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ABSTRACT 

VULNERABILITY OF PROTECTED AREAS TO HUMAN ENCROACHMENT, 

CLIMATE CHANGE AND FIRE IN THE FRAGMENTED TROPICAL FORESTS OF 

WEST AFRICA 

FRANCIS KWABENA DWOMOH 

2018 

     The Upper Guinean region of West Africa is home to some of the most globally 

significant tropical biodiversity hotspots, providing ecosystem services that are crucial 

for the region’s socio-economic and environmental wellbeing. Nonetheless, following 

decades of human-caused destruction of natural habitats, protected areas currently remain 

the only significant refugia of original vegetation relics in landscapes that are highly 

fragmented. Aside from having strong geographic variation in land use, climate, 

vegetation, and human population, the region has also experienced remarkable 

biophysical and socio-economic changes in recent decades. All these factors influence the 

fire regime and the vulnerability of forests within protected areas to fire-mediated 

changes and forest loss, yet little is known about fire regimes and fire-vegetation 

interactions within the region. Therefore, the overarching goal of this dissertation was to 

improve our understanding of the interactions of climate, land use, and fire regimes, as 

well as effects of fire on forest resilience in the Upper Guinean region of West Africa.  

     I conducted the first comprehensive regional analysis of the fire regime across the 

gradient from humid tropical forests to drier woodlands and woody savanna. This 

analysis revealed that different components of the fire regime were influenced by 

different environmental drivers. As a result, the various combinations of these 

environmental factors create distinctive fire regimes throughout the region. The results 
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further showed increasing active fire trends in parts of the forested areas, and decreasing 

trend in fire activity across much of the savannas that were likely linked with land cover 

changes. An analysis of fire-vegetation interactions in the forest zone of Ghana provided 

evidence of alternative stable states involving tropical forest and a novel non-forest 

vegetation community maintained by fire-vegetation feedbacks. Furthermore, an analysis 

exploring recent drought-associated wildfires in the forest zone of Ghana revealed 

widespread fire encroachment into hitherto fire-resistant moist tropical forests, which 

were associated with forest degradation.  

     These findings suggest that ongoing regional landscape and socio-economic changes 

along with climate change will lead to further changes in the fire regimes and forest 

vegetation of West Africa. Hence, efforts to project future fire regimes and develop 

regional strategies for adaptation will require an integrated approach, which encompasses 

multiple components of the fire regime and consider multiple drivers, including land use 

and climate.  Furthermore, projections of future vegetation dynamics in the region will 

need to consider land use, vegetation, fires, and their dynamic landscape-scale 

interactions in the context of broader responses to climate change and human population 

growth. Overall, this dissertation produced novel results about the pathways and drivers 

of disturbance land cover change that are necessary for improving our understanding of 

ongoing changes in a lesser-known part of the tropics. These findings are also relevant 

for predicting and mitigating similar fire impacts in tropical forests worldwide.  
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1. Introduction and Background 

 Tropical forest ecosystems are critical component of the Earth system providing vital 

ecosystem functions. Of all terrestrial ecosystems, tropical forests are known to house the 

highest biodiversity of both flora and fauna. They are the largest reservoir of terrestrial 

carbon in living biomass and thus a critical component of the global climate system 

(Chambers et al., 2007). Tropical forests are important for climate regulation and play a 

key role in the global water and energy balance. Forests influence climate through 

chemical and biophysical processes that control fluxes of water, energy, and atmospheric 

constituents including CO2 concentrations. Climate in turn affects forest ecosystems 

through shifting species distributions, tree growth and mortality, seasonality of ecosystem 

processes, and disturbances including fire (Seppälä et al., 2009). Among these influences, 

change in wildfire events is expected to be the major means through which climate 

change will impact tropical forest patterns and ecosystem functions (Cochrane & Barber, 

2009). 

Wildfire is a formidable ecological process shaping patterns and processes across 

diverse terrestrial ecosystems. The complex interactions of ignition sources with 

vegetation, climate, and topography give rise to fire regimes, an ecological concept 

describing the range of fire characteristics occurring at a given geographic location and 

period (Archibald, 2016; Whitman et al., 2015). In this era of rapid global change, 

understanding fire regimes in the tropics requires consideration not only of the changing 

climatic patterns, but also their interaction with land use factors, infrastructure, and 

demographic processes (Uriarte et al., 2012). More importantly, in environments such as 

West Africa, where wildfires are human-caused, consideration of human land use and 
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land cover changes is critical because the interplay of climate change and land use 

determine the future fire regimes (Cochrane & Barber, 2009).  

In tropical forests, human impacts such as deforestation, forest fragmentation and 

degradation greatly increase fire risk (Cochrane et al., 1999; Cochrane & Barber, 2009). 

Enhanced fire risk promotes recurrent fires, further altering vegetation composition and 

structure and maintaining fire-dependent vegetation in a self-reinforcing positive 

feedback loop (Cochrane et al., 1999). Climatic extremes can enhance such positive fire-

vegetation feedbacks. In tropical forests, extreme drought events have led to sharp 

increases in tree mortality and decreases in tree growth, potentially due to water stress 

and hydraulic failure (Corlett, 2016; Nobre et al., 2016). In particular large trees suffer 

the most drought-induced mortality; leading to reduced shading over lower canopy, and 

the forest floor including litterfall and soil. The resulting increases in incident radiation in 

these areas increases temperature and dryness, further increasing vulnerability to later 

droughts as well as fire (Nobre et al., 2016). As a result, fires during subsequent droughts 

have been associated with abrupt increases in fire-induced tree mortality, monumental 

canopy damage, and rapid invasion of flammable grasses into the forest (Brando et al., 

2014; Le Page et al., 2017).Thus, frequent forest fires facilitated by droughts can lead to 

rapid forest cover loss and create conditions likely to push these forest ecosystems to 

tipping points, beyond which forest resilience is lost and system feedbacks lead to regime 

shifts (Reyer et al., 2015b) . 

Knowledge of fire regimes and their drivers, as well as fire-mediated regimes shifts is 

essential for projecting how fire regimes will respond to future change in climate and 

land use, and for developing strategies to adapt to these changes. In particular, the Upper 
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Guinean region of West Africa has strong geographic variation in landuse, climate, 

vegetation, and human population and has experienced remarkable biophysical and socio-

economic changes in recent decades (Boone et al., 2009; CILSS, 2016; DeSA, 2015; 

Malhi & Wright, 2004). Following decades of human-caused destruction of natural 

habitats, protected areas currently remain the only significant refugia of original 

vegetation relics in landscapes characterized by high fragmentation. As a result, the 

protected areas are highly endangered by immense land use and climate-related pressures. 

Especially within forest reserves, fire is likely to be an important agent of forest 

degradation and loss due to the increasing human footprint in the landscape through 

forest fragmentation, degradation, and fire spread from agricultural areas. Additional 

stress from climate perturbations, such as droughts, may amplify forest fires and render 

forest reserves more vulnerable to further degradation. 

To date, there has been no comprehensive analysis of fire regimes and the potential 

threat posed to forests within protected areas of the region. Therefore, this dissertation 

focusses on understanding the interactions of climate, land use, and fire regimes, as well 

as effects of fire on forest resilience in the Upper Guinean region of West Africa, an 

important but lesser studied part of the tropics.  

