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ABSTRACT

Lake trophic state is of primary concern for water resource managers and is 
used as a measure of water quality and classification for beneficial uses.  Secchi 
transparency, total phosphorus and chlorophyll a are surrogate measurements 
used in the calculation of trophic state indices (TSI) which classify waters as 
oligotrophic, mesotrophic, eutrophic or hypereutrophic.  Yet the relationships 
between these surrogate measurements and direct measures of lake productivity 
vary regionally and may be influenced by external factors such as non-algal tur-
bidity.  Prairie pothole basins, common throughout eastern South Dakota and 
southwestern Minnesota, are shallow glacial lakes subject to frequent winds and 
sediment resuspension.  Light-dark oxygen bottle methodology was employed to 
evaluate vertical planktonic production within an eastern South Dakota pothole 
basin.  Secchi transparency, total phosphorus and planktonic chlorophyll a were 
also measured from each of three basin sites at biweekly intervals throughout 
the 2012 growing season.  Secchi transparencies ranged between 0.13 and 0.25 
meters, corresponding to an average TSISD value of 84.4 (hypereutrophy).  Total 
phosphorus concentrations ranged between 178 and 858 ug/L, corresponding to 
an average TSITP of 86.7 (hypereutrophy).  Chlorophyll a values corresponded to 
an average TSIChla value of 69.4 (transitional between eutrophy and hypereutro-
phy) and vertical production profiles yielded areal net primary productivity val-
ues averaging 288.3 mg C∙m-2∙d-1 (mesotrophy).  Our results support the hypoth-
esis that resuspended non-algal turbidity, not planktonic production, decreases 
water transparency and reduces potential net primary production.  Chlorophyll 
a TSI values corresponded most closely with measurements of planktonic pro-
duction and better represented the trophic state of this basin.
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INTRODUCTION

Lake trophic state is a measure of the productivity of a water body and is linked 
to beneficial use criteria (Carlson and Simpson 1996).  Potential impacts of eu-
trophication include phytoplankton blooms, oxygen-depletion in deep waters, 
degradation of water supplies, and recreational use limitations (Carlson 1977; 
Chin 2006; Codd 2000; USEPA 1998; USEPA 2009b).  Hypereutrophic condi-
tions are often characterized by taste and odor issues, oxygen depletion, and the 
potential presence of cyanobacterial toxins as planktonic production accelerates 
and die-offs occur.  Assessment of lake trophic state and deduction of factors 
influencing production are necessary before corrective measures can be applied 
(Wetzel 2001).  Thus, it is important for water resource managers to monitor and 
control eutrophication (Chin 2006).

The trophic state of a lake describes its potential for primary production and 
ranges between oligotrophic and hypereutrophic (Carlson and Simpson 1996).  
An oligotrophic lake has low productivity (50 - 300 mg C·m-2·d-1), clear water 
and low nutrient concentrations (Wetzel 2001) (Table 1).  Mesotrophic lakes 
are moderately clear and productive (250 – 1,000 mg C·m-2·d-1).  A eutrophic 
lake is highly productive (> 1,000 mg C·m-2·d-1) with low transparency and high 
planktonic algal densities and/or macrophyte growth.  Finally, hypereutrophic 
lakes are very highly productive, with dense macrophytes and algae and very low 
transparency (Carlson and Simpson 1996).

Recent data for 124 South Dakota lakes showed that 0.01% were oligotrophic, 
15% were mesotrophic, 51% were eutrophic, 34% were hypereutrophic, and 
21% were unclassified (SDDENR 2012).  The 2007 National Lakes Assessment 
program characterized trophic state based primarily on chlorophyll a values.  Re-
sults indicate that of the 49,546 national lakes assessed, 13% were oligotrophic, 
37% were mesotrophic, 30% were eutrophic, and 20% were hypereutrophic 
(USEPA 2009b).

