kept either non-inoculated (None), or 

were inoculated with Rhizophagus irregularis (AM) alone, or Ensifer meliloti (R) alone or 

both symbionts (Dual). The vertical bars represent the means (n=6) with standard error of 

means. Different letters refer to statistically significant differences at p values of ≤ 0.05 

after ANOVA and LSD test. Analyses of variance (one way and two way) results are shown 

in Table S3.1 and S3.3. 

 

Root AM colonization was not significantly different between dual inoculated 

plants and plants that were only inoculated with AM fungi except at HPLN (Figure 3.2a). 

The colonization was relatively lower under HPHN conditions. Similarly, nodule dry 

weight was not statistically different between R alone and dual inoculated plants (Figure 

3.2b). Notably, nodule weight was reduced (p ≤ 0.05) under LPHN supply conditions.      
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Figure 3.2. Root AM colonization (a) and nodulation (b) Medicago truncatula grown for 

nine weeks in 500 mL of soil substrate. Plants were kept either non-inoculated (None), or 

were inoculated with Rhizophagus irregularis (AM) alone, or Ensifer meliloti (R) alone or 

both symbionts (Dual). The vertical bars represent the means (n=6) with standard error of 

means. Different letters refer to statistically significant differences at p values of ≤ 0.05 

after ANOVA and LSD test. Analyses of variance (one way and two way) results are shown 

in Table S3.1 and Table S3.3 

 

Shoot and root phosphate (P) concentrations were higher (p < 0.05) in AM plants 

than non-inoculated plants (Figure 3.3a, b, Table 3.1, Table S3.2). Considering the similar 

plant biomass, AM colonization increased the P concentrations of the shoots compared to 

non-inoculated plants by 9.5% to 23% at HPHN and LPLN, respectively (Figure 3.3a, 

Table 1). In the same way, considering the similar plant biomass, dual inoculated shoots 

had a by 30% to 71% higher (p ≤ 0.05) P concentration than plants that were only 

inoculated by rhizobia at HPHN and LPLN (Figure 3.3a, Table 3.1). Shoot P concentration 

in the dual inoculated plants was consistently higher than either only rhizobial, or only AM 

or non-inoculated plants except at HPLN.  The root P concentrations had a similar pattern 

than the shoot. Notably, roots that were only inoculated with AM had higher (p ≤ 0.05) P 

concentrations than non-inoculated roots under LN supply conditions (Figure 3.3b). 

Interestingly, the root P concentration was higher (p ≤ 0.05) in AM plants (Figure 3.3b) 

that had lower chlorophyll contents in leaves (Figure S3.1). The shoot P content was 
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significantly higher in the dual inoculated plants than either only rhizobial, or only AM, or 

non-inoculated plants.  Dual inoculated shoots had up to 80% higher (p ≤ 0.05) P contents 

than plants that were only inoculated with rhizobia across all nutrient treatments (Figure 

3.3c, Table 3.1). However, compared to the non-inoculated controls, the AM symbiosis did 

not increase the shoot P contents (Table S3.1), despite higher P concentrations (Figure 

3.3c). In contrast, the root P contents were consistently higher (p ≤ 0.05) in AM inoculated 

plants than in non-inoculated roots (Figure 3.3d, Table S3.1).   

 

Figure 3.3 Shoot and root phosphate (P) concentration (a and b) and content (c and d) of 

Medicago truncatula grown for nine weeks in 500 mL of soil substrate. Plants were kept 

either non-inoculated (None), or were inoculated with Rhizophagus irregularis (AM) 

alone, or Ensifer meliloti (R) alone or both symbionts (Dual). The vertical bars represent 

the means (n=6) with standard error of means. Different letters refer to statistically 

significant differences at p values of ≤ 0.05 after ANOVA and LSD test. Analyses of 

variance (one way and two way) results are shown in Table S3.1 and Table S3.3. 
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Shoot nitrogen (N) concentration and content in the dual inoculated plants was 

higher than only rhizobia, or AM, or non-inoculated plants at LPLN supply conditions 

(Figure 3.4 a, c).  Shoot N concentrations and contents of AM inoculated plants did not 

differ from non-inoculated plants within nutrient treatment (Figure 3.4a, c). Similarly, the 

shoot N concentration did not differ between dual inoculated plants and plants that were 

inoculated with R alone except at LPLN. Root N concentration was higher in the dual 

inoculated plants than other either inoculated with either symbiont or non-inoculated 

plants. Compared to non-inoculated roots, the inoculation with only AM fungi led to higher 

root N concentrations at LPLN and HPHN conditions but did not differ at LPHN and HPLN 

conditions (Figure 3.4b, Table 3.1, Table S3.2). Similarly, dual inoculated roots had higher 

(p ≤ 0.05) N concentrations plants that were only inoculated with R, notably under LPLN 

and LPHN supply condition (Figure 3.4b). For instance, N concentration in dual inoculated 

root had pronouncedly higher, as much as 25% more N than R alone inoculated root (Figure 

3.4b, Table 3.1) in LPHN supply conditions, whereas other dual inoculated roots had not 

such noticeable different with R alone inoculated roots. In consistent with shoot N 

concentration, AM alone inoculated and none inoculated plants had similar N content in 

shoot (Figure 3.4c, Table S3.1). However, shoot N content in dual inoculated plants had 

higher (p ≤ 0.05) than none inoculated shoot in LPLN and HPHN supply conditions. Dual 

inoculated root had relatively higher N content than R alone inoculated, particularly at 

LPHN (Figure 3.4c, Table 3.1, Table S3.1).  
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Figure 3.4.  Shoot and root nitrogen (N) concentration (a and b) and content (c and d) of 

Medicago truncatula grown for nine weeks in 500 mL of soil substrate. Plants were kept 

either non-inoculated (None), or were inoculated with Rhizophagus irregularis (AM) 

alone, or Ensifer meliloti (R) alone or both symbionts (Dual). The vertical bars represent 

the means (n=6) with standard error of means. Different letters refer to statistically 

significant differences at p values of ≤ 0.05 after ANOVA and LSD test. Analyses of 

variance (one way and two way) results are shown in Table S3.1 and Table S3.3.  

 

Shoot carbon (C) concentration was in increasing trend from non-inoculated to dual 

inoculated plants (Figure 3.5a) in LPLN and HPLN supply conditions. Whereas root C 

concentration in only AM inoculated plants was higher than non-inoculated plants when 

one or both nutrients were in limiting supply but no different at HPHN supply condition 

(Figure 3.5b, Table 3.1). Root C concentration in dual inoculated was higher than R alone 

inoculated plants and this different was notably higher (p ≤ 0.05) in LPHN supply 

conditions (Figure 3.5b, Table 3.1, Table S3.2). Similarly, root C content of AM plants 

was relatively higher than non-inoculated plants except in HPHN supply conditions (Table 

S3.1).   
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Figure 3.5. shoot (a) and root (b) carbon concentration of Medicago truncatula grown for 

nine weeks in 500 mL of soil substrate. Plants were kept either non-inoculated (None), or 

were inoculated with Rhizophagus irregularis (AM) alone, or Ensifer meliloti (R) alone or 

both symbionts (Dual). The vertical bars represent the means (n=6) with standard error of 

means. Different letters refer to statistically significant differences at p values of ≤ 0.05 

after ANOVA and LSD test. Analyses of variance (one way and two way) results are shown 

in Table S3.1 and Table S3.3. 
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Table 3.1.  Shoot and root dry wt., phosphate (P), nitrogen (N), and carbon (C) responses 

Medicago truncatula grown for nine weeks in 500 mL of soil substrate.  

 

 



111 
 

 
 

3.4.3 Effects of symbionts on the expression of genes at different nutrient supply 

conditions   

We examined the expression of nine different plant sugar transporter genes to 

understand how their expression is affected by different symbionts under different nutrient 

supply conditions (Figure 3.6a-i).  In general, we observed high transcripts levels of the 

three different sugar uptake transporters genes (MtSUT1-1, MtSUT2 and MtSUT4-1) in 

non-inoculated and in AM roots, while roots that were colonized only rhizobia or with 

rhizobia and AM showed comparatively lower transcript levels. The highest expression 

levels of MtSUT1-1 were observed in non-mycorrhizal roots under HPLN and HPHN 

conditions (Figure 3.6a).  

 The transcript levels of MtSWEET1b were highly expressed in AM roots under all 

nutrient supply conditions but especially at LPLN and HPLN (Figure 3.6d), while non-

inoculated roots, or roots that were colonized with rhizobia showed significantly lower 

expression levels. In contrast, MtSEET11 was only expressed in rhizobia inoculated plants 

(Figure 3.6f) particularly under low nitrogen supply conditions (LPLN and HPLN). 

Expression levels of MtSWEET12 were higher in AM roots particularly at LPHN (Figure 

3.6g), while MtSWEET15c and MtSWEET15d were highly expressed in non-inoculated 

roots (Figure 3.6 h, i). 
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Figure 3.6. Relative expression of three sucrose transporters (MtSUT1-1, MtSUT2, and 

MtSUT4-1) and six SWEETS (Sugars Will Eventually be Exported Transporter; 

MtSWEET1b, MtSWEET6, MtSWEET11, MtSWEET12, MtSWEET15c, MtSWEET15d) 

genes of Medicago truncatula grown for nine weeks in 500 mL of soil substrate. Plants 

were kept either non-inoculated (None, white bar), or were inoculated with Rhizophagus 

irregularis (AM, light grey bars) alone, or Ensifer meliloti (R, medium grey bar) alone or 

both symbionts (Dual, dark grey bars). The vertical bars represent the means (n=3) with 

standard error of means. Different letters refer to statistically significant differences at p 

values of ≤ 0.05 after ANOVA and LSD test. 

We detected significantly higher transcript levels of AM fungal specific phosphate 

transporter (MtPT4) and ammonium transporter (MtAMT2;3) exclusively when plants were 

inoculated with AM fungus whereas these transcripts were highly suppressed or not 

detected in dual inoculated roots (Figure S3.2 a, b). Among all nutrient supply conditions, 

expression of MTPT4 and AMT2;3 was higher under LPLN than under the other nutrient 

supply conditions.  
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3.5 Discussion 

Phosphate (P) and nitrogen (N) in soil are critical nutrients for crop productivity. 

Here, Medicago truncatula plants were kept non-inoculated, were inoculated with only the 

AM fungus Rhizophagus irregularis, or were only inoculated with Ensifer meliloti, or with 

both symbionts (dual) and supplied with different nutrient supply conditions in the soil to 

evaluate the host plant growth response, nutrient acquisition, and genes involved in sugar 

transport to symbiotic roots. We found that plants that were colonized with both symbionsts 

had relatively higher shoot biomass than plants that were only colonized with rhizobia 

when both nutrients (P and N) were under limiting conditions (LPLN supply conditions) 

(Figure 3.1, Table S3.1) which supports previous findings (Mortimer et al., 2012; Wang et 

al., 2011). However, plant growth responses were neutral or negative when one of the 

nutrients was limiting in the soil (Mortimer et al., 2012; Vázquez et al., 2001). For 

instances, Vázquez et al. (2001) and Correa et al. (2014) reported that AM fungal benefits 

decreased under high N supply conditions. Increased shoot and root biomasses in dual 

inoculated systems and plants that were only colonized with rhizobia at LPLN and HPLN 

indicate that plants were under N limiting conditions, but that P limitation was not as severe 

since shoot and root biomasses had similar response at LPLN and HPLN. This variability 

in host growth benefits in tripartite interactions is the function of context dependency as 

suggested before (Catford et al., 2006; Larimer et al., 2014). For instances, variability of 

growth response occurred between different experimental set up (Facelli et al., 2014) light 

intensity, soil nutrient conditions, fungal species (Lendenmann et al., 2011), growth period, 

and size of pot could probably also affect the fungal benefits to host plant. The variability 

in our study could be due to exchange of resources: P, N, and C between the host plant and 
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symbiotic partners (Jin et al., 2017). In addition, plants inoculated with only the AM fungus 

had a neutral growth response in comparison to non-inoculated plants under all nutrient 

supply conditions (Figure 3.1). This neutral response of AM fungi for the plant growth in 

this study agrees with previous findings (Bonneau et al., 2013; Leigh et al., 2009; Li et al., 

2008; Mäder et al., 2000; Rezacova et al., 2018). Generally, positive effects of AM 

symbiosis are observed in a large volume of soil where AM fungi have access to soil 

nutrients beyond the direct root uptake pathway (Facelli et al., 2014; Kafle et. al 2018). 