2. The Study Area: Upper Guinean Region of West Africa  

 The study area encompasses a portion of the Upper Guinean forest region and 

consisted of five West African countries distributed along the Atlantic coast between 

Senegal and Togo. This area covers approximately 985,480 km
2 

and includes Ghana, 

Côte d'Ivoire, Liberia, Sierra Leone, and Guinea. The climate is characterized by a strong 
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rainfall gradient with peak rainfall (≈4000 mm/year) near the coasts of Guinea, Sierra 

Leone and Liberia. Rainfall decreases rapidly in a north-easterly direction to only ≈1200 

mm/year at the forest savannah-boundary (Poorter et al., 2004) and less than 1200 

mm/year in the driest portions of the study area. Generally, decreasing rainfall is 

associated with a longer dry season and higher inter-annual variability of rainfall (Barbé 

et al., 2002). The rainfall regimes are modulated by the Intertropical Convergence Zone 

(ITCZ) and the West Africa Monsoon (WAM) and are influenced by teleconnections 

with climate modes, such as the El Niño-Southern Oscillation (ENSO) and Atlantic 

Multidecadal Oscillation (AMO) (Barbé et al., 2002; Liebmann et al., 2012).  

Along this rainfall gradient, natural vegetation varies from dense evergreen 

rainforests, to moist and dry closed-canopy semi-deciduous forests, to woodlands and 

savannas (Poorter et al., 2004).The area is mainly covered by four of the World Wide 

Fund (WWF) terrestrial ecoregions of the world (Olson et al., 2001). These are the 

Eastern Guinean Forests (EGF, 18.7%) and Western Guinean Lowland Forests (WGLF, 

21.0%), together comprising the Upper Guinean Forests (UGF); and the Guinean Forest-

Savanna Mosaic (GFSM, 31.7%) and West Sudanian Savanna (WSS, 24.1%) ecoregions 

(Figure 1). The Guinean Montane Forests and Mangroves ecoregions were not included 

in the analysis due to their small area (4.5%). The UGF block covers some of the wettest 

parts of the region and it is characterized by dense evergreen rainforests, as well as moist 

to dry closed-canopy semi-deciduous forests. The Guinean Forest-Savanna Mosaic is 

influenced by complex interactions between soil conditions, climate, and anthropogenic 

activities including cultivation and fires. The West Sudanian Savanna is in the zone of 
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disturbance-determined (unstable) savannas, where disturbances such as herbivory and 

fire are important to maintain tree-grass coexistence (Sankaran et al., 2005). 

 

Over the past four decades West Africa has lost a staggering portion of its natural 

vegetation, including savannas, woodlands, and forests, to expanding croplands and 

human settlements. As a result, the remaining natural vegetation is highly fragmented 

(CILSS, 2016; Ichoku et al., 2016).  The principal land use is agriculture based on food 

and cash crops, chiefly cereals, cocoa, tubers, rubber, and fruit trees (CILSS, 2016). 

Other important land use practices include agro-pastoralism and tree harvesting for 

fuelwood, especially charcoal, in the drier savanna-dominated regions; mining and timber 

exploitation in the forested regions (CILSS, 2016). West Africa’s population almost 

doubled between 1990 and 2015 (180 – 353 million), and it is projected to nearly double 

Figure 1. Map indicating area of the Upper Guinean region covered in the regional fire 

regime analyses. In this map, the study region is overlaid with terrestrial ecoregions of 

the world (Olson, et al., 2001) 
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again by 2050, from 353 million to 797 million, (DeSA, 2015). Likewise, the region has 

been experiencing climate change in recent decades. Temperatures have become warmer, 

and precipitation has either not changed or declined for many locations below the Sahel, 

especially along the Guinea Coast (Sylla et al., 2016). 

A vital component of West African ecosystems is the tropical humid forest 

referred to as the Upper Guinean forest, UGF. The UGF is a global biodiversity hotspot 

(Myers et al., 2000) providing ecosystem services crucial for the socio-economic and 

environmental wellbeing of the region. However, the UGF has become one of the most 

human-modified forest ecosystems in the tropics (Norris et al., 2010; Poorter et al., 

2004), having lost over 80% of its original forest cover, with the remainder distributed in 

a fragmented agriculture-forest mosaic (Norris et al., 2010). Nonetheless, among 

countries in the UGF, Ghana has a long history of forest reservation beginning around the 

1910s. The aim for forest reservation was to create “permanent forest estates” in the 

country’s tropical high forest zone for sustainable benefits to society. As a result, Ghana 

has uniquely maintained a substantial area of closed-canopy forests in a protected 

network of reserves. Majority of these forest reserves are actively managed for 

sustainable timber production. Timber harvesting is done through selective logging, in 

which selected commercial timber species of merchantable size and typically scattered 

over the forest area, are felled during cutting cycles. The tropical high forest zone of 

Ghana, covering approximately 8.1 million hectares, occupies the southern third of the 

country (Hall & Swaine, 1981) (Figure 2). At the beginning of the 20
th

 century about a 

third of the country was estimated to have been forested. However, substantial portions of 

the forest cover was lost during the 20
th

 century, and by the late 1980s only about 25% of 
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the original forest (2.1 million ha) remained (Adam et al., 2006). Currently, the only 

significant natural forests left in the high forest zone are those contained in the reserves, 

which are distributed within a matrix of agriculture and human settlements.  

 

The high forest zone of Ghana has been classified into seven main forest types 

based on floristic composition and rainfall regime (Hall & Swaine, 1981) (Figure 2). 

Ranging from wettest to driest, these types include Wet Evergreen (EW), Moist 

Figure 2. Ghana map (inset) highlighting the forest zone in southern Ghana and the 

distribution of forest types and forest reserves within the forest zone. In the inset map, the 

background is a digital elevation model indicating low (dark gray) to high elevation 

(bright gray). The high forest zone is outlined in red. Note: Area of the South-east outlier 

forest type is very small and not mapped, but it is dispersed to the south and east of the 

SM forests (Hawthorne, 1995). 
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Evergreen (ME), Upland Evergreen (UE), Moist Semi-deciduous (MS, with two 

subtypes: North-west and South-east), Dry Semi-deciduous (DS, with two subtypes: Fire 

Zone and Inner Zone), Southern Marginal (SM), and South-east Outlier (SO). The Wet 

Evergreen (1750 – 2250 mm annual rainfall) has the highest diversity of plant species. 

However, many of the most important commercial timber species are contained in the 

moist (1500-1750 mm annual rainfall), and dry (<1500 mm annual rainfall) forest types 

(Adam et al., 2006). In recent years, these reserves have come under immense pressure 

due to over-harvesting and agricultural encroachment, raising concerns about their 

sustainability. 

3. Research Goal and Research Objectives  

 The overarching goal of this dissertation was to improve our understanding of the 

interactions of climate, land use, and fire regimes, as well as effects of fire on forest 

resilience in the Upper Guinean region of West Africa. This overarching research goal 

was pursued through three main research objectives, each of which was further 

elaborated with specific research questions. 

Research objective #1 (Dissertation Chapter #2): To understand fire regimes and their 

drivers in the Upper Guinean region of West Africa. 

i. What are the spatial patterns and interrelationships of multiple fire regime 

components in the Upper Guinean region? 

ii. What are the overall trends in fire activity and how do they differ amongst the 

humid forest and the savanna-dominated ecoregions?  
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iii. How do the relative influences of climatic, topography, vegetation type, and 

human activity vary across different fire regime components?  

Research objective #2 (Dissertation Chapter #3): To explore the overarching 

hypothesis that fire‐mediated alternative stable states exist in the semi‐deciduous 

tropical forest zone of Ghana, and that increased fire activity has pushed some forests 

to a new state in which a novel ecosystem with low tree density is maintained by fire.  

i. Is there evidence of persistent forest loss?  

ii. Is there evidence of fire-vegetation feedbacks?  

iii. Is there evidence of hysteresis (the difficulty of ecosystem recovery once a 

catastrophic transition is reached)? 