Restoration and maintenance of the integrity of the nation’s waters by state 
and federal governments are regulated by the Clean Water Act (USEPA 1998).  
Subsequently, routine assessment of lakes is required to monitor condition and 
implement restoration actions.  Financial resources are limited, however, pre-
venting direct measurement of production by most monitoring agencies (USEPA 
2002).  Surrogate measurements, primarily water transparency, phosphorus, and 
chlorophyll a, are collected in place of direct measurements to evaluate lake pro-
ductivity and assign trophic state (USEPA 2009a).

The Carlson Trophic State Index uses measurements of water transparency 
(Secchi transparency), total phosphorus, and/or chlorophyll a to assign lake 
trophic classes by applying the equations below (Carlson 1977; Carlson and 
Simpson 1996).  The Trophic State Index (TSI) is a scale ranging from 0 to 100.  
TSI values falling within different index ranges are assigned to one of the follow-
ing trophic classes: oligotrophy (TSI less than 30), mesotrophy (between 30 and 
50), eutrophy (between 50 and 70), and hypereutrophy (greater than or equal to 
70) (Carlson and Simpson 1996; USEPA 2009a) (Table 1).

TSI Total Phosphorus = 14.42 * loge(TP ug/L) + 4.15
TSI Chlorophyll a = 9.81 * loge(chlorophyll a ug/L) + 30.6

TSI Secchi transparency = 60 – 14.41 * loge(Secchi transparency m)
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The most frequently measured surrogate variable for basin production utilizes 
a Secchi disc to measure water transparency (USEPA 1998; Likens and Wetzel 
1991; Vollenweider 1969).  The mean depth at which the disc disappears from 
view while being lowered into the water and at which it reappears when be-
ing raised is the transparency or Secchi depth (Likens and Wetzel 1991).  This 
method of determining transparency is cost effective and simple, making it an 
ideal and common method for state agencies to rapidly evaluate trophic state 
(Vollenweider 1969; Wetzel 2001).  In fact, many state agencies recruit members 
of lake associations and other volunteers for the collection of Secchi transparency 
data from otherwise unmonitored lake basins (USEPA 2002; USEPA 2009b).

Potential error can exist in the assessment of trophic conditions from Secchi 
transparency.  Abiotic factors can influence water transparency and give a false 
indication of high productivity.  For instance, in areas with moderate amounts 
of non-algal turbidity the Secchi disc is an inappropriate method of determining 
algal biomass for the classification of trophic state (Chin 2006; Wetzel 2001).  
Nutrient limitation or variations in transparency can also cause deviations in 
chlorophyll a TSI values relative to those derived from total phosphorus or Sec-
chi transparency (Carlson 1992).

Eastern South Dakota and southwestern Minnesota landscapes have high 
densities of glacial lakes.  Many of these lakes are classified as hypereutrophic 
due to low transparency values.  Yet many are also very shallow and easily mixed 
by frequent high winds.  For example, Oak Lake, Brookings County, South Da-
kota, has an average depth of 1.2 m and a maximum depth of 2.0 m (Troelstrup 
2009).  The lake experiences high and often sustained winds, which produce 
waves that reach the basin bottom and resuspend sediments.  Resuspended 
sediments may decrease transparency and inflate phosphorus values without a 
corresponding productivity increase (Carper and Bachmann 1984; Bachmann 
et al. 2000).  Thus, high production could be falsely estimated through water 
transparency and total phosphorus measurements alone.

Table 1. Trophic state classification ranges based on mean daily net primary production and TSI 
values derived from Secchi transparency, total phosphorus, or chlorophyll a. 

