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ABSTRACT 

STATISTICAL ALGORITHMS AND BIOINFORMATICS TOOLS DEVELOPMENT 

FOR COMPUTATIONAL ANALYSIS OF HIGH-THROUGHPUT 

TRANSCRIPTOMIC DATA 

ADAM MCDERMAID 

2018 

Next-Generation Sequencing technologies allow for a substantial increase in the 

amount of data available for various biological studies.  In order to effectively and 

efficiently analyze this data, computational approaches combining mathematics, 

statistics, computer science, and biology are implemented.  Even with the substantial 

efforts devoted to development of these approaches, numerous issues and pitfalls remain.  

One of these issues is mapping uncertainty, in which read alignment results are biased 

due to the inherent difficulties associated with accurately aligning RNA-Sequencing 

reads.  GeneQC is an alignment quality control tool that provides insight into the severity 

of mapping uncertainty in each annotated gene from alignment results. GeneQC used 

feature extraction to identify three levels of information for each gene and implements 

elastic net regularization and mixture model fitting to provide insight in the severity of 

mapping uncertainty and the quality of read alignment.  In combination with GeneQC, 

the Ambiguous Reads Mapping (ARM) algorithm works to re-align ambiguous reads 

through the integration of motif prediction from metabolic pathways to establish co-

regulatory gene modules for re-alignment using a negative binomial distribution-based 

probabilistic approach.  These two tools work in tandem to address the issue of mapping 
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uncertainty and provide more accurate read alignments, and thus more accurate 

expression estimates.   

Also presented in this dissertation are two approaches to interpreting the 

expression estimates.  The first is IRIS-EDA, an integrated shiny web server that 

combines numerous analyses to investigate gene expression data generated from RNA-

Sequencing data.  The second is ViDGER, an R/Bioconductor package that quickly 

generates high-quality visualizations of differential gene expression results to assist users 

in comprehensive interpretations of their differential gene expression results, which is a 

non-trivial task.  These four presented tools cover a variety of aspects of modern RNA-

Seq analyses and aim to address bottlenecks related to algorithmic and computational 

issues, as well as more efficient and effective implementation methods.   
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CHAPTER 1: Introduction 

1.1 Next-Generation Sequencing and RNA-Sequencing Analysis 

The advent of much improved biotechnology and the decreased associated costs 

have increased the amount of biological data. One of the most modern approaches is 

Next-Generation Sequencing (NGS) [1, 2], which has higher resolution, better accuracy, 

lower technical variation, and other advantages, compared with array-based counterparts 

[3-5].  NGS allows for a much faster-paced generation of larger volumes of biological 

information than ever before. The generated big data, which refers to the complex and 

large volumes of data collected from different sources, has changed the way research is 

conducted in biology [6, 7].  Although the availability of data has increased, utilizing and 

interpreting it requires new advances in interdisciplinary sciences, namely in 

mathematics, statistics, and computer science.  RNA-sequencing (RNA-Seq) and 

Chromatin Immunoprecipitation followed by sequencing (ChIP-Seq) have arisen and 

been used for the interpretation of transcriptional regulation. The RNA-Seq technology 

measures the abundance of RNA transcripts in samples or individual cells, giving rise to 

the genome-scale transcriptomic (also termed as gene expression) data [8].  

ChIP-Seq technologies provide massive amounts of information related to 

protein-DNA interactions and have been applied successfully to many genome-wide 

analyses, including transcription factor binding, polymerase binding, and histone 

modification markers [9, 10].  This type of data is especially useful for determination of 

transcriptional regulatory signals (TRSs), such as transcription factors (TFs), miRNAs, 

lncRNAs, and epigenomic regulators.  TFs are known to play an important role in 
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controlling gene expression by binding to specific DNA sequences, with their TF binding 

sites (TFBSs) are referred to as cis-regulatory motifs (motifs for short).  

RNA-Seq is a revolutionary technology for gene expression profiling [11, 12] and 

promises to provide a comprehensive picture of the transcriptome for a biological process 

[11].  It aims to extract usable information from the mature mRNA within a biological 

source and generates a huge number of short segments (reads, 100-250 bps), which 

enable the discrete quantification of all genes expressed in a cell [11, 13].  Currently, 

researchers can analyze a large sample of cells from a single organism in the form of bulk 

RNA-Seq data or can discover individual cells from complex organisms one at a time 

through single-cell RNA-Sequencing (scRNA-Seq), which uses optimized NGS 

technologies and acquires the transcriptomic information from individual cells to provide 

a better understanding of cell functions at genetic and cellular levels [14]. These 

biotechnologies have generated large-scale transcriptomic data and genome-scale gene 

expression data in the public domain, and their tremendous values have been confirmed 

in many research areas such as elucidation of cell-type-specific regulatory networks [15, 

16] and cancer & complex diseases studies [17-19]. Although numerous algorithms and 

tools have been developed for transcriptomic data analysis, both in the public [20-46] and 

private sectors [47-54], the reality is that some of the most widely-used methods suffer 

from particular issues (e.g., cannot provide accurate gene expression estimates [55, 56]) 

and construction of applicable combinations of these tools is an ongoing challenge. 

1.2 Analysis Tools and Pipelines 

 RNA-Seq analyses begins with data collection from biological samples.  During 

this process, mature mRNA is extracted from single or multiple cells of a particular 
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sample with specific characteristics.  This mRNA is reverse transcribed into cDNA, 

which is then broken apart into small segments, referred to as reads.  These short reads 

are generally 80 to 250 base pairs (bps) in length. There are also emerging third-

generation sequencing technologies that generate reads in the several mbp lengths; 

although these approaches can suffer from high error rates during sequencing, limiting 

their current application power [1, 57, 58].  The set of these reads—generally in the range 

of millions of reads—is referred to as the library of raw reads for analysis in an RNA-Seq 

experiment. 

 Analyzing raw reads requires numerous steps, and thus requires numerous tools 

(Figure 1).  To effectively use these tools in combination, a pipeline is generally 

established with the user’s tools of choice.  Initially, a read level quality control is 

conducted on the raw reads.  FastQC [20] is almost universally used for this purpose and 

provides information related to sequencing depth, reads duplication rates, GC bias, 

coverage uniformity, among other features.  Any serious issues detected in this initial 

process are then corrected through read trimming.  This process trims the end segments 

off the raw reads, which tend to have remnants of the sequencing process.  For this 

purpose, numerous tools have been developed and are widely implemented in 

application, including Btrim [59], the Fastx toolkit [60], Trimmomatic [61], and Cutadapt 

[62].  To verify successful data trimming, read-level quality control can be used again. 
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Figure 1: High-performing and widely used RNA-Seq tools developed since 2009.  Green 

lettering indicates tools that are covered in this dissertation, between Chapters 2 & 3. 

 After verifying the integrity of the raw RNA-Seq data, multiple steps are 

conducted to quantify the read counts for each gene, which provides insight into the 

expression level for each gene of each sample.  If a reference genome is available for the 

given species, reference-based read alignment (also referred to as read mapping) of raw 

or trimmed reads determines where along the genome each read came from.  While time 

consuming and computationally demanding, this step is one of the most important 

processes used in most RNA-Seq analyses.  Due to the importance, numerous tools have 

been developed for this purpose, including TopHat [35], BWA [63], Bowtie [64, 65], and 

HISAT [40], among many others [29, 31-33, 37, 42, 44]. 

 Read alignment results still require further analysis to quantify the number of 

reads estimated at each gene.  Two distinct pathways can be pursued at this point.  The 

first is direct quantification of gene expression through read counts.  Using a species-

specific annotation file, quantification tools take the read alignment results and determine 
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to which gene each read is aligned.  Based on this information, a discrete count of the 

expression for each gene is generated.  Again, there are many tools that can perform this 

purpose, with HTSeq [45] being one common and efficient method.  Alternatively, the 

second path requires another extensive computational approach in what is referred to as 

assembly.  Assembly tools, such as StringTie [38, 39] and Cufflinks [34], take the aligned 

reads and assemble transcripts from these segments.  The abundance of these transcripts 

is then quantified, providing an expression estimate.  The assembly step is increasingly 

useful to determine novel transcripts that have not been annotated in a particular species 

and for addressing the issues presented by alternative splicing.  Both of these two 

approaches result in an estimate of the expression level for each gene.   

 Having a reference genome for RNA-Seq analysis is not always possible.  Some 

species being analyzed may not have a reference genome sequences at the time of 

analysis, requiring a different approach.  De novo assembly is a process that can develops 

a transcriptome through alignment of the reads themselves.  In this process, the reads are 

taken and assembled together based on overlapping sequences of various lengths.  A De 

Bruijn graph approach is most commonly used for this purpose by most de novo 

assembly tools, such as Trinity [66, 67] and Bridger [43].  The assembly can then be used 

to functionally annotate the regions within the transcriptome.   

 Using the expression estimations generated through the reference-based 

approaches, numerous additional analyses can be performed.  One such analysis is 

differential gene expression analysis, in which gene expression levels are compared 

between samples of particular conditions.  This approach can provide insight into the 

genetic differences that are affecting or correlated with observed phenotypic differences.  
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Functional annotation is a process using expression estimates that look for highly 

expressed functional groups of genes within particular samples.  This process can also 

include comparison of functional group expressions across two or more conditions.  

Traditional clustering approaches, such as k-means [68] or hierarchical clustering [69], 

can also be directly applied to expression estimates through grouping of similarly 

expressed samples.  This method can provide insight into which samples or conditions 

have expression-wide similarities.  Biclustering is a two-dimensional clustering approach 

[70] that, when applied to expression matrices, groups samples together based on subsets 

of the expression estimates [71].  Since it can be expected that genetic similarities can be 

exhibited in only a small portion of the expression estimates, this approach captures these 

similarities and groups sample together, as opposed to requiring high similarity 

throughout all expression estimates.  Particularly, biclustering has the special application 

power in scRNA-Seq analyses [72, 73].  In addition to these defined approaches, there 

are virtually endless other analyses that can be performed using the expression estimates, 

including a wide range of network analyses and other modeling approaches. 

 Although substantial efforts have been made to accurately and efficiently quantify 

genetic expression levels, the performance of these tools is not always adequate.  Many 

of the tools have been shown to underperform on real or synthetic RNA-Seq datasets [55, 

56].  TopHat [34, 35], one of the most widely used read alignment tools, has even been 

demonstrated as one of the poorest performing, having less than 20% of reads correctly 

aligned in some cases [55].  Even combinations of tools that have excellent individual 

performance can result in suboptimal or even poor performance levels [56].  Hence, 
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further investigation into optimized approaches for high-throughput data analysis is 

required. 

1.3 IRIS Pipeline Framework 

 All tools related to RNA-Seq analysis fit into a three-tier framework based both 

on the placement they fit into and analysis function, referred to as the Integrated RNA-

Seq data analysis and Interpretation System (IRIS).  This framework consists of tiers 

representing preprocessing, expression estimation, and end-stage analysis (Figure 2). 

 

Figure 2: The IRIS Pipeline.  The IRIS pipeline consists of three tiers 

designed to analyze and interpret RNA-Seq data.  Tier 1 involves 

preprocessing, Tier 2 determines expression estimates, and Tier 3 

provides end-stage analyses 

1.3.1 Preprocessing 

 Preprocessing consists of tool related to quality control for the raw RNA-Seq 

reads.  There are two analyses in this tier, the first being read-level quality control.  This 

process involves investigation of the raw reads to determine if any abnormalities exist, 
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including detection of primers used to sequence the raw reads.  FastQC [20] is almost 

universally used for this process, and provides statistics related to per base sequence 

quality, per sequence quality scores, per base sequence content, per base and per 

sequence GC content, Kmer content, among other important measures.  Users can make 

decisions about the quality of their raw reads based on the provided information and 

determine if they need additional measures, such as data trimming.  Data trimming 

involves modification of the raw reads to remove poor sequences and sequence segments, 

including primers remaining on the ends of reads from previous steps.  A wide variety of 

tools can be utilized for this purpose [28, 60-62].  The results of Tier 1 used for further 

analysis are either the raw reads—in the case that there are no serious issues found during 

quality control—or trimmed reads generated using one of the read trimming tools.   

1.3.2 Expression Estimation 

 Using the raw or trimmed reads from Tier 1, Tier 2 contains tools that convert the 

reads to expression estimates, generally in conjunction with additional genomic 

information in the form of a reference genome and annotation.  This tier is the core of 

RNA-Seq data analysis and can proceed through multiple unique paths.  Which path is 

pursued is determined by which data is being analyzed, availability of a reference 

genome, and investigative purposes.  If a reference genome is not available, the 

reference-based approaches are not applicable.  In these cases, De novo assembly is used 

and is commonly combined with annotation of sequences to determine which genes are 

present and to some degree a measure of the expression level.   

The alternative pathway, one in which a reference genome is available, involves 

alignment of reads against the reference genome.  This process is generally time 
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consuming and computationally demanding.  Numerous approaches have been developed 

for this purpose [29, 31-33, 35, 37, 40, 42, 44, 63-65], with key emphasis on reducing the 

time and computational requirements.   

 After read alignment, there are another level of pathways that can be followed.  A 

straightforward quantification of read counts based on the read alignment can generate a 

discrete estimation of the expression level for each annotated gene.  Alternatively, 

reference-based transcript assembly can be used to generate transcripts for quantification.  

A third approach that is much more recent has to do with mapping uncertainty, which 

results when a read can be aligned to multiple locations.  To address this issue, new 

approaches have been developed for quality control and read re-alignment.   

  From these pathways, users generally determine an estimation of the genetic 

expression levels from their samples.  Depending on the tools and methods used, the 

measurement used for expression level can vary.  Some methods generate read counts, 

with a discrete count of the number of reads aligned to each location is provided.  Others 

provide normalized measures based on the gene length or raw read library size.  Four 

commonly used normalized measures are Reads Per Kilobase per Million (RPKM), 

Fragments Per Kilobase per Million (FPKM), Transcripts Per kilobase per Million 

(TPM), and Counts Per Million mapped reads (CPM).  RPKM and FPKM are calculated 

similarly, with the former being used for single-end reads and the latter for paired-end 

reads.  The calculations for normalized counts for a given gene i are given below, with 𝐿 

representing library size (i.e. number of reads analyzed), 𝑔𝑖 representing the length of 

gene i, and 𝑐𝑖 representing the number of reads or fragments aligned to gene i.   



10 

 

𝐹𝑃𝐾𝑀𝑖 = 𝑅𝑃𝐾𝑀𝑖 =
𝑐𝑖

𝐿/106
÷ 𝑔𝑖 =

𝑐

𝐿 ∗ 𝑔𝑖
∗ 106 

𝑇𝑃𝑀𝑖 =

𝑐𝑖
𝑔𝑖

∑
𝑐𝑗
𝑔𝑗𝑗

÷ (
𝐿

106
) =

106 ∗
𝑐𝑖
𝑔𝑖

𝐿 ∗ ∑
𝑐𝑗
𝑔𝑗𝑗

 

𝐶𝑃𝑀𝑖 =
𝑐𝑖
𝐿
106

=
𝑐𝑖
𝐿
∗ 106 

Frequently, all of these measures are represented in using a logarithm base-10 

transformation, since measures can vary greatly.   

1.3.3 End-Stage Analysis 

 From the expression estimates generated in Tier 2, a wide range of analyses can 

be performed to make biologically meaningful interpretations from the data.  Tier 3 

contains analysis tools related to this conversion of expression estimates to practical 

interpretations and is divided into two categories: Hypothesis-driven interpretations and 

Discovery-driven interpretations.  Hypothesis-driven analyses are generally conducted 

following previously established hypotheses and concepts.  Included in this category are 

differential gene expression analysis and functional enrichment analysis, among many 

other processes.  Differential gene expression analysis is one of the most common 

analyses used in the analysis of RNA-Seq data and uses statistical techniques to find 

meaningful differences in expression levels between comparable conditions.  This 

process uses raw or normalized read counts from replicates of the same condition to 

identify which genes are statistically differentially expressed between two or more 

conditions. One common use of this method is to determine which genes have differing 

expression levels for two different strains of the same species that exhibit important 
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phenotypic differences.  This investigation can lead to further understanding of specific 

relationships between genotype and phenotype.  

 Discovery-driven analyses follow a more purely exploratory approach, one aimed 

at discovering interesting features from the data, as opposed to being directed at a 

specific hypothesis.  Included in this category are clustering and biclustering methods and 

a wide range of network analyses.  Rapidly growing in the analysis of RNA-Seq data is 

the use of biclustering approaches [70, 74], which isolate similarities between conditions 

and samples using only a subset of the gene expression estimates.  It has been widely 

shown that most plant and animal life on earth has high genetic similarity due to 

commonalities in cellular structure and function [75], meaning the genetic differences in 

a single species, regardless of their phenotypic differences, will be relatively mild.  

Because of this, clustering samples based on total genetic expression may miss 

significant expression patterns.  While traditional clustering looks for conditions or 

samples that have similar expression levels across all genes, biclustering can identify 

similarities that exist in only a fraction of the total genetic expression profile.   

 While the analyses included in Tier 3 generally represent the end-stage analyses, 

there are many times overlaps and feedback loops within this stage.  For instance, cell 

type classification of single-cell RNA-Seq data may involve initial clustering or 

biclustering combined with additional graph modeling to identify which cells belong to 

the same cell type.  This means that an end-stage analysis may not necessarily be the final 

analysis step in an RNA-Seq pipeline, since end-stage analyses can be layered for a 

specific purpose.  However, most experiments using RNA-Seq data will have a well-

defined design relying on direct results from Tier 3. 
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CHAPTER 2: Algorithms and Tools Development for RNA-Seq Data 

While there have been great amounts of effort done towards designing optimized 

RNA-Seq analysis tools, this area of research is by no means complete.  The nature of 

dealing with big data analysis always means a never-ending striving for increased 

efficiency, both in terms of the time and computational requirements.  Additionally, 

dealing with data and results that frequently consist of tens-of-thousands of measures of 

statistical significance and an equal number of measures of magnitude leads to challenges 

with interpreting results on a global scale.  Even more challenging are prominent issues 

within analysis pipelines that arise from biological complexities, such as the 

determination of the correct alignment location for a single RNA-Seq read.  All of these 

challenges combined promote the need for continued development of analysis tools for 

RNA-Seq data.  In this chapter, I present four tools develop to address specific pitfalls 

within RNA-Seq pipelines. 