Research objective #3 (Dissertation Chapter #4): To explore the susceptibility of forest 

reserves in the moist forest zone of Ghana to fire during a regional drought and fire 

event in 2016. 

i. Was the extent of forest fire in 2016 higher than expected compared with the 

entire 15-year study period? 

ii. Were the 2016 fires associated with unusually severe drought conditions?  

iii. Were spatial patterns of forest canopy condition and drought severity related to 

the pattern of burning inside forest reserves during the 2016 fires? 

4. Research Relevance 

 Within the tropics, the Upper Guinean region of West Africa has distinctive bio-

physical and socio-economic environments, which strongly suggest that knowledge from 

studies of fire in other tropical regions is not directly transferable. This region has a 
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strong geographic variation in land use, climate, vegetation, and human population and 

has experienced phenomenal biophysical and socio-economic changes in recent decades. 

The West African region has lost a disproportionate amount of its natural vegetation, and 

currently the landscape is highly heterogeneous with fine-scale land use patterns (CILSS, 

2016; Malhi et al., 2013). The region has a marginal tropical climate (Malhi & Wright, 

2004) and experienced rapid and significant climatic change in recent decades (Boone et 

al., 2009). In addition, the region has been characterized as having disproportionate 

dependence on forest resources, high levels of poverty, high population growth, and 

recent history of wars and political instability. All these factors influence the fire regime 

and the vulnerability of protected areas to fire-mediated changes and forest loss, yet little 

is known about fire regimes and fire-vegetation interactions within the region.  

Much of our knowledge of fire regimes in West Africa has been gleaned from 

studies conducted at broader continental to global extents (Archibald et al., 2013; 

Hantson et al., 2015a; Hantson et al., 2015b), and most of these regional to continental 

scale fire studies have not explicitly addressed the tropical regions of West Africa 

(Andela & van der Werf, 2014), where fire is relatively rare but a potential catastrophic 

force for ecosystem regime shifts (Dwomoh & Wimberly, 2017). Thus, a comprehensive 

regional analysis addressing multiple components of the fire regime across the gradient 

from humid tropical forests to drier woodlands and woody savanna is a research priority, 

hence this research. The results of this dissertation provide critical baseline knowledge to 

support projections of future fire regime changes and aid in the development of regional 

adaptation strategies.  



12 

 

Although climate change is expected to cause vegetation shifts, changes in the fire 

regime is expected to be the primary means by which such vegetation shifts will occur 

(Cochrane & Barber, 2009) as the synergy between climate change and land cover 

change can exacerbate the impact of fire in tropical forest ecosystems (Silvestrini et al., 

2010). For instance, positive feedbacks in the forest fire regime due to deforestation, 

logging, and climate change will likely accelerate forest degradation and cause radical 

loss of tropical forests (Nepstad et al., 2008; Silvestrini et al., 2010). The ecological basis 

for such disturbance-driven vegetation shifts have been underpinned by the concept of 

alternative stable states (Scheffer et al., 2001b). This concept suggests that terrestrial 

ecosystems, such as tropical forests, have tipping points beyond which environmental 

change triggers rapid and radical shifts to novel alternative states (Higgins & Scheiter, 

2012; Johnstone et al., 2016; Nobre et al., 2016; Reyer et al., 2015a; Scheffer et al., 

2001a). The concept of alternative stable states has become the centerpiece of 

contemporary ecological discourse (Scheffer, 2009) because the threats to ecosystem 

resilience have been heightened by the complexities of current global change. 

  However, support for the existence of alternative stable states in terrestrial 

vegetation remain controversial, due to the predominant use of theoretical models, and 

the dearth of empirical evidence backed by time-series data (Bestelmeyer et al., 2013). 

Such studies are even rarer in tropical forests. Moreover, due to lack of long-term data, 

most previous analyses on alternative stable states neglected the temporal component by 

substituting time for space (Hirota et al., 2011; Staver et al., 2011). Thus, there is an 

outstanding need for ecological studies underpinned by long-term data to test whether 

regime shifts exist in tropical forests and the tipping points at which feedbacks cause 
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alternative stable states (Reyer et al., 2015a). This dissertation research which uses long-

term satellite observations does not only help to address this ecological knowledge gap, 

but also provide valuable information on a data-poor region of the tropics largely 

understudied. This work is therefore a unique research contribution to tropical forest and 

disturbance ecology.  

Whilst forest degradation processes, such as selective logging, may not directly cause 

regime shifts they compromise resilience thereby rendering forest ecosystems more 

fragile to regime shifts by stochastic events, such as fire (Scheffer, 2009; Scheffer et al., 

2001b). In the Amazon, fragmented forests are found to be more vulnerable to droughts 

and fire due to increased edge effects that foster rapid forest degradation (Numata & 

Cochrane, 2012). However, in Ghana Fauset et al., (2012) found drought-tolerance of 

semi-deciduous forest,  suggesting that these forests may be more resilient to longer term 

drought. There is a knowledge gap on how these highly fragmented forests of Ghana will 

respond to fire during periods of severe water stress. By relating forest degradation and 

drought stress to fires in Ghana forest zone, this dissertation provides additional details 

about the specific factors that increase the risk of fire encroachment into moist tropical 

forests. These findings are relevant for predicting and mitigating similar fire impacts in 

tropical forests worldwide.   

5. Summary of Chapters 

 This dissertation has been organized into five chapters, including this introduction 

chapter. The second chapter addresses research objective #1. This chapter explored the 

influences of climate, land use, vegetation, and human land use on multiple fire regime 

components across the entire gradient of ecoregions in the region. The analyses utilized 
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the MODIS fire products and a variety of geospatial and remotely sensed datasets to 

characterize the spatial patterns and interrelationships of multiple fire regime 

components, characterize recent trends in fire activity, and used booted regression trees to 

explore the relative influences of climate, topography, vegetation type, and human 

activity on fire regimes. This chapter was published in 2017 in Remote Sensing. 

The third chapter addresses research objective #2. This chapter used remotely-sensed 

Earth observations combined with field measurements to address hypotheses about forest 

resilience and disturbance-mediated tipping points in tropical forest ecosystems. This 

objective was achieved by addressing three research questions, each focused on a specific 

characteristic of systems with alternative stable states: persistent change, feedbacks, and 

hysteresis (Bestelmeyer et al., 2011; Petraitis, 2013; Scheffer, 2009). This chapter was 

published in 2017 in Landscape Ecology. 

The fourth chapter addresses research objective #3. This chapter used remotely-

sensed Earth datasets to explore recent drought-associated wildfires in the forest zone of 

Ghana, to better understand the linkages between forest degradation, drought stress, and 

the response of fire in forest reserves. The manuscript will be submitted to Environmental 

Research Letters. 