Parameter Oligotrophy Mesotrophy Eutrophy Hypereutrophy

Net Primary Production
(mg C/m2/d)1 50 - 300 250 – 1000 > 1000

Total Phosphorus
(ug/L)1 3.0 - 17.7 10.9 – 95.6 16 – 389 750 – 1200

Chlorophyll a
(ug/L)1 0.3 – 4.5 3 – 11 3 – 78 100 – 150

Secchi Transparency Depth 
(m)1 5.4 – 28.3 1.5 – 8.1 0.8 – 7.0 0.4 – 0.5

TSI (Secchi, TP, or
Chlorophyll a)2 < 30 30 50 - 70 70 - 80

1 Modified from Wetzel (2001)
2 Modified from Carlson and Simpson (1996)



70 Proceedings of the South Dakota Academy of Science, Vol. 92 (2013)

The issue then arises as to which approach or approaches best estimate pro-
ductivity for shallow prairie lake basins.  The objectives of this project were to 
(1) estimate mean daily plankton productivity vertically within a shallow pothole 
basin, (2) measure complementary Secchi transparency, total phosphorus and 
chlorophyll a concentrations, and calculate TSI values, (3) compare trophic state 
determined by direct production with TSI classifications and (4) examine the 
relationship between areal net primaray productivity and water transparency.

METHODS

Site description—Areal planktonic net primary production was vertically 
profiled at Oak Lake, Brookings County, South Dakota, using the laboratory 
facilities and field equipment of the Oak Lake Field Station (Lat 40° 30’ 30.36”, 
Long -96° 31’ 52.98”) (Figure 1).  Oak Lake is classified as hypereutrophic with 
a maximum depth of 2.0 m and an average depth of 1.2 m (SDDENR 2010; 
Troelstrup 2009).  The watershed for this basin drains portions of the Northern 
Glaciated Plains ecoregion and falls within the headwaters of the Minnesota-
Mississippi river system.  Basin area is 163 ha and basin length is 3,081 m 

Figure 1. Oak Lake (Brookings County, South Dakota) and associated Oak Lake Field Station. 
The extent of the field station grounds is indicated in gray. Boundaries and basin monitoring sites 
where light/dark productivity and monitoring measurements were taken are indicated.

Figure 1- Kuehl	and	Troelstrup
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(Troelstrup 2009).  Three basin sites (north, middle, and south) are routinely 
monitored (1970 - present) and were thus chosen as sites for production mea-
surement (Figure 1).  The overlap in sampling and monitoring sites allowed 
assessment of correlations between production measurements and biophysical 
monitoring data.

Measurement of production—Biweekly measurements of plankton produc-
tion were taken at each site throughout the period of May through August us-
ing the light/dark bottle method (Vollenweider 1969).  Light and dark bottle 
pairs were filled and suspended at depths of 16 cm and at each 25 cm interval 
from the water surface to the basin floor at each site.  One duplicate pair was 
suspended at 16 cm at one randomly chosen site each testing day as a recorded 
control.  An initial set of dissolved oxygen (DO) concentration readings were 
recorded for each depth using a Biochemical Oxygen Demand (BOD) YSI DO 
probe (Yellow Springs Instruments 5905 BOD Probe, Yellow Springs, Ohio).  
Suspended bottles were collected after an incubation period of between 5 and 7 
hr, and final DO concentrations were measured using the BOD YSI DO probe.

Initial and final oxygen concentrations from each bottle were used to estimate 
gross and net primary production and community respiration at depth (Lind 
1985).  Net primary production (NPP) was estimated by first dividing the 
change in dissolved oxygen by the incubation time and then multiplying that 
value by the number of hours in the photoperiod of each testing day (USNO 
2012).  The photoperiod was determined using sunrise and sunset times for Oak 
Lake as listed by the U.S. Naval Observatory after subtracting two hours for low 
sun angle at sunrise and sunset.  Daily community respiration was estimated by 
extrapolating hourly oxygen change observed in dark bottles through a 24-hr 
period.  Daily gross primary production (GPP) was determined by adding the 
estimated daily values for NPP and community respiration from a given site. 