2.1 GeneQC: Gene Expression Estimation Quality Control 

2.1.1 Mapping Uncertainty  

Even though numerous methods have been developed to facilitate read alignment, 

some critical issues persist. The nature of DNA—long strands of millions of base-pairs 

created by a reordering of the four nucleotides—makes it inevitable that some similarities 

and duplications will occur throughout the genome. This can lead to ambiguity during 

read mapping (Figure 3), with specific reads being aligned to multiple locations across 

the reference genome with the same alignment scores [7, 27, 55, 76-78].  When this issue 

occurs, it results in what is referred to as mapping uncertainty. 
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Figure 3: Mapping Uncertainty.  Mapping uncertainty occurs when a single read can be mapped 

to two or more locations along the reference genome with equal or nearly equal confidence. 

 

This mapping uncertainty problem can be observed in any genomic region, 

including, exons and transcripts.  For conciseness, these genomic regions are simply 

referred to as "genes." This issue has been observed in many diploid species, including 

human and other mammals and Arabidopsis [79-83], as well as many multiploid species 

[84]. In some species, such as Glycine max, up to 75% of the genes have the duplicated 

partners in its genome.  For species with high levels of uncertainty, especially 

angiosperms, mapping uncertainty can have serious implications on gene expression 

levels and can be extremely hard to remediate due to the genes’ and chromosomes’ 

duplicative nature [41]. 

To more fully investigate the issue of mapping uncertainty, 95 datasets totaling 

almost two terabytes of RNA-Seq data was analyzed from seven plant and animal species 

with respect to their alignment statistics, including the percentages of uniquely-mapped 

reads, ambiguously-mapped reads, and non-mapped reads (Table 1).  This analysis was 

done using HISAT2 [40] for read alignment, which automatically generates alignment 

statistics.   
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Both paired- and single-end reads were collected from NCBI [85], URGI 

(https://urgi.versailles.inra.fr/), and JGI [86] for seven plant and animal species.  These 

species include Arabidopsis thaliana, Vitis vinifera, Solanum lycopersicum, Panicum 

virgatum, Triticum aestivum, Homo sapiens, and Mus musculus.  The 83 paired-end 

datasets and 12 single-end datasets average 20.6 GB, with an average overall alignment 

rate of 81.87%.  Each dataset was aligned using HISAT2 [40] against the appropriate 

reference genome.   

Alignment statistics were collected or calculated from the HISAT2 output file, as 

shown in Table 1.  It was determined that an average of 22% of all reads were 

ambiguously aligned in each of the seven distinct plant and animal species.  In four 

datasets, over 35% of the reads were ambiguously aligned, and over two-thirds of the 

analyzed datasets having at least 18% of the reads multi-mapped.  Panicum virgatum 

exhibited the highest overall proportions—ranging from 17% to 33%—of multi-mapped 

reads over all analyzed datasets, while Arabidopsis thaliana displayed the lowest 

proportion, ranging from 8% to 17%.  The other analyzed species had similar percentages 

of multi-mapped reads. 

If researchers continue processing RNA-Seq data with such high levels of mapping 

uncertainty, all downstream analyses will have skewed and biased results.  Just as raw 

reads require quality control [20] so do gene expression estimates based on mapping 

results.  Even with tools that are specifically designed to address mapping uncertainty, 

such as MMR [87], the quality of the derived gene expression estimates based on 

mapping results still requires investigation, especially in real datasets not simulated 

https://urgi.versailles.inra.fr/
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datasets.  Without some quality control for gene expression estimation, researchers could 

potentially be using unreliable data, and blindly doing so.   
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2.1.2 Methods 

To address this issue, I present GeneQC [88] based on novel applications of 

regularized regression and mixture model fitting approaches to quantify the mapping 

uncertainty issue (Figure 4).  This tool can determine the genes having reliable expression 

estimates and those requiring further analysis, along with a statistical evaluation of the 

mapping uncertainty level. GeneQC develops a novel score, referred to as D-score, to 

represent the level of mapping uncertainty for each annotated gene and groups genes into 

several categorizations with different reliability levels, through integration and modeling 

of three genomic and transcriptomic features. Specifically, (i) sequence similarity 

between a particular gene and other genes is collected to give an insight into the genomic 

characteristics contributing to the mapping uncertainty problem; (ii) the proportion of 

shared multi-mapped reads between gene pairs provides information regarding the 

transcriptomic influences of mapping uncertainty within each dataset; and (iii) the degree 

of each gene, representing the number of significant gene pair interactions resulting from 

calculating (i) and/or (ii). 
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Figure 4: GeneQC Workflow. (A) The MMR percentages for the 95 datasets across seven 

species. More detailed information is showcased in Table 1; (B) GeneQC takes a read alignment, 

reference genome, and annotation file as inputs; (C) The first step of GeneQC is to extract 

features related to mapping uncertainty for each annotated gene; (D) Using the extracted features, 

elastic-net regularization is used to calculate the D-score, which represents the mapping 

uncertainty for each gene; (E) A series of Mixture Normal and Mixture Gamma distributions are 

fit to the D-scores; and (F) The mixture models are used to categorize the D-scores into different 

levels of mapping uncertainty along with a statistical alternative likelihood value for each gene.    

 

GeneQC is designed to fit into computational pipelines for RNA-Seq data 

immediately following read alignment, acting as a supplement to most current pipelines.  

GeneQC is composed of two distinct processes: feature extraction and statistical 

modeling.  GeneQC takes as inputs three pieces of information that are easily found in 

most RNA-Seq analysis pipelines: (1) the read mapping result SAM file; (2) the fasta 

reference genome corresponding to the to-be-analyzed species; and (3) the species-

specific annotation general feature format (gff/gtf/gff3) file (Figure 4B).   

From input information, GeneQC first performs feature extraction, in which the 

three characteristics are calculated for each annotated gene (Figure 4C). The first 
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extracted feature (𝐷1) is derived from genomic level information and involves the 

similarity between two genes (Figure 5A).  For each gene, this is calculated as the 

maximum of the sequence similarity multiplied by the match length, where the match 

length is the longest continuous string of matching base pairs.  More specifically, 

𝐷1 = max
𝑦
{𝑠𝑠𝑖,𝑦 ∗ 𝑙𝑖,𝑦} 

where 𝑠𝑠𝑖,𝑦 is the base pair sequence similarity of gene 𝑖 and gene 𝑦 and 𝑙𝑖,𝑦 is the match 

length of these two genes.  Additionally, to minimize negligible interactions, some 

default criteria are required for determination of 𝐷1: (1) 𝑠𝑠𝑖,𝑦 ∗ 𝑙𝑖,𝑦 > 100; (2) 

𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑐𝑜𝑢𝑛𝑡 < 5; (3) max{𝑔𝑎𝑝} < 5; and (4) 𝑒 − 𝑣𝑎𝑙𝑢𝑒 < 10−6 as determined in 

using BLAST [89].   

 

Figure 5: (A) Genes with significant similarity are displayed, with 𝐷1 being the maximum value 

of 𝑠𝑠𝑖,𝑦 ∗ 𝑙𝑖,𝑦.  In this situation, genes 𝑦2, 𝑦3, & 𝑦4 all have the same 𝑠𝑠𝑖 value, but gene 𝑦3 has a 

longer consecutive string of matching base pairs (𝑙𝑖) than the other values, making it the more 

similar genomic location. (B) Graphical representation of the sets of reads aligned to each gene. 

𝐷2 is the largest overlapping proportion of shared ambiguous or multi-mapped reads between the 

target gene, gene 𝑖, and all other genomic locations that have at least one read potentially aligned 
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to both locations. (C) This graph displays the significant interactions of gene 𝑖 with other 

genomic locations.  Each node represents a genomic location, with the red edges representing 

sequence similarity scores and black edges representing multi-mapping proportions.  In this 

situation, 𝐷1 = 310, 𝐷2 = 0.24, and 𝐷3 = 𝑙𝑜𝑔10(3 + 1) = 0.602. 

 

The second feature (𝐷2) comes from transcriptomic level information and 

represents the proportion of shared MMRs (Figure 5B).  This value is calculated as the 

maximum proportion of shared MMRs between the gene of interest and another gene.  In 

other words,  

𝐷2 =
|𝐺𝑖 ∩ 𝑋|

|𝐺𝑖|
 

where 𝐺𝑖 = {𝑎𝑙𝑙 𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒 𝑖} and 𝑋 = argmax
𝑌

|𝐺𝑖 ∩ 𝑌|. 

The third feature (𝐷3) is a network factor that represents the number of alternate 

gene locations with significant interactions with the gene of interest based on the 

previous two parameters (Figure 5C) and is calculated as 

𝐷3 = log10(|𝑆 ∪ 𝑀| + 1) 

where 𝑆 = {𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝐷1 > 0} and 𝑀 =

{𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝐷2 > 0}. 

To perform the modeling, a dependent variable is constructed.  The dependent 

variable D4 is an approximation of the proportion of ambiguous reads based on the two 

most extreme approaches to dealing with multi-mapped reads, the unique alignment 

approach and the all-matches approach.  If we consider 𝐺𝑖 = {𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒 𝑖} 

and 𝑈𝑖 = {𝑟𝑒𝑎𝑑𝑠 𝑢𝑛𝑖𝑞𝑢𝑒𝑙𝑦 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒 𝑖}, the true alignment 𝑅𝑖 must fall 
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somewhere between these two values, with |𝑈𝑖| ≤ |𝑅𝑖| ≤ |𝐺𝑖|.  Thus, we approximate the 

true alignment as |�̂�𝑖| =
|𝐺𝑖|+|𝑈𝑖|

2
.  Using this approximation,  

𝐷4 = 1 −
|�̂�𝑖|

|𝐺𝑖|
= 1 −

|𝐺𝑖| + |𝑈𝑖|

2|𝐺𝑖|
 

To develop a model evaluating the severity of mapping uncertainty and thus 

expression estimation quality, a regression approach is utilized.  Ordinary least squares 

has been demonstrated to have particular issues when dealing with real world data, 

especially data that does not fit linearity, homoscedasticity, lack of serious multi-

collinearity, or other requirements [90].  Because of this, alternative approaches were 

explored.  Ridge regression, which develops a model based on an L2-norm penalization, 

has better predictive results than ordinary least squares regression [90, 91].  However, 

this approach tends to retain all included variables to achieve such high predictive power, 

in turn reducing the interpretability of the model [92].  Another approach with potential 

application in GeneQC is the least absolute shrinkage and selection operator, also known 

as lasso.  This method uses an L1-norm penalization, while simultaneously performing 

continuous shrinkage and variable selection [93].  While this is an appealing feature in 

generating a model, lasso has shortcomings when it comes to dealing with variables 

exhibiting high pairwise correlation [92].  Elastic-net regularization—sometimes referred 

to simply as elastic net—has the potential to overcome the shortcomings of both ridge 

and lasso regression methods by implementing a combination of the two approaches.   
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Take the set of n response variables 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)
𝑇, a set of p predictor 

variables 𝒙𝒊 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑝), 𝑖 ∈ {1, … , 𝑛}, a set of p coefficients 𝜷 =

(𝛽1, 𝛽2, … , 𝛽𝑝), and matrix of predictor variables  

𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏)
𝑇 = (

𝑥1,1 ⋯ 𝑥1,𝑝
⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑝

) 

For a given 𝜆1, 𝜆2 ≥ 0, elastic-net regularization uses a criterion based on 

𝐿(𝜆1, 𝜆2, 𝜷) = ‖𝒚 − 𝑿𝜷‖2
2 + 𝜆2‖𝜷‖2

2 + 𝜆1‖𝜷‖1 

‖𝜷‖2 = √∑𝛽𝑗

𝑝

𝑗=1

 

‖𝜷‖1 =∑|𝛽𝑗|

𝑝

𝑗=1

 

Thus, the set of coefficient estimates �̂� are calculated as 

�̂� = argmin
𝜷

{𝐿(𝜆1, 𝜆2, 𝜷)} = argmin
𝜷

{‖𝒚 − 𝑿𝜷‖2
2 + 𝜆2‖𝜷‖2

2 + 𝜆1‖𝜷‖1} 

Given 𝛼 =
𝜆1

𝜆1+𝜆2
, solving for �̂� is equivalent to optimizing �̂� = argmin

𝜷
‖𝒚 − 𝑿𝜷‖2

2, for 

𝛼‖𝜷‖2
2 + (1 − 𝛼)‖𝜷‖1 ≤ 𝑘, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘. In the construction of this elastic net, 𝛼‖𝜷‖2

2 +

(1 − 𝛼)‖𝜷‖1 is considered as the elastic net penalty, representing a combination of the 

penalties used in ridge and lasso regression methods.  In the situation where 𝛼 = 1, the 

elastic net is equivalent to basic ridge regression.  For 𝛼 = 0, the approach becomes lasso 

regression [92]. 
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GeneQC utilizes the elastic-net regularization method [92] with default 𝛼 = 0.5 

to develop a regression model for the calculation of D-scores.  Here, elastic-net 

regularization is used to properly perform the variable selection, while simultaneously 

fitting a sufficient model to the provided data (Figure 4D).  This approach also accounts 

for potential serious multicollinearity issues which were detected in some of the test data 

and prevents overfitting of the regression model [92].  The set of calculated D-scores 

represents the mapping uncertainty for each annotated gene and is provided to give 

researchers an idea of how reliable their initial read mappings are. A higher D-score 

represents more mapping uncertainty, and thus a less reliable expression estimate.   

Based on the calculated sets of D-scores through above investigations during 

GeneQC development, there are apparent underlying distributions for these scores, 

intuitively representing levels of mapping uncertainty.  For this purpose, extensive 

mixture model fitting is included within GeneQC to best fit a mixture model distribution 

with three sub-distributions to each set of D-scores (Figure 4E).   

GeneQC’s mixture model fitting process involves k-means initialization with 

randomized initial grouping.  Cluster means, µi, are then calculated for each of the k 

clusters, followed by two iterative steps: (1) reassignment of data points to the cluster 

with the lowest distance between a data point and cluster mean, and (2) recalculation of 

cluster centers.  This process is continued until achieving the minimum within-cluster 

sum of squares:   

argmin
𝐾

∑∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐾𝑖

𝑘

𝑖=1
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After initialization using the k-means process defined above, the EM-algorithm is 

implemented to find the best fitting distributions.  Based on the preliminary 

investigations into the D-score development, two underlying distributions were selected 

for this purpose: Gamma and Gaussian.  Specifically, it is assumed that each set of D-

scores can be expressed as a mixture model distribution given by  

𝑃(𝑋|𝜃) =∑𝛽𝑘𝑌𝑘(𝑋|𝜃𝑘)

𝑘

 

with 𝛽𝑘 representing the weighting parameter of the 𝑘𝑡ℎ component, 𝑌𝑘 representing the 

probability density function of the 𝑘𝑡ℎ component of the mixture model, and 𝜃𝑘 

representing the parameters of the 𝑘𝑡ℎ component.  Considering the Gaussian distribution 

scenario, 𝑌𝑘(𝑋|𝜃𝑘) is 𝑁(𝑋|𝜇𝑘, 𝜎𝑘
2).  In this case,  

𝑀𝐿𝐸(𝜇𝑘) = �̂�𝑘 =
∑ 𝑥𝑗,𝑘
𝑁𝑘
𝑗

𝑁𝑘
 

𝑀𝐿𝐸(𝜎𝑘
2) = �̂�𝑘

2 =
∑ (𝑥𝑗,𝑘 − 𝜇𝑘)

2𝑁𝑘
𝑗

𝑁𝑘
 

𝛽𝑘 =
𝑁𝑘
𝑁

 

where 𝑥𝑗,𝑘 is the 𝑗𝑡ℎ data point in component 𝑘, 𝑁𝑘 is the number of data points in cluster 

𝑘 and 𝑁 is the total number of data points (i.e. ∑ 𝑁𝑘𝑘 = 𝑁).  After this initialization step, 

the algorithm proceeds to the Expectation (E) step.  In this step, for each data point (i.e. 

each D-score from this dataset) the posterior probability of containment within each 

cluster 𝑘𝑖 is generated by  
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𝑃(𝑥𝑗 ∈ 𝑘𝑖|𝑥𝑗) =
𝑃(𝑥𝑗|𝑥𝑗 ∈ 𝑘𝑖) 𝑃(𝑘𝑖)

𝑃(𝑥𝑗)
=
𝑁(𝑥𝑗|�̂�𝑘 , �̂�𝑘

2) (
𝑁𝑘
𝑁
)

∑ 𝛽𝑘𝑁(𝑥𝑗|�̂�𝑘, �̂�𝑘
2 )𝑘

=
𝛽𝑘𝑁(𝑥𝑗|�̂�𝑘 , �̂�𝑘

2 )

∑ 𝛽𝑘𝑁(𝑥𝑗|�̂�𝑘 , �̂�𝑘
2 )𝑘

 

After this Expectation step, the Maximization step again calculates parameters 

�̂�𝑘, �̂�𝑘
2  for each component 𝑘.  Based on the previous step,  

�̂�𝑘 =
∑ 𝑃(𝑥𝑗 ∈ 𝑘𝑖|𝑥𝑗)𝑥𝑗
𝑁
𝑗=1

∑ 𝑃(𝑥𝑗 ∈ 𝑘𝑖|𝑥𝑗)
𝑁
𝑗=1

 

�̂�𝑘
2 = 

∑ 𝑃(𝑥𝑗 ∈ 𝑘𝑖|𝑥𝑗)(𝑥𝑗 − �̂�𝑘)
2𝑁

𝑗=1

∑ 𝑃(𝑥𝑗 ∈ 𝑘𝑖|𝑥𝑗)
𝑁
𝑗=1

 

𝛽𝑘 =
∑ 𝑃(𝑥𝑗 ∈ 𝑘𝑖|𝑥𝑗)
𝑁
𝑗=1

𝑁
 

These parameter estimates are then used as the parameters for the next 

Expectation step, through which this process iteratively continues until convergence, i.e. 

no significant improvement in the log-likelihood is achieved from the previous iteration.  