However, in this study, plants were grown in a relatively small volume of soil (500 mL of 

soil substrate) for nine weeks where roots had easy access to the supplied nutrients 

therefore reducing the functional niche of AM fungi. In addition, nutrient gain by the host 

plant that did not outweigh the C cost for the symbiosis could be another possible 

explanation for neutral growth response (Jin et al., 2017; Leigh et al., 2009; Lerat et al., 

2003).  

Plants that were inoculated with both symbionts had higher shoot N concentrations 

and contents than plants that were only inoculated with rhizobia under LPLN conditions 

(Figure 3.4a, Table 3.1, Table S3.2), indicating a beneficial (direct or indirect) role of AM 

fungus for N allocation to shoots in the tripartite interactions consistent with Mortimer et 

al. (2012). Root N concentration in the dual inoculated plants was consistently higher than 

only rhizobia inoculated roots across the nutrient treatments (Figure 3.4b, 3.4d, Table 3.1, 

Table S3.2). Notably, N concentration and content in the dual inoculated root was 

significantly higher than only rhizobial roots at LPHN suggesting that mycorrhizal root 

retained a significant amount of N which may be a probable reason why we observed 

reduced shoot growth of dual inoculated plants at LPHN (Figure 3.1, Table 3.1). This 
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higher N accumulation in the dual inoculated root suggested that some the supplied N could 

have been assimilated in the mycorrhizal structures (hyphal, vesicles) within the roots as 

reported previously (López-Pedrosa et al., 2006; Ngwene et al., 2013; Tomè et al., 2015; 

Vázquez et al., 2001). It has been reported that in AM symbiosis, substantial amount of 

extra radicle mycelium (ERM) mass of AM fungi exist in the soil outside the host root 

(Johnson et al., 2015; Leigh et al., 2009; Lendenmann et al., 2011). This ERM demands 

more N to maintain extending hyphal structures and fruiting bodies as AM fungi are 

biological entity which therefore need some N to run their life process. Moreover, Ngwene 

et al. (2013) and Tomè et al. (2015) claimed that the part of the supplied N gets assimilated 

within the hyphae rather than exporting into the host to satisfy the fungal internal demand 

of N. For instance, Jin et al. (2005) detected considerable amount of 15N labelled arginine 

in the ERM including spores even after 6 weeks of N application indicating that AM fungus 

partly retained some of N despite its contributing of N to the host. Thus, in our study, IRM 

and ERM might have used/retained part of the supplied N for their growth and development 

which could be the consequences of neutral or negative growth of the mycorrhizal plants. 

This functionality of the AM fungus to retain some of the N within its hyphal structures 

may have bigger implications in the natural system, for instance, to provide N at the early 

stage of the plant development for the next season plants during symbiosis (Hodge and 

Fitter, 2010). 

Plants inoculated with dual symbionts consistently had higher P concentration and 

content than only rhizobia inoculated plants in shoot and root tissues depicting the 

contribution of AM fungus for plant P acquisition (Figure 3.3a-d). In return of P supply, 

mycorrhizal roots received proportionally higher of C from the host plant than rhizobial 
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roots (Figure 3.5b) supporting previous reciprocal rewards findings (Bücking and Shachar-

Hill, 2005; Fitter, 2006; Kiers et al., 2011; Lendenmann et al., 2011; Zheng et al., 2015). 

These previous studies demonstrated strong positive correlation between mycorrhizal P 

supply and C allocation to the mycorrhizal root (Kiers et al., 2011; Zheng et al., 2015) 

which is in conjunction with our findings. Remarkably, plants allocated a higher proportion 

of C to dual inoculated roots at LPHN than only rhizobial inoculated roots. Investment of 

C to the dual roots in this LPHN condition could be for the P demand of the host plant to 

assimilate N as there was higher supplied N in the soil (Figure 3.5b, Table S3.2). However, 

there was no plant growth despite higher AM contribution for plant P acquisition (Li et al., 

2008), as it probably became an expensive for the plant to invest C in return to P (Graham 

and Abbott, 2000; Johnson et al., 1997). Plants invest a substantial amount of resources 

and energy to produce carbohydrates during the photosynthesis, so any loss of this 

carbohydrates affects the plant growth. Therefore, higher C investment to the dual 

inoculated roots might have caused the growth depression of plant at LPHN. We are not 

vehemently claiming that the AM fungus in this context veer from the mutualism to 

parasitism as it was still providing P. The continued supply of C to the mycorrhizal roots 

could be the investment for the future “paying for the insurance when you are healthy”. 

This investment of C to belowground soil through network of mycorrhizal hyphae might 

have larger implications to balance the carbon cycle and ecosystem stability (Smith et al., 

2009; Wurzburger et al., 2017).    

Plants inoculated with only AM fungus had similar expression of AM fungal 

specific P transporter MtPT4 between lower and higher P soil concentration (LPHN and 

HPLN) (Figure S3.2 a) which suggest that this transporter may not be a good predictor 
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with P uptake in the plants (Facelli et al., 2014). Surprisingly, undetected expression of 

MtPT4 was observed in dual inoculated roots in all nutrient supply conditions which could 

be the effect of rhizobia in the same roots. It has been demonstrated that dual inoculated 

Medicago truncatula roots had higher expression of transcripts for phosphatase (Afkhami 

et al., 2016), which could be an antagonistic effect of rhizobia against AM fungus for the 

expression of MtPT4. Rhizobia may trigger plants to uptake P by direct uptake mechanism 

to minimize another competitor (AM fungus) for host C. Besides MtPT4, recent evidence 

has suggested that AM fungus also induces host root for the expression of another AM 

fungal specific P transporter MtPT8 (Breuillin-Sessoms et al., 2015) which might have 

associated for the P transport into the host cytoplasm in our study. 

Similarly, we detected higher expression of AM fungal specific ammonium 

transporter (MtAMT2;3) specifically when the plants were inoculated with only AM fungus 

but did not detect in dual inoculated roots (Figure 3.2b). Moreover, this expression was 

more pronounced in LPLN and HPLN conditions, clearly demonstrating contribution of 

AM fungus for ammonium uptake in the host plant when host plants are under N demand 

conditions (Breuillin-Sessoms et al., 2015; Kafle et al., 2018). However, in the dual 

inoculated plants, rhizobia might have supplied N demand of the host, consequently there 

was significantly reduced expression of MtAMT2;3. These AM fungal specific phosphate 

and ammonium transporters have extensively studied in only AM inoculated legume plants 

(Medicago and soybean) (Breuillin-Sessoms et al., 2015; Fellbaum et al., 2014; Kobea et 

al., 2010) but rarely in the tripartite symbiotic association (Kafle et al., 2018). However, 

studying legume plant like Medicago and soybean without considering both symbionts 
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may not provide enough information as legumes are simultaneously colonized with AM 

fungi and rhizobia in the same root forming tripartite interaction.  

Plants invest considerable amount of photosynthetic C to roots so that roots can 

extend further to forage soil nutrients. It has been reported that there are several clades of 

carbon (in the form of sucrose) transporters involved in loading from the source of C 

synthesis and uploading into the sink tissues such as either symbiotic or non-symbiotic root 

tissues (Doidy et al., 2012; Kafle et al., 2018; Kryvoruchko et al.,2016; Sugiyama et al., 

2017). To have an insight knowledge, how the host plants regulate their carbon transporters 

in their root tissues in different nutrient conditions with different symbiotic partners. We 

observed that the expression of MtSUT1 was highly upregulated in only AM inoculated 

roots at LPLN conditions (Figure 3.6 a), supporting previous findings (Doidy et al., 2012) 

indicating that host plants invested higher C to AM symbiotic roots under nutrient limiting 

conditions. Higher expression of MtSUT1 in non-inoculated plants than dual or only 

rhizobia inoculated plants probably could be the effect of nutrient starvation especially N 

in non-inoculated plants as these plants had lower chlorophyll content in their leaves 

(Figure S3.1). Similarly, expression MtSUT2 and MtSUT4-1 were reduced in only rhizobia 

and dual inoculated roots than non-inoculated and only AM inoculated roots in LPLN and 

LPHN conditions, indicating that these transporters are not only symbiotic specific. Rather, 

higher expression of these transporters in LPLN conditions (Figure 3.6 b, c) suggests that 

they are involved in C unloading to sink roots in nutrient limited soil so that roots can use 

this C for further extend into the soil for nutrients.  
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Moreover, we measured the expression of SWEETs in host roots which are involved 

in transporting C from phloem tissues into cortical cells of roots. We detected higher 

transcripts level of SWEET11 in only rhizobia inoculated roots in LPLN and HPLN 

conditions suggesting that this transporter plays a significant role in delivering C to N2 

fixing bacteroids in the nodulated roots. However, as we supplied more N in the soil, the 

expression of this transcript reduced significantly which thus verified its role in C flux 

towards the nodulated roots (Kafle et al., 2018; Kryvoruchko et al., 2016). Similarly, higher 

expression of MtSWEET1b in only AM fungus inoculated roots suggest that this transporter 

is AM fungal specific for C transport to AM symbiosis. A comprehensive functional 

understanding of SUT, SWEET, and other sugar transporters for the timing and their 

localization of expression during AM and rhizobial symbioses in different nutrient regimes 

in the soil may have a broader impact and implications in improving legumes like 

Medicago and Soybean.     
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3.7 Supplemental information  

Figure S3.1.  Chlorophyll content (SPAD unit) of Medicago truncatula  

Figure S3.2.Relative expression AM fungal specific AMPT4 and AMT2;3 in roots of 

Medicago truncatula 

Table S1.  Shoot and root dry wt., phosphate (P), nitrogen (N), and carbon (C) content of 

Medicago truncatula  

Table S2.  Shoot and root phosphate (P), nitrogen (N), and carbon (C) concentration of 

Medicago truncatula  

Table S3.  One Way and Two Ways ANOVA of plant attributes of Medicago truncatula  
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Figure S3.1.  Chlorophyll content (SPAD unit) of Medicago truncatula grown for nine 

weeks in 500 mL of soil substrate. Plants were kept either non-inoculated (None), or were 

inoculated with Rhizophagus irregularis (AM) alone, or Ensifer meliloti (R) alone or both 

symbionts (Dual). The vertical bars represent the means (n=6) with standard error of 

means. Different letters refer to statistically significant differences at p values of ≤ 0.05 

after ANOVA and LSD test.   
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Figure S3.2. Relative expression AM fungal specific phosphate transporter (MtPT4) and 

ammonium transporter (AMT2;3) of Medicago truncatula grown for nine weeks in 500 mL 

of soil substrate. Plants were kept either non-inoculated (None, white bar), or were 

inoculated with Rhizophagus irregularis (AM, light grey bars) alone, or Ensifer meliloti 

(R, medium grey bar) alone or both symbionts (Dual, dark grey bars). The vertical bars 

represent the means (n=3) with standard error of means. Different letters refer to 

statistically significant differences at p values of ≤ 0.05 after ANOVA and LSD test.  
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Table S3.1.  Shoot and root dry wt., phosphate (P), nitrogen (N), and carbon (C) content of 

Medicago truncatula grown for nine weeks in 500 mL of soil substrate in the growth 

chamber. Plants were kept either non-inoculated (None), or inoculated with only 

Rhizophagus irregularis (AM), or with only Ensifer meliloti (Rhizobial) or both symbionts 

(Dual). The values are given as mean ± se of six biological replicates otherwise mentioned. 