Net primary productivity values were integrated with depth by graphing pro-
duction against depth.  These plots were imported into graphical software (Plot 
Digitizer 2.5.1, Oracle Corporation, Redwood Shores, California) and the area 
under the curve digitized to calculate areal net primary productivity for each site 
on each sampling day.  Daily NPP estimates were expressed in carbon units per 
square meter following the unit conversion of Lind (1985) which is 2.67 mg O2 
= 1 mg C.  These values were used to analyze seasonal trends and the relation-
ship between direct production and surrogate measurements.  Relationships 
were evaluated using linear regression following loge transformation of all data.

Surrogate parameters—Oak Lake water quality and water depth were moni-
tored every other week during the growing season at three basin sites (Figure 
1).  Measurements included dissolved oxygen, specific conductance, pH, and 
water temperature using an YSI Model 556. Sonar depth soundings were made 
at each basin site on each monitoring date.  Secchi transparency was measured 
at each basin site (Lind 1985) and vertical profiles of photosynthetically active 
radiation (PAR) were measured at 25-cm intervals from the surface to the bot-
tom at each site using a LICOR LI-1000 radiation sensor.  Grab samples were 
collected below the surface, filtered, and chlorophyll a was extracted using 90% 
acetone.  Planktonic chlorophyll a concentrations, corrected for phaeophytin, 
were measured spectrophotometrically (Clesceri et al. 1998).  Total phosphorus 
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samples were collected from each site each testing day at a depth of 25 cm in 250 
mL acid-washed polycarbonate bottles, acidified to a pH < 2, and refrigerated 
for preservation (Clesceri et al. 1998).  Samples were sent to the South Dakota 
Department of Health for analysis of total phosphorus concentration.  A blank 
sample of deionized water was similarly preserved and analyzed for approximate-
ly fifty percent of the sample dates as a quality control measure.  Raw data for 
Secchi transparency, chlorophyll a, and total phosphorus were converted to TSI 
values using the equations described previously and corresponding trophic clas-
sifications determined for comparison with direct measures of basin productivity.

RESULTS

Net primary production within the Oak Lake basin displayed significant sea-
sonal variation among the three basin sites.  Production generally increased at 
the Middle Basin (MB) and South Basin (SB) until mid-June, and decreased for 
the rest of the growing season. In contrast, production at the North Basin (NB) 
tended to increase across the season (Figure 2).  NPP ranged from 0 to 810 mg 
C·m-2·d-1 (x = 245 mg C·m-2·d-1), which classifies the basin as oligotrophic or me-
sotrophic (x = oligo-mesotrophic).  Secchi transparencies for Oak Lake ranged 
between 0.13 and 0.25 m, with corresponding TSI values of 89.40 and 79.98  
(x TSISD = 84.43, s = ± 2.7).  Total phosphorus concentrations ranged between 
178 and 858 ug/L and TSITP values ranged between 78.87 and 101.55 (x= 86.72, 
s = ± 6.2).  Chlorophyll a measurements ranged between 8.01 ug/L and 22.8 

Figure 2. Areal net primary productivity of Oak Lake (Brookings County) in mg C·m-2·d-1 during the 
summer of 2012 (NB = North Basin, MB = Middle Basin, SD = South Basin). Production measured 
as the area under a curve from the surface to the production compensation point.

Figure 2 - Kuehl	and	Troelstrup
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ug/L.  The corresponding TSIChla values ranged between 51.01 and 83.52 (x= 
69.43, s = ± 6.7), respectively. Secchi transparency and total phosphorus strongly 
indicate hypereutrophy, while chlorophyll a indicates eutrophy or hypereutro-
phy.

A significant positive linear relationship was observed between log-trans-
formed NPP and Secchi transparency (r2 = 0.31, P < 0.01) (Figure 3).  Neither 
total phosphorus nor chlorophyll a displayed a significant relationship with NPP 
(P > 0.05).  Wind speed, light, and surface water temperature failed to explain 
additional variation in areal NPP.  A multiple regression using log transformed 
Secchi transparency and log transformed total phosphorus again explained 
only 31% of the variation in NPP (logeNPP = -5.26737 – 2.62585*logeSD + 
0.50260*logeTP, P = 0.02, R2 = 0.31).