This process is implemented iteratively to quickly generate a series of mixture model 

distributions for both Gamma and Gaussian distributions. 

The optimally fitted mixture model is determined using a Bayesian Information 

Criterion (BIC) with a penalization based on the number of distributions is used to 

determine the best-fitting distribution.  The BIC for a mixture distribution K is based on 

the number of sub-distributions k, the number of data points n, and the log likelihood �̂�. 

𝐵𝐼𝐶(𝐾) = 2𝑘𝑙𝑜𝑔(𝑛) − 2�̂� 

The best fitting mixture model is then used to separate each D-score into a 

category representing the severity of mapping uncertainty, thus indicating the mapping 
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uncertainty categorization for each gene (Fig 1F).  The categorizations are based on the 

intersections of the density functions representing the mixture model fitting.  If the 

Gaussian distributions provide the minimal BIC, the categorization cutoffs are calculated 

as 

𝑥 = −(
𝜇𝑖+1𝜎𝑖

2 − 𝜇𝑖𝜎𝑖+1
2

𝜎𝑖+1
2 − 𝜎𝑖

2 ) ±

√
  
  
  
  
  

(

 
 
2𝜎𝑖

2𝜎𝑖+1
2 ∙ ln (

𝜎𝑖+1
2

𝜎𝑖
2 ) − 𝜇𝑖

2𝜎𝑖+1
2 + 𝜇𝑖+1

2 𝜎𝑖
2

𝜎𝑖+1
2 − 𝜎𝑖

2

)

 
 
+ (

𝜇𝑖+1𝜎𝑖
2 − 𝜇𝑖𝜎𝑖+1

2

𝜎𝑖+1
2 − 𝜎𝑖

2 )

2

 

for 𝑖 ∈ {1,2}. 

For Gamma distributions providing the minimal BIC, a closed form solution of 

the density function intersections does not exist.  To accommodate this, an estimation 

approach is utilized.  The cutoffs are calculated as the mean value of the maximum 

sequence element for which sub-distribution 𝑖 has a higher probability density value than 

it does for sub-distribution 𝑖 + 1 and the minimum sequence element for which sub-

distribution 𝑖 + 1 has a higher probability density value than it does for sub-distribution 𝑖, 

i.e. 

𝑚𝑒𝑎𝑛 (argmax
𝑥

{𝑓𝑖(𝑥) > 𝑓𝑖+1(𝑥)} , argmin
𝑥

{𝑓𝑖(𝑥) < 𝑓𝑖+1(𝑥)}) 

𝑥 ∈ {𝑎𝑛| argmax
𝑥

𝑓𝑖(𝑥) ≤ 𝑎𝑛 ≤ 𝑎𝑛+1 ≤ argmax
𝑥

𝑓𝑖+1(𝑥)} 

resulting in two cutoff values. 

Due to the nature of mapping uncertainty and the lack of current approaches to 

evaluate this concept, GeneQC also calculates and provides an alternative likelihood 

value, as a proposed method of evaluating the mapping uncertainty categorizations 
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computationally.  This value based on the posterior probabilities of the other distributions 

and is provided to represent the certainty of the gene ID belonging to that category.  This 

value (𝑠𝑑) is computed as the maximum posterior probability of the D-score belonging to 

any other categorization distribution. 

𝑠𝑑 = max {1 − 𝐹𝑖−1(𝑑), 𝐹𝑖+1(𝑑)} 

where 𝑖 is the distribution for which 𝑑 is categorized, and 𝐹𝑗 represents the cumulative 

distribution function of distribution 𝑗. 

The final output of GeneQC includes the three extracted features (named D1, D2, 

and D3), D-score, mapping uncertainty categorization, and alternative likelihood for each 

annotated gene.  This information is combined into a concise table to provide users with 

all relevant information related to the mapping uncertainty of their read alignment data, 

allowing them to make informed decisions about further and continued analysis.  An 

example of the output file from Vitis vinifera can be found in Table 2.  For each 

annotated gene, the D-score indicates the severity of mapping uncertainty for that 

particular gene in this particular RNA-Seq data.  A higher D-score indicates a higher 

level of mapping uncertainty, with maximum levels of mapping uncertainty occurring 

around 0.5 for most samples.  Genes with relatively high D-scores have mapping 

uncertainty issues resulting in potentially unreliable expression estimates (i.e., the High 

category).  Whereas, genes with D-scores close to 0 have little to no mapping uncertainty, 

and therefore have reliable expression estimates (i.e., the Low and Medium categories). 
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Table 2: GeneQC Example Output.  The output of GeneQC from a Vitis vinifera sample, 

providing the extracted features, calculated D-score, mapping uncertainty categorization, and 

alternative likelihood value. 

Gene ID D1 D2 D3 D-score Category 
Alternative 

Likelihood 

gene17958 1439.981 0.022727 1.041393 0.022765 Low 0.106445 

gene29138 228 1 0.69897 0.509935 High 0.012702 

gene17991 2560 1 0.477121 0.498094 High 0.015754 

gene24080 321.9987 0.005017 2.060698 0.020863 Low 0.10397 

gene23209 365 0.0224 1.78533 0.027916 Low 0.113361 

gene420 157 0.04878 0.954243 0.033132 Low 0.120682 

gene15973 691.9874 0.7809523 0.47712125 0.39143804 Medium 2.15E-54 

gene24933 855 1 0.477121 0.499807 High 0.015276 

gene26458 4864 1 0.477121 0.495779 High 0.016419 

 

 

2.1.3 Application on Real Data 

In order to display the use of GeneQC, one dataset from each of the seven species 

were investigated for multi-mapping issues (Table 3).  Based on this analysis, it is evident 

that plant samples tend to have higher proportions of genes with mapping uncertainty 

than animal samples (Figure 6).  These results correlate with the fact that plant genomes 

tend to have higher levels of duplication, which is a strong contributing factor to mapping 

uncertainty.  While H. sapiens and M. musculus have lower proportions of genes with 

mapping uncertainty than the plant samples, the proportion of genes with high mapping 

uncertainty of all the genes with mapping uncertainty is much higher.   Plant species 

exhibited mapping uncertainty in an average of 12.6% of genes across the five species, 

whereas animal species exhibited this issue in an average of 5% of genes.  However, over 

half of the genes with mapping uncertainty in the animal samples fall into the “High” 

categorization, while only around one-fifth of genes with mapping uncertainty from plant 
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samples fall into this category.  The contributing factors to the higher proportion of 

“High” categorized genes for animal samples can be seen when looking at the three 

extracted features for each species. 

Table 3: GeneQC Analysis of Seven Species. This table shows the sample ID and relevant 

metrics for each of the seven datasets analyzed.  Mean values for D1, D2, D3, and D-score are 

calculated based on the genes that exhibit some level of mapping uncertainty, and D1, D2, and D3 

were normalized for comparison. 

Species Mean D1 Mean D2 Mean D3 Mean D-score 

A. thaliana 0.02 0.58 0.01 0.29 

V. vinifera 0.04 0.46 0.16 0.24 

S. lycopersicum 0.06 0.66 0.04 0.33 

P. virgatum 0.01 0.32 0.09 0.16 

T. aestivum 0.02 0.60 0.15 0.31 

H. sapiens 0.05 0.84 0.32 0.43 

M. musculus 0.06 0.84 0.28 0.42 

 

 

Figure 6: The categorization results related to the analysis of seven datasets representing five 

plant and two animal species indicating level of mapping uncertainty per gene are shown relative 

to all categorizations. 
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The analysis results for the three features and calculated D-scores for genes with 

some level of mapping uncertainty are displayed in Figures 7 and 8, respectively.  Both 

H. sapiens and M. musculus display higher levels of sequence similarity (D1), shared 

MMR proportion (D2), and degree (D3) than what is generally exhibited in the analyzed 

plant species.  These relatively high values for each feature led the higher D-scores, 

translating to a higher measure of mapping uncertainty in the animal samples compared 

with the plant samples. Mean D-score for H. sapiens and M. musculus are 0.43 and 0.42, 

respectively.  These average values are much higher than those for the analyzed plant 

samples, which are 0.29, 0.24, 0.33, 0.16, and 0.31 for A. thaliana, V. vinifera, S. 

lycopersicum, P. virgatum, and T. aestivum, respectively.   

 

Figure 7: Boxplots results of the seven analyzed species using GeneQC for the three extracted 

features of each gene. D1, D2, and D3 represent the sequence similarity, proportion of shared 

MMR, and degree weight, respectively.  Each value is shown normalized between 0 and 1.  Only 

genes with mapping uncertainty are displayed. 
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Figure 8: Derived D-scores for each gene are shown by species for each of the seven analyzed 

datasets, as calculated from the three features in Figure 7.  Higher D-scores represent higher 

levels of mapping uncertainty. 

 

2.1.4 Summary 

GeneQC is a tool used to investigate the prominent issue of mapping uncertainty 

in modern RNA-Seq analysis.  Oversight in the quality of derived gene expression 

estimates based on mapping results can have drastic consequences for all downstream 

analyses and read mapping uncertainty is a significant cause of problems in further 

analysis. While read mapping has been accepted as sufficient, entirely ignoring the 

possibility of poorly mapped reads used for further analysis can have detrimental effects 

on all manner of RNA-Seq studies.  As demonstrated in our analysis of 95 RNA-Seq 

datasets, the problem of mapping uncertainty is prominent and is displayed directly in the 

gene expression estimates.  GeneQC can provide insight into the severity of this issue for 

each annotated gene along with a statistical evaluation framework. It utilizes feature 



32 

 

extraction, elastic-net regularization, and mixture model fitting to provide researchers 

with a sense of the quality of gene expression estimates resulting from the read alignment 

step.  GeneQC provides sufficient information for researchers to make more well-

informed decisions based on the results of their RNA-Seq data analysis and to plan 

further analyses to address mapping uncertainty.     

The application of GeneQC on the seven analyzed datasets display some 

interesting differences between plant and animal samples.  Fewer genes displayed 

mapping uncertainty in the animal samples, while a higher proportion of these genes were 

categorized as “High”.  Alternatively, a much higher proportion of plant genes displayed 

mapping uncertainty, but more of these genes had moderate to low mapping uncertainty, 

relative to genes from animal samples.  Both of these scenarios display the severity of 

mapping uncertainty in modern RNA-Seq analyses.  High mapping uncertainty displayed 

in animal samples can lead to very biased expression estimates over fewer genes, while 

moderate levels of mapping uncertainty on a wider scale as displayed in plant species can 

cause widespread expression estimate biases on a lesser scale.   

Not only does GeneQC provide a method for analyzing the severity of mapping 

uncertainty in analyzed data, it also enables researchers to directly compare the 

expression estimates generated by various alignment tools using real world data.  While 

current comparisons rely on large-scale simulated data—which fails to accurately capture 

the biological complexities of real RNA-Seq data—or small-scale real data using qPCR 

or the limited validated gene sets, GeneQC allows for any type of real data to be used to 

directly compare alignment strategies through the use of D-scores and categorization 

percentages. 
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2.2 ARM: Ambiguous Read Mapping Algorithm 

 While GeneQC provides a direct framework to determine the severity of mapping 

uncertainty and reliability of expression estimates, addressing these issues involves 

application of a different approach.  Current alignment tools mainly consider local 

information in the context of the reads and reference genomes.  While the strategies 

implemented by these tools are of high quality relative to the information used, they are 

still not suitable to provide optimal alignment results, since there are still serious issues 

related to the reliability of alignment results as demonstrated in Section 2.1.  One 

approach that could rectify this issue is to consider a wider scope of information.  In 

particular, using pathway and regulatory information can provide a new level of 

information to consider when aligning reads.   

 Transcription factors are proteins that bind to specific DNA sequences and play 

important roles in controlling the expression levels of their target genes. Cis-regulatory 

motifs are short, conserved segments of DNA and are typically binding sites for these 

transcription factors [94].  These binding sites play significant roles in regulating the rate 

of transcription for nearby genes.  Hence, prediction of transcription factor binding sites 

provides a solid foundation for inferring gene regulatory mechanisms and building 

regulatory networks for a genome [95-98].   

 In order to determine more accurate expression estimations, I present an algorithm 

for ambiguous reads mapping (ARM).  ARM integrates information in the form of 

metabolic pathways, regulatory networks, alignment locations, and reads counts to 

provide negative binomial distribution-based re-alignment leading to more accurate 

expression estimates from RNA-Seq data (Figure 9).   
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Figure 9: ARM Algorithm Framework. KEGG Pathways are analyzed using the BOBRO motif 

prediction tool to develop networks of co-regulated genes (CRGs).  Simultaneously, GeneQC 

extracts information related to potential alignment locations for each read, along with 

unambiguous read counts.  The unambiguous read counts are used along with proportional 

ambiguous read counts for each CRG network to generate a negative binomial-based distribution 

for each potential alignment location.  Based on the current read count of the potential gene 

location, a probabilistic alignment for each ambiguous read is determined. 

 

2.2.1 Methods 

 ARM relies on key pieces of information from multiple sources to determine a 

sounder alignment of ambiguous reads.  First, ambiguous reads are determined through 

GeneQC as any reads belonging to genes with particular levels of mapping uncertainty.  

By default, any reads aligned to genes falling into the “High” or “Medium” mapping 

uncertainty categorizations are considered ambiguous reads; although, reads from genes 

falling into the “Low” categorization could be considered also.   
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In addition to the qualification of ambiguous reads, GeneQC also provides 

information related to potential alignment locations and read counts.  For each ambiguous 

read, a modified version of GeneQC provides a list of potential alignment locations based 

on the initial alignment results.  Furthermore, GeneQC extracts ambiguous and 

unambiguous read counts for each potential alignment location.  The unambiguous read 

counts are calculated as the total number of reads that are uniquely mapped to that 

particular location, while the unambiguous read counts are the total number of reads that 

are mapped to that location but could be mapped to another location.   

Co-regulatory networks are determined by integration of pathway information and 

motif prediction.  First, KEGG metabolic pathways [99] are collected for the specific 

species of interest.  Each of these pathways are separately analyzed using DMINDA2.0 

[100] with the backend algorithm being BOBRO [101] for motif prediction.  The genes 

that are regulated or targeted by these predicted motifs create a single co-regulatory 

network, as co-regulated gene modules tend to have more similar expression patterns; 

hence, these modules can be used to train the re-alignment model.   

For each ambiguous read, the potential alignment locations are isolated with their 

corresponding co-regulatory networks to develop a series of distributions.  Read count 

distributions have widely been understood to follow negative binomial distributions [34, 

36, 102, 103].  Following this framework, the distribution for read counts of gene j can 

then be represented using a negative binomial distribution denoted as 𝑋𝑗~𝑁𝐵(𝑟, 𝑝), 

following the probability mass function of 

𝑃(𝑋 = 𝑘) = (
𝑘 + 𝑟 − 1

𝑘
) 𝑝𝑘(1 − 𝑝)𝑟 
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This formulation represents the probability of achieving the 𝑘𝑡ℎ success on the 

𝑟 + 𝑘 = 𝑛𝑡ℎ attempt, with the independent probability of a success being 𝑝.  While this 

does not have direct applicability or interpretability within the scope of read counts, a 

conversion can shed more light.  The expected value and variance of the read count of 

gene j are respectively calculated as 𝜇𝑗 = 𝐸(𝑋𝑗) =
𝑝𝑟

1−𝑝
 and 𝜎𝑗

2 = 𝑉𝑎𝑟(𝑋𝑗) =
𝑝𝑟

(1−𝑝)2
 

[104]. Thus, with some basic algebra, we obtain the following: 

𝜇𝑗 =
𝑝𝑟

1 − 𝑝
→ (1 − 𝑝)𝜇𝑗 = 𝜇𝑗 − 𝑝𝜇𝑗 = 𝑝𝑟 → 𝜇𝑗 = 𝑝𝑟 + 𝑝𝜇𝑗 = 𝑝(𝑟 + 𝜇𝑗) 

→ 𝑝 =
𝜇𝑗

𝑟 + 𝜇𝑗
 

→ 1 − 𝑝 = 1 −
𝜇𝑗

𝑟 + 𝜇𝑗
=

𝑟

𝑟 + 𝜇𝑗
 

Using this information, an alternative formulation of the probability mass function 

can be derived as: 

𝑃(𝑋 = 𝑘) = (
𝑘 + 𝑟 − 1

𝑘
) 𝑝𝑘(1 − 𝑝)𝑟 = (

𝑘 + 𝑟 − 1

𝑘
)(

𝜇𝑗

𝑟 + 𝜇𝑗
)

𝑘

(
𝑟

𝑟 + 𝜇𝑗
)

𝑟

 

=
(𝑘 + 𝑟 − 1)!

𝑘! (𝑟 − 1)!
(

𝜇𝑗

𝑟 + 𝜇𝑗
)

𝑘

(
𝑟 + 𝜇𝑗

𝑟
)
−𝑟

=
Γ(𝑘 + 𝑟)

𝑘! Γ(𝑟)
(

𝜇𝑗

𝑟 + 𝜇𝑗
)

𝑘

(1 +
𝜇𝑗

𝑟
)
−𝑟

 

where Γ is the gamma function defined as  

Γ(𝑦) = ∫ 𝑥𝑦−1𝑒−𝑥𝑑𝑥

∞

0

 

This value is equivalent to (𝑦 − 1)! when 𝑦 is a positive integer.   
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From this formula, we can estimate 𝜇𝑗 using �̂�𝑗 = �̅� and 𝑟 using �̂� =
�̅�2

𝑠2−�̅�
, where 

�̅� is the sample mean and 𝑠2 is the sample variance [105].  With this estimation, we can 

represent the probability mass function of read counts as 

𝑃(𝑋 = 𝑘) = (
𝑘 + �̂� − 1

𝑘
) (

�̂�𝑗

�̂� + �̂�𝑗
)

𝑘

(
�̂�

�̂� + �̂�𝑗
)

�̂�

= 

(
𝑘 + (

�̅�2

𝑠2 − �̅�
) − 1

𝑘
)(

�̅�

�̅�2

𝑠2 − �̅�
+ �̅�

)

𝑘

(

�̅�2

𝑠2 − �̅�
�̅�2

𝑠2 − �̅�
+ �̅�

)

�̅�2

𝑠2−�̅�

 

 Using this distribution framework, ARM calculates the sample mean �̅� and 

sample variance 𝑠2 for each co-regulatory network.    