The lower case behind the values are from One Way ANOVA comparing dataset within 

the nutrient treatment (row). 
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Table S3.2.  Shoot and root phosphate (P), nitrogen (N), and carbon (C) concentration of 

Medicago truncatula grown for nine weeks in 500 mL of soil substrate. Plants were kept 

either non-inoculated (None), or inoculated with only Rhizophagus irregularis (AM), or 

with only Ensifer meliloti (Rhizobial) or both symbionts (Dual). The values are given as 

mean±se of six biological replicates otherwise mentioned. The lower case behind the 

values are from One Way ANOVA comparing dataset within the nutrient treatment (row). 
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Table S3.3.  One Way and Two Ways ANOVA of plant attributes of Medicago truncatula 

grown for nine weeks in 500 mL of soil substrate in the growth chamber. Plants were kept 

either non-inoculated (None), or inoculated with only Rhizophagus irregularis (AM), or 

with only Ensifer meliloti (R) alone or both symbionts (Dual). The values are given as 

mean±se of six biological replicates otherwise mentioned.  
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CHAPTER 4: APPLICATIONS OF ARBUSCULAR MYCORRHIZAL FUNGAL 

ADDITIVES INCREASE PLANT BIOMASS AND SEED YIELD OF SOYBEANS 

UNDER GREENHOUSE AND FIELD CONDITIONS 

 

This chapter is formatted and in preparation for submission to journal “Agronomy”.   

 

4.1 Abstract 

Soybeans form tripartite interactions and simultaneously interact with both 

arbuscular mycorrhizal (AM) fungi and rhizobia bacteria to maximize their nutritional 

benefits. Several studies have been conducted to observe effects AM fungi and rhizobia 

bacteria mostly in greenhouse but sporadically in field conditions. However, AM fungi 

produced in the lab are practically not sufficient in amount to apply and test in the field 

trials. Here, we examined effects of commercially produced AM additives on different 

soybean cultivars for plant growth response, nutrient uptake, and seed yield both in 

greenhouse and field conditions. In both greenhouse and field experiments, commercial 

AM inoculum, “MycoApply”, performed better in plant growth response, phosphate (P) 

acquisition, and seed yield. Commercial AM inoculum had high variability in root 

colonization among experiments in the greenhouse. For field experiment, application of 

MycoApply had positive plant growth response and seed yield than other commercial 

inocula, “Nature Solution Mycorrhizae” and “Bio-Organics.” Plants treated with 

MycoApply under low nutrient conditions, produced similar seed yield to that of plants not 

treated with MycoApply at high nutrient supply conditions. Soybean cultivar Channel1405 

demonstrated better responsiveness for the plant growth and seed yield than cultivars 
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AG1636 and AG1733. Taken together, AM fungal additives are beneficial for the plant 

growth and seed yield of soybean in low nutrient conditions which have higher implications 

for farmers prospective. 

4.2 Introduction 

Soybean (Glycine max) is an important legume crop as it is a major source of 

protein and oil for daily human consumption. Consequently, the global demand of 

soybeans is increasing rapidly (Krishnan and Nelson, 2011; Vance, 2001). For example, 

the U.S. alone increased the planted acres on which soybeans are grown from 72 million 

acres to 90 million acres which represents a 25% increase between 1998 and 2017 (USDA 

NASS, 2018). Out of the 348 million tons of soybeans that are produced worldwide, the 

U.S. produced 116 million tons of soybean seeds in 2017 or 33.3% of the world production 

(USDA NASS, 2018). Of the total seed production, nearly 47% is exported to other 

countries, and here mainly to China which has contributed more than $16 billion to the 

national economy in 2016 (USDA NASS, 2016). Therefore, U.S.A is the largest producer 

and exporter of soybeans in the world, demonstrated the significance of soybeans for the 

U.S. economy. To use high yielding soybean cultivars, and to apply more chemical 

fertilizers, and pesticides are the general management practices to increase soybean seed 

production (Tilman et al., 2002; Tylka and Mullaney, 2016; Wang et al., 2010). However, 

conventional tillage, fertilizer and pesticide usage lead to unintended ecological and human 

health consequences (Damalas and Eleftherohorinos, 2011; Jiao et al., 2012; Kafle, 2013). 

Therefore, researchers are working on the development of appropriate biofertilizers that 
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can enhance crop production under low input conditions and improve the environmental 

sustainability of crop production.   

The majority of land plants including soybeans forms symbiotic interactions with 

arbuscular mycorrhizal (AM) fungi (Wang and Qiu, 2006). The host plant gets nutritional 

benefits mainly phosphate (P), nitrogen (N), and potassium from the AM symbiosis 

(Bücking and Kafle, 2015; Bücking and Shachar‐Hill, 2005; Garcia and Ané, 2017; Kafle 

et al., 2018; Smith and Smith, 2011). Besides the nutritional benefits, many studies have 

demonstrated that AM plants have a higher tolerance against drought, and pathogens 

(Porcel et al., 2006; Song et al., 2010). In return of these benefits, the host plant allocates 

photosynthetic carbon to AM fungi in a reciprocal system (Fellbaum et al., 2014; Kiers et 

al., 2011). Once the fungus has established the successful symbiosis with host plant, the 

fungus extends its hyphae beyond the root depletion zone to search for soil nutrients and 

transfers these nutrients to the host. Inside the host root, AM fungi form special structures 

called arbuscules which are known to serve as the exchange sites for resources between 

both symbiotic partners. The plasma membrane of host cortical cells surrounds the 

arbuscules to increase the efficiency with which nutrients can be taken up that are released 

by the AM fungus.  Functionally active arbuscules induce the host root plasma membrane 

to specifically upregulate P and N transporters that can take up the nutrients released into 

the mycorrhizal interface (Breuillin-Sessoms et al., 2015; Gomez et al., 2009). The 

nutritional benefit of AM fungi is more pronounced under nutrient limitation, which favors 

the development of larger arbuscules (Breuillin-Sessoms et al., 2015). Thus, the benefit of 

AM fungi is highly important in our agriculture to increase the production in a sustainable 

way.  
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The majority of legume plants including soybeans form also a symbiotic interaction 

with atmospheric nitrogen (N2) fixing bacteria generally called diazotrophs or rhizobia. As 

in the AM symbiosis, the host plant gets N from rhizobia and the bacteria can contribute 

between 65% to 95% to the host N demand (Bolger et al., 1995; Herridge et al., 2008). In 

return, the host provides photosynthetic organic carbon to the bacteria inside the nodule 

(Kafle et al., 2018; Paul and Kucey, 1981). A recent study has demonstrated that a legume 

plant with higher photosynthetic rate had a higher nodulation and nitrogenase activity 

suggesting that the host shared more carbon to functional bacteria which consequently 

resulted in more plant biomass (Gebril et al., 2015). Root nodules offer a conducive 

environment for rhizobia for N2 fixation. The mechanisms of rhizobial symbiosis with 

legume plants are well reviewed in previous literature (Lodwig and Poole, 2003; Oldroyd 

et al., 2011). Bacteroids inside the nodule possess a unique nitrogenase enzyme complex 

that acts as a template to reduce N2 into plant assimilable N form mainly NH3 which later 

changes into NH4
+ and get converted into amino acids in host cytosol (Udvardi and Poole, 

2013). Bacteroids need large amounts of P to generate energy in the form of ATP to 

function the enzyme complex for N2 fixation. Because of this P demand, nodules are sink 

organs for P in legume plants (Kafle et al., 2018; Sulieman et al., 2013). The dependency 

of host plants on rhizobia is high under low N availability, indicating that the incorporation 

of rhizobia bacteria in legume crops can replace N fertilizer applications in crop fields 

(Heath et al., 2010).   

In natural environments, legume plants are simultaneously colonized and interact 

with AM fungi and rhizobia and form tripartite interactions (Ossler et al., 2015). The host 

plant maximizes its nutritional benefits during tripartite interactions since AM fungi and 
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rhizobia are complimentary in providing P and N (Püschel et al., 2017). As mentioned 

above, bacteria inside the nodules have a high P demand which is effectively provided by 

AM fungi. Therefore, bacteria are stimulated in their N2 fixing efficiency when plants are 

colonized by AM fungi and consequently have higher plant growth (Püschel et al., 2017). 

In addition to their contribution to the P supply, AM fungi also provide zinc, iron, 

manganese, and molybdenum to the host plant (Antunes et al., 2006; Chen et al., 2003; 

Ibiang et al., 2017). Some of these minor but vital elements are essential for the activity of 

the nitrogenase enzyme in fixing N2. Therefore, tripartite interaction can synergistically 

improve crop yield in natural environments (Larimer et al., 2014; Ossler et al., 2015). For 

example, higher plant productivity and yield were observed along with higher P and N 

delivery to the host in tripartite interactions under limited soil P and N (Meghvansi et al., 

2008; Pellegrino et al., 2012; Wang et al., 2011). Higher AM fungal colonization and 

nodulation were reported in tripartite interactions than in plants that were only inoculated 

with one symbiont (Wang et al., 2011). However, antagonistic effects to either one of the 

partners are also known when plants are colonized by both root symbionts. Synergistic and 

antagonistic effects depend on the environmental context (Larimer et al., 2014), functional 

niche of AM fungi and rhizobial bacteria (Bournaud et al., 2017), and the compatibility 

between symbiotic partners (Meghvansi et al., 2008; Mensah et al., 2015). For instance, 

the rhizobial strain STM 7183 is more compatible than STM 7282 with the AM fungus 

Rhizophagus clarus for nitrogenase activity, nodulation, and host plant growth response 

(Bournaud et al., 2017). Similarly, Bradyrhizobium japonicum is more compatible with the 

AM fungus Rhizophagus irregularis than with Acaulospora tuberculata or Gigaspora 

gigantea, resulting in better soybean productivity and seed yield (Meghvansi et al., 2008). 
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In most studies, tripartite interactions improve plant productivity, nutrient acquisition, and 

seed yield (Bournaud et al., 2017; Jia et al., 2004; Kaschuk et al., 2010; Larimer et al., 

2014; Mortimer et al., 2008; Wang et al., 2011). Thus, symbiotic benefits of both AM fungi 

and rhizobia bacteria have a big impact on seed yield of legume crops and enhance 

productivity with minimum inputs of agrochemicals.  

To meet the growing demand of soybeans, researchers have been paying 

considerable attention to exploring possible ways to increase soybean production in low 

input agriculture systems. AM fungi offer multiple benefits to the host plant and are 

therefore also called bio-fertilizers or bio-enhancers. Promoting the effectiveness of AM 

fungal strains by deliberate applications into the field could be an option to increase the 

seed production (Pellegrino et al., 2012). Due to technical difficulties, it is difficult to 

maintain and reproduce AM fungal inoculum continuously by farmers on a large scale for 

field applications. To fill this gap, many companies have started to produce commercial 

AM inoculum in recent years (Corkidi et al., 2004; Faye et al., 2013; Niwa et al., 2018). 

These companies use inert carrier material to protect and maintain the viability of AM 

fungal propagules in the commercial products before application in the field. Commercial 

AM inocula have demonstrated a high variation in plant growth responses and grain yields 

in a variety of crops (Corkidi et al., 2004; Eulenstein et al., 2016; Niwa et al., 2018). 