DISCUSSION

NPP in Oak Lake averaged 245 mg C·m-2·d-1 and ranged from 0 to 810 mg 
C·m-2·d-1.  These values fall within or below the ranges reported for other shallow 
basins.  For example, oligotrophic Lawrence Lake in Michigan yielded a mean 
daily productivity of 99 mg C·m-2·d-1 and ranged between 5 and 497 mg C·m-

2·d-1 (Wetzel 2001).  Shallow Sylvan Lake in Indiana is classified as eutrophic 
with a mean daily productivity of 1,564 mg C·m-2·d-1 and a range between 9 mg 
C·m-2·d-1 and 4,959 mg C·m-2·d-1.  Lake Minnetonka in Minnesota, classified 
as mesotrophic, averages 820 mg C·m-2·d-1 in NPP.  A study of Northern Great 
Plains saline lakes in North and South Dakota and Montana yielded a mean 
production rate of 125 mg C·m-3·h-1 in the summer with a range between 15 

Figure 3. Relationship between areal net primary production of Oak Lake from surface to com-
pensation point and Secchi depth (cm) (R2 = 0.31, P < 0.01) during the 2012 growing season.

Figure 3. Relationship	between	areal	net	primary	production	of	Oak	Lake	from	surface	to	
compensation	point	and	Secchi	depth	(cm)	(R2 = 0.31, P <	0.01)	during	the	2012	growing	
season.
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and 544 mg C·m-3·h-1 (Salm et al. 2009).  The production values for Oak Lake 
are reasonable, though on the lower end of the range reported in the literature 
for other lakes.

Direct production measurements indicate that Oak Lake ranges between oli-
gotrophic and mesotrophic, with an average trophic state of oligo-mesotrophy.  
This is lower than the expected classification of mesotrophic or eutrophic.  In 
contrast, individual surrogate indicators classify the basin as eutrophic or hyper-
eutrophic, as originally hypothesized.  Total phosphorus and Secchi transparency 
TSI values were similar, while chlorophyll a values were consistently lower.  All 
three surrogate measures consistently overestimated actual net primary produc-
tion (Figure 4).  The discrepancy in the classifications is believed to be the result 
of non-algal turbidity, which has been shown to have some effect on the accuracy 
of surrogate measurements in assigning trophic state (Chin 2006, Wetzel 2001).  
Increases in non-algal turbidity increase phosphorus content and decrease water 
transparency without a corresponding increase in net primary productivity.

Seasonal trends in NPP follow the general pattern observed in other temperate 
lakes (Nõges et al. 2011; Sterner 2010; Wetzel 2001).  Light and temperature are 
critical abiotic drivers of production (Brylinsky and Mann 1973; Goldman and 
Carpenter 1974; Wetzel 2001), even in shallow lakes experiencing wind driven 
sediment resuspension (Wielgat-Rychert et al. 2010).  Studies have shown a 
positive correlation between water temperature and algal growth (Goldman and 
Carpenter 1974), and a similar relationship between light and photosynthesis 

Figure 4. TSI values assigned by surrogate indicators on each testing day. The TSI scale has been 
marked with solid dark gray lines and labeled to indicate threshold values for trophic classifica-
tions (<30 = oligotrophic, 30-50 = mesotrophic, 50-70 = eutrophic, 70-80 = hypereutrophic). Mean 
NPP was determined to be 245 mg C m-2 d-1; the 95% confidence interval had a lower limit of 140 
mg C m-2 d-1 and an upper limit of 349 mg C m-2 d-1. * marks the trophic classification assigned by 
NPP (oligo-mesotrophic).
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classification assigned by NPP (oligo-mesotrophic).
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(Wetzel 2001).  An increase in available light or water temperature results in 
increased growth or photosynthesis, and subsequently increased production.  
The extent of these relationships varies according to species.  At higher tem-
peratures respiration rates also increase (Wetzel 2001).  Water temperature 
increased throughout the growing season while photoperiod increased until the 
end of June before decreasing throughout the remainder of the summer (USNO 
2012).  The general decrease in production after June is believed to be the result 
of respiration occurring over a greater range of depths in response to increased 
water temperature and decreased water depth brought on by drought conditions 
experienced during the 2012 growing season.