For a given read i, a set of n potential alignment locations is provided through 

GeneQC.  Each of the n potential locations has a co-regulatory network with a calculated 

�̅� and 𝑠2.  ARM calculates the alignment value of read i to gene location j as  

𝐴𝑖,𝑗 = 𝑃(𝑋 ≤ �̅�) − 𝑃(𝑋 ≤ 𝑘𝑗 + 1) 

where 𝑘𝑗 = 𝑢𝑗 + 𝑟𝑜𝑢𝑛𝑑(𝑐𝑗𝑎𝑗), with 𝑢𝑗  representing the unique read count, 𝑎𝑗 

representing the ambiguous read counts, 𝑐𝑗 = max {0, 1 − 2𝐷𝑗} representing the 

ambiguous count weighting factor, and 𝐷𝑗  representing the D-score calculated using 

GeneQC.  The weighting factor is used to give partial credit for ambiguously aligned 

reads for genes that have relatively low D-scores.  Genes with high D-scores—those 

close to 0.5—will be given little to no credit for ambiguously aligned reads.  Read i will 

then be aligned to the location with the highest alignment value.  Based on this 
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alignment, the unique reads count 𝑢𝑗  for potential location j is updated.  This process will 

be repeated for each ambiguous read.   

2.2.2 Application on Real Data 

In order to investigate the effectiveness of the ARM algorithm on re-alignment of 

ambiguous reads, GeneQC was used.  In particular, the pre- and post-ARM D-scores 

were evaluated for Vitis vinifera, Arabidopsis thaliana, Homo sapiens, and Mus musculus 

to determine if ARM had any appreciable or statistical effect on mapping uncertainty.  D-

scores for each gene with some level of mapping uncertainty were calculated based on 

the re-alignment using the ARM algorithm.  Since D1 represents sequence similarity that 

would not change with re-alignment, only D2 and D3 values changed.  The same model 

used to determine D-scores for the initial alignment was used to reflect an accurate 

change in the alignment quality.  D-score distributions for genes with original non-zero 

D-scores are shown in Figure 10.   
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Figure 10: D-scores for the Pre- and Post-ARM algorithm for V. vinifera, A. thaliana, H. sapiens, 

and M. musculus.  Genes included in the generation of this figure had Pre-ARM D-scores greater 

than zero, indicating some level of mapping uncertainty existing after initial alignment. 

Based on Figure 10, the effect of ARM on D-scores appears to be relatively minor 

overall.  To more rigorously evaluate the effectiveness of the ARM algorithm, a paired 

Wilcoxon signed-rank test was used.  This test acts as a nonparametric version of a paired 

t-test to determine if there is a difference in the pre- and post-ARM D-score pairings.  A 

significance level of 𝛼 = 0.10 was chosen to determine if significant improvements are 

observed.  This analysis generated 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  2.2𝑒−16 for V. vinifera, H. sapiens, and 

M. musculus samples, thus indicating a statistically significant difference in D-scores due 

to the ARM algorithm.  For A. thaliana, the generated p-value is 0.0596.   Based on this, 

it is safe to conclude that the ARM re-alignment algorithm significantly improves D-

scores.  Figure 11 displays the percent of genes that observed improvements in D-score 

through the use of the ARM algorithm.  Overall, V. vinifera saw an improvement in D-

scores for 2.08%, A. thaliana saw an improvement in 0.02%, H. sapiens saw an 

improvement in 0.35%, and M. musculus saw an improvement in 1.06%.  However, since  
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the ARM algorithm is specifically for re-alignment of ambiguous reads, it is more 

appropriate to view the performance of ARM relative to only the genes with some level 

of mapping uncertainty (i.e. D > 0).  Based on these metrics, an improvement in 13.25%, 

0.33%, 5.93%, and 25.93% of genes for V. vinifera, A. thaliana, H. sapiens, and M. 

musculus was observed, indicating a relatively large proportion of improvement.  The 

ARM algorithm appears to be less effect for the A. thaliana sample than the others, which 

is most likely due to the relatively limited network information generated through motif 

prediction.   

 

Figure 11: Percent of Genes with Improved D-scores by species.  The percent of genes that 

observed an improved D-score through the ARM algorithm are displayed here.  The red bar 

indicates the percentage relative to all genes, while the blue bar is with respect to the genes that 

had some level of mapping uncertainty to begin with (i.e. D > 0). 

   

 Additionally, of some importance is the degree to which the D-scores changed.  If 

D-scores improved for 25% of M. musculus genes but that change was very minor, the 

impact of the ARM algorithm could be questioned.  To methods were used to determine 



41 

 

the magnitude of impact, mean percent change and percent of genes that changed 

mapping uncertainty categorization as a result of the ARM algorithm.  Figure 12 displays 

the mean percent change of D-score for the four species.  Overall, the mean change for V. 

vinifera, A. thaliana, H. sapiens, and M. musculus are 9.77%, 0.28%, 5.61%, and 

24.42%, respectively.  When considering the mean percent change only for the genes that 

exhibited some change in D-score as a result of the ARM algorithm, these numbers 

increased to 75.64%, 85.4%, 95.47%, and 94.18%, respectively.  Again, A. thaliana has a 

lower overall metric than the other species, which is potentially due to the limited 

network information.  This theory is supported by the similar mean percent difference 

when considering only genes that showed some difference in post-ARM D-score.   

 

Figure 12: Mean percent change in D-score by species.  The red bar indicates percent change 

overall genes, while the blue indicates mean percent change for genes that exhibited some change 

in D-score. 

 

 Impact for the ARM algorithm can also be observed through the percent of genes 

that changed mapping uncertainty categorization (Figure 13).  8.79% of V. vinifera genes, 
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0.07% of A. thaliana genes, 5.6% of H. sapiens genes, and 22.47% of M. musculus genes 

saw a change in mapping uncertainty categorization, all of which was a reduction in the 

categorization level.  Similarly with the other metric, A. thaliana saw a relatively low 

result.  This only strengthens the need for further investigation of network generation 

methods, as discussed in Chapter 4. 

 

Figure 13: Percent of genes that changed mapping uncertainty categorization as a result of ARM 

re-alignment by species. 

   

2.2.3 Summary 

 The ARM algorithm integrates the use of external information to provide a sound 

method for re-alignment of ambiguous reads.  Information collected from GeneQC 

combined with predicted motifs and their target genes enables a probabilistic alignment 

strategy that does not rely solely on the local information from the read-level and 

reference genome.  A negative binomial distribution is used to determine an alignment 

score for each potential gene location for every ambiguous read.  Based on this alignment 
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score, the location with the highest likelihood is selected, with read counts being updated 

continuously throughout the process.   

 As demonstrated in the application of the ARM algorithm on data from V. 

vinifera, A. thaliana, H. sapiens, and M. musculus, this re-alignment strategy can 

significantly improve the quality of alignment, as determined through a statistically 

significant change observed in the pre- and post-ARM D-scores.  This indicates the 

algorithm has applicability in reducing the impact of mapping uncertainty in reference-

based RNA-Seq studies.  The results also indicate a significant portion of the genes with 

some levels of mapping uncertainty can achieve improved alignment quality through the 

use of the ARM algorithm.   

 When considering the mapping uncertainty categorizations, the ARM algorithm 

also demonstrates the capacity for improving alignment qualities.  In the M. musculus 

sample, over 20% of genes exhibiting mapping uncertainty saw a significantly enough 

reduction in mapping uncertainty to reduce their mapping uncertainty level, while no 

genes increased in mapping uncertainty categorization with over 25% of genes having a 

D-score reduction. 

 

2.3 IRIS-EDA: Integrated RNA-Seq Interpretation System for Gene Expression 

Data Analysis 

2.3.1 Gene Expression Data Analysis and Bottlenecks 

 One common investigation of RNA-Seq data is through analysis of estimated 

gene expression data. Analysis of the gene expression data is facilitated by computational 



44 

 

experience in appropriately designing the methods and experiments and conducting the 

analysis processes using one of many computing languages. This creates an obstacle for 

users with limited computational experience who want to analyze their RNA-Seq studies, 

thus there is an increased need for easy-to-use interactive expression analyses and results 

visualization [106].  

While a wide variety of computational methods can be applied to expression data 

to determine particular qualities of the data on a sample or condition level [70, 107-112], 

differential gene expression (DGE) analysis is the most commonly used one.  It allows 

researchers to identify differentially expressed genes (DEGs) across two or more 

conditions and can provide a meaningful way to attribute differences in gene expression 

levels to observed phenotypical and treatment differences. Many tools have been 

developed and optimized, such as: DESeq [46], DESeq2 [26], edgeR [36], limma [113], 

Cuffdiff [34], Cuffdiff2 [27], sleuth [114], and many others. While there have been 

substantial efforts in DGE analysis and visualization of DGE results [115-122], numerous 

pitfalls and bottlenecks persist, including experimental design implementation 

difficulties, a need for comprehensive integrated discovery-driven analyses and DGE 

tools, and the lack of functionalities and interactivity related to visualizing the analysis 

results.  

To address these bottlenecks, we have created IRIS-EDA, which is an Interactive 

RNA-Seq Interpretation System for Expression Data Analysis.  It provides a user-

friendly interactive platform to analyze gene expression data comprehensively and to 

generate interactive summary visualizations readily. In contrast to other analysis 

platforms, IRIS-EDA provides the user with a more comprehensive and multi-level 
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analysis platform. IRIS-EDA outperforms other tools in several critical areas related to 

efficiency and versatile applicability: 1) Single-cell and bulk RNA-Seq analysis 

capabilities, 2) GEO submission compatibility, 3) six useful discovery-driven and DGE 

analyses, 4) experimental design approaches through three integrated tools for DGE 

analysis, and 5) seven interactive visualizations (Figure 14A).   

 

Figure 14: IRIS-EDA integrated functions.  (A) Comparison of IRIS-EDA and six other DGE 

analyses and visualization tools; (B) Required Input Data for IRIS-EDA: (i) Condition Matrix 

indicating factor levels for each sample, (ii) Count Matrix consisting of gene expression values 

for each sample, with corresponding sample IDs matching those in the condition matrix, and (iii) 

the appropriate annotation file, which is required when using scRNA-Seq data; (C) Discovery-

driven Analyses conducted by IRIS-EDA utilizing the Condition and Count matrices, including 

(i) Interactive Correlation Analysis with pairwise expression scatterplot, (ii) Interactive heatmap 

with parallel coordinate plot, (iii) Biclustering, (iv) Principal Component Analysis and Multi-

dimensional Scaling, and (v) Sample Distance Matrix with clustering dendrogram; (D) Integrated 
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Differential Gene Expression analysis with visualizations: (i) Differential Gene Expression 

Overview with table and bar charts corresponding to up- and down-regulated gene counts, (ii) 

Interactive MA Plot with DGE results table, and (iii) Interactive Volcano Plot with DGE results 

table;  and (E) Data submission compatibility to Gene Expression Omnibus following the FAIR 

guiding principles. 

 

Focusing on these areas, IRIS-EDA provides comprehensive RNA-Seq data 

processing and analysis in a seamless workflow.  This investigative approach uses 

expression quality control and discovery-driven analyses integrated with DGE analysis 

through one of the three most common R-based DGE tools (Table 4), DESeq2, edgeR, 

and limma, all of which have demonstrated capacities for differential gene expression 

analysis It provides users with a choice of intuitive experimental design options, as well 

as, the option to upload a custom design matrix in the DGE analysis.  IRIS-EDA includes 

numerous interactive visualizations for each analysis type, enabling users to gain an 

immediate global view of their data and results or download as a high-resolution static 

image for publications.  For the first time, this tool implements a framework based on the 

FAIR Data Principles [123] to assist users with the submission of their data and results to 

NCBI’s Gene Expression Omnibus (GEO) [124]. 

Table 4: A comparative overview of citation counts for differential gene expression tools and 

servers as of March 1, 2018. Differential gene expression analytical tools (Tool) are compared 

based on the following criteria: Current number of citations (Citations), percentage of total 

citations from the analytical tools presented (Citation %), year the analytical tool was published 

(Year), approximate citations per year based on data accrued through 2017 (Citations/Year), and 

if the analytical tool has an R-based application (R-based). 

Tool Citations Citation % Year Citations/Year 
(through 2017) 

R-based? 

edgeR [36] 7175 32.30090488 2010 1025 Yes 

Cuffdiff [34] 4578 20.60955296 2012 915.6 No 

Cuffdiff2 [27] 1525 6.86534912 2013 381.25 No 

DESeq2 [46] 4355 19.60563634 2014 1451.666667 Yes 

limma [25] 2451 11.03407914 2015 1225.5 Yes 
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DEGseq [22] 1244 5.600324135 2009 155.5 Yes 

baySeq [24] 567 2.552559312 2010 81 Yes 

SAMseq [21] 279 1.256021249 2013 69.75 Yes 

NOIseq [23] 39 0.175572863 2012 7.8 Yes 

sleuth [114] 45 0.202584072 2017 45 Yes 

 

2.3.2 Methods and Implementation 

IRIS-EDA was designed to provide a comprehensive platform for gene expression 

data analysis, which includes applicable analysis of both bulk and single-cell RNA-Seq 

data.  Single-cell RNA-Seq (scRNA-Seq) data analysis is a growing area of study within 

RNA-Seq analyses and can provide unique insights into genetic occurrences within single 

cell types [125, 126].  The methods used for traditional DGE analysis have demonstrated 

applicability to scRNA-Seq DGE analysis, under certain conditions [126].  Thus, while 

designed for bulk RNA-Seq data analysis, IRIS-EDA can also facilitate discovery-driven 

and DGE analysis for scRNA-Seq data with few modifications.  Namely, analysis of 

single-cell data can be appropriately carried out by using a stringent filter cutoff based on 

a default setting of transcripts per million (TPM) > 1, especially when combined with 

either edgeR or limma, which have both been shown to have high performance on 

scRNA-Seq data [126]. 

IRIS-EDA requires two or three user-provided input files, depending on the type 

of data used (Figure 14B): (i) a gene expression estimation matrix (EEM, also referred to 

as sample count data), (ii) a condition matrix with factor levels corresponding to the 

provided samples in the EEM, and (iii) a gene length matrix indicating the base-pair 

length of each gene to be used for filtering of scRNA-Seq data only.  When uploading 

their data, users will select whether they are uploading bulk or single-cell RNA-Seq gene 
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expression data.  If using scRNA-Seq data, the additional requirement for gene length 

matrix will be shown.  Also, default parameterizations for optimized analysis for single-

cell data will be populated throughout the server.   

Once users have uploaded required data, IRIS-EDA provides two distinct analysis 

approaches.  First, users can explore their data through a comprehensive discovery-driven 

analysis approach.  This method provides users with tools and analyses for exploratory 

analysis of their expression data.  Second, users can perform differential gene expression 

(DGE) analysis on their submitted data.  In this method, users can determine which genes 

are differentially expressed using one of the three integrated DGE tools and can visualize 

the results through interactive visualizations.  Whether users choose to first analyze their 

expression data using the discovery-driven analyses or through DGE analysis, they can 

continue to investigate their data with the other approach as well, in order to provide a 

comprehensive view of their RNA-Seq expression data.   

After data upload, the two or three input files are first analyzed by IRIS-EDA 

quality control.  Input data quality is evaluated using boxplots and histograms of the read 

count distributions.  The purpose of the quality control process is to enable exploration of 

the submitted data and to verify that there are no unexpected or unexplainable 

abnormalities in the data, such as low total read counts or individual samples displaying 

strange distribution behavior.  Once users have established proper data quality, they can 

proceed to the investigative analyses provided in IRIS-EDA. 

IRIS-EDA discovery-driven analyses (Figure 14C) are various tools and 

algorithms designed to provide an investigative approach of expression data, especially 

for the situation where users do not have a strong direction or hypothesis for their data 
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analysis procedures.  These algorithms assist users in analyzing and visualizing their 

EEM input information and discovering trends in their data that may provide additional 

hypotheses for downstream analyses.  In particular, discovery-driven analyses can help 

users define a specific hypothesis within their RNA-Seq study, which can assist in 

development of experimental design methods for DGE analysis.  Discovery-driven 

analyses processes that can be performed in IRIS-EDA include: sample correlation 

analysis and pairwise expression scatterplots (Figure 14Ci), expression heatmaps (Figure 

14Cii), biclustering (Figure 14Ciii), principal component analysis and multidimensional 

scaling (Figure 14Civ), and sample distance matrix with clustering (Figure 14Cv).  The 

figures generated through the discovery-driven analysis feature of IRIS-EDA are 

provided in an interactive manner, allowing users to select specific samples or pairwise 

comparisons to further evaluate.  One such example is with the sample correlation 

analysis and pairwise scatterplots shown in Figure 14Ci.  Users can choose one cell of the 

sample correlation matrix corresponding to a comparison between two samples.  This 

will display the pairwise scatterplot for that specific comparison. The user can then scroll 

over the scatterplot and display the gene ID for an indicated data point. 

After submitting data, users can move onto the DGE phase of IRIS-EDA.  This 

analysis is performed using any one of the three provided tools: DESeq2 [46], edgeR 

[36], and limma [113].  The default tool is DESeq2, based on independent evidence 

supporting its performance [56] and RNA-Seq analysis experience, but users can also 

select one of the other two tools based on their own preference.  There are other high-

performing commonly-used DGE tools available; however, their compatibility with IRIS-

EDA excludes their use in IRIS-EDA.  For example, tools that do not utilize sample 
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count data, e.g., Sleuth, [114] or are not R-based, e.g., Cuffdiff [34], are not included due 

to compatibility issues.   