However, results with ineffective commercial products have also been published (Berruti 

et al., 2013; Corkidi et al., 2004; Eulenstein et al., 2016; Faye et al., 2013). Farmers are 

aware of rhizobia bacteria as seed companies provide frequently information about the 

importance of bacteria particularly on soybeans. However, many farmers are not familiar 

with the importance of AM fungi. Commercial AM products have been tested mostly on 



140 
 

 
 

corn, and wheat (Corkidi et al., 2004; Eulenstein et al., 2016; Pellegrino et al., 2012), but 

only very recently on soybean (Niwa et al., 2018). Many countries and the European Union, 

Australia, Japan, Brazil, and India promote using AM fungal and rhizobia bacteria for 

agronomic practices by providing tax exemptions. Additionally, some countries have 

regulatory branches to maintain the quality of AM inoculum (Owen et al., 2015). Frequent 

tillage, continuous fertilizers use, and practices of mono-cropping systems reduce AM 

fungal communities and also reduce their functional benefits to host crops (Chagnon et al., 

2013; Oehl et al., 2010; Verbruggen et al., 2010). Most of the previous research questions 

were based on symbiotic effects of only AM fungi (Kobae et al., 2010; Wang et al., 2016) 

or only rhizobia bacteria (Damodaran et al., 2017; Manavalan et al., 2009), but fewer with 

both (dual) symbionts on soybean (Bulgarelli et al., 2017; Wang et al., 2016). Moreover, 

conclusions are drawn from either greenhouse or field experiments but rarely with both 

greenhouse and field experiments. Soybean is the one of the top cash crops in the state of 

South Dakota in the U.S.A, contributing 6% yield nationally equivalent to $2.3 billion 

(USDA-NASS 2016). Here, we evaluated the effects of commercial AM additives on plant 

growth response, nutrient acquisition, and seed yield of soybean in greenhouse and field 

experiments.     

4.3 Material and methods 

4.3.1. Greenhouse experiment 

4.3.1.1. Plant, fungal, and rhizobial materials 

We performed three independent experiments. In all experiments, soybean seed 

cultivars were surface sterilized with 8% bleach (sodium hypochlorite for two minutes with 
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constant shaking and rinsed several times with autoclaved distilled water. Seeds were then 

subsequently treated with 70% ethanol for 2 minutes and rinsed several times. Seeds were 

soaked in autoclaved distilled water overnight before sowing into pots. Five seeds were 

sown in each pot containing an autoclaved (121oC for 2 hours) growth substrate mixture 

of sand: perlite+ vermiculite: organic soil in the ratio of 5: 2:2: 1: (v: v: v: v) respectively.  

The soil substrate contained plant available Olsen phosphate (9.2 mg/kg), nitrate 

(5.2 mg/kg), ammonium (0.04 mg/kg), pH (8.97) in experiment I and phosphate (12.84 

mg/kg), nitrate (27.35 mg/kg), ammonium (6.35 mg/kg), and pH (8.42) in experiment II 

and III (AgLab Express, Sioux Falls, South Dakota, USA). Before sowing the seeds, ~2 g 

of a commercial AM fungal soil additive (MycoApply- Mycorrhizal Applications, Grants 

Pass, Oregon, USA) was added and mixed well five centimeters below the top surface and 

covered with growth substrate (see below). The products contain the four different AM 

fungal species Rhizophagus intraradices, Glomus mosseae, G. aggregatum, and G. 

etunicatum each with 70 propagules/g. Seeds were put one centimeter below the soil 

substrate and covered with steam autoclaved perlite to minimize seed drying. Seedlings 

were thinned and kept to two per pot after one week after seed germination and treated 

with rhizobia (Bradyrhizobium japonicum USD 110). The bacterial strain was cultured in 

Vincent reagent in a shaker (RPM) at 28oC for 3 days, centrifuged at 3500 rpm for 10 

minutes, and resuspended the pellets with MgSO4.7H2O (0.125 mM). Ten mL of the 

bacterial suspension with an optical density of 0.08 was applied at the base of the seedling 

stem to the respective pots. 
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4.3.1.2 Experimental design and growth conditions 

We conducted three experiments to assess the effects of the commercial AM fungal 

additive MycoApply on different soybean cultivars under different nutrient regimes and 

with (B. japonicum, USDA 110) or without rhizobia. In experiment I, we chose the soybean 

cultivar AG1234, as one of the mostly used cultivars for soybean seed production in this 

region of South Dakota. We kept the soybean plants either as non-inoculated controls 

(None), or inoculated the plants with only Mycoapply (AM), or only rhizobia (R), or with 

both MycoApply and rhizobia. There were in total 80 pots and thus 20 pots were allocated 

to each symbiotic treatment. We supplied basic nutrient solution (0.06 mM as NH4NO3 and 

0.01 mM as KH2PO4) to all plants in the first and second week after seed germination along 

with distilled water (Ingestad, 1960). We treated the plants with either low (L) and or high 

(H) nitrogen (N) and phosphate (P) as NH4NO3 and KH2PO4 in the third, fourth, and fifth 

week and had the following treatments: LPLN, LPHN, HPLN, HPHN using a modified 

Ingestad (1960) nutrient solution. The concentration of nutrients that were added to the soil 

was: LP (0.025 mM), HP (0.125 mM), LN (0.25 mM), and HN (1 mM) along with KCl 

(0.077 mM), CaCl2.2H2O (0.125 mM), Fe-EDTA (0.0017 mM), MgSO4.7H2O (0.078 

mM), MnCl2.4H2O (0.378 µM), H3BO3 (0.202 µM), Zn-EDTA (0.012 µM), CuCl2.2H2O, 

and Na2MoO4.2H2O (0.0036 µM). The final nutrient concentration in the soil were 0.2 mM 

P (LP) or 0.5mM P (HP) as KH2PO4, and 1mM or N (LN) or 3.2 mM (HN) as NH4NO3. 

There were five independent biological replicates per nutrient treatment in each symbiotic 

treatment. Plants were randomized three times during the experimental period and watered 

with distilled water regularly until harvested in the seventh week. The teemerature in the 

greenhouse ranged from 16oC to 18oC and 23oC to 26oC during night and day, respectively.  
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In experiment II, we examined plant growth response and seed yield of soybean 

cultivar AG1234 under tripartite interaction at different nutrient regimes. Unlike in 

experiment I, all plants were inoculated with rhizobia bacteria and half the plants were 

inoculated with both rhizobia and AM fungi (MycoApply). We provided nutrients in the 

fifth, seventh, and ninth week as low (L), medium (M), and high (H): LPLN, LPMN, 

MPLN, MPMN, HPLN, HPMN, MPHN, HPHN. We did not provide any nutrients to the 

LP or LN treatments because the soil substrate had already basic concentration of 

phosphate and N (nitrate and ammonium). The concentration of nutrients added to the soil 

each time was: MP (0.06 mM), HP (0.12 mM), MN (0.66 mM), and HN (1.33 mM). 

Therefore, final nutrient concentration in the soil were as: LP (0.14 mM), MP (0.25 mM), 

HP (0.5 mM), LN (0.104 mM), MN (2 mM), HN (4 mM). Plants were harvested after 15 

weeks and evaluated for their growth response, P content, mycorrhization, nodulation, and 

seed yield.  

In experiment III, we tested three different soybean cultivars (Channel1405, 

AG1636, and AG1733) for their growth response using the same symbionts as described 

before. The experimental plants were grown in the same environment as in experiment I.  

The experimental design was the same as in experiment I except that here only two nutrient 

regimes were used, LPLN or HPHN. We provided nutrients in the fifth and sixth week and 

harvested the plants in the eighth week. Since the soil substrate had already 12.8 mg/L of 

plant available phosphate, 27 mg/kg of nitrate, and 6.35 mg/kg of ammonium, we did not 

provide any nutrients to half of the pot systems (48 pots) to be treated as LPLN.  The 

concentration of nutrients that was added each time to the soil was: HP (0.20 mM), and 

HN (2 mM). Therefore, the final nutrient concentrations in the soil were:  LP (0.13 mM), 
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HP (0.5 mM), LN (0.8 mM), and HN (4 mM). We had three cultivars, four symbiotic 

factors, two nutrient regimes, and four biological replicates thus totalling 96 plant systems. 

All plants were on a single bench, watered as needed with distilled water, and randomized 

three times during the experimental period.  

4.3.2 Field experiment 

4.3.2.1 Field location, nutrient conditions, plant, and fungal materials 

 All three field experiments were conducted at the Aurora Research Field 

Station, South Dakota State University. The field soil contained plant available phosphate 

(P) 12.4 mg/kg, ammonium 1.5 mg/kg, nitrate 10.3 mg/kg, and pH 5.64. We planted 

soybean seeds at the rate of 1,60,000 seeds per acre. Soybean seeds were provided by the 

South Dakota State University, Agriculture Experiment Station office. For the first two 

experiments, we used soybean cultivar AG1234, while for the third experiment we used 

Channel1405, AG1636, and AG1733. The commercially available mycorrhizal inoculum, 

MycoApply was used for experiment I, and experiment III. To examine the effect of 

different commercial AM products on plant performance, we used MycoApply, Nature 

Solution Mycorrhizae (NSM) (Nature’s Solitions, 2330 Bird St, Oroville, CA 95965), and 

Bio-Organics in experiment II.  According to the recipe MycoApply had four different AM 

fungal species: Rhizophagus intraradices, Glomus mosseae, G. aggregatum, and G. 

etunicatum each with 70 propagules/g. Similarly, there were five different AM fungal 

strains in NSM Glomus intraradices, G. mosseae, G. claroideum, G. coronatum, and G. 

microaggregatum each with 180 propagules/g and nine different AM fungi in Bio-Organics 

(Bio-Organics, 2799 Creamery Rd, New Hope, PA 18938) as Glomus intraradices, G. 
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mosseae, G. aggregatum, G. etunicatum each with 10 spores/cc and G. clarus, G. 

deserticola, G. monosporus, Gigaspora margarita, and Paraglomus brasilianum each with 

2 spores/cc. We used standard agronomic practices of 3 meters (10 feet) width with four 

rows for seeding.  

4.3.2.2 Experimental Design  

For field experiment I, we had three treatments: control, fungicide, and MycoApply 

each with four replicates of an area of 18m2 (6 m x 3 m by length and width). For the AM 

inoculation, we mixed MycoApply with water and applied by spraying manually close to 

the base of the stem at a rate of 1.9 g/m2 (525 propagules/m2) four weeks after seed 

plantation. To suppress existing natural AM fungal community, we sprayed the fungicide 

(TopsinM) at a rate of 1.25 g/m2 every two weeks until seed maturity. We harvested four 

plants from the inner two rows for biomass, mycorrhizal colonization, and nodulation, and 

phosphate analyses after 14 weeks. We harvested seeds from the inner two rows using a 

harvester machine after complete seed maturity in the 17th week after planting. 

In field experiment II, we examined the effects of three commercial mycorrhizal 

inocula on the soybean plant growth response and seed yield of cultivar AG1234. Field soil 

condition, seeding rate, width of rows, fungicide and mycorrhizal inoculum application 

method and rate were as in experiment I. We had five replicates for control, fungicide, and 

for each fungal inoculum, and each plot was 9 m2 (3 m x 3 m by length and width). We 

applied the commercial inocula: MycoApply, Nature Solution Mycorrhizae (NSM), and 

Bio-Organics in the respective plot two and four weeks after plantation at 525 

propagules/m2 for each inocula. As in experiment I, we applied the fungicide Topsin M 
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every two weeks to suppress naturally present AM fungal communities in the soil day after 

seed plantation until plant maturity at a rate of 1.25 g/m2. We harvested four plants from 

the inner two rows to assess nodulation, mycorrhization, and phosphate content in the shoot 

and root tissues after 16 weeks. We harvested seeds after complete maturity from the inner 

two rows after 19 weeks using plant harvester machine.  