Finally, the fifth chapter summarizes the major research findings of all the three 

research objectives and presents a synthesis of the dissertation. The chapter ends by 

highlighting recommendations for future research.  
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Abstract 

The Upper Guinean region of West Africa exhibits strong geographic variation in 

land use, climate, vegetation, and human population and has experienced phenomenal 

biophysical and socio-economic changes in recent decades. All of these factors influence 

spatial heterogeneity and temporal trends in fires, but their combined effects on fire 

regimes are not well understood. The main objectives of this study were to characterize 

the spatial patterns and interrelationships of multiple fire regime components, identify 

recent trends in fire activity, and explore the relative influences of climate, topography, 

vegetation type, and human activity on fire regimes. Fire regime components, including 

active fire density, burned area, fire season length, and fire radiative power, were 

characterized using MODIS fire products from 2003 to 2015. Both active fire and burned 

area were most strongly associated with vegetation type, whereas fire season length was 

most strongly influenced by climate and topography variables, and fire radiative power 

was most strongly influenced by climate. These associations resulted in a gradient of 

increasing fire activity from forested coastal regions to the savanna-dominated interior, as 

well as large variations in burned area and fire season length within the savanna regions 

and high fire radiative power in the westernmost coastal regions. There were increasing 

trends in active fire detections in parts of the Western Guinean Lowland Forests 

ecoregion and decreasing trends in both active fire detections and burned area in savanna-

dominated ecoregions. These results portend that ongoing regional landscape and socio-

economic changes along with climate change will lead to further changes in the fire 

regimes in West Africa. Efforts to project future fire regimes and develop regional 
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strategies for adaptation will need to encompass multiple components of the fire regime 

and consider multiple drivers, including land use as well as climate.  

1. Introduction 

Wildfires are a principal force shaping ecological patterns and processes across 

diverse terrestrial ecosystems. The complex interactions of ignition sources with 

vegetation, climate, and topography give rise to fire regimes, an ecological concept 

describing the range of fire characteristics occurring at a given geographic location and 

time period (Archibald, 2016; Whitman et al., 2015). Fire regimes can be characterized 

by various metrics, including fire size, seasonality, frequency, intensity, and severity. 

Examining multiple components of the fire regime is therefore necessary for 

understanding the geographic patterns, drivers, and ecological effects of fire (Liu & 

Wimberly, 2015). This knowledge is essential for projecting how fire regimes will 

respond to future changes in climate and land use, and for developing strategies to adapt 

to these changes. West Africa, in particular, is a region where fire has a significant impact 

on terrestrial ecosystems (Dwomoh & Wimberly, 2017; Ichoku et al., 2016). The region 

also exhibits strong geographic variation in land use, climate, vegetation types, and 

human population, all of which influence spatial heterogeneity of fire regimes. The main 

goal of this study was to explore the influences of climate, vegetation, and land use on 

multiple fire regime components across the forest and woody savanna zones of West 

Africa. 

Over the past four decades West Africa has lost a substantial portion of its natural 

vegetation, including savannas, woodlands, and forests, to expanding croplands and 
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human settlements. As a result, the remaining natural vegetation is highly fragmented 

(CILSS, 2016; Ichoku et al., 2016). A recent analysis of satellite remote sensing data 

indicated a decreasing trend of woody vegetation cover across the savanna ecoregions 

along with widespread degradation of the humid forests (Liu et al., 2017). The tropical 

humid forest (also known as the Upper Guinean forest, UGF), a globally significant 

biodiversity hotspot (Myers et al., 2000), is estimated to have lost over 80% of its original 

forest cover, with the remainder distributed in a fragmented agriculture-forest mosaic 

(Norris et al., 2010; Poorter et al., 2004). Moreover, West Africa’s population almost 

doubled between 1990 and 2015 (180 to 353 million), and it is projected to nearly double 

again by 2050, from 353 million to 797 million (DeSA, 2015). The region has also been 

experiencing climate change in recent decades. Temperatures have become warmer, and 

precipitation has either not changed or declined for many locations below the Sahel, 

especially along the Guinea Coast (Sylla et al., 2016).  

In the rapidly changing environment of West Africa, fire regimes are affected by 

changes that alter fuel conditions and ignitions, but fire also serves as a driver of 

vegetation and land use change. As a result, fire and vegetation change are linked via 

strong positive and negative feedbacks (Dwomoh & Wimberly, 2017). Yet, studies of fire 

regimes in this region are rare. Quite recently, Prichard et al. (Prichard et al., 2017) 

reviewed fire regimes across the world’s major bioregions and pointed out the relative 

scarcity of literature on African savannas. Surprisingly this review did not include any 

examples of research on tropical forest fires in Africa.  

Much of our knowledge of fire regimes in West Africa has been gleaned from studies 

conducted at broader continental to global extents. In a global characterization of fire 
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regimes, Archibald et al. (Archibald et al., 2013) found that most of the region was 

dominated by relatively frequent, small-sized fires with low intensity. Additionally, the 

West African fire regime was largely controlled by human impacts (Archibald, 2016). 

Another global analysis of burned areas also indicated that human activities strongly 

influence fire size distribution in West Africa through land cover changes, fire ignitions, 

landscape fragmentation, and fire management (Hantson et al., 2015a; Hantson et al., 

2015b). Multiple studies have found evidence of decreasing fire activity in the dry, 

savanna-dominated regions across Africa (Andela & van der Werf, 2014; Grégoire et al., 

2013; Grégoire & Simonetti, 2010). Most regional to continental scale fire studies have 

not explicitly addressed the tropical forest regions of West Africa, where fire is relatively 

rare. However, there is evidence that fires have encroached into the northern portions of 

the dry tropical forest zone in recent decades, leading to degradation and eventual loss of 

forest vegetation (Dwomoh & Wimberly, 2017). 

Although studies of fire have been conducted in other tropical regions, the distinctive 

physical and social environments of West Africa suggest that knowledge from such 

studies is not directly transferable. For example, land use pressure in the forested zone is 

dominated by selective logging, small-scale slash-and-burn farming and bush meat 

hunting, in contrast to the agro-industrial pressures that are prevalent in the tropical 

Americas (Malhi et al., 2013). Disproportionate dependence on forest resources, high 

levels of poverty, and recent history of wars and political instability are all important 

socio-economic characteristics of the Upper Guinean region. Given these unique features, 

better regional information about the patterns and drivers of fire regime is needed to 

support projections of future fire regime changes and aid in the development of 



25 

 

adaptation strategies. To help meet these needs, we conducted a regional study of fire 

regimes in the forest and woody savanna dominated portions of West Africa and 

addressed the following research questions:  

1. What are the spatial patterns and interrelationships of multiple fire regime 

components in the Upper Guinean region? 

2. What are the overall trends in fire activity and how do they differ amongst the humid 

forest and the savanna-dominated ecoregions?  

3. How do the relative influences of climate, topography, vegetation type, and human 

activity vary across different fire regime components?  

2. Materials and Methods  

2.1 Study Area 

Our study area encompassed a portion of the UGF region and consisted of five West 

African countries distributed along the Atlantic coast between Senegal and Togo. This 

area covered 985,480 km
2
 and included Ghana, Côte d’Ivoire, Liberia, Sierra Leone, and 

Guinea (Figure 1). The climate is characterized by a strong rainfall gradient with peak 

rainfall (≈4000 mm/year) near the coasts of Guinea, Sierra Leone and Liberia. Rainfall 

decreases rapidly in a north-easterly direction to only ≈1200 mm/year at the forest 

savannah-boundary (Poorter et al., 2004) and less than 1200 mm/year in the driest 

portions of the study area. Generally, decreasing rainfall is associated with a longer dry 

season and higher inter-annual variability of rainfall (Barbé et al., 2002). The rainfall 

regimes are modulated by the Intertropical Convergence Zone (ITCZ) and the West 

Africa Monsoon (WAM) and are influenced by teleconnections with climate modes, such 
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as the El Niño-Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation 

(AMO) (Barbé et al., 2002; Liebmann et al., 2012).  