This study illustrates the difference between surface and depth-integrated mea-
surements of production (Coloso et al. 2008; Kuehl and Troelstrup 2011).  Sur-
face measures (e.g. Secchi transparency and other methods) are the most com-
mon, but may underestimate the metabolism  of the lake basin by not including 
the respiration-dominated zones of the water column.  Production and respira-
tion vary with depth; thus, depth-integrated measurements provide greater ac-
curacy in estimating NPP (Coloso et al. 2008).  Vertical production profiles of 
Oak Lake suggest that production occurs in a limited zone of the water column, 
typically within the top 0.5 meters.  Such restriction of productivity is influenced 
by resuspended sediments, which decrease the amount of light available for pho-
tosynthesis.  Greater non-algal turbidity results in decreased light penetration in 
the water column and subsequently a more restricted photic zone. 

NPP displayed a significant linear relationship with Secchi transparency, how-
ever approximately 69% of the variation in NPP remained unexplained.  This 
unexplained variation may have been the result of sampling error, circumstantial 
factors, and/or resuspended bottom sediments that decrease transparency with-
out a corresponding increase in production.  Some of the variation may have 
also been due to the influence of limiting nutrients apart from phosphorus, such 
as silicon, iron, or other trace elements (Hecky and Kilham 1988; Sterner et al. 
2004).  The positive relationship observed between production and transparency 
is consistent with that expected if transparency changes are not driven by pri-
mary production.  No significant relationships were found between either total 
phosphorus or chlorophyll a and net primary production.  This is interesting 
because one might expect a significant relationship between net primary produc-
tion and chlorophyll pigment concentrations.  Perhaps the lack of a significant 
relationship with chlorophyll a was due to light limitations on phytoplankton 
growth by suspended non-algal particulates (Robarts et al. 1992; Carlson 1992).  
No additional variation in NPP was explained by including Secchi transpar-
ency and total phosphorus.  The majority of variation remains the result of 
factors undefined in this study.  Thus, surrogate TSI measures were not found 
to be accurate indicators of lake trophic state.  These measures or metrics tend 
to overestimate basin production.  Further evidence for the influence of non-
algal turbidity lies in the inter-relationship between the surrogate values of TSI 
[TSI(TP) = TSI(SD) > TSI(CHL)], which indicates that non-algal particulates 
or color dominate light attenuation (Osgood 1983; Carlson 1992).

Additional production studies are needed to evaluate temporal variation 
among multiple growing seasons and vertical variation in production within the 
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water column.  Because many of the abiotic factors controlling production are 
likely to vary by basin, production studies are also needed on multiple shallow 
glacial prairie lakes to evaluate regional central tendencies and variation.  These 
statistics might then be used within a biogeographic framework to establish 
production-based standards for future monitoring.  Such a study may also assist 
in building improved uniform water analysis and monitoring on a national scale, 
identified as necessary by the National Lakes Assessment (USEPA 2009b).  The 
results of this study also suggest commonly used surrogate measures of produc-
tion are not accurate for characterizing shallow lakes in the region.  Possible 
responses to this include regional calibration of surrogate values using direct 
measures of production.  Alternatively, the technique of profile modeling, a 
technique utilizing light profiles, chlorophyll concentrations, and the diffuse 
attenuation coefficient, could possibly be applied (Nõges et al. 2011; Arst et al. 
2008).  This would enable the digital creation of vertical profiles of production 
without requiring extensive field sampling.
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