Similarly, we had nutrient treatment plots each with a 2 m length and 3 m width. 

We had control, fungicide, and MycoApply treated plots with four different nutrient supply 

conditions: 100%, 50%, 25%, and 0% of phosphate in the form of KH2PO4 (P) and nitrogen 

(N) as urea. The recommended fertilizer dose rate for soybeans in South Dakota is 18.14 

kg of P/Acre and 7.71 kg of N/Acre according to the USDA. We used this rate as 100% 

and reduced proportionally to get 50% and 25% 5 weeks after plantation. We applied only 

water for 0% treatment. We had four replicates per nutrient regime totalling 48 plots. We 

harvested seeds after 19 weeks to examine the effects of MycoApply on seed yield at 

different nutrient regimes. 

In field experiment III, we examined the effects of MycoApply on three different 

soybean cultivars: Channel1405, AG1636, AG1733 at three different nutrient regimes: 

100%, 50%, and 0% of P and N as described before. We had three soybean cultivars, three 

nutrient regimes, two symbionts (MycoApply and control), and four replicates thus making 

72 plots, each having 3 m length and 3 m width. As before, we mixed mycorrhizal inoculum 

with water and sprayed at the base two weeks after plantation and applied nutrients at 

100%, 50%, and 0% four weeks after plantation. We harvested four plants from each inner 

two rows for their growth response, mycorrhization, nodulation, and P content in the shoot 
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in 9 week old plants. We harvested seeds after 19 weeks to examine the effect of 

MycoApply on seed yield of the different soybean cultivars under different nutrient 

regimes. 

At harvest, shoots were kept in paper bags for drying at 70oC for 48 hours. 

Similarly, roots were washed to remove soil substrate particles with running tap water, 

blotted with paper towel, and the fresh weight was recorded. Aliquots of the root were 

removed and stored in 15 mL tubes with 50% ethanol for the mycorrhizal colonization 

assay from the respective roots. Similarly, nodulated roots were kept in cold room (4oC) 

before separating and counting nodules as described above.   

4.3.3 Rhizobial nodulation and AM colonization assay 

One day after harvesting, all visible nodules from the roots were removed, counted, 

and measured for their dry weight after drying in an oven at 70oC at 48 hours. To determine 

the AM colonization, the preserved roots were rinsed with tap water to remove alcohol, 

water bathed with 10% KOH solution at 80oC for 30 minutes, rinsed several times with tap 

water, and stained with 5% ink at 80oC for 15 minutes (Vierheilig et al., 1998). We analysed 

a minimum of 150 root segments to determine the percentage of AM root colonization by 

using the gridline intersection method (McGonigle et al., 1990). 

4.3.4 Quantification of P 

Dry shoot and root tissues were pulverized with a tissue homogenizer (Precellys 

24, Cayman Chemical Company, Ann Arbor, MI, USA). We digested an aliquot tissue 

with 2N HCl for 2 h at 95°C and determined the P content spectrophotometrically at 436 
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nm after adding ammonium molybdate vanadate solution (Fisher Scientific, Pittsburgh, 

USA) as described (Wang et al., 2016). Plant P content was calculated by considering the 

plant tissue biomass.  

4.3.5 Data analysis 

Plant growth response, mycorrhizal colonization, rhizobial nodulation, seed yield, 

phosphate acquisition in shoot, root and nodule on different soybean cultivars were 

analyzed using Statistix 9 analytical software (Tallahassee, Florida, USA). Mean values 

were calculated using Microsoft Excel 2016 (Microsoft Company, USA). The mean 

differences of plant traits were compared using ANOVA and if found significance at P ≤ 

0.05, a LSD multiple pairwise comparison was performed.   

4.4 Results and discussion 

4.4.1 Greenhouse experiment 

4.4.1.1 Effect of mycorrhizal inoculum on plant biomass, phosphate content, and seed 

yield 

In greenhouse experiments, plants treated with the commercial mycorrhizal 

inoculum MycoApply (here after- AM fungi) had higher shoot biomass than non- 

inoculated plants. In experiment I, soybean plants inoculated with only AM fungi 

demonstrated a significantly higher (P ≤ 0.05) shoot growth in comparison to non-

inoculated plants particularly when supplied with high nitrogen (N) supplied (Figure 4.1A). 

For the root growth; only AM inoculated plants had higher root biomass while plants 

inoculated with others had similar growth response (Figure 4.1B).  In experiment II, plants 
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inoculated with dual symbionts had significantly (P ≤ 0.05) higher shoot and root biomass 

under limiting nutrient (LPLN) supply conditions (Figure 4.2A and B). However, under 

high nutrient supply conditions (HPHN), the shoot and root biomass were similar between 

the plants that were only inoculated with rhizobia and dual inoculated plants.  

 Mycorrhizal symbiosis increased plant P uptake in both experiments I and II 

compared to non-AM plants. In experiment I, plants inoculated with only AM fungi had 

significantly (P ≤ 0.05) higher shoot P contents than non-inoculated plants except at LPLN 

(Figure 4.1C). A similar pattern was observed in the dual inoculated plants compared to 

the plants that were only inoculated with rhizobia except at LPLN conditions. The 

difference in the root P contents between AM and non-inoculated plants was not as 

pronounced as in the shoot tissues (Figure 4.1D). We observed a similar pattern in the P 

concentration in shoot and root tissues (Figure S4.1). Plants that were inoculated with both 

(dual) symbionts had significantly (P ≤ 0.05) and consistently higher P contents in the shoot 

and roots than plants that were inoculated with only rhizobial bacteria (Figure 4.2A and 

B). This higher P content in the plant tissue in dual inoculated plants clearly demonstrated 

the significance of AM fungi for rhizobia during tripartite interactions especially in limited 

N supply conditions. 

We observed a high variation in the AM colonization between two experiments. 

The mean AM fungal root colonization was below 13% in experiment I, as high as 60% in 

experiment II (Figure 4.1E and Figure 4.2E). The AM fungal root colonization did not 

differ among the treatments in experiment I but differed among the nutrient treatments in 

experiment II where we observed low colonization in high nutrient supply conditions 
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(Figure 4.2 E). Nodule dry weight was significantly higher under low N supply conditions 

than under high N supply conditions in both experiments (Figure 4.1F and 4.2F). Nodule 

dry weight was higher in the dual inoculated plants in experiment II, while there was no 

different in experiment I.  

In experiment II, we examined effect of AM fungi on seed yield of soybean cultivar 

AG1234 in different nutrient supply conditions. Seed yield was significantly (P ≤ 0.05) and 

consistently higher at dual inoculated plants than only rhizobial inoculation except at high 

N supply conditions (Figure 4.2G).  

In our study, soybean plants inoculated wuth AM fungi had positive effects on 

shoot growth (Figure 4.1A and 4.2A).  This beneficial effect of AM fungi for shoot growth 

could be explained by possible mechanism of AM fungi for P and N contribution to the 

host.  It is long known that the AM symbiosis increases the plant P acquisition (Bücking 

and Shachar‐Hill, 2005; Mensah et al., 2015; Wang et al., 2016b). Higher shoot P contents 

in AM inoculated plants under high N supply conditions (Figure 4.1C) could be the effects 

cross talk between P and N cross talk as suggested by (Bonneau et al., 2013; Correa et al., 

2015; Nouri et al., 2014). As more P is needed by plants to assimilate supplied N. Thus, 

this higher P content in the shoot could have mediated by AM fungi. Since we removed all 

visible nodules for the nodulation assay from only rhizobial and dual inoculated roots, these 

roots (R and dual roots) had lower P contents at low N conditions than the non-nodulated 

roots i.e. only AM and non-inoculated roots (Figure 4.1D). Since the weight of nodules 

was higher under low N supply conditions (Figure 4.1F) and therefore likely to have more 

P, as nodules are P sink (Kafle et al., 2018; Sulieman et al., 2013). However, only rhizobia 
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and dual inoculated roots at high N supply conditions had similar P content (Figure 4.1D) 

as the weight of nodules was lower which is further explained below.  

Besides P, contribution of AM fungi to N supply of the host has been reported 

(Bücking and Kafle, 2015; Courty et al., 2014; Tanaka and Yano, 2005; Vázquez et al., 

2001). For example, Vázquez et al. (2001) discussed that the AM symbiosis is more 

effective than nodulated plants for delivering N to the host. Similarly, soybean plants with 

dual inoculation had significantly higher (P ≤ 0.05) shoot biomass than plants that were 

only inoculated rhizobia except at low P and low N supply conditions (Figure 4.1B). 

Soybean plants form tripartite interactions with AM fungi and rhizobia (dual inoculation) 

in which host plants can maximize their nutritional benefits. During tripartite interactions, 

higher plant growth is observed due to a synergistic response of AM fungi and rhizobia 

bacteria for P and N delivery which has been demonstrated in previous reports (Afkhami 

and Stinchcombe, 2016; Kafle et al., 2018; Wang et al., 2011). In return of these nutritional 

benefits, the host plants provide photosynthetic carbon to both root symbionts to balance 

the mutualistic benefits. Interestingly, plants inoculated with only AM fungi had a higher 

shoot biomass than dual inoculated plants under high N supply conditions. Since, the host 

plants need to share photosynthetic carbon to both symbionts that could cause smaller shoot 

growth responses in dual inoculated plants than in AM only inoculated plants under high 

nitrogen supply conditions (LPHN and HPHN). In this case, N demand of the host might 

have been supplied via only AM fungi (Vázquez et al., 2001) and therefore host plants had 

to share their carbon substrates only with AM fungi. 
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In our experiments, we quantified total AM fungal structures inside and on the 

surface of roots after cleaning and staining (McGonigle et al., 1990; Vierheilig et al., 1998) 

but did not separately quantify arbuscules, vesicles, intraradical or extraradical hyphae. 

Arbuscules are the exchange sites of fungal mediated nutrients for plant carbon substrates 

and are thus linked to plant growth. However, AM fungal root colonization, in general, 

does not always correspond with plant growth (Corkidi et al., 2004). This is consistent with 

our findings since we observed higher plant growth responses regardless of the AM 

colonization (Figure 4.1A and B and Figure 4.8A). Earlier studies reported that the 

application of commercial AM fungal inocula had high variation in AM colonization and 

presence of other microbial contaminants (Berruti et al., 2013; Corkidi et al., 2004; Faye 

et al., 2013; Garmendia and Mangas, 2014; Tilak et al., 1995). For instances, Corkidi et al. 

(2004) and Faye et al. (2013) experienced the presence of other microbes that were not 

listed in the inoculum composition and other growth promoting contaminants. 

Nevertheless, benefits of commercial AM inocula have been reported so further work 

should focus on improving the quality and host specificity (Berruti et al., 2016).  

High nodulation during the tripartite interactions under low N supplied in our study 

(Figure 4.2F) support previous findings (Kafle et al., 2018; Püschel et al., 2017; Wang et 

al., 2011). During the tripartite interactions under limited N supply conditions, AM fungi 

facilitate for P delivery to the host plant. To operate nitrogen fixing operation using 

nitrogenase enzyme, bacteria inside the nodule demand more P, therefore AM fungi 

facilitate for P delivery and consequently higher nodulation. Plants under N demand 

conditions allocate more carbon photosynthates to nodulated roots and thereby more 

nodulation and nitrogen fixation. However, plants not under N demand, reduce allocation 
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of C to nodulated roots thus lower nodulation and nitrogen fixation. Recent evidence 

demonstrated that phloem contains higher concentration of asparagine when supplied more 

N to the legume plants (Mortimer et al., 2012). This higher asparagine concentration is 

believed to participate in negative feedback signalling for nodulation at the root. Outcome 

of this mechanism is consistent with our results having lower nodulation in high soil N 

(Mortimer et al., 2012).  