Along this rainfall gradient, natural vegetation varies from dense evergreen 

rainforests, to moist and dry closed-canopy semi-deciduous forests, to woodlands and 

savannas (Poorter et al., 2004). The area is mainly covered by four of the World Wide 

Fund (WWF) terrestrial ecoregions of the world (Olson et al., 2001). These are the 

Eastern Guinean Forests (EGF) and Western Guinean Lowland Forests (WGLF), together 

comprising the Upper Guinean Forests; and the Guinean Forest–Savanna Mosaic 

(GFSM) and West Sudanian Savanna (WSS) ecoregions (Figure 1a). The principal land 

use is agriculture based on food and cash crops, chiefly cereals, cocoa, tubers, rubber, and 

fruit trees (CILSS, 2016). Other important land use practices include mining and timber 

exploitation in the forested regions, agro-pastoralism, and tree harvesting for fuel-wood, 

especially charcoal, in the drier savanna-dominated regions (CILSS, 2016).  

 

a) 
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2.2 Remotely-Sensed Fire Data 

Active Fires 

We obtained active fire detections at 1-km resolution from the combined MODIS 

Terra (10:30 am/pm equatorial nominal overpass time) and Aqua (1:30 pm/am equatorial 

nominal overpass time) active fire product MCD14ML, level 3 Collection 6 (Giglio, 

2013; Giglio et al., 2016b). We used the detection confidence and hot-spot type fields in 

the MCD14ML data to respectively remove low confidence fires (<30%) and non-

vegetation fires. We used the fire radiative power (FRP) measurement associated with 

each MODIS active fire detection as a measure of fire intensity (Giglio, 2013). FRP is the 

rate of fire energy released per unit time, and this information is retrieved using MODIS 

mid‐infrared wavelengths (Wooster et al., 2003). In Collection 6 of the MCD14ML 

product, FRP retrieval uses a radiance-based approach in which the 4-μm radiance of 

individual fire pixels and surrounding background pixels are compared (Giglio et al., 

Figure 1. Map of study the area overlaid with: (a) terrestrial ecoregions of the world 

(Olson, et al., 2001); and (b) a 2 km spatial resolution West African land cover/land use 

map for 2013 developed by the USGS. We aggregated the original cover types into eight 

general classes. 

b) 
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2016b; Wooster et al., 2003). FRP can be interpreted as a measure of biomass 

combustion rate, and is increasingly used by the atmospheric emissions modeling 

community to estimate vegetation burning emissions (Freeborn et al., 2008; Tang & 

Arellano, 2017). 

Burned Area 

We used the MODIS burned area product, MCD64A1 Collection 6, to measure 

burned area. This product uses an improved algorithm that incorporates both surface 

reflectance and active fire input data (Giglio et al., 2009). Consequently, this product has 

generally improved burned area detection than the previous product MCD45A1, with 

higher accuracy and significantly better detection of small burns (Giglio et al., 2016a). 

The MCD64A1 product has a spatial resolution of 500 m at a daily time step. 

2.3 Derived Fire Regime Variables 

We summarized the active fire and burned area data from 2003 to 2015, covering the 

period within which data were simultaneously collected by both MODIS Terra and Aqua 

satellites. Four main grid-based fire regime metrics were calculated: mean annual active 

fire density, percent mean annual burned area, fire season length, and mean fire radiative 

power (Table 1). We also generated other indicators of fire seasonality, including peak 

fire month, the percentage of active fire detections occurring in the peak month, and the 

percent monthly distributions of active fires and area burned by ecoregion. Variables 

were summarized for a grid of 0.25° raster cells and for the four major ecoregions 

described previously. 

Active Fire Density 
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We summarized the active fire data into time series of monthly and annual active fire 

counts for each grid cell and ecoregion. We used the annual active fire densities to 

compute the mean annual active fire density (fires km
−2

 year
−1

) for each grid cell and 

ecoregion. 

Annual Burned Area 

Monthly and annual burned areas were calculated for each grid cell and ecoregion 

and summarized as a percent of the total land area. We used the annual burned area data 

to compute the mean annual burned area (% year
−1

) for each grid cell and ecoregion. 

Fire Season Characteristics 

We used the grid-based monthly time series data to compute a monthly climatology 

of active fire density for each grid cell using methods developed by Chuvieco et al. 

(2008) and Moreno and Chuvieco (2013). Following these same authors, we computed 

fire season length as the number of calendar months within a year in which the monthly 

fire climatology was greater than the long-term average annual fire density per each grid 

(Moreno & Chuvieco, 2013). We further identified the peak fire month for each grid cell 

as the calendar month in which the maximum climatological fire density was recorded 

(Giglio et al., 2006). We also calculated the percentage of active fire detections recorded 

in the peak fire month as a proportion of the total annual active fire detections for each 

grid cell. To examine the intra-annual variability of fire activity by ecoregion, we used 

the ecoregion-based monthly fire data to calculate the percent of total active fire counts 

and the percent of total burned area that occurred during each month. 
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Mean Fire Radiative Power 

We calculated the mean fire radiative power (MW km
−2

) for each climate grid by 

averaging fire radiative power values of all fire pixels over all years in each grid cell. The 

distribution of mean fire radiative power was heavily right-skewed. Therefore, we carried 

out a logarithmic (base 10) transformation to make the distribution more symmetric and 

reduce the influence of outlying values. 

2.4 Predictor Variables for Analyses of Fire Drivers 

Predictor variables were selected to characterize the major climatic, land cover/land 

use, and human factors that we expected to be associated with the geographic pattern of 

fire regimes (Argañaraz et al., 2015; Hawbaker et al., 2013) (Table 1). We used the 

Tropical Rainfall Measuring Mission (TRMM) monthly product 3B43-v7 at 0.25° spatial 

resolution to generate mean annual rainfall and annual maximum cumulative water 

deficit (MCWD). MCWD estimates accumulated water deficit within a particular year 

and is an indicator of the intensity and length of the dry season (Aragão et al., 2007). 

More negative values of MCWD indicate higher levels of moisture stress. We computed 

MCWD using methods described by Aragão et al. (2007). We also included annual 

potential evapotranspiration estimates from the CGIAR-CSI Global-Aridity and Global-

PET Geospatial Database (Trabucco & Zomer, 2009). Higher values of potential 

evapotranspiration indicate greater moisture stress. All predictor variables were 

aggregated to match the 0.25° spatial resolution of the TRMM data.  

We generated vegetation cover and vegetation change maps from 2-km spatial 

resolution USGS region-specific land cover/use maps for West Africa for 2000 and 2013, 

which were created through visual interpretation of Landsat images (CILSS, 2016). Some 
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of the detailed USGS cover types were aggregated into broader classes. The “forest” class 

included forest, degraded forest, woodland, and swamp forest. The “savanna” class 

included savanna, bowe, and herbaceous savanna. The “cropland” class included 

agriculture, irrigated agriculture, agriculture in shallows and recession, and cropland and 

fallow with oil palms. We expressed these classes as percent cover at the 0.25° grid cell 

resolution. 

We obtained a protected area (PA) boundaries polygon layer from the World 

Database on Protected Areas (accessed in November 2016). We reclassified PAs into two 

classes (production reserve and eco-reserve) based on their level of protection as defined 

by the Protected Categories System of the International Union for Conservation of Nature 

(IUCN). Production reserve (PR) encompassed PAs of IUCN category VI, which are 

designated for natural ecosystems’ protection and sustainable use. Eco-reserves (ER) 

encompassed PAs of IUCN category I to V, which are designated to maintain and protect 

biodiversity and ecosystem integrity with minimal human influence. We assigned all 

areas outside PAs to non-protected (NP) status. We rasterized the PA polygons by 

resampling to the TRMM grid, and retaining PA status as the raster values. 