In addition to the DGE tool, the experimental design can also be specified by the 

user.  The designs provided in IRIS-EDA include two-group comparisons for analysis of 

selected pairwise comparisons, multiple factorial comparisons, classic interaction design, 

additive models for pairing or blocking of data, main effect testing (testing time-series 

data) and blocked main effect testing. Additionally, IRIS-EDA provides a method for 

users to specify their own experimental design, for the instances when the user needs a 

design not already included in IRIS-EDA.  Each of these methods has unique parameters 

to specify by the user, typically including which factors are intended for analysis and 

which specific comparisons are required.  After analyzing the data, IRIS-EDA provides 

an overview displaying the number of up- and down-regulated IDs for each indicated 

comparison, along with a histogram displaying this information (Figure 14Di).  The 

results table is also available through IRIS-EDA, along with interactive MA (Figure 

14Dii) and Volcano plots (Figure 14Diii).   

Similar to the figures generated in the Discovery-Driven Analysis section of IRIS-

EDA, the plots in the DGE section are also highly interactive.  Discovery-Driven 

Analysis features allows users to gain more specific information from their plots, 

including highlighting individual or regions of data points on the plot.  These features 

highlight the corresponding row of the DGE results table, showing users gene 

information identifying them as outliers or falling within a certain region.  Conversely, 

users can select specific gene IDs from the results table, resulting in the highlighting of 
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that gene ID’s or set of gene IDs’ data points on the corresponding plot.  This feature can 

be used to easily determine the relative location of specific genes or gene sets in the plot. 

 Results obtained from the DGE analysis section of IRIS-EDA are often not the 

end of the analysis procedures.  Based on the information collected, users may choose to 

further investigate their expression data using additional analyses provided in the 

Discovery-Driven Analyses section, such as the clustering or biclustering.  When DGE 

and Discovery-Driven analyses are combined, the analyses provide a more 

comprehensive data interpretation. 

IRIS-EDA provides users with methods for extracting content based on 

discovery-driven and DGE analyses.  All figures in the QC, Discovery-Driven Analysis, 

and DGE Analysis sections have the option for users to download as a static image in 

PDF or PNG format.  Additionally, all tables in the DGE Analysis section are 

downloadable as CSV files, with the final results table being downloaded in its entirety or 

filtered based on user-provided or default-adjusted p-value and log fold-change cutoffs.  

As part of the biclustering analysis, users can also download a list of gene IDs contained 

within the specified cluster.        

Many users are eventually interested in submitting their RNA-Seq data to a public 

repository for accessibility, but this process can be tedious and troublesome.  NCBI’s 

GEO database has specific requirements related to the data, results, and accompanying 

metadata file.  To assist users in their preparation of documents for GEO submission, 

IRIS-EDA offers an optional GEO page.  In following with the standard of set forth by 

the FAIR Data Principles [123], this page asks users to provide a limited amount of 

information that will be used, along with the previously provided condition matrix 
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information, to populate the metadata file required for GEO submission.  This populated 

metadata file will then be available for download with reformatted processed data files 

extracted from the EEM.  These two pieces of information can later be submitted with the 

original raw FASTQ-formatted RNA-Seq data to the GEO submission page.   

2.3.3 Summary 

IRIS-EDA is a platform developed for comprehensive expression data analysis, 

visualization and interpretation of both bulk and single-cell RNA-Seq data.  It is designed 

to address current bottlenecks and issues in existing expression analysis and DGE 

analysis packages.  This interactive tool implements numerous features including EEM 

quality control, discovery-driven analyses, and DGE analysis utilizing the most 

commonly used R-based DGE tools in a user-friendly, comprehensive platform.  It is 

noteworthy that IRIS-EDA provides advanced experimental design options in an intuitive 

format, while also allowing users to provide their own design matrix to facilitate efficient 

DGE analysis for a broad spectrum of users.  Each analysis section within IRIS-EDA 

provides relevant information in a highly-interactive visual format.  To further facilitate 

compatibility with the FAIR Data Principles, IRIS-EDA also provides a framework that 

will greatly assist users in formatting their results and metadata for GEO submission. It is 

our belief that this tool will support users of all computational experience levels and with 

all DGE requirements. 
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2.4 ViDGER: Visualization of Differential Gene Expression Results Using R 

2.4.1 Interpreting Differential Gene Expression Results 

 While some users can benefit from an integrated web server such as IRIS-EDA, 

others have long been using traditional methods for analyzing expression data and 

generating differential gene expression results.  Cuffdiff [27, 34], edgeR [36], and 

DESeq2 [26] are three widely-used tools to determine which genes are differentially 

expressed, based on quantifications of expressed genes derived from computational 

analyses of raw RNA-seq reads (e.g., mapping [29, 31-33, 35, 37, 40, 42, 44] and 

assembly [30, 38, 41, 43, 127, 128]). Each of the three has been shown to be among the 

highest performing tools for DGE analysis of RNA-seq data [56, 129, 130] and contribute 

to the highest number of citations for DGE tools (Table 4), representing roughly 80% of 

all cited DGE tools. However, interpreting the format and content of results files from 

each program is not entirely intuitive, especially for researchers who have limited 

computational backgrounds. One of the best ways to provide a summary of the DGE 

results is to generate figures, giving a global representation of the expression changes 

across multiple conditions. The three tools create output files sharing some information, 

such as mean gene expression across replicates for each sample, 𝑙𝑜𝑔2 fold change (lfc), 

and adjusted p-value. However, these output files have many differences in content and 

structure, which makes generating comprehensive visualizations time-intensive and 

potentially challenging task. cummeRbund [131] is an available tool to generate 

visualizations for Cuffdiff outputs but has no functionality for users of edgeR and 

DESeq2. Additionally, many differential gene expression tools have integrated methods 

to generate a limited number, variety, and quality of visualizations (Table 5).  This 
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limited functionality leaves many researchers with no readily available method to create 

visualizations for their DGE results. To remediate this issue, the developed 

R/Bioconductor [132] package ViDGER [133] assists users in generating publication-

quality visualizations from Cuffdiff, edgeR, and DESeq2 capable of providing valuable 

insight into their generated DGE results. 

Table 5: Nine functions for differential gene expression analysis results and their implementation 

in commonly-cited differential expression tools. 

Function edgeR cummeRbund DESeq2 limma DEGseq baySeq SAMseq sleuth NOIseq 

Treatment 

distrs. 

No Yes No Yes No No No Yes Yes 

FPKM/CP

M 

scatterplot 

No Yes No No No No No Yes No 

FPKM/CP

M matrix 
No Yes No No No No No No No 

DEG 

counts 

No Yes No No No No No No No 

MA plot Yes Yes Yes Yes No Yes No Yes Yes 

MA plot 

matrix 

No No No No No No No No No 

Volcano 

plot 

No Yes No Yes No No No Yes No 

Volcano 

plot matrix 

No Yes No No No No No No No 

Four-way 

plot 

No No No No No No No No No 

 

This package integrates six different types of expression-based visualizations: 

boxplots, scatterplots, DEG counts, MA plots, volcano plots, and Four-way plotsas 

shown in Figures 15 & 16. Additionally, matrices of all pair-wise comparisons can be 

generated with scatterplots, MA plots, and volcano plots. All the visualizations can be 
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classified into two tiers, with the Tier 1 functions (Figure 15) representing more basic 

information, whereas the Tier 2 functions (Figure 16) being used to derive more 

advanced information with p-values, fold changes, and mean expression values.  All 

generated figures and extracted data can then be saved and used for further purposes, 

including reports and publications. 

2.4.2 Methods and Implementation 

ViDGER is a package developed for the R environment (>= 3.3.2) and is freely 

available at https://www.bioconductor.org/packages/3.7/bioc/html/vidger.html. Several 

package dependencies are required, i.e., ggplot2 [134], ggally [135], dplyr [136], and 

tidyr [137]. Currently, it is compatible with three commonly used DGE analysis 

packages, which are Cuffdiff, edgeR, and DESeq2. Function efficiency varies depending 

on what type of RNA-seq package is used. Functions used for Cuffdiff and edgeR objects 

complete in < 1s and while DESeq2 objects can take up to 5s to complete. DESeq2 

objects take longer to process due to the nature of the object, which contains more stored 

information than the relatively simple objects for Cuffdiff and edgeR.  One exception is 

the volcano plot matrix function (vii). Cuffdiff and edgeR objects took < 10s to complete 

while DESeq2 objects took >10s. Calculations were performed on three toy data sets 

from Cuffdiff, DESeq2, and edgeR outputs. Additionally, we tested the robustness of this 

package on multiple large-scale RNA-seq datasets from human and plant samples. All 

computations were performed on a computer with a 64-bit Windows 10 operating system, 

8 GB of RAM, and an Intel Core i5-6400 processor running at 2.7 GHz.   

Nine functions are included in ViDGER, each of which is capable of using 

Cuffdiff, DESeq2, and edgeR objects. Included in the ViDGER package are three example 
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datasets representing the three DGE tool object types. Specifically, df.cuff is based on 

Cuffdiff data from the cummeRbund package [131]; df.deseq is a DESeqDataSet object 

based on gene expression data from the pasilla package [138]; df.edger is an example 

DGEList object derived from the edgeR package. In addition to the example data sets, 

ViDGER was tested on five real-world data sets, consisting of one H. sapiens, one M. 

domestica, and three V. riparia datasets, although these are not provided with the 

package.  It is important to note that the input data for this package should be the direct 

output and of one of the classes corresponding to the specific tool used (DESeqDataSet, 

DGEList or other edgeR objects, or Cuffdiff object) and not a basic matrix or data frame 

containing the results of these tools. The following examples are illustrated using the 

df.deseq object, with full demonstrations with the Cuffdiff, DESeq2, and edgeR objects 

found in the supplementary file. 

2.4.2.1 Tier 1 Functions 

  (i) vsBoxPlot visualizes 𝑙𝑜𝑔10 distributions for treatments in an experiment as box 

and whisker diagrams (Figure 15A), where only the data frame and analytical type are 

needed unless using a DESeq2 object where the factor is also required. This figure is 

useful for determining the distribution of mapped read counts for each treatment in an 

experiment and can highlight specific samples that have distributions differing 

significantly from what is expected or what is displayed with the other samples. 

Visualizing this information can provide insight into the base quality of the read 

distributions to ensure semi-consistent sample-based quality levels. The DESeq2 object 

(df.deseq) is used in the following example, and the factor variable, d.factor, for the 

treatments need to be specified.  The generated visualization is shown in Figure 15A. 



57 

 

vsBoxPlot(data = df.deseq, d.factor = 'condition', type = 'deseq') 

 

 

Figure 15: Tier 1 Functions. (A) Visualization generated by the vsBoxPlot function from the 

ViDGER package using a DESeq2 dataset, requiring a dataset, factor type, and appropriate tool 

type. Optional parameters include inclusion/exclusion of the main title, legend, and grid; (B) 

Visualization generated by the vsScatterPlot function from the ViDGER package using a DESeq2 

dataset, requiring a dataset, factor type, two factor levels, and appropriate tool type. Optional 

parameters include inclusion/exclusion of the main title and grid; (C) Visualization generated by 

the vsDEGMatrix function from the ViDGER package using a DESeq2 dataset, requiring a 

dataset, factor type, and appropriate tool type. Optional parameters include inclusion/exclusion of 

the main title, legend, and grid and specification of adjusted p-value cutoff (default is 0.05). 

 

(ii) vsScatterPlot creates a scatterplot of 𝑙𝑜𝑔10 comparison of either FPKM 

(Reads Per Kilobase of transcript per Million mapped reads) or CPM (cost per thousand 

impressions) measurements for two treatments, depending on the user-provided object 

format (Figure 15B). This function can be used to compare measurements of mapped 

reads to transcripts from two treatments, which allows for a global view of the expression 

similarity between the two selected treatments. Scatterplots that generate most data points 

falling along the diagonal indicate more similar expression patterns for the two 

treatments, whereas data points falling further from the diagonal would indicate relatively 

less similar expression levels. By stating x and y treatment variables and/or the data 
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source, we can generate a scatterplot of the pairwise x vs. y comparison.  The generated 

visualization is shown in Figure 15B. 

vsScatterPlot (x = 'treated_paired.end', y = 'untreated_paired.end', data = 
df.deseq, type ='deseq', d.factor = 'condition') 

 

(iii) vsScatterMatrix generates a matrix of scatterplots for all possible treatment 

combinations with additional distribution information. In addition to the scatterplots 

which are generated as with the vsScatterPlot function, the matrix option provides 

FPKM/CPM distributions for each sample and correlation values for each pairwise 

comparison. This approach allows for a view of each relative expression pattern and 

correlation all in one visualization. 

vsScatterMatrix(data = df.deseq, d.factor = 'condition', type = 'deseq') 

 

(iv) vsDEGMatrix visualizes the number of DEGs at a specified adjusted p-value 

for each treatment comparison (Figure 15C). It can be utilized to quantify the number of 

significantly DEGs for each comparison and provides a heatmap-based color scheme 

with a gradient to represent the relative magnitude of DEGs for each comparison. Like 

the other matrix functions, data specification and analytical type are required. The user 

can also specify an adjusted p-value which defaults to 0.05.  Methods for extracting the 

DEGs for each comparison can be found in Data Extraction.  The generated visualization 

is shown in Figure 15C. 

vsDEGMatrix(data = df.deseq, d.factor = 'condition', type='deseq') 
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2.4.2.2 Tier 2 Functions 

(v) vsMAPlot creates an MA plot, which is a scatter plot with M (log ratio) and A 

(mean average) scales, of lfc versus normalized mean counts (Figure 16A). In addition to 

the basic plotting of the data points relative to the mean expression values and lfc, the 

vsMAPlot function also integrates visualization features that allow for a better 

understanding of the data. Data points in the MA plot are colored based on thresholds for 

the adjusted p-value and lfc of the gene in the indicated comparison to provide valuable 

global interpretability. Additionally, it is inevitable with most datasets that some points 

will be extreme relative to the majority of the data, which caused problems when 

generating visualizations. To address this issue, vsMAPlot scales the window based on 

the bulk of the data and represents outliers with distinct data points, indicating the 

magnitude of the outlier based on the size of the point. This process allows for the 

visualization to present the majority of the information in a viewable, usable format that 

is robust to outliers. Visualizing the data through this approach allows for the comparison 

of two treatment groups relative to the mean expression value and lfc. The x and y 

parameters specify how the fold changes are generated (e.g., 𝐹𝐶 = 𝑙𝑜𝑔2(sample y/

sample x)).  The generated visualization is shown in Figure 16A. 

vsMAPlot(x='treated_paired.end', y='untreated_paired.end', data=df.deseq, 
d.factor='condition', type='deseq') 
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Figure 16: Tier 2 Functions. (A) Visualization generated by the vsMAPlot function from the 

ViDGER package using a DESeq2 dataset, requiring a dataset, factor type, two factor levels, and 

appropriate tool type. Optional parameters include inclusion/exclusion of the main title, legend, 

and grid, manual specification of the y-axis limits, lfc threshold (default is 1), and adjusted p-

value cutoff (default is 0.05), and specification of returning data in tabular form; (B) 

Visualization generated by the vsVolcano function from the ViDGER package using a DESeq2 

dataset, requiring a dataset, factor type, two factor levels, and appropriate tool type. Optional 

parameters include inclusion/exclusion of the main title, legend, and grid, manual specification of 

the x-axis limits, lfc threshold (default is 1), and adjusted p-value cutoff (default is 0.05), and 

specification of returning data in tabular form; (C) Visualization generated by the vsFourWay 

function from the ViDGER package using a DESeq2 dataset, requiring a dataset, factor type, two 

factor levels, reference factor level, and appropriate tool type. Optional parameters include 

inclusion/exclusion of the main title, legend, and grid, manual specification of the x- and y-axis 

limits, lfc threshold (default is 1), and adjusted p-value cutoff (default is 0.05), and specification 

or returning data in tabular form. 

 

(vi) vsMAMatrix generates a matrix of MA plots for all possible pairwise 

treatment comparisons. This process, as with the other matrix options, allows users to 

visualize all their treatment-based comparisons in one figure. This matrix option also 

includes counts for each figure based on lfc and adjusted p-value thresholds, which can 

be specified by the user or revert to the default 1 and 0.05, respectively.   

vsMAMatrix(data = df.deseq, d.factor = 'condition’, type ='deseq') 

 

(vii) vsVolcano creates a volcano plot for two treatments comparison by plotting 

the −𝑙𝑜𝑔10(p-value) against the lfc (Figure 16B). As with the vsMAPlot function, the 
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vsVolcano function utilizes coloring schemes to indicate the significance of magnitude of 

differential expression for the individual data points. Additionally, this function integrates 

the same data point and sizing structure to focus the plot window on the majority of the 

data, indicating outliers in this format.   The generated visualization is shown in Figure 

16B. 

vsVolcano(x = 'treated_paired.end', y = 'untreated_paired.end', data = df.deseq, 
d.factor = 'condition', type = 'deseq') 
 

(viii) vsVolcanoMatrix generates a matrix of volcano plots for all possible 

pairwise treatment comparison. This process, as with the other matrix options, allows 

users to visualize all their treatment-based comparisons in one figure. Additionally, to 

provide a more comprehensive view with a single figure, we included a count for each 

separate Volcano plot based on the number of data points in each section as specified by 

the lfc and adjusted p-value thresholds. Although this option may have experience limited 

use, it would be useful in situations where users wish to show mass similarity across all 

comparisons, highlight the individual or limited deviations, or display situations where 

the comparisons vary widely. 

vsVolcanoMatrix(data = df.deseq, d.factor = 'condition', type ='deseq') 

 

(ix) vsFourWay creates a scatter plot comparing the lfc between two samples and 

one control (Figure 16C). This approach is most useful when there are multiple 

comparisons being made against a specific control or relative sample. Using this function, 

a plot can be generated for visualizing the expression scatterplots, relative to another 
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expression scatterplot.  As with the other two main Tier 2 functions, vsFourWay 

integrates data point features to highlight significant adjusted p-values, over-threshold lfc, 

and outliers. In this function, x and y arguments are needed, and a control level is also 

required. Although it is possible to generate a matrix option for the FourWay plot, the 

authors decided against this because of two main issues.  First, the vsFourWay function 

generates a significant amount of information in a single figure, with nine distinct 

sections representing nine distinct combinations of relative lfc. Creating a matrix 

visualization with this figure would then force each FourWay plot to be too small to 

collect meaningful interpretations from, thus counteracting the purpose of the package.  