High seed yield during tripartite interactions (dual inoculated plants) in our study 

(Figure 4.2G) corroborated the studies of Cely et al. (2016); and Meghvansi et al. (2008) 

in which a higher seed production was found when soybean plants were inoculated with 

both AM fungi and R bacteria. Since, AM fungi and rhizobia bacteria are complementary 

for P and N delivery, consequently, the host plants are well fitted for the seed production 

(Kaschuk et al., 2010). Interestingly, plants inoculated with dual symbionts reached their 

maximum yield potential under low nutrient supply conditions, while plants that were 

inoculated by only rhizobia bacteria reached a similar yield only under high nutrient supply 

conditions. Instead of applying P fertilizer to the soybean field, alternative biological 

approach (AM fungal partner) is necessary to reach higher seed yields (Cely et al., 2016).  
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Figure 4.1. Shoot (A) and root (B) dry biomass, shoot (C) and root (D) phosphate content, 

AM root colonization (E) and nodule dry weight (F) of soybean cultivar AG1234 grown 

for eight weeks in two liters of soil substrate in the greenhouse. Plants were remained non-

inoculated (None), or inoculated either with only MycoApply (AM), or only 

Bradyrhizobium japonicum, USDA 110 (R) or were dual inoculated (AM+R). The vertical 

bars represent mean of five biological replicates with standard error of mean, different 

letters on the bar refer difference at P values at ≤ 0.05 after ANOVA and LSD test. 
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Figure 4.2. Shoot (A) and root (B) dry biomass, shoot (C) and root (D) phosphate content, 

AM root colonization (E) and nodule dry weight (F), and seed yiled (G) of soybean cultivar 
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AG1234 grown for 15 weeks in two liters of soil substrate in the greenhouse. Plants were 

inoculated either with only Bradyrhizobium japonicum, USDA 110 (R) or were inoculated 

with both symbionts (Dual) (AM+R). The vertical bars represent the mean of five 

biological replicates with standard error of mean. Different letters on the bar indicate 

statistically significant differences at P values at ≤ 0.05 after ANOVA and LSD. 

 

In experiment III, we examined three soybean cultivars for their growth response 

with AM fungi. All three soybean cultivars had higher shoot dry weight when plants were 

inoculated with AM fungi in compared to non-inoculated control under low P and low N 

supply conditions (Figure 4.3A). Plant growth was not statistically different when plants 

were inoculated with only rhizobial bacteria and both (dual) symbionts. However, plants 

that were inculated with dual symbionts had higher shoot biomass than plants inoculated 

with only rhizobial bacteria. Soybean cultivairs under HPHN supply conditions had 

statistically similar (P= 0.92) growth response among symbionts (None; AM; R; Dual) 

(Figure 4.3A). Root growth response among microsymbionts treatment were statistically 

similar at low P and low N (P= 0.95), under high P and high N (P= 0.38) supply (Figure 

4.3B). 

We tested difference in plant P acquisition efficiency among three soybean cultivars 

under two different nutrient supply conditions. We found that the cultivar Channel1405 

was more efficient for P uptake than the other two cultivars: AG1636 and AG1733 at LPLN 

conditions (Figure 4.3A). Moreover, all three cultivars inoculated with only AM fungi had 

significantly higher P contents than their corresponding non-inoculated controls. However, 

dual inoculated plants had a similar P content among all cultivars. In comparison plants 

that were only inoculated with rhizobia, the dual inoculated cultivars Channel1405 and 

AG1733 had a higher shoot P content at LPLN. Under LPLN supply conditions, we 
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observed a similar P uptake response by these soybean cultivars under HPHN conditions 

between AM fungal and non-inoculated plants (Figure 4.3C). However, shoot P content 

between dual and only rhizobial plants was not different among the cultivars. Shoot and 

root P concentration did not differ within nutrient regimes among the different symbiotic 

treatments (Figure S4.3 A and B). Only AM fungi inoculated Channel 1405 had higher 

root P contents than its corresponding non-inoculated plants at LPLN (P ≤ 0.05) (Figure 

4.3C). Channel 1405 showed a higher P uptake than the other two cultivars under LPLN 

conditions (Figure 4.3C). Root P content was not statistically differerent (P=0.136) among 

cultivars and symbiotic partners under HPHN condition. However, there was a trend of 

higher P contents in the roots of dual inoculated plants. Contrary to the nodule P 

concentration (Figure S4.4), dual inoculated plants had higher P contents in their nodules 

than rhizobial inoculated plants at LPLN (Figure 4.3E).  

The AM root colonization was statiscially similar between only AM and dual 

inoculated plants under LPLN conditions, but the colonization was proportionally higher 

in the dual inoculated plants. However, the AM colonization reduced under HPHN 

conditions and was similar between only AM and dual inoculated (Figure 4.3F). The AM 

colonization had smilar response among soybean cultivars. 

Nodule dry weight was significantly higher at low N supplied conditions but 

decreased significantly at high N supplied conditions (Figure 4.3G). Nodule dry weight 

was higher in the dual inoculated plants than those plants which were inoculated with only 

rhizobial bacteria under LPLN conditions.  
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Higher growth response of soybean inoculated with AM fungi in our experiment 

(Figure 4.3A) is congruent with Wang et al. (2011) where they presented higher soybean 

shoot biomass in mycorrhizal plants than in non-inoculated plants. Moreover, Wang et al. 

(2011) demonstrated that soybean plants inoculated with only AM fungi had higher shoot 

biomass than plants inoculated with only rhizobia under low nutrient supply conditions 

which is in support of our findings. When the different cultivars that were inoculated with 

AM fungi were compared, plants had similar shoot growth responses indicating the 

cultivars do not differ in plant growth when treated with AM fungi as observed in Wang et 

al. (2016b).  

We examined and demonstrated that Channel1405 performed better than the other 

two cultivars especially under low P and low N supply conditions (Figure 4.3C and D). 

The degree of AM benefits depends on host plant type, cultivar, and environmental 

condition (Nemec and Datnoff, 1993).  For example, Smith and Goodman (1999) reported 

that different alfalfa cultivars differed in their response to AM fungi, which supports our 

findings. Plant P acquisition of different soybean cultivars has been attributed to different 

root architectures (Wang et al., 2011). In this study, we observed higher P benefits in the 

shoot and root of dual inoculated plants compared to plants that were only inoculated with 

rhizobia at LPLN conditions (Figure 4.3C and D) confirming that tripartite interactions 

facilitate nutritional benefits to the host (Meghvansi et al., 2008). However, there was no 

difference in P uptake among cultivars in tripartite interactions (Figure 4.3C and D) which 

could be sink effects of nodulated rhizobial bacteria in the roots (Figure 4.3E). 
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 The AM root colonization was similar when the plants were inoculated with only 

AM fungi and when the plants were inoculared with dual symbionts (Figure 4.3G). This 

similar rate of AM colonization fits with growth response where all cultivars had similar 

shoot biomass (Figure 4.3A). However, plants inoculated with AM fungi had higher shoot 

P content and consequently higher shoot growth response as observed by Wang et al. 

(2016b).    

High nodulation during the tripartite interactions under low N supplied in our study 

(Figure 4.3G) support previous findings (Kafle et al., 2018; Püschel et al., 2017; Wang et 

al., 2011). During the tripartite interactions under limited N supply conditions, AM fungi 

facilitate for P delivery to the host plant. To operate nitrogen fixing operation using 

nitrogenase enzyme, bacteria inside the nodule demand more P, therefore AM fungi 

facilitate for P delivery and consequently higher nodulation. Plants under N demand 

conditions allocate more carbon photosynthates to nodulated roots and thereby more 

nodulation and nitrogen fixation. However, plants not under N demand reduce allocation 

of C to nodulated roots thus lower nodulation and nitrogen fixation. Recent evidence 

demonstrated that phloem contains higher concentration of asparagine when supplied more 

N to the legume plants (Mortimer et al., 2012). This higher asparagine concentration is 

believed to participate in negative feedback signaling for nodulation at the root. Outcome 

of this mechanism is consistent with our results having lower nodulation in high soil N 

(Mortimer et al., 2012). 
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Figure 4.3. Shoot (A) and root (B) dry biomass, shoot (C) root (D), and nodule P content 

(E), AM root colonization (F) and nodule dry weight (G) of soybean cultivar AG1234 

grown for 15 weeks in two liters of soil substrate in the greenhouse. Plants were inoculated 

either with only Bradyrhizobium japonicum, USDA 110 (R) or were inoculated with both 

symbionts (Dual) (AM+R). The vertical bars represent the mean of five biological 

replicates with standard error of mean. Different letters on the bar indicate statistically 

significant differences at P values at ≤ 0.05 after ANOVA and LSD. 
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4.4.2 Field experiment 

4.4.2.1 Effect mycorrhizal inoculum on soybean plant biomass, phosphate content, and 

seed yield  

We examined effects of commercial mycorrhizal additives for soybean plant 

growth and seed yield under field conditions. In field experiment I, we observed similar 

shoot (P = 0.08) dry weights but there were statistical significant differences in root dry 

weight among the treatments: control, fungicide, and MycoApply (Figure 4.4A and B). In 

field experiment II, we observed significantly higher (P ≤ 0.05) shoot and root biomass 

when the plots were treated with MycoApply (Figure 4.5A and B). In field experiment III, 

we analyzed shoot and root growth of three soybean cultivars in each nutrient treatment 

and found no statistical difference among cultivars except at 50% of the recommended rate 

of N and P (Figure 4.6A) in which plants treated with MycoApply had significantly higher 

(P ≤ 0.05) shoot dry weight.  Soybean cultivar Channel1405 demonstrated higher shoot 

growth response when the plants were treated with MycoApply than untreated control 

under 0% nutrient application (Figure 4.6A) while the same cultivar was unresponsive 

under 100% nutrient application.  
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Figure 4.4. Shoot (A) and root dry weight (B), shoot (C) root (D) phosphate content, AM 

root (E) and nodule dry weight (F), and seed yield (G) of soybean cultivar AG1234. Four 

plants were harvested after 14 weeks of planting for biomass, P content and inner two rows 

for seed yield. Plants were either control plots or were treated with the fungicide Topsin M 

or with MycoApply. The vertical bars represent means of four biological replicates with 

standard error of mean, different letters on the bar refer difference at P values at ≤ 0.05 

after ANOVA and LSD test.  

 

 Application of commercial mycorrhizal inoculum did not demonstrate higher plant 

P uptake in field experiment I among control, fungicide, and MycoApply treated plots 

(Figure 4.4C and D). Whereas, in experiment II, MycoApply treated plots had significantly 

higher (P ≤ 0.05) shoot P content (mean= 49.3 mg) in compared to control treatment 

(mean= 28.0 mg) but no difference of P content in root tissues (Figure 4.5C and D). Among 

commercial mycorrhizal inocula, MycoApply outperformed other two inocula for P 

content in shoot tissues where P content in shoot was 49.3 mg, 39.5 mg, and 34.0 mg 

respectively at MycoApply, NSM, and Bio-organics inocula applied plants. However, 

shoot and root P concentration between control and inocula applied plots was statically no 

different (Figure S4.5). MycoApply treated plants, in experiment III, had lower shoot P 

concentration than control plots at 0% and 50% of NP application (Figure S4.6). 
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MycoApply contributed higher plant P acquisition in the shoot (mean weight= 208 mg) 

especially in cultivar Channel 1405 under 0% nutrient application in compared to control 

(mean weight= 146 mg) (Figure 4.6C). However, this positive effect of MycoApply for P 

acquisition in plant tissues, was not observed under 100% nutrient application.    