The new Gridded Population of the World (GPWv4) dataset, at 1 km grid resolution 

(CIESIN, 2015) was used to obtain 2010 population density estimates. We extracted the 

major roads (functional class 0-3) GIS layer from the Global Roads Open Access Data 

Set (gROADSv1, (Center for International Earth Science Information Network - CIESIN 

- Columbia University & Information Technology Outreach Services - ITOS - University 

of Georgia, 2013)). We ran the Euclidean distance function in ArcGIS 10.2 to generate a  
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Data Layer Sources and Description Variable Name (Units) 

Fire variables   

Active Fire Density Mean annual fire density for 2003–2015 derived from 1 km 

monthly MODIS active fire product MCD14ML collection 

6 (Giglio et al., 2016b) 

AfDens (fires 10−3 km−2 year−1) 

Fire Radiative Power Mean fire radiative power per pixel of active fire detections 

for 2003–2015 derived from MCD14ML collection 6 

mFRP (MW km−2) 

Fire Season Length Length of the active fire period for 2003–2015 generated 

from MCD14ML collection 6 

FSL (months/year) 

Burned Area Mean annual burned area for 2003–2015, as a percent of 

grid cell area, generated from 500 m monthly Burned Area 

product MCD64A1 Collection 6 (Giglio et al., 2016a) 

BurnedArea (% year−1) 

Predictor variables  

Vegetation 

Forest cover 2000 Proportion of grid cell covered by forest in 2000, derived 

from 2 km resolution USGS land cover map (CILSS, 2016) 

Forest2000 (%) 

Forest Change Change in proportion of forest between 2000 and 2013 

(generated from (CILSS, 2016)) 

ForestChng (%) 

Savanna cover 2000 Proportion of grid cell covered by savanna in 2000, derived 

from USGS land cover map (CILSS, 2016) 

Savanna2000 (%) 

Savanna Change Change in proportion of savanna between 2000 and 2013 

(generated from (CILSS, 2016)) 

SavannaChng (%) 

Protected Area Status IUCN Protected Categories System(IUCN & UNEP-

WCMC, 2016) 

PaStatus: 

1: Production-Reserve (PR),  

2: Eco-Reserve (ER),  

3: Non-protected (NP) 

Climate 

Mean Annual 

Precipitation 

Mean annual precipitation for 2003–2015, derived from 

Tropical Rainfall Measuring Mission (TRMM) monthly 

product 3B43-v7 (Huffman et al., 2007) 

Precipitation (mm/year) 

Mean Annual 

Cumulative Water 

Deficit 

Mean annual maximum cumulative water deficit for 2003–

2015, calculated from TRMM product 3B43-v7 

MCWD (mm/year) 

Potential 

Evapotranspiration 

Global Aridity Index & Potential Evapo-Transpiration 

Climate Database, ≈1 km resolution(Trabucco & Zomer, 

2009)  

PotentialEvapo (mm/year) 

Human 

Population Density  Population density in 2010 generated from Gridded 

Population of the World (GPWv4), ≈1 km resolution from 

CIESIN (Center for International Earth Science Information 

Network—Columbia University, 2015) 

PopDens (persons/km2 log10 

scale) 

Distance to Road Euclidean distance to major roads (functional class 0–3), 

derived from Global Roads Open Access Data Set (Center 

for International Earth Science Information Network - 

CIESIN - Columbia University & Information Technology 

Outreach Services - ITOS - University of Georgia, 2013) 

Dist2Road (km log10 scale) 

Cropland 2000 Proportion of grid cell covered by cropland/agriculture in 

2000, generated from USGS land cover map (CILSS, 2016) 

Crplnd2000 (%) 

Cropland Change Change in proportion of cropland between 2000 and 2013, 

generated from USGS land cover map (CILSS, 2016) 

CrplndChng (%) 

Distance to Cropland Euclidean distance to cropland in 2000, generated from 

USGS land cover map (CILSS, 2016) 

Dist2Crplnd (km) 

Topography 

Slope Slope from ≈90 m resolution SRTM DEM (Jarvis et al., 

2008) 

Slope (degrees) 

Table 1. Data layers used in the analyses. All variables were re-scaled to the TRMM 

spatial resolution of 0.25°. 
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raster grid of distances to the nearest major road. We calculated slope from a 90 m spatial 

resolution digital elevation model using ArcGIS 10.2.  

To check for excessive data redundancy, we screened the intercorrelations among the 

predictors and found that nearly all had Pearson correlations <0.65 and >−0.65 (Table 1). 

An exception was MCWD which had stronger correlations with the savanna and forest 

variables. 

2.5 Analysis Methods 

Question 1: What Are the Spatial Patterns and Interrelationships of Multiple Fire 

Regime Components in the Upper Guinean Region? 

To characterize the spatial patterns of fire activity in the Upper Guinean region, we 

mapped the four main fire regime components: mean annual active fire density, percent 

mean annual burned area, fire season length, and mean fire radiative power. We graphed 

the bivariate relationships amongst these fire regime components, and used the Kendall 

non-parametric rank correlation coefficient test to determine the direction and the 

strength of correlations among their spatial patterns. We also mapped peak fire month 

and the corresponding percent of fire detections and graphed the seasonal cycle of fire 

distribution and tabulated summaries of fire regime characteristics by ecoregion. 

Question 2: What Are the Overall Trends in Fire Activity and How Do They Differ 

Amongst the Humid Forest and the Savanna-Dominated Ecoregions? 

We used the non-parametric Mann–Kendall test to test for increasing monotonic 

upward or downward trends in annual time series active fire density and burned area for 

each grid cell and ecoregion. The Mann–Kendall test was used for trend detection in 
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previous fire regime analysis (Rodrigues et al., 2013). We followed criteria outlined in 

Liu et al. (2017) for the grid-based trend test and set a significance level of 0.1. Trends 

were calculated only for grid cells with at least six data points, and at most eight 

consecutive missing data points. 

Question 3: How Do the Relative Influences of Climate, Topography, Vegetation Type, 

and Human Activity Vary across Different Fire Regime Components? 

We used Boosted Regression Trees (BRT) to determine the most important 

environmental drivers of each of the four main fire regime components: active fire 

density, burned area, fire season length, and fire radiative power. BRT is a nonparametric 

machine-learning approach combining the advantages of regression trees, which relate a 

response to their predictors by recursive binary splits, and boosting algorithms, which 

combine many simple models to give improved predictive performance (Elith et al., 

2008). It is relatively insensitive to outliers and is able to handle various data types, 

accommodate missing data in predictor variables, automatically model interactions 

among explanatory variables, and produce easily interpretable results (Elith et al., 2008). 

We implemented BRT analyses using the gbm functions in the dismo package in R 3.4.1 

(Elith & Leathwick, 2016). 

In order to avoid overfitting, we used cross-validation procedure to identify optimal 

model parameters (tree complexity-tc, learning rate-lr, and number of trees-nt), and the 

best combination of these parameters was selected by maximizing the variance explained 

by the model. Model fitting were evaluated using 10-fold cross-validation correlation 

between observed and model fitted datasets (Elith & Leathwick, 2016). We used a 

Gaussian error model and a bag fraction of 0.75, and obtained the best tc = 3 for all BRT 
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models of the four fire regime components. In the active fire density model, lr of 0.075, 

and nt of 2400 were selected. In the burned area model, lr of 0.05, and nt of 2160 were 

selected. In the fire season length model, lr of 0.025, and nt of 2100 were selected. In the 

fire radiative power model, lr of 0.075, and nt of 1800 were selected.  