Secondly, the vsFourWay function already requires three factor levels for comparison—

one reference level and two comparison levels. A matrix option for this functionality 

would then require a minimum of four factor levels, with at least five factor levels being 

preferred to generate a fully-informative matrix option. This requirement would 

potentially put most applications out of the scope of the matrix option for the vsFourWay 

function.  The generated visualization is shown in Figure 16C. 

vsFourWay(x = 'treated_paired.end', y = 'untreated_single.end', control = 
'untreated_paired.end', data = df.deseq, d.factor = 'condition', type = 'deseq') 

 

It is noteworthy that functions (v), (vii), and (ix) can return interpreting results 

shown in the visualizations for further analysis and interpretation (Table 6). The data 

extracted contains all relevant information used to generate the specified figure, including 

mean expression for the x, y, and control (in the vsFourWay function) factor levels, x- 

and y-axis values for the relevant figure, an ‘isDE’ column indicating whether the gene 

ID is differentially expressed based on the adjusted p-value threshold, ‘color’ indicating 
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the color of the data point in the figure—which corresponds to the lfc and adjusted p-

value thresholds—and ‘size’ indicating whether the data point is on the plot or an outlier 

and magnitude of that outlier. The data extraction is accomplished by setting the 

data.return parameter to TRUE. 

Table 6: ViDGER Data Extraction.  Data extraction from the vsVolcano function from the 

ViDGER package using a DESeq2 dataset.  This is the same parameterization as used in Figure 

16B, except data.return = TRUE. This modification will allow the user to extract relevant data 

from the figure. In this case, the extracted data frame includes mean expression values for the x 

and y factor levels, log2 fold change (logFC), p-value (pval), adjusted p-value (padj), ‘isDE’ 

which represents whether the differential expression is significant, ‘color’ which signifies the 

color of the data point corresponding to the adjusted p-value and lfc thresholds, and ‘size’ which 

indicates whether the data point is within the plot frame or an outlier of a particular magnitude. 

 

x y logFC pval padj isDE color size 

FBgn0000008 7.92227 8.32225 0.07105 0.828806 0.974685 FALSE grey sub 

FBgn0000017 318.957 383.285 0.26505 0.090161 0.467683 FALSE grey sub 

FBgn0000018 30.2586 31.2699 0.04743 0.801233 0.971289 FALSE grey sub 

FBgn0000032 72.3419 72.9032 0.01115 0.949842 0.993072 FALSE grey sub 

FBgn0000037 1.53958 0.81229 -0.9224 0.231142 0.700057 FALSE grey sub 

FBgn0000042 7928.52 5600.30 -0.5015 0.000611 0.013572 TRUE green sub 

FBgn0000043 3273.93 1943.28 -0.7525 7.96E-08 5.68E-06 TRUE green sub 

FBgn0000044 2.22202 1.59958 -0.4741 0.456526 0.872166 FALSE grey sub 

FBgn0000046 2.23561 1.53025 -0.546 0.439278 0.865892 FALSE grey sub 

FBgn0000052 187.154 201.437 0.10610 0.498756 0.889058 FALSE grey sub 

FBgn0000053 200.419 161.082 -0.3152 0.03254 0.260826 FALSE grey sub 

FBgn0000054 50.2460 52.843 0.0727 0.675076 0.949335 FALSE grey sub 

FBgn0000057 56.8849 55.5293 -0.0347 0.831612 0.974685 FALSE grey sub 

FBgn0000063 34.4397 27.5858 -0.3201 0.084865 0.453512 FALSE grey sub 

FBgn0000064 738.380 597.975 -0.3042 0.010905 0.125567 FALSE grey sub 

FBgn0000071 54.9849 9.35883 -2.5546 1.98E-27 1.17E-24 TRUE blue t4 

FBgn0000077 17.9897 17.5863 -0.0327 0.898181 0.985072 FALSE grey sub 
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2.4.3 Summary 

Differentially expressed genes are frequently used to determine genotypical 

differences between two or more conditions of cells in support of specific hypothesis-

driven studies. Interpretation of this information can benefit significantly from the 

graphical representation of results files. The ViDGER R/Bioconductor package to assists 

in the process of generating publication quality figures of DGE results files from Cuffdiff, 

DESeq2, and edgeR. Through the use of the nine integrated functions, this package will 

greatly assist biologists and bioinformaticians in their interpretations of DGE results. 

Utilizing this package will provide a straightforward method for comprehensively 

viewing differentially expressed genes between samples of interest and allows 

researchers to generate usable figures for furthered dissemination of their differential 

gene expression studies. 

 

CHAPTER 3: Collaborative Efforts 

3.1 Computational Tool Collaborations 

3.1.1 Review of Motif Prediction Methods and DMINDA2.0 

Cis-regulatory motifs—motifs for short—are short, conserved DNA sequences, 

typically 8-20 bps long [94]. Often times, motifs act as transcription factor binding sites 

(TFBSs) and play significant roles in the rate of transcription regulation of nearby target 

genes and further control their expression levels. Hence, de-novo motif prediction and 

FBgn0000078 1.74364 3.47347 0.99427 0.058949 0.37159 FALSE grey sub 

FBgn0000079 9.72273 21.8755 1.16988 3.45E-06 0.000156 TRUE blue sub 
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related analyses, such as motif scan and comparison, provide a solid foundation for the 

inference of gene transcriptional regulatory mechanisms in both prokaryotic and 

eukaryotic organisms [139, 140]. Specifically, these techniques can also contribute 

substantially to system-level studies (e.g. regulon modeling, regulatory network 

construction such as that used in the ARM algorithm, etc.) [139, 141, 142]. Due to the 

rapid increase in size and availability of sequenced genomes combined with 

improvements in advanced biotechnologies, numerous computational methods for 

identification of motifs have been developed to extract information from query DNA 

sequences.  Even with the substantial efforts in this area, motif characteristics (high 

variation and short length) still pose a great challenge [143].   

 Identification of motifs from provided promoters has been one of the most 

prevalent methods since the 1980s, with various tools and algorithms having been 

developed for this purpose [144-151]. Developed tools for this purpose include 

AlignACE, BioProspector, CONSENSUS, MDscan, MEME, CUBIC, MDscan, and 

BOBRO [148, 149, 151-162], some of which have been implemented successfully for 

construction of regulatory networks [139, 142].  Even with these variety of methods and 

approaches, motif prediction still suffers from high false positive rates [147, 163-165].  

To address this specific issue, algorithms utilizing phylogenetic footprinting [166, 167] 

were also developed, including PhyloGibbs, Footprinter, PhyloCon and MicroFootprinter 

[152, 168-172].  However, the lack of leveraging the phylogenetic relationship between 

genome and query sequences led to less-than-stellar performance of many of these tools 

[159], which resulted in many motif instances being not conserved enough to properly 

carry out motif prediction [173-175].   
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 With the increased development of high-throughput biotechnologies [9, 176-184], 

in particular ChIP-Seq data, a new level of information is available for motif prediction 

and analyses.  Utilization of this data has potential benefits for motif prediction based on 

peak-calling methods [185-197], like those found in tools such as SPP [185], 

MACS[198], CisGenome [199], FindPeaks [200], QuEST [186] and PeakRanger [201].  

While the use of larger-scale data and improved methods have benefited motif prediction, 

an algorithmic analysis of current algorithms (FMotif [202], DREME [197], RSAT peak-

motifs [203], SIOMICS [204, 205], and Discrover [206]) shows that there are still areas 

for improvement.  In particular, an integrated web server for analysis of ChIP-Seq data 

related to motif prediction and analyses is essential [143]. 

 One such tool that addresses the issue of an integrated web server for motif 

prediction is DMINDA2.0 [100], which is an updated version of the DMINDA web 

server [207].  This tool integrates de-novo motif finding using BOBRO [101] or 

phylogenetic footprinting tool MP3 [208], scanning, comparison, and co-occurrence 

analysis in a web server format (Figure 17).  DMINDA2.0 allows users to upload DNA 

sequences or select species-specific sequences from one of the linked databases.  Motif 

prediction is performed on the loaded sequences using BOBRO or MP3 to identify 

statistically significant motifs from a set of provided promoters.  BOBRO has been 

demonstrated to have higher performance in terms of both efficiency and accuracy than 

any other high-performing motif prediction tool [209].  Motif scanning searches provided 

genomic sequences for all instances of a query motif.  Motif comparison performs a 

statistical comparison of the similarity of queried motifs and clusters similar motifs into 

groups.  Motif co-occurrence analysis identifies motifs that co-occur in the provided 
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sequences to determine motifs that potentially regulate the same set of genes.  The 

information obtained from motif prediction and analyses for prokaryotic genomes can 

then be used to predict regulons, which are co-regulated groups of genes which contribute 

to transcriptional regulation.  In addition to the provided analysis results, the predicted 

motifs and regulons are presented using motif logos and Cytoscape-like visualizations, 

respectively.   

 

3.1.2 RECTA: Regulon Identification Based on Comparative Genomics and 

Transcriptomics Analysis 

 Elucidation of gene regulatory network hierarchies offers understanding into the 

coordination of stress response capabilities for microbial species [210-213].   One 

specific way to investigate these hierarchies is through regulon prediction.  Regulons are 
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co-regulated gene groups that contribute to transcription regulation in microbial genomes.  

The ability to detect and understand these gene groups has the potential to aid in the 

deeper understanding of regulatory mechanisms within prokaryotic cells.   

 There are three main ways to predict regulons.  The first method combines a 

comparative genomic strategy with motif profiling to identify related regulon members 

for existing regulons, followed by a study of systematic regulation [214, 215].  The 

second method integrates motif analysis strategies, namely motif comparison and co-

occurrence analysis.  This approach identifies significantly enriched motif candidates 

which are then assembled into regulons [162, 216].  The third approach, ab initio regulon 

prediction through de novo motif finding methods, uses phylogenetic footprinting 

strategies combined with reference verification [166, 169, 217].  This process utilizes a 

parallel search of known regulons or transcription factors from relevant species to predict 

regulons in the target organism.   

 In utilization of these methods, a regulon prediction pipeline was developed.  

RECTA, regulon identification based on comparative genomics and transcriptomics 

analysis, provides a framework to determine gene regulatory networks in microbial 

species [218].  This framework integrates six steps: (1) co-expressed gene modules and 

differentially expressed genes are generated from expression data using hierarchical 

clustering and a Wilcoxon test, respectively.   Simultaneously, the DOOR2 database 

[219] is used to predict operons from respective genome sequences, with operons being 

assigned to each co-expression module; (2) 300bp upstream of the promoter for each co-

expression module is used to identify motifs using DMINDA2.0 [100]; (3) Clustering and 

similarity comparisons are used to reassemble  the top five most significant motifs in 
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each co-expression module; (4)  the MEME suite [220] is used to compare known 

transcription factor binding sites with predicted motifs, while BLAST [89] is used to map 

transcription factor binding sites to the appropriate genome; (5) experimentally validated 

functional-specific genes from similar organisms are mapped to the same genome using 

BLAST; and (6) the relationship between functional gene modules and identified 

regulons is established to determine an overall functional mechanism.  

 To fully develop the regulon prediction pipeline and test its application power, 

RECTA was used to develop and acid stress response regulatory network for Lactococcus 

lactis (Figure 18).  This species has demonstrated capabilities for vaccine and protein 

delivery in immunological treatments of diabetes [221], malaria [222], tumors [223, 224] 

and various infections [225].  The relatively high acid stress response for L. lactis 

provides the result of protecting the cell against destruction inside animal bodies, 

something that is beneficial for oral drug therapies [226].   Its dynamic evolved stress 

response system has led to L. lactis being a promising species to study with respect to 

microbial response to harsh environments [210, 227, 228].  In particular, acid stress 

response is an area of specific interest due to its connection to alarmones [229], leading to 

a detectible change in cellular regulation [230].   
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To investigate this acid response system in terms of regulon prediction, RECTA 

was applied to the L. lactis MG1363 genome sequence from NCBI’s GenBank [231].  

Microarray from eight varying acid response conditions was collected from NCBI’s GEO 

[124].  DOOR2 was applied to the MG1363 genome sequence, resulting in 1565 

Figure 18: RECTA Framework. The flowchart of constructing global ASR transcriptional 

network in MG1363. Step 1: microarray data was used to generate co-expressed gene clusters and 

DEGs, and MG1363 genome sequence was used to find operons. Step 2: a motif finding progress 

was carried out to identify all statistically significant motifs in each of the CEMs. Step 3: a 

regulon finding procedure was designed to identify all the possible regulon candidates encoded in 

the genome based on motif comparison and clustering. Step 4: the motifs of each of these 

regulons were compared to known TFBSs, and DGE analysis between low pH condition and 

normal condition was used to figure out the ASR-related regulons. Step 5: regulon validation 

based on literature information verified the significant putative regulons and expanded the results 

to some insufficiently significant regulons. Step 6: the ASR-related GRN in MG1363 was 

predicted and described with eight regulons, nine functional modules, and 33 genes. The 

combination of the above information forms a genome-scale regulatory network constructed for 

ASR. 
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identified operons consisting of 2439 coding genes.  Co-expression analysis was used to 

group the operons into 124 co-expressed clusters.  Of the 124 clusters, the two with more 

than 200 operons were removed to reduce the false positive rate.  The BOBRO algorithm 

was used through the DMINDA2.0 server to analyze 300bps upstream of the start sites of 

each operon.  The top five most significant motifs were selected from each cluster, 

resulting in 610 identified motifs.  Using a similarity cutoff of 0.8, motif comparison was 

used to identify 51 motif clusters.  These 51 motif clusters indicate 51 predicted regulons.   

Of the 51 predicted regulons, 14 contained motifs matching known TFBSs 

through TOMTOM from the MEME suite.  The transcription factors corresponding to 

these known TFBSs were mapped to the MG1363 genome using BLAST to determine 

the transcription factors that have been identified to regulate the respective regulons.  

Consequently, eight known transcription factors (spo0A, lhfB, GAL80, CovR, c4494, 

ihfA, CovR, and RHE_PF00288) were successfully mapped to the MG1363 genome.  

Considerations of the differentially expressed genes obtained from the microarray data 

and their containment within particular regulons, five regulons were determined to have 

involvement to the gene regulatory network in MG1363.  Additionally, literature was 

used to verify the identified regulons, resulting in eight total regulons being linked to the 

acid stress response mechanism for MG1363. 

 

3.1.3 Metagenomic and Metatranscriptomic Analysis & the Integrated Meta-Function 

Pipeline 

 Microbial communities are found in numerous environments, including the 

human gut, oceans, soils, and other animals [232].  Even within the same environment, 
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microbial communities can be quite diverse in their complexity and competition.  

Studying microbes and their respective environments has become increasingly common, 

especially due to the connection of microbial communities with human diseases such as 

obesity, inflammatory bowel disease, and lean or obese twins  [233, 234] and observed 

evidence connecting microbial communities with human physiology [235, 236].  The use 

of sequencing technologies to study microbial genomes, referred to as microbiomes, 

provides a unique angle in which to view microbial communities and to study their 

underlying mechanisms in response to and affecting environmental changes.    

 In attempting to understand microbiomes, multiple levels of information are 

collected, including 16S ribosomal RNA analysis, whole-genome shotgun (metagenome) 

analysis, and whole-transcriptome shotgun (metatranscriptome) analysis.  These analyses 

use rRNA to identify microbes within a microbial community, use genetic information to 

detect microbial identities—sometimes even down identification of particular strains—

and observe gene expression patterns and functional differences in communities, 

respectfully.   

 Numerous studies utilize complex levels of information to gain a broad 

understanding of the interactions between microbial communities and their environments.  

Studies such as the Human Microbiome Project (HMP) [237], Interactive HMP [238], 

Metagenomics of the Human Intestinal Tract [233] investigate microbiomes with respect 

to human hosts, generally in one particular context such as the intestinal tract.  The Earth 

Microbiome Project (EMP) similarly analyzes microbial ecosystems, specifically 

studying the distribution, diversity, and structure of the communities.  So far, EMP has 

collected over 30,000 samples from various ecosystems and hosts around the world 
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[239].  The increased understanding of and interest in microbial communities and their 

respective microbiomes has directly led to the more widespread application of 

sequencing procedures in metagenomics and metatranscriptomics [240-243].   

 Numerous tools have been developed for the purpose of analyzing metagenomic 

and metatranscriptomic data, especially in the areas of species-level [244-249] and strain-

level metagenomics analysis [250-254]and metatranscriptomic analysis [255-259].  

While these tools can individually identify microbial composition or gene expression 

information, they cannot simultaneously perform both functions.  Incorporation of both 

approaches allows for a better understanding of the mechanisms of the microbial 

community from a gene expression-level and species and/or strain composition-level.  In 

pursuit of this approach, the Integrated Meta-Function (IMF) pipeline was developed 

(Figure 19A) [260].  This framework takes input metagenomic and metatranscriptomic 

sequencing data and incorporates various functional databases to efficiently and 

effectively map the input data together, generating a comprehensive view of a particular 

microbiome.  Databases integrated into this framework include The Comprehensive 

Antibiotic Resistance Database (CARD) [261],  Antibiotic Resistance Genes Database 

(ARDB) [262], DrugBank [263], and the Human genome.   
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Figure 19: (A) Workflow of the IMF pipeline. IMF utilizes reference databases, e.g., DrugBank, 

KEGG, CARD, PATRIC, VFDB, ARDB and TTD, to map with input gene sets. It can produce 

mapped DNA and RNA read counts for each of the given genes, in support of other downstream 

analyses. (B) Flow chart of pipeline construction of ARGMap. It takes metagenomic or 

metatranscriptomic sequencing data pair-ended file in fastq format as input files. If the input files 

are not in fastq format, user should convert them into the fastq format. For example, if the 

original formats are in BAM format, user should use the function “bamToFastq” in Bedtools to 

convert them into fastq formats. Our pipeline will download CARD database by default. User will 

obtain CARD reference database in fasta format in the CARD directory. Then, it will utilize 

Bowtie2 tool to map between the CARD reference database and input files to generate mapping 

results in BAM format. Finally, it will use Bedtools to generate read counts tables. 