Mycorrhizal colonization between control and AM fungal inocula treated soybean 

roots was not statistically different in all experiments (Figure 4.4E, Figure 4.5E, Figure 4.6 

D). However, the colonization rate significantly reduced at the fungicide treated plants 

(Figure 4.4E and 4.5E). Nodule dry weight between control and MycoApply treated plants 

was similar in all three experiments (Figure 4.4F, 4.5F, 4.6E). Surprisingly, we observed 

significantly higher nodule dry weight in fungicide treated plants in experiment I and II 

(Figure 4.4F and 4.5F).  

Seed yield in experiment I and III was not statistically different among treatments 

(Figure 4.4G and Figure 4.6F). However, we observed significantly higher (P ≤ 0.05) seed 

yield at MycoApply treated plants in comparision to control plants in experiment II (Figure 

4.5G). Similarly, among inocula, MycoApply performed the best for the seed yield (Figure 

4.5G). Notably, fungicide treated plants in experiment II had significantly higher (P ≤ 0.05) 

seed yield than the control plants. Despite examining efficiency of different commercial 

fungal inocula, we further tested effects of nutrients with or without MycoApply additives 

on seed yield (Figure 4.5H). We found positive effects of MycoApply on the seed yield 

under 0% and 25% NP nutrient supply condition, where seed yield increased by 14% and 

8% in MycoApply treated over control at 0% and 25% NP respectively (Figure 4.5H). This 

trend progressively decreased as we increased nutrients supply. Seed yield in the control 
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without MycoApply proportionally increased as we supplied more nutrients: from 45.6 

bushel/Acre at 0% nutrient to 53.0 bushel/Acre at 100% nutrient. Interestingly, in the case 

of MycoApply, we did not observe such linear trend of seed yield increase despite adding 

more nutrients to the field. Seed yield at 0% nutrient with MycoApply was similar with 

100% nutrient application without MycoApply. 
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Figure 4.5. Shoot (A) and root dry weight (B), shoot (C), root (D) phosphate content, AM 

root colonization (E) and nodule dry weight (F), and seed yield (G and H) of soybean 

cultivar AG1234. Four plants were harvested after 16 weeks of plantation from field 

experiment for biomass, phosphate content and inner two rows for seed yield. Plants were 

either non-additive (Control), or treated with Topsin fungicide, or treated with commercial 

inocula: MycoApply, Nature Solution Mycorrhizae (NSM), and Bioorganics. The vertical 

bars represent mean of five biological replicates with standard error of mean, different 

letters on the bar refer difference at P values at ≤ 0.05 after ANOVA and LSD test.  

This increasing trend of soybean shoot weight in our field studies (Figure 4.5A and 

Figure 4.6A) demonstrated the positive effect of commercial mycorrhizal inoculum that 

was also observed in earlier studies (Mahanta et al., 2014; Ortas, 2012). Particularly, 

positive effectsof mycorrhizal inoculum especially MycoApply on shoot and root weight 

was significant (Figure 4.5A and B). However, previous reports have suggested higher 

variation in the performance of the inocula for the plant growth could exist because of 

cumulative impacts of multiple factors in the field conditions (Verbruggen et al., 2013). 

For instance, existing bacterial, fungal, and other soil organisms have niche competition 

with the introduced commercial inoculum which can lead to a higher variability in plant 

growth responses (Niwa et al., 2018). In experiment II, despite having higher diversity of 

AM species in NSM and Bio-organics inocula, their response for shoot and root growth 

was lower than MycoApply which has only four different AM fungal species. It has been 
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suggested that many species having functional redundancies to offer benefits to the host 

plant and thus these species compete for the host photosynthetic carbon and other sources 

(Jansa et al., 2008). Thus, continuous allocation of host carbon to these diverse AM species 

in NSM and Bio-organics inocula might be a probable reason of lower shoot and root 

weight of plants treated with these inocula as suggested in previous studies (Garmendia 

and Mangas, 2014; Pearson et al., 1993). Moreover, different AM species have different 

response to the host (Klironomos, 2003). However, experiment in the controlled 

environment generally demonstrated that different AM fungal species are able to provide 

macro and micro nutrients benefits to the host (Hart and Forsythe, 2012). Experimental 

outcomes between controlled and field conditions are not in similar directions because of 

complexity of natural factors. Channel1405 cultivar performed better than other two 

cultivars at 0% nutrient application (Figure 4.6A and B). This variability of plant growth 

response in our soybean cultivars treated with AM inoculum is concomitant with findings 

in different cultivars of soybean (Hayashi et al., 2018), alfalfa (Lambert et al., 1980), corn 

(Sawers et al., 2017). But, symbiotic benefits to the host plant reversed in 100% of 

recommended dose of nutrient application as compared to 0% and 50% of 

recommendation, which is consistent with Chu et al. ( 2013) and Hetrick et al. (1996) where 

they observed reduced growth of AM plants than control in high nutrient supply conditions. 

If soil has already higher nutrients (100% nutrients application), host plants have easy 

access to these nutrients so reduced growth of host plants are observed as investment of 

host photosynthetic carbon to root symbionts (Williams et al., 2017). 
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Figure 4.6. Shoot (A) and root dry weight (B) shoot phosphate content (C), AM root 

colonization (D), nodule dry weight (E), and seed yiled (F) of three soybean cultivars 

Channel1405, AG1636, and AG1733 four plants were harvested after nine weeks of 

plantation from field experiment inner two rows for seed yield. Plants were either non-

additive (Control) or treated with MycoApply. Plots were treated with the recommended 

rate of nitrogen (N) urea (7.71 kg of N/Acre) and phosphate (P) KH
2
PO

4
 (18.14 kg of 

P/Acre) for soybean in South Dakota as100% and reduced proportionally to 50% and 0%. 

The vertical bar represents mean of four biological replicates with standard error of mean, 

different letters on the bar refer difference at P values at ≤ 0.05 after ANOVA and LSD 

test.  

 

  



172 
 

 
 

Application of mycorrhizal inoculum increased shoot and root P content in our field 

studies (Figure 4.4C and D, Figure 4.5C, Figure 4.6C) which is consistent with other field 

studies (Labidi et al., 2015; Ortas, 2012; Tawaraya et al., 2012). This increased P content 

in mycorrhizal applied plants could be a possible mechanism of increased plant biomass in 

this study. It has been well recognized the contributions of AM fungi for P delivery to the 

host plant. However, environmental conditions, formulation of commercial AM inocula, 

and other factors regulate the functionality of AM fungi in field as suggested by Owen et 

al. (2015) in their review paper. We observed different commercial AM fungal additives 

had different P benefits to soybean, as MycoApply performed the best among three (Figure 

4.5C). In consistent with our findings, Garmendia and Mangas (2014) observed one type 

of commercial product had higher performance for plant P acquisition than others. Higher 

shoot P content in one cultivar (Channel1405) treated with AM inoculum without any 

fertilizer application (0% NP application) clearly suggest that soybean cultivars have 

different response to AM fungi as in other crops (Sawers et al., 2017). This higher 

contribution of AM fungal soil additives for P delivery to soybean signifies the importance 

in our agriculture for soybean production. As soybean is nodulated legume plants that need 

higher amount of P for the atmospheric N2 fixation by bacteria residing inside the root 

nodule (Kafle et al., 2018; Sulieman et al., 2013).  

  The similarity of AM colonization between AM soil additives and control in our 

findings (Figure 4.4E, Figure 4.5E, and 4.6D) is in accordance with other studies (Cely et 

al., 2016; Eulenstein et al., 2016; Janoušková et al., 2013). We measured total AM fungal 

colonization, but we do not know either this colonization is from introduced or indigenous 

AM fungal species. This similarity of AM root colonization between AM fungal soil 
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additives and control plant suggest that our field research area had already higher 

abundance of AM fungal community. Indeed, soil of prairie land (UpperMidwest) in the 

U.S.A. has higher AM fungal community abundance (Wilson and Hartnett, 1998). For 

instance, Monier (PhD dissertation, 2018) found 18 different AM species within one family 

Glomeraceae. Moreover, in our study plots, maize was a preceding crop before our soybean 

experiment. Maize is one of the highly responsive crops to AM fungi in the field conditions 

in terms of colonization and nutritional benefits (Benitez et al., 2017). Similarly, there was 

similar nodule weight between control and AM fungal inocula treated plants (Figure 4.4F, 

Figure 4.5F, and 4.6F) Soil in the eastern part of South Dakota is generally enriched with 

phosphate, which most probably why we observed similar nodulation between control and 

AM inocula additives. The fungicide might have detrimental effects on the pathogenic 

fungi at the rhizosphere. Reduction of such fungal communities (both AM fungi and 

pathogenic fungi) could have produced favorable environment (more photosynthetic 

carbon allocated) for rhizobial bacteria which therefore we observed higher nodulation at 

fungicide treated plots (Figure 4.4F and Figure 4.5F). 

Application of commercial AM inoculum in our studies under field conditions had 

positive effects (either statistically significant or not) on soybean yield which is consistent 

with other studies for soybean yield (Cely et al., 2016; Klironomos, 2003; Meghvansi et 

al., 2008), maize yield (Sawers et al., 2017), and alfalfa (Pellegrino et al., 2012). For 

instance, meta-analysis of AM fungi on legumes (Kaschuk et al., 2010) referred that yield 

ranges from -4% to +24% and average about 9% which is in support of our studies where 

we found 14% higher yield in AM treated plants (Figure 4.5G and H). Niwa et al. (2018) 

and Owen et al. (2015) suggested that the variability of seed yield using agronomic 
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practices in the field conditions is cumulative effects of multiple environmental factors, 

therefore seed yield ranges from negative to positive effects. In our study, higher 

production of soybean seed might be the effects of nutritional benefits by AM fungi as 

there was higher P content in MycoApply treated plants than control (Figure 4.5C) 

consistent with Tawaraya et al. (2012). Here, we used fungicide to suppress natural existing 

AM fungal communities in the soil. Despite suppressing AM fungal communities, the 

applied fungicide might have reduced saprophytic and pathogenic fungi in the soil as 

suggested by Wilson and Williamson (2008) which therefore consequently improved 

soybean biomass and yield compared to control plants (Figure 4.5C and Figure 4.5G and 

H). Indeed, application of fungicide in the field and greenhouse conditions increased 

vegetation growth of grasses and forbs (Hartnett and Wilson, 1999). However, wide 

variations in soybean seed production with fungicide treatments have been reported 

(Cordeiro et al., 2015; Schreiner and Bethlenfalvay, 1997; Zilli et al., 2009).  Moreover, 

other field and greenhouse studies found no effects of fungicide for the AM root 

colonization, nutrient acquisition, and plant growth when they treated seeds with fungicides 

(Cameron et al., 2017; Jin et al., 2013). Dose, frequency, and environmental factors affect 

the response of fungicide on plant growth (Buysens et al., 2015). For instance, Cameron et 

al. (2017) did not observe difference between AM root colonization, P acquisition, and 

plant growth when they treated seeds with fungicide before applying into the soil. This 

one-time application of fungicide before seed germination might not be sufficient enough 

to inhibit both AM and soil pathogenic fungi. Application of fungicide in different time 

point is crucial for the initial establishment of seedlings and later for the successful 
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flowering and pod formation against pathogenic fungi (Koenning and Wrather, 2010; 

Munkvold, 2009).  