BRT measured the relative influence of each predictor variable based on the number 

of times that variable was selected for splitting, weighted by the squared improvement to 

the model resulting from these splits, and averaged over all trees (Elith et al., 2008). The 

relative influence of each variable was scaled to a total of 100%, with higher values 

indicating stronger influence on the fire regime component. The marginal effect of each 

variable was visualized using partial dependence graphs, which showed the effect of that 

variable on a fire regime component after accounting for the average effects of all other 

variables (Elith et al., 2008). 

3. Results 

Question 1: What Are the Spatial Patterns and Interrelationships of Multiple Fire 

Regime Components in the Upper Guinean Region? 

Figure 2 depicts geographic distributions of the four main fire regime components. 

An overarching gradient of fire activity were evident in relation to patterns of 

precipitation and vegetation, with the highest values of active fire density, burned area, 

and fire radiative power clustered in the Guinean Forest–Savanna Mosaic (GFSM) and 

Western Sudanian Savanna (WSS) ecoregions in the North. In contrast, there was much 

lower fire activity in the Western Guinean Lowland Forest (WGLF) and Eastern Guinean 

Forest (EGF) ecoregions located in the South. However, the different fire regime 
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components also exhibited distinctive patterns. Unusually high active fire density and 

relatively long fire seasons ranging from 4 to 6 months were observed in the western 

portion of the study area at the boundary between the WGLF and the GFSM (Figure 2). 

The highest fire radiative power was concentrated near the coast in the westernmost 

portion of the study area. In contrast, burned area was highest in the WSS and GFSM 

ecoregions in the northeastern portion of the study area. This area also had slightly lower 

active fire density than the northwestern region, along with a relatively short fire season 

length of 2–3 months. 

Among the fire regime components, the strongest relationship was between active 

fire density and burned area (τ = 0.61, p < 0.0001, Figure 3). Active fire density had a 

moderate relationship with fire radiative power (τ = 0.48, p < 0.0001). All other 

relationships were weak and mostly nonlinear (Figure 3). 

At the ecoregion scale, active fire density was highest in the GFSM, followed by 

WSS and then WGLF; and burned area was highest in the WSS, followed by GFSM, and 

then WGLF (Table 2). Among all ecoregions, the forested EGF recorded the lowest 

active fire density, burned area, and fire radiative power (Table 2). Fire season averaged 

about 3-months in all ecoregions (Table 2). Within ecoregions fire season length was 

spatially heterogeneous, with fire seasons longer than three months localized in the north-

western part of the study area and in portions of the EGF. 
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Fire Regime Metric 

Western Guinean 

Lowland Forests 

(WGLF) 

Eastern Guinean 

Forests 

(EGF) 

Guinean Forest 

Savanna Mosaic 

(GFSM) 

West 

Sudanian 

Savanna 

(WSS) 

Annual Active Fire Density 

(fires 10−3 km−2 year−1) 
162 ± 51 54 ± 11 297 ± 24 267 ± 31 

Percent Annual Burned 

Area 

(% year−1) 

3.8 ± 1.6 1.8 ± 0.7 21.2 ± 3.8 27.2 ± 4.5 

Fire Season Length 

(months) 
2.9 ± 0.8 3.4 ± 0.7 3.3 ± 1.0 3.2 ± 0.9 

Fire Radiative Power  

(MW km−2) 
47 ± 79 23 ± 34 42 ± 86 34 ± 44 

 

Figure 2. Maps of four major fire regime components, which were the response variables 

in the BRT models: (a) active fire density; (b) percent burned area; (c) fire season length; 

(d) fire radiative power. 

Table 2. Summary of fire regime characteristics (mean ± standard deviation) across 

ecoregions for the period 2003–2015. 

a) 

c) 

b) 

d) 
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The fire season generally occurred between November and May, with variation in 

seasonal patterns across ecoregions (Figure 4). In the savanna ecoregions, most fires 

occurred between November and February, while in the forested ecoregions most fires 

occurred between January and May. The savanna-dominated ecoregions had earlier peak 

fire months, mainly December and January (Figure 5a). On the contrary, in the forested 

ecoregions fire activity peaked later in the fire season, mainly in March and April. The 

percentage of active fire detections during the peak fire month was highly spatially varied 

(Figure 5b). 

Figure 3. Bivariate relationships amongst the four fire-regime components, with Kendall 

non-parametric rank correlation coefficients indicating the direction and strength of 

correlations among each component pairs. Each variable’s name (Table 1) is shown on 

the diagonal. The lower triangle shows the bivariate scatter plots with a fitted smoothed 

line. The upper triangle shows the correlations and associated p-values: *** p <0.001, ** 

p < 0.05, ▪ p >= 0.05. Larger font sizes indicate stronger correlations. 
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Figure 4. Seasonal cycle of fire activity represented by the monthly percent distribution 

of: (a) MODIS active fire detections; (b) burned area, across ecoregions and the entire 

study area. 

Figure 5. Maps indicating: (a) calendar month with the maximum active fire detections; 

(b) the percentage of the total annual active fire detections recorded in the peak fire 

month. 

a) b) 
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Question 2: What Are the Overall Trends in Fire Activity and How Do They Differ 

Amongst the Humid Forest and the Savanna-Dominated Ecoregions? 

At the ecoregion level, the trend in active fire density was weakly positive in the 

WGLF ecoregion and weakly negative in the EGF and WSS ecoregions (Figure 6a, Table 

3). There were also weak decreasing trends in burned area in the EGF, GFSM, and WSS 

ecoregions (Figure 6b, Table 3). However, the temporal trends in fire activity also varied 

geographically within ecoregions (Figure 7). We found clusters of increasing active fire 

detections in parts of the WGLF, particularly in Sierra Leone and western Liberia (Figure 

7a). There were also clusters of decreasing active fire and burned area in the central 

portions of the WSS and the GFSM, particularly in Côte d’Ivoire (Figure 7). 

 

Fire Regime 

Metric 
Statistic 

Western Guinean 

Lowland Forests 

Eastern 

Guinean 

Forests 

Guinean Forest 

Savanna Mosaic 

West 

Sudanian 

Savanna 

Annual Active  

Fire Density 

Tau 0.359 −0.333 −0.103 −0.385 

p-value 0.1 * 0.127 0.669 0.077 * 

Annual Burned 

Area 

Tau 0.077 −0.333 −0.359 −0.308 

p-value 0.76 0.127 0.1 * 0.161 

* Significant at α = 0.1 

 

Table 3. Nonparametric Mann–Kendall tests to detect trends in fire activity at ecoregion 

scale from 2003–2015. Positive Kandall’s tau statistic values indicate increasing trends, 

whilst negative values indicate decreasing trends 
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Figure 6. Time series of: (a) annual MODIS active fire density; (b) total burned area 

across ecoregions and the entire study area for the period 2003–2015. 

Figure 7. Results of Mann–Kendall trend test of annual: (a) MODIS active fire density; 

(b) percent burned area for each grid cell for the period 2003–2015. Cells with p-values 

less than or equal to 0.1 are highlighted in the maps. Grid cells without enough data 

points to calculate trends are shown in white. 

a) b) 
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Question 3: How Do the Relative Influences of Climate, Topography, Vegetation Type, 

and Human Activity Vary across Different Fire Regime Components? 

Cross-validated correlations between the BRT predictions and observed values were 

0.91 for active fire density, 0.88 for burned area, 0.64 for fire season length, and 0.89 for 

fire radiative power. The most important predictor variables identified by the BRT 

algorithm varied among the four fire regime components (Figure 8).  