 

 Application of the IMF pipeline with respect to antibiotic resistance genes 

resulted in the generation of a process-specific Antibiotic Resistance Gene Mapping 
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(ARGMap) pipeline (Figure 19B).  This particular pipeline integrates antibiotic resistance 

databases, such as CARD, to analyze input metagenomic and metatranscriptomic data.  

The databases are used to identify antibiotic resistance genes, which are in turn used to 

identify the particular expression level and coverage of these genes in the provided data 

using optimized mapping tools.  The analysis pipeline results in a table of read counts and 

coverage for the respective antibiotic resistance genes for the microbial community of 

interest.  The application of this tool has the potential to greatly impact pharmacogenetic 

studies.  While ARGMap is a pipeline specifically designed for analysis of metagenomic 

and metatranscriptomic data analysis with respect to antibiotic resistance genes, the IMF 

pipeline can be used as a framework for any other functional gene sets, such as drug 

targets, virulence factors, human homologs, among others.   

 

3.2 Applications of Data Analysis in Collaborations 

3.2.1 Human Cancer Cells  

 Analysis of human cancer cells to develop a deeper understanding of the genetic 

and transcriptomic mechanisms that make cancers so difficult to prevent and treat have 

been a popular area of interest for a wide variety of researchers [264-271].  One particular 

method of using RNA-Seq data on cancer samples is to analyze the gene expression 

differences observed through various treatments.  BIO, which is a small molecule 

inhibitor of the glycogen synthase kinase GSK3 [272], was used to treat HCT116 cells—

a colorectal cancer cell line.  Of interest in this study was the gene-level differences 

observed based on the BIO dosage over time, specifically the regulation of the L1 

promoter that is prominent in numerous cancer types [273-280].   
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Two BIO dosages (0.4 µM and 1 µM) were used on the cancerous cells, with 

samples collected at 6 hours (6h) and 12 hours (12h), with a set of control samples of 0 

µM collected at 6 hours.  Overall, 10 samples were analyzed: 2 replicates each of control 

at 6h, 0.4 µM at 6h, 1 µM at 6h, 0.4 µM at 12h, and 1 µM at 12h.  To identify 

transcriptomic differences in the T166 versus the M26 strains, a computational pipeline 

was used consisting of: (1) read quality check using FastQC [20]; (2) data trimming using 

Trim Galore! [281]; (3) alignment of trimmed reads to indexed reference genome—

collected from the HISAT2 website—using HISAT2 [40]; (4) read count quantification 

using HTSeq [45]; and (5) differential expression analysis using DESeq2 [46] in R.   

Two levels of comparison were made to determine transcriptomic differences 

from the data: (1) pairwise dosage effect and (2) pairwise time effect.  Dosage effects 

were determined as control vs. 0.4 µM at 6h, control vs. 1 µM at 6h, 0.4 µM vs. 1 µM at 

6h, and 0.4 µM vs. 1 µM at 12h.  Time effects were determined as 6h vs. 12h of 0.4 µM 

and 6h vs. 12h of 1 µM.  Each comparison was a pairwise analysis using a Wald Test 

approach, which performs a parametric significance test of the selected factor level using 

a negative binomial distribution.   

 DESeq2 compiles a results file of the gene ID, mean expression value, 

log2 fold-change & standard error, statistical test value, p-value, and adjusted p-value.  

DESeq2 adjusts the p-values to account for multiple testing using an FDR method.  For 

this study, genes were considered differentially expressed if their adjusted p-value was 

below 0.05.  To account for significant statistical differences resulting from low sample 

variances, an additional measure was considered to identify genes that are statistically 

differentially expressed.  This designation requires both a |log2 fold-change| > 1 and 
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adjusted p-value < 0.05.  This classification provides genes that have a large fold-change 

and a statistically significant difference.    

Results of the analysis are shown in Table 7.  Comparison (1) provides insight 

into the transcript-level differences based on BIO dosage at both time points.  As 

expected, there were a fair number of transcripts differentially expressed between the 

control group and 0.4 µM and roughly twice as many between the control and 1 µM.  

Interestingly, after 6 hours, there were no differentially expressed transcripts between two 

dosage levels.  However, at 12 hours, there were a relatively large number of 

differentially expressed transcripts between 0.4 µM and 1 µM.   

Comparison (2) is a time comparison for the two dosages.  0.4 µM showed a large 

number of transcripts that are differentially expressed between 6 hours and 12 hours, with 

far fewer transcripts exhibiting differential expression for the 1 µM dosage. 

Table 7: Human HCT116 Cancer Cell Results.  RNA-Seq analysis results for differentially 

expressed transcripts of the HCT116 cancer cell in human based on two dosage levels, two time 

points, and one control.  Up- and down-regulated transcript counts are provided based on log2 

fold-change > 1 and log2 fold-change < -1, respectively, for transcripts with adjusted p-value < 

0.05. 

Comparison Up-regulated Down-regulated Total 

(1) Dosage 
6h 

Control vs. 0.4 µM 34 8 42 

Control vs. 1 µM 69 18 87 

0.4 µM vs. 1 µM 0 0 0 

12h 0.4 µM vs. 1 µM 110 143 253 

(2) Time 
0.4 µM 6h vs. 12h  306 174 480 

1 µM 6h vs. 12h 17 3 20 
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3.2.2 Malus domestica 

 Malus domestica is the domesticated apple tree and is grown worldwide.  This 

species has resulted from a hybridization between its primary wild ancestor, Malus 

sieversii, the European crab apple, Malus sylvestris, and minor contributions from other 

wild Malus species [282, 283].  As a popular crop within the United States, it is of 

specific interest to the United States Department of Agriculture’s Agricultural Research 

Service (USDA-ARS).  Data collected through the USDA Risk Management Agency 

shows that insured losses for apple crops were $157,177,390.  Much of these claimed 

losses occurred in the spring time.  In particular years (2007, 2010, 2012, 2014, 2016, & 

2017), spring freezes killed off large amounts of apple crops.  Particularly, 2007 and 

2017 spring freezes each resulted in $1 billion in losses from all crops [284].    In these 

scenarios, unseasonably warm temperatures in early spring induce apple trees to exit 

dormancy and de-acclimate, i.e., lose cold hardiness.  Subsequently, low temperature 

events several weeks later arrive when flowers and early vegetative growth have little to 

no cold hardiness or frost tolerance [285].  A modified strain of M. domestica T166 has 

been bred to achieve improvements in cold-hardiness.  To investigate the genetic 

processes that may be related to cold hardiness and dormancy, specific apple crop 

samples were taken, sequenced and analyzed.   

The data analyzed consists of 24 datasets, 12 for the M26 wild-type strain and 12 

for the T166 transgenic strain of M. domestica.  Each strain was sampled three times each 

during February, March, April, and July.  After the 24 datasets were sequenced, each was 

run through an optimized RNA-Seq pipeline to determine statistically significant 
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differences in gene expression for particular comparisons.  The v1.0 reference genome 

and annotation obtained from Phytozome [286] were used.   

To identify genetic differences in the T166 versus the M26 strains, a 

computational pipeline consisting of optimized tools was developed for this purpose.  

The pipeline consists of: (1) read quality check using FastQC [20]; (2) data trimming 

using Btrim [28]; (3) reference genome indexing using HISAT2-build [40]; (4) alignment 

of trimmed reads to indexed reference genome using HISAT2 [40]; (5) read count 

quantification using HTSeq [45]; and (6) differential expression analysis using DESeq2 

[46] in R.   

Four distinct comparisons were considered for differential expression: (1) 

pairwise comparisons of M26 versus T166 at each time point; (2) time main effect for 

each M26 and T166 separately; (3) Pairwise comparisons of each consecutive time point 

for M26 and T166; and (4) Interaction effect of strain and time.  The four comparison 

levels provide a total of 13 comparisons, with comparison (1) being responsible for four, 

comparison (2) being responsible for two, comparison (3) being responsible for six, and 

comparison (4) being responsible for one.  These four levels of comparisons provide a 

comprehensive view of the changes in expression corresponding to strain (comparison 1) 

and time differences (comparisons 2 & 3) and which genes have expression patterns that 

differ due to strain over the course of the entire study (comparison 4).   

The specific results for differential gene expression were developed using 

DESeq2, which implements a Wald Test or Likelihood Ratio Test to determine which 

genes have different expressions for the respective comparison.  The pairwise 

comparisons (1 & 3) utilize the Wald Test approach. Significant p-values result from the 



80 

 

factor being determined as significant in the Wald Test.  The more complex comparisons 

(2 & 4) utilize a Likelihood Ratio Test, which compares a full linear model considering 

appropriate additive and interactive effects and compares the fit against a reduced linear 

model with the selected factor(s) removed.  Significant p-values result from a significant 

fitted improvement in the full model over the reduced model.   

Results of this analysis are shown in Table 8. The four distinct comparisons each 

provide a different level of information.  Comparison (1), M26 vs. T166 by month, gives 

a direct view of the genetic differences in the strains at particular time points.  The 

comparisons during late winter (February and March) are similar with between one- and 

two-thousand differentially expressed genes each.  The April comparison indicates the 

highest level of difference between the two strains, with over four-thousand differentially 

expressed genes.  This comparison indicates that particular genetic differences are high at 

the time when temperatures return to below freezing, which may attribute to the 

differences observed in crop survival. 

Table 8: Malus domestica Results.  Results for the analysis of M. domestica from two distinct 

strains.  Comparisons include strain-strain, time main effect, month-to-month by strain, and time-

strain interaction comparisons.  Up- and down-regulated gene counts are provided based on log2 

fold-change > 1 and log2 fold-change < -1, respectively, for genes with adjusted p-value < 0.05. 

Comparison Up-regulated Down-regulated Total 

(1) M26 vs. T166 

February 498 1189 1687 

March 734 384 1118 

April 1834 2177 4011 

July 146 56 202 

(2) Time Main 

Effect 

M26 7075 4394 11469 

T166 7090 4007 11097 

(3) Month-to-

Month 

M26 

Feb-Mar 1004 1809 2813 

Mar-Apr 3399 2336 5735 

Apr-Jul 3906 2043 5949 

T166 
Feb-Mar 255 275 530 

Mar-Apr 3096 2419 5515 
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Apr-Jul 5918 4225 10143 

(4) Time-Strain Interaction 1888 895 2783 

 

Comparison (2) tests for the effect of time on expression level over time for each 

individual strain.  Genes being identified as differentially expressed would be any that 

have expression levels that significantly change over time.  The number of differentially 

expressed genes for each strain are similar (11469 and 11097).  This does not mean 

similar expression patterns over time, just that a similar number of genes have significant 

changes in expression over this time period, which is expected. 

Comparison (3) provides insight into the expression changes from month to 

month for each strain. One of the most striking differences of this comparison lies in the 

number of differentially expressed genes in the Feb-Mar comparison for each strain 

relative to the Apr-Jul comparison.  The M26 wild-type strain has higher levels of 

differentially expressed genes in the earlier months, indicating more changes in genetic 

expression earlier in the spring.  The T166 transgenic strain has relatively low activity in 

the early spring, while it shows more activity in the changes to genetic expression in early 

summer.  This may indicate particularities contributing to T166’s resilience to 

temperature fluctuations in early spring. 

Comparison (4) details which genes have significant interaction effects between 

strain and month.  Any genes that are differentially expressed in this comparison indicate 

a significant difference in the expression over time between strains.  In other words, these 

genes have different expression patterns, depending on the strain.  These genes would be 

the most important to investigate further, as they have been indicated to differ over the 

course of time between the M26 wild-type and T166 transgenic strains.        
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CHAPTER 4: Discussion and Further Research 

 The developed algorithms and tools discussed in Chapter 2 of this dissertation 

address particular deficiencies in current RNA-Seq analysis approaches.  GeneQC is a 

first-of-its-kind tool used to analyze the quality of read alignment, particularly with 

respect to the severity of mapping uncertainty for each annotated gene.  This tool 

provides a method for researchers to evaluate their expression estimates through 

integration of multi-level features and machine learning approaches.  Without evaluation 

on this level, potential biases may be inserted into analyses, directly affecting the end-

stage analyses.  If severe issues are detected using GeneQC, the ARM algorithm provides 

a foundation for re-alignment of ambiguous reads through integration of potential 

alignment locations collected from GeneQC and co-regulatory networks generated 

through motif prediction by DMINDA2.0.  These co-regulatory networks provide a 

background distribution for each alignment location, creating a probabilistic method for 

determining the most likely alignment location.  These two tools work in tandem to 

address the particular issue of mapping uncertainty in modern RNA-Seq data analysis 

pipelines.  However, GeneQC itself can be used to evaluate the quality of read alignment 

from any alignment tool, and thus has the potential application in comparing and 

evaluating the performance of read alignment tools. 

 IRIS-EDA and ViDGER perform a slightly different purpose than GeneQC and 

ARM, while still aiming to address bottlenecks in RNA-Seq data analysis.  While 

GeneQC and ARM focus on addressing a computational problem (i.e. mapping 

uncertainty), IRIS-EDA and ViDGER work to improve the usability and interpretability 



83 

 

of analysis tools.  IRIS-EDA is a server-based shiny application used for a variety of 

analyses performed on gene expression estimation data.  This tool allows users to provide 

their expression matrix with some accompanying information related to each sample to 

conduct various end-stage analyses, including correlation analysis, heatmap generations, 

principal component analysis, multidimensional scaling, clustering, biclustering, and 

differential gene expression analysis.  In doing so, results are provided in an interactive 

interface to improve the interpretability of each functionality.  To perform these analyses, 

IRIS-EDA includes methods for analyzing both bulk and single-cell RNA-Seq data, a 

feature that is currently lacking in all other comparative tools.  Additionally, IRIS-EDA 

integrates a page to assist users in generating requisite metadata for data submission to 

NCBI’s GEO server.   

 ViDGER, on the other hand, has a much more limited yet highly important 

purpose: generating high-quality visualizations for interpretation of differential gene 

expression results.  Nine unique visualizations can be generated with ViDGER, including 

three matrix functionalities that display all possible pairwise comparisons.  This tool 

allows users multiple functionalities to visualize various features of their differential gene 

expression analysis results from one of the three most highly-cited differential gene 

expression tools (DESeq2, edgeR, and Cuffdiff).  Compatibility with these three tools 

allows compatibility of ViDGER with over 80% of cited studies involving differential 

gene expression analysis.   

 While these tools have current applicability in RNA-Seq data analysis, there are 

still improvements that could benefit the functionality of each tool.  The first important 

improvement that would achieve more widespread application power is the integrated of 
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all four methods into a single server-based analysis pipeline following the IRIS 

framework proposed in Chapter 1.  Not all functionalities of the framework are covered 

between GeneQC, ARM, IRIS-EDA and ViDGER.  This would require integrating state-

of-the-art tools to fill these gaps.  In particular, high-performing tools such as FastQC, 

Cutadapt, and HISAT2 would be included to provide read-level quality control, data 

trimming, and reference-based read alignment, respectively.  Reference-based and de-

novo assembly tools would be integrated as well.  Following these tools, GeneQC and 

ARM would fall into Tier 2 for alignment quality control and re-alignment and 

quantification, respectively.  IRIS-EDA and ViDGER belong to Tier 3, covering some 

aspect of both discovery- and hypothesis-driven analyses.  This framework would allow 

users to perform high-end RNA-Seq analyses with relatively limited computational 

experience.  Following a similar approach as with IRIS-EDA, default parameterizations 

and tools would allow users to analyze their data almost immediately.  Various tools and 

methods will be provided as alternative options, allowing for user-preferred methods to 

be implemented as well.       

 In addition to improved implementations, GeneQC and ARM also have areas for 

methodological improvements.  While the ARM algorithm itself has demonstrated 

performance, it still has two main places for improvement: (1) improved efficiency and 

(2) alternative development of gene networks.  The efficiency of the ARM algorithm is 

currently a large concern.  Determination of the co-regulatory networks requires manual 

download of the KEGG pathways, followed by motif prediction.  In order for ARM to be 

widely used, a seamless method for download and prediction of required information is 
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necessary.  This improvement will allow for a fully established computational tool to be 

released. 

 The second improvement for the ARM algorithm is further investigation of gene 

network development methods.  Currently, the ARM algorithm can improve the 

estimation of expression estimates related to mapping uncertainty.  However, the 

limitation of availability of KEGG pathway information for the particular species of 

interest is required.  In certain situations, this information may not be readily available, 

effectively rendering the ARM algorithm useless in this instance.  Thus, more robust 

methods for determination of gene networks needs to be explored.  One particular 

approach that has more widespread applicability is the use of co-expression networks 

rather than co-regulatory networks.  Co-expression networks can be calculated from 

either established expression patterns using microarray or RNA-Seq data or from user-

provided data.  In this scenario, biclustering—in particular the QUBIC biclustering 

tool—can be used to establish clusters of genes and conditions having similar expression 

patterns.  By properly establishing parameters, co-expression networks can be used to 

generate the background distributions similarly to how the co-regulatory networks are 

used.  The one main drawback of this approach is the invalidation of some downstream 

analyses.  If co-expression networks are established from user-provided data and then are 

used for re-alignment, particular biases would affect the interpretability of co-expression 

analysis results from the data.  While this is of concern in certain applications, co-

expression networks may provide a method for differential gene expression or other 

studies.  Regardless, a larger analysis of the impact of various gene network generation 
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methods would improve applicability and potentially the accuracy and reliability of the 

ARM algorithm.     