Furthermore, effect of mycorrhizal fungal additives (MycoApply) for soybean seed 

yield was more pronounced under no (0%NP) or moderate (25%NP) nutrient supply 

conditions than applying higher (100% NP) concentration (Figure 4.5G and H). Indeed, it 

is apparent that AM fungi and rhizobial bacteria perform better for plant productivity and 

seed yield in limited soil P and N (Hayashi et al., 2018). For example, recent evidence 

(Hayashi et al., 2018) showed no difference in seed yield between limited nutrient and extra 

nutrient added plots, indicating the importance of AM fungi under limited soil nutrient 

conditions which supports our findings where MycoApply treated plots had same yield 

between 0% and 100% NP fertilizer (Figure 4.5G and H). 

4.5 Conclusions 

Application of commercial AM fungal inoculum especially MycoApply was 

beneficial for better plant growth and seed yield of soybean both in greenhouse and field 

experiments. The benefits of application of AM fungi was higher when soil had limited 

phosphate and nitrogen. Therefore, application of AM fungi to field crops may be 

beneficial in terms of plant growth, nutrient acquisition, and seed production. However, 

further greenhouse and field trials need to be tested before concluding as we observed 

higher variation in the AM root colonization in the greenhouse experiments with 

commercial AM product, MycoApply. Availability of commercial AM fungal products 

with higher abundance of viable spores along with high performing strains would be 

beneficial for farmers in upper Midwest of the U.S.A. as climate of this region is suitable 
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for soybean. Further, effects of exogenous application of commercial AM additives and 

fungicide on indigenous AM fungal community, and their interactions would help us to 

understand how AM fungal community changes in the field conditions. Moreover, 

isolation, propagation, and application of the top few dominant AM fungal species in such 

interaction may be beneficial for plant fitness under natural conditions of major agriculture 

crops soybean, corn, and wheat. 
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4.6 Supplemental information  

Figure S4.1. Shoot (A) and root (B) phosphate concentration of soybean cultivar AG1234 

of greenhouse experiment  

Figure S4.2. Shoot (A) and root (B) total phosphate content of three different soybean 

cultivars Channel1405, AG1636, and AG1733 of greenhouse experiment 

Figure S4.3. Root nodule phosphate concentration of three different soybean cultivars 

Channel1405, AG1636, and AG1733 of greenhouse experiment 

Figure S4.4. Shoot (A) and root (B) phosphate concentration of soybean cultivar AG1234 

of field experiment of field experiment 

Figure S4.5. Shoot and root phosphate (P) content of soybean cultivar AG1234 of field 

experiment 

Figure S4.6. Shoot phosphate concentration of three soybean cultivars Channel1405, 

AG1636, and AG1733 of field experiment  
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Figure S4.1. Shoot (A) and root (B) phosphate concentration of soybean cultivar AG1234 

grown for eight weeks in two liters of soil substrate in greenhouse. Plants were remained 

non-inoculated (None), or inoculated either with only MycoApply (AM), or only 

Bradyrhizobium japonicum, USDA 110 (R) or dual (AM+R). The vertical bars represent 

mean of five biological replicates with standard error of mean, different letters on the bar 

refer difference at P values at ≤ 0.05 after ANOVA and LSD test.   
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Figure S4.2. Shoot (A) and root (B) phosphate concentration of soybean cultivar AG1234 

grown for 15 weeks in three liters of soil substrate in the greenhouse. Plants were inoculated 

with only Bradyrhizobium japonicum, USDA 110 (R) or dual inoculated with both root 

symbionts (AM+R). The vertical bars represent mean of five biological replicates with 

standard error of mean, different letters on the bar refer difference at P values at ≤ 0.05 

after ANOVA and LSD test.   
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Figure S4.3. Shoot (A) and root (B) total phosphate content of three different soybean 

cultivars grown for eight weeks in two liters of soil substrate in greenhouse. Plants were 

remained non-inoculated (None), or inoculated either with only MycoApply (AM), or only 

Bradyrhizobium japonicum, USDA 110 (R) or dual (AM+R). The vertical bars represent 

mean of four biological replicates with standard error of mean, different letters on the bar 

refer difference at P values at ≤ 0.05 after ANOVA and LSD test. Three cultivars of 

soybean were as: Channel1405, AG1636, AG1733. 

 

 

 



189 
 

 
 

 

 

Figure S4.4. Root nodule phosphate concentration of three different soybean cultivars 

grown for eight weeks in two liters of soil substrate in greenhouse. Plants were inoculated 

with only Bradyrhizobium japonicum, USDA 110 (R) or dual (AM+R). The vertical bars 

represent mean of four biological replicates with standard error of mean, different letters 

on the bar refer difference at P values at ≤ 0.05 after ANOVA and LSD test. Three cultivars 

of soybean were as: Channel1405, AG1636, AG1733.  
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Figure S4.5. Shoot (A) and root (B) phosphate concentration of soybean cultivar AG1234 

four plants harvested after 14 weeks of plantation from field experiment. Plants were either 

non-additive (Control) or treated with Topsin fungicide or MycoApply. The vertical bars 

represent mean of four biological replicates with standard error of mean, different letters 

on the bar refer difference at P values at ≤ 0.05 after ANOVA and LSD test.    

 

 

Figure S4.6.  Shoot and root phosphate (P) content of soybean cultivar AG1234 four plants 

harvested after 16 weeks of plantation from field experiment. Plants were either non-

additive (Control), or treated with Topsin fungicide, or treated with commercial inocula: 

MycoApply, Nature Solution Mycorrhizae (NSM), and Bioorganics. The vertical bars 

represent mean of five biological replicates with standard error of mean, different letters 

on the bar refer difference at P values at ≤ 0.05 after ANOVA and LSD test. 
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Figure S4.7. Shoot phosphate concentration of three soybean cultivars Channel1405, 

AG1636, and AG1733, four plants harvested after nine weeks of plantation from field 

experiment. Plants were either non-additive (Control) or treated with MycoApply. Plots 

were treated with the recommended rate of nitrogen (N) urea (7.71 kg of N/Acre) and 

phosphate (P) KH
2
PO

4
 (18.14 kg of P/Acre) for soybean in South Dakota as100% and 

reduced proportionally to 50% and 0%. The vertical bars represent mean of four biological 

replicates with standard error of mean, different letters on the bar refer difference at P 

values at ≤ 0.05 after ANOVA and LSD test.  
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CHAPTER 5: CONCLUSIONS AND FUTURE QUESTIONS 

Tripartite interactions of legumes with arbuscular mycorrhizal (AM) fungi and 

rhizobial bacteria have a bigger implication to maintain sustainable agriculture. Most of 

the previous research literatures focused on studying interactions between legume and one 

of the symbionts, either AM fungus, or rhizobial bacteria. However, understanding legume 

with only one of the symbionts at a time does not provide enough information about 

dynamic of nutrient exchanges process between symbiotic partners, as legume in natural 

conditions forms symbiotic relations simultaneously with AM fungi and rhizobial bacteria 

forming tripartite interactions. The main goal of this study was to understand physiological 

and molecular mechanisms of the tripartite interactions of legumes in association with AM 

fungi and rhizobial bacteria. Moreover, what is the importance and potential of tripartite 

interactions for agronomic purpose. 

Our studies have clearly demonstrated that the tripartite interactions significantly 

facilitate for the plant growth response along with phosphate and nitrogen uptake of the 

plant. We found that the nutrient demand of the host, and the fungal access to nutrients are 

important factors that control the carbon allocation to individual root symbionts in tripartite 

interactions. The host plant allocated more photosynthetic carbon to nodulated root half 

under nitrogen demand conditions. However, host plant strategically allocated more carbon 

to AM root half when exogenous nitrogen was supplied to the plant. This discriminatory 

capability of the host plant to allocate its carbon to the most beneficial partner supporting 

previous findings of biological market dynamics in plant-beneficial microbes interactions. 

Additionally, this is the first study to demonstrate gene expression of several plant 
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transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be 

Exported Transporter (SWEET) family that controls the carbon flux to different symbiotic 

partners during the tripartite interactions. Therefore, we provided insight into physiological 

and molecular mechanisms of resources exchange during tripartite interactions. 

Tripartite interactions have a synergistic effect on the host plant growth response 

as AM fungi deliver phosphate from soil beyond root access and rhizobial bacteria provide 

nitrogen through biological nitrogen fixation process to the host plant. However, neutral or 

antagonistic responses have also been reported. It has been suggested that synergistic or 

neutral or suppressive host growth responses are the effects of environmental context in 

which experiments were conducted. We investigated that in our pot experiment, tripartite 

interactions did not facilitate for the plant growth response. However, despite neutral or 

negative plant growth, phosphate uptake of the host plant was significantly higher in AM 

plants. The probable reason for the neutral to negative growth response could be: nutrients 

gained by the host plant did not outweigh the carbon cost for the symbioses. Indeed, host 

plant allocated relatively higher carbon to tripartite root system than only rhizobial root 

system. This investment of host carbon to root and probably to soil through network of AM 

hyphae might have bigger implications to balance carbon cycle and ecosystem stability. 

We tested effects of commercial AM fungal inocula plant growth and seed yield of 

soybean cultivars in greenhouse and field conditions. We found that the application of AM 

inoculum increased plant biomass and seed yield in greenhouse and field conditions. 

Response of AM inocula on plant growth and seed yield was a notably higher in limited 

soil nutrient conditions. Additionally, different commercial AM fungal inocula have 
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different efficiency on soybean yield. For instances, of three commercial AM fungal 

inocula tested, MycoApply outperformed other two inocula for plant biomass and seed 

production. Also, one soybean cultivar, Channel 1405 demonstrated better responsiveness 

to fungal inoculum. Taken together, application of commercial AM fungal inocula have 

positive effects on plant productivity and seed yield especially in limited supply of nutrients 

which could be an alternative option against chemical fertilizers for soybean seed 

production. Fungicide not only acted on AM fungi but probably also on other pathogenic 

fungi in the soil which consequently fungicide treated plots had higher plant growth and 

seed yield. 

In a split root system study, we examined the amount of 13carbon (13C) labelling in 

the symbiotic root of host plant during tripartite interactions with relation to benefits 

conferred by symbionts. It would be better to understand how much carbon has been 

allocated to fungal hyphae inside and outside the host root. Therefore, further exploration 

should be conducted to adopt/develop technique that enable to quantify carbon exclusively 

in the fungal tissues. Additionally, we measured gene expression for SUT and SWEET that 

are putatively responsible for carbon flux to symbionts. However, we did not know where 

these transporters were localized in the colonized roots, therefore understanding the 

localization of these transporters in the colonized root further clarify functional role of 

these transporters in symbioses. 

In simple a pot experiment, we observed neutral to negative growth response of 

AM plant in compared non-AM plant despite higher phosphate nutrition to host. Further 

investigation should be addressed to figure out what are the probable factors for growth 
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variability. These factors could explain the variability: volume of soil/pot size, duration of 

experiment, nutritional profile of the soil substrate. Additionally, measurement of carbon 

and nitrogen in root free soil before and after experimental period may provide some 

information of growth variability. In larger context, role of AM fungi for carbon 

sequestration in the soil also can be quantitatively addressed in the future study. 

Application of AM fungi to increase crop productivity in the field conditions is 

probably an alternate option to reduce dependency on chemical fertilizer. Furthermore, 

crop plants including soybean, corn, alfalfa have many biotic stressors in the field during 

growing period. What is the underlying molecular mechanism of certain soybean cultivars 

that demonstrate favorable response to AM fungi? How AM fungi can be used to minimize 

biotic stressors and increase plant productivity? How application of AM fungal inocula 

interact with existing soil AM fungal community? For farmer perspective, how can we 

reduce cost of commercial AM inocula? How the efficiency of commercial AM inocula 

can be increased? Future work on these questions may be useful to ameliorate application 

AM fungal community in agronomic field to increase productivity in a sustainable way.      
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