 

For active fire density, savanna cover was the most influential variable followed by 

precipitation, potential evapotranspiration, and maximum cumulative water deficit 

(MCWD). All these variables were positively associated with active fire density, except 

MCWD (Figure 9a). MCWD had a nonlinear relationship, in which active fire density 

was highest at intermediate water deficits (MCWD ≈ −150, Figure 9a) which may 

provide dry conditions favorable for fire activity. In contrast, high moisture stress (low 

MCWD values) may suppress fire activity due to low primary productivity and fuel 

availability, and low moisture stress (high MCWD values) may limit fire activity because 

Figure 8. Relative influences of the top 10 predictors from the BRT models of fire 

regime components. Only variables with relative importance values ≥5% of the variation 

are plotted here. Abbreviations of predictor variables and their descriptions are provided 

in Table 1. 
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of high fuel moisture. Forest cover and distance to roads had weaker influences on active 

fire density (4.8%, and 4.2% relative importance, respectively; Appendix Figure S2 - 1).  

For burned area, the most important predictor variables were savanna cover, forest 

cover, slope, savanna cover change, MCWD, cropland change, potential 

evapotranspiration, precipitation, and protected area status in order of decreasing 

importance. Burned area was positively associated with savanna cover, but negatively 

associated with forest cover and slope. Loss of savanna cover during the study period was 

associated with lower burned area, whereas gain in savanna cover was associated with 

higher burned area (Figure 9b). A higher gain in cropland was generally associated with 

higher burned area (Appendix Figure S2 - 2). Burned area was lowest at the highest water 

stress (low MCWD values) and increased with decreasing water stress (increasing 

MCWD values). 

For fire season length, the three climatic indices, slope, population density, and forest 

cover were the most important predictor variables (Figure 9c and Appendix Figure S2 - 

3). The fire season was longest when water deficit was high (lowest MCWD values). Fire 

season length decreased with decreasing water stress up to an MCWD value of −200 

mm/year, and then increased slightly at the lowest levels of water stress (highest MCWD 

values). Annual precipitation was negatively associated with fire season length except at 

the lowest precipitation levels (≤1200 mm/year). Potential evapotranspiration was 

positively associated with fire season length. Thus, for all three climatic variables, longer 

fire seasons were generally associated with drier conditions. Slope had a nonlinear 

relationship with fire season length, with a positive association at low slope values and a 

negative association at higher slope values. Population density was positively associated  
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Figure 9. Partial dependence plots of the top four (4) predictors from the BRT model for 

each fire regime component: (a) active fire density; (b) percent burned area; (c) fire 

season length; (d) fire radiative power. The plots represent the effect of each predictor on 

fire activity after considering the average effect of all predictors in the model. 

Abbreviations of predictor variables and their corresponding full names are described in 

Table 1.  

b) 

c) 

a) 

d) 
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fire season length. Forest cover also had a unimodal relationship with fire season length, 

where the longest fire seasons were associated with 20–40% forested land cover 

(Appendix Figure S2 - 3).  

For fire radiative power, the three climatic indices had the strongest influences 

followed by savanna cover and slope (Figure 9d and Appendix Figure S2 - 4). Thus, the 

four most influential drivers were the same for fire radiative power and active fire 

density, although their levels of influence varied and the relationships with MCWD and 

potential evapotranspiration were different. Fire radiative power was positively 

associated with higher annual precipitation and negatively associated with 

evapotranspiration, suggesting that fire intensity was highest in wetter and more 

productive environments. In contrast, fire radiative power was highest when water deficit 

was high (lowest MCWD values) and decreased with decreasing water stress (highest 

MCWD values), suggesting that greater moisture stress during the dry season was also 

associated with more intense burning (Figure 9d).  

4. Discussion 

4.1. Vegetation Constraints on Regional Patterns of Fire Activity 

There was strong variability in the spatial and temporal patterns of fires across the 

Upper Guinean region. As expected, the savanna-dominated ecoregions were the 

epicenters of fire activity, with the highest density of active fires, burned area, and to 

large extent fire intensity. Savannas are fire-adapted ecosystems, with abundant fine fuels 

and low fuel moisture during the dry season (Murphy & Bowman, 2012; Pausas, 2015; 

Ratnam et al., 2011). Savanna also constitutes the most widespread vegetation type in the 
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study area (Figure 1 and Appendix Figure S2 - 5) and thus provides the majority of fuels 

that support ignition and fire spread. Therefore, concentration of fire activity in the 

savanna and mixed forest–savanna ecoregions was not surprising. Less fire activity was 

observed in the humid forest ecoregions because these forests tend to offer some 

buffering against fire encroachment. Tropical forests are usually fire resistant because 

they have relatively low amounts of herbaceous fuels and relatively high fuel moisture in 

their shaded understories (Cochrane, 2003).  

In the BRT analyses, active fires and burned area both had the strongest associations 

with savanna vegetation type. The geographic distribution of savanna was in turn related 

to the overarching regional gradients of precipitation and moisture stress, but the BRT 

results emphasized that vegetation, rather than climate per se, had the strongest proximal 

influence on fire activity. Recent vegetation change was also identified as an important 

driver of fire. Our finding that savanna loss was associated with lower burned area is 

consistent with previous studies which found reductions in burned area due to conversion 

of savannas to agriculture (Andela et al., 2017; Andela & van der Werf, 2014; Grégoire et 

al., 2013). However, cropland gain during the study period was also associated with 

higher burned area, and this relationship may reflect the use of fire to clear forested areas 

for agriculture. In contrast to savanna, forest areas with lower cover were associated with 

more burned area. These results emphasize that whereas human disturbances through 

forest fragmentation and degradation tend to enhance fire activity in forested areas, such 

disturbances tend to diminish fire activity in savanna-dominated landscapes. 

We also observed trends in fire activity that are likely associated with regional 

changes in land use and vegetation patterns. Increasing trends in active fire detections 
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were identified in the Western Guinean Lowland Forest (WGLF) ecoregion. This result 

affirms recent findings by Ichoku et al. (2016) who reported increasing active fire 

detections in parts of forested West Africa. Recently, Liu et al. (2017) observed 

decreasing trends of woody vegetation in the WGLF, an indication of forest loss and 

degradation in that area. Thus, increasing active fire detections here may be connected 

with a generally decreasing tree cover and increasing amounts of herbaceous/shrub 

vegetation and fine fuels, as has been documented in other forested regions of West 

Africa (Dwomoh & Wimberly, 2017). Furthermore, our observation of a generally 

decreasing trend in fire activity in savanna-dominated ecoregions is consistent with 

previous studies which reported declining fire activity in African savannas (Andela & van 

der Werf, 2014; Grégoire et al., 2013; Ichoku et al., 2016). Liu et al. (2017) reported 

decreasing trends in woody cover and increasing enhanced vegetation index (EVI) across 

much of the woody savanna and forest–savanna mosaic ecoregions, suggesting that 

decreasing fire activity is indeed linked with increasing agriculture and declining tree 

cover in these areas. 

4.2. Distinctive Fire Regimes in the Transition and Savanna Zones 

Differences in multiple fire regime components between the northeastern and the 

northwestern parts of the study area underscored the complexity of factors controlling fire 

regimes. When the fire season is long with a late peak, as in the northwestern subregion, 

the fires that start early in the season are usually smaller in size (Archibald et al., 2013) 

and thus have the potential to break up fuel continuity and reduce total burned area later 

in the season. It has been shown in a variety of ecosystems that fires reduce fuel loads 

and thereby inhibit spread of subsequent fires and reduce burned area (Parks et al., 2016; 
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Price et al