 GeneQC is also not immune from improvements.  While the described methods 

for GeneQC provide useful information, there are many more approaches that could 

generate more reliable results.  In particular, various machine learning algorithms may 

have applicability in this tool.  Approaches like self-organizing maps [287], neural gas 

[288], and ensemble averaging may provide a better method for predicting the severity of 

mapping uncertainty, and thus better quality control from expression estimates.  In 

evaluating these methods and the current GeneQC approach, a robust study will be 

undertaken.  First, large-scale simulated data from various species will be generated using 

Flux Simulator [289].  The data generated will have known true expression values, which 

can be directly compared to the expression estimates generated from various alignment 

tools (HISAT2 [40], RSEM [29], kallisto [290], and TopHat [35]).  GeneQC will be 

modified to analyze the alignment results from each of these tools using multiple 

methods, including the current algorithm, PCA, MDS, self-organizing maps, neural gas, 

ensemble averaging, among other approaches.  Correlation between the generated D-

score or categorization—depending upon the generated results from each method—and 

the difference in true expression and estimated expression will be used to determine the 

quality of method used for quality control.  This approach will allow for a determination 

of which machine learning method most accurately predicts a significant difference 

between the true and estimated expressions.  Additionally, this analysis will establish 

which alignment tool generates expression estimates closest to the true expression levels.  
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The best method or methods will be integrated into a new tool, called GeneQC2.0, to be 

used for a more robust quality control method.   

  Current versions of GeneQC, the ARM algorithm, IRIS-EDA, and ViDGER will 

continue to be used directly and indirectly in applied and computational collaborations, 

such as those discussed in Chapter 3.  These collaborative efforts help to develop areas in 

need of further improvement and alternative approaches for methods, such as the 

application of the DMINDA2.0 server in network generation for the ARM algorithm.  

While these methods have demonstrated applicability to current pipelines, the proposed 

future directions of each tool will only further their capabilities, in terms of reach and 

reliability.   
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APPENDIX 1: Grant proposal to South Dakota Competitive Research Grant 

Program 

Project Description 

Research Objectives. Innovations in genomic sequencing technologies have 

transformed the landscape of biological and genetic research. Encompassed in this 

emerging area of study is RNA-sequencing (RNA-seq), which provides a view of the 

genome-scale gene expressions. The two objectives of this proposal are (i) Construct a 

novel computational pipeline for RNA-seq data analysis and (ii) Correct an intrinsic 

computational bottleneck in RNA-seq data analysis using a novel statistical model. 

Through integrating existing computational techniques and developing novel methods 

and approaches to large-scale RNA-seq data in the public domain, we will enable a wide 

range of research areas to benefit and contribute to training a new generation of scientists 

with the capacity to elucidate biological systems by computational techniques. 

Background and Significance. The advent of much-improved biotechnology and 

the decreased associated costs have increased the amount of biological data, including 

Next-Generation Sequencing (NGS) [1, 2], which has higher resolution, better accuracy, 

lower technical variation, and other advantages, compared with array-based counterparts 

[3-5].  One of the predominant data types that has arisen from NGS technologies is RNA-

sequencing (RNA-seq) data, which promises to provide a comprehensive picture of the 

transcriptome for a biological process.  RNA-seq is a revolutionary technology for gene 

expression profiling [11, 12]. Modern RNA-seq analyses involve computations to 

estimate gene expression and related biological interpretation. Numerous methods have 

been developed—both in the public [20-46] and private sectors [47-54]—and formed into 
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“pipelines” to facilitate the analysis of RNA-seq data.  While numerous tools are 

available, many suffer from particular issues that affect analysis results, and construction 

of applicable combinations of these tools is an ongoing challenge.  Even for the tools that 

have sufficient individual performance, implementation in a sequence or entire pipeline 

can result in decreased overall performance and biased or unreliable results [56].  This 

fact makes establishing a reliable computational pipeline for RNA-seq data a non-trivial 

task.   

Although substantial mathematical modeling and computational algorithms & 

tools have been specifically developed for RNA-seq analysis, the reality is that some of 

the most widely-used methods cannot provide accurate information related to gene 

expression estimates [55, 56]. Even though some tools can perform RNA-seq analyses 

acceptably on some datasets, prominent issues are found within each step of the pipeline.  

One such issue is referred to as mapping uncertainty [27, 77, 78], in which similarities 

within a genome or across multiple genomes (i.e., metagenome) can cause difficulties in 

determining an accurate estimation of gene expression levels.  We have conducted the 

analysis of almost 2TB of data from seven different plant and animal species and found 

that an average of 20% of RNA-seq data exhibits mapping uncertainty using the current 

state-of-the-art computational tools.  This uncertainty has the potential to drastically 

impact the quality of genetic expression estimates that are used in downstream analyses, 

leading to misinterpretation of results and negatively affecting the understanding of 

biological insights for agriculture, animal sciences, and human health.  Hence, it is 

critical to improving existing bioinformatics tools using more effective algorithms to 

improve performance related to mapping uncertainty.  
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Proposed Work.  

Objective 1: Construct a novel computational pipeline for RNA-seq data analysis 

The PI will establish a framework for developing new RNA-seq data analysis approaches 

through a four-tier integrative 

pipeline (Figure 1).  This pipeline 

involved preprocessing (Tier 1), 

basic analysis (Tier 2), 

hypothesis-driven interpretation 

(Tier 3), and discovery-driven 

interpretation (Tier 4).  This 

framework will provide a 

comprehensive analysis of RNA-seq data for all purposes.  

While the general framework has been clearly defined, specific pipelines designed 

for the species of interest require more investigation and optimization.  Objective 1 

focuses on the discovery of which high-performing tools should be implemented in this 

framework for the plant (Arabidopsis, Soybean, and Grape) and animal species (human 

and mouse) to provide optimized results for RNA-seq studies. Substantial RNA-seq 

datasets of these species can be freely downloaded from the SRA database of NCBI 

(https://www.ncbi.nlm.nih.gov/sra). Several existing in-house tools [88, 100, 111, 112, 

133, 207, 291, 292] in the PI’s lab can fully support the pipeline construction. 

Objective 2: Correcting mapping uncertainty using the Ambiguous Reads Mapping 

(ARM) tool 

Figure 1: The four-tier RNA-seq analysis pipeline in the PI’s lab, with 
data preprocessing, basic analysis, hypothesis-driven interpretation, 

and discovery-driven interpretation. 
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Current methods for addressing mapping uncertainty are underperforming and potentially 

affecting the accuracy of downstream analyses [77, 87].  Therefore, a rigorous statistical 

model for accurate gene expression estimation is required for all downstream expression-

based analysis and interpretation.  To achieve Objective 2, the PI proposes the combined 

use of transcriptomic, genomic, and network information to establish a more biologically 

applicable determination of correct read alignments.  Currently, the PI-developed tool 

GeneQC[88] is capable of extracting transcriptomic and genomic features of the sample 

and species information (Figure 2A).  This information will then be utilized with gene 

regulatory information sourced from pre-existing networks (Figure 2B) to determine a 

probability distribution for each potential alignment (Figure 2C).  These distributions will 

be applied in a straightforward manner or as a prior distribution for advanced machine 

learning processes (Figure 2D) to provide a higher-likelihood alignment.   

Outcome and Assessment: The proposed algorithms in above two Objectives 

will be implemented within computational tools called IRIS (An integrated RNA-seq data 

analysis and interpretation system) and ARM (Ambiguous Reads Mapping).  Once 

Figure 2. (A) Gene-gene interaction established within GeneQC. (B) The algorithm, ARM, for re-alignment of ambiguous 
genes based on the information collected from part A. Previously established KEGG pathways and regulatory motifs are 
used to generate networks for potential gene alignment locations, (C) which are then used to generate probability 
distributions for each gene location. These distributions can be used independently or as prior distributions in a (D) neural 
network and hidden Markov model to determine the optimal alignment for ambiguous reads. 
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thoroughly developed, IRIS and ARM will be tested against state-of-the-art read 

alignment tools and compared using a previously developed D-score metric, which 

indicates the level of mapping uncertainty for each gene expression estimate[88].  

Significant improvement of read alignment related to mapping uncertainty will be 

assessed by lower D-scores, indicating lower mapping uncertainty, and more accurate 

expression estimates. 

Broader impacts: The new computational techniques developed will enable a 

large community of biological researchers to conduct a broad range of RNA-seq data 

analyses that are currently infeasible. The new tools will enhance the understanding of 

how gene expression is controlled by the underlying regulatory systems. The application 

of the proposed methods will facilitate the elucidation of the gene regulatory network 

encoded in a cell. Hence, the research has the potential to transform the rapidly-

developing biotechnology and bioinformatics fields yielding innovative analytical tools 

that enhance new biological discoveries. Through the development of the proposed 

pipeline and novel computational tools, numerous undergraduate and graduate students 

will be engaged.  These activities also provide excellent opportunities for the involved 

students to receive much-needed experience related to bioinformatics data analysis and 

make them be better prepared in the rapidly expanding biotech industry, meeting the 

demands of interdisciplinary academic training. For example, within the region, there are 

numerous institutions that are actively searching for qualified bioinformatics analysts, 

including Sanford Health, Avera Health, Monsanto, and many other private 

organizations.   
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Description of Facilities and Resources. The PI (1) has substantial computational 

resources by the XSEDE clusters (https://www.xsede.org/); (2) is a member of the 

Biochemical Spatio-temporal NeTwork Resource (BioSNTR; http://biosntr.org) and has 

access to all BioSNTR resources; and (3) has full access and accounts for the High-

Performance Computing (HPC) computer clusters at SDSU and IPLANT 

Cyberinfrastrucure. 

Besides the above computational resources, the PI has established a new 

computational laboratory (~300 sq. ft.) in the McFadden Biostress Laboratory building at 

South Dakota State University (SDSU). His lab has 10 separate benches/desks and a 

computer studio, which currently houses eight individuals and has one Linux cluster (6 

CPUs, 64GB RAM and 3TB hard disk), five desktops, two workstations, one iMac, and 

one MacBook pro. All computers are connected to SDSU network and have access to the 

Internet. The programming environment includes UNIX, C/C++, PERL/BioPERL and R. 

The lab is familiar with all kinds of bioinformatics databases and resources (GenBank, 

RefSeq, etc.); various genome annotation resources (NCBI, GO, etc.); and general 

bioinformatics tool packages for sequence analysis (BLAST, MCL, Cytoscape, etc.). 

Capacity Building and Commercial Potential of the proposed computational 

software. The proposed Objectives demonstrate a method for providing significant 

improvements to RNA-seq data analysis in the form of optimized computational 

pipelines and improved analysis tools.  Commercial applications of RNA-seq pipelines 

have been successfully demonstrated numerous times, including CLC Genomics 

Workbench[54] and Galaxy[53], which started as a free software but expanded into a 

commercial tool.  While these and other commercial RNA-seq tools pipelines have 

https://www.xsede.org/)
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demonstrated success, they are not immune to the previously mentioned issues that 

plague all RNA-seq tools.  Because of this, optimization of top RNA-seq tools and 

remediation of mapping uncertainty provides a promising potential for widespread use, 

especially considering the modern movement and importance of interactivity and 

graphical interfaces in reproducible RNA-seq data analysis[106].   

 In addition to these proposed objectives being implemented into a server 

framework, the PI has recently-developed high-performance RNA-seq tools that can be 

implemented in this pipeline, including GeneQC for read alignment quality control[88], 

IRIS-EDA for Differential Gene Expression (DGE) analysis[291], and ViDGER for 

visualizing differential gene expression results[133].  Integration of these novel-feature 

tools with the prospective ARM tool into the optimized pipeline framework in objective 1 

provides a promising method for commercialization of these RNA-seq tools, which will 

be achieved through collaboration with the SDSU Office of Technology Transfer & 

Commercialization.  
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APPENDIX 2: Curriculum vitae 

Adam McDermaid 

Adam.McDermaid@sdstate.edu 

 

EDUCATION 

PhD in Computational Science & Statistics (3.89 GPA)         August 2015-June 2018 

South Dakota State University, Brookings, SD 

• Coursework: Bioinformatics, Regression Analysis, Statistical Inference, 

Multivariate Analysis, Measure & Probability Theory 

• Bioinformatics emphasis 

MA in Mathematics (3.92 GPA)                       August 2013-May 2015 

University of South Dakota, Vermillion, SD 

• Coursework: Real & Complex Analysis, Measure Theory, Operations Research, 

Abstract Algebra & Algebraic Number Theory, Partial Differential Equations 

BS in Mathematics (Chemistry)                                    August 2008-May 2013 

University of South Dakota, Vermillion, SD  

• Coursework: Real Analysis & Advanced Calculus, Organic & Environmental 

Chemistry, Biology 

EMPLOYMENT 

Graduate Research Assistant                       March 2016-June 2018  

Bioinformatics and Mathematical Biosciences Lab, South Dakota State University 

• Duties include researching RNA-seq pipeline tools, development and applications 

of RNA-seq pipelines, applications of statistical techniques to bioinformatics 

problems, development of novel bioinformatics algorithms and softwares 

• Collaborations include US Department of Agriculture, Ohio State University, 

NSF Plant Genome Research Projects, and SD EPSCoR/BioSNTR 
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Graduate Teaching Assistant                       August 2015-May 2017 

Department of Mathematics & Statistics, South Dakota State University  

• Duties include Introduction to Statistics Recitation instruction, College Algebra 

help sessions, Logic, Sets & Proofs help sessions, development of new calculus 

sequence teaching methods 

Graduate Teaching Assistant                           August 2013-May 2015  

Department of Mathematical Sciences, University of South Dakota 

• Duties included Finite Mathematics and College Algebra instruction, creation and 

assessment of evaluation materials for Finite Mathematics 

PUBLICATIONS 

1. Liu, B., Yang, J., Li, Y., McDermaid, A., & Ma, Q. (2017). An algorithmic 

perspective of de novo cis-regulatory motif finding based on ChIP-seq 

data. Briefings in Bioinformatics. doi:10.1093/bib/bbx026 

2. Niu, S., Yang, J., McDermaid, A., Zhao, J., Kang, Y., & Ma, Q. (2017). 

Bioinformatics tools for quantitative and functional metagenome and 

metatranscriptome data analysis in microbes. Briefings in Bioinformatics. 

doi:10.1093/bib/bbx051 

3. Yang, J., Chen, X., McDermaid, A., & Ma, Q. (2017). DMINDA 2.0: Integrated 

and systematic views of regulatory DNA motif identification and 

analyses. Bioinformatics. doi:10.1093/bioinformatics/btx223 

4. McDermaid, A., Chen, X., Zhang, Y., Xie, J., Wang, C., & Ma, Q. A new 

computational framework for mapping uncertainty analysis in RNA-Seq read 

alignment and gene expression estimation. (Under review in Frontiers in 

Genetics) 

5. McDermaid, A., Monier, B., Zhao, J., Liu, B., & Ma, Q.  Interpretation of 

differential gene expression results of RNA-seq data: review and integration. 

(Under review in Briefings in Bioinformatics) 
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6. Chen, X., Ma, A., McDermaid, A., Zhang, H., Cao, L., Cao, H., & Ma, Q. 

RECTA: Regulon Identification Based on Comparative Genomics and  

Transcriptomics Analysis. (Accepted for publication in Genes) 

7. Monier, B., McDermaid, A., Zhao, J., Fennell, A., & Ma, Q.  IRIS-EDA: A web 

server for user-friendly, design-robust gene expression data analysis, 

interpretation, & visualization. (Under review in Bioinformatics)  

8. McDermaid, et al., ARM: A tool for comprehensive ambiguous reads mapping. 

(In preparation) 

9. Migicovsky, Z., Harris, Z., Klein, L., Li, M., McDermaid, A., Chitwood, D., 

Fennell, A., Kovacs, L., Kwasniewski, M., Londo, J., Ma, Q., & Miller, A.  

Roostock effects on scion phenotypes in a ‘Chambourcin’ experimental vineyard. 

(In preparation) 

10. McDermaid, A., Artlip, T., Ma, Q., & Wisniewski, M. Strain effect on gene 

expression in M. domestica. (In preparation) 

11. Xia, Y., McDermaid, A., Wang, C., & Ma, Q.  Genomic analysis of Bacillus sp. 

YF23. (In preparation) 

12. McDermaid, A., Gu, S., & Ma, Q. A review of machine learning applications on 

the prediction of mapping uncertainty. (In preparation) 

13. McDermaid, A., Gu, S., & Ma, Q. GeneQC2.0: An R package for quality control 

of gene expression estimation through novel application of machine learning (In 

preparation) 

PRESENTATIONS 

• Gene Expression Analysis of Transgenic Apples. June 17, 2016, University of South 

Dakota, Erliang Zeng Lab, Vermillion, SD. (Poster Presentation) 

• Principal Component Analysis & Network Component Analysis. July 1, 2016, 

University Center, Sioux Falls, SD. (Zeng Lab/BMBL Inter-lab meeting presentation) 

• RNA Sequencing Analysis, Applications, & Modeling. November 10, 2016, SDSU-

Sanford Research Symposium, Brookings, SD. (Poster Presentation) 

• Computational Techniques & Algorithm Design in RNA Sequencing Analyses. 

January 30, 2017, SDSU Department of Agronomy, Horticulture and Plant Science 



129 

 

USDA-ARS North Central Agricultural Research Laboratory, Brookings, SD. 

(Departmental seminar) 

• Addressing Multimapping Uncertainty in RNA Sequencing Alignment. May 23, 

2017, All Investigator Meeting, South Dakota Experimental Program to Stimulate 

Competitive Research, Oacoma, SD. (Poster Presentation) 

• RNA Sequencing Analyses and the Multimapping Uncertainty Issue. June 10, 2017, 

It’s All About Science Festival, Sioux Falls, SD. (Poster Presentation) 

• RNA Sequencing Analyses and Multi-Mapping Uncertainty. August 25, 2017, Plant 

Genome Research Program Project Year 1 Meeting, Davis, CA. 

SKILLS 

• Next-Generation Sequencing Analyses 

• Hypothesis- & Discovery-driven analyses 

• Large-scale data management and analysis 

• Mathematical & Statistical Modeling 

• R programming 

• Python, Perl, SQL, & SPSS experience 

• Strong written & oral communication 

PROFESSIONAL ASSOCIATIONS 

• Mathematical Association of America, Member, 2012 

• Institute of Mathematical Statistics, Member, 2016 

• BMC Genomics, Reviewer, 2016 

• Mathematical Biosciences, Reviewer, 2016 

• Journal of Bioinformatics and Computational Biology, Reviewer, 2016 

• International Conference on BioInformation and BioMedicine, Reviewer, 2016 

• Frontiers in Young Minds, Understanding Mathematics, Review Editor, 2017 

• Nucleic Acids Research, Reviewer, 2017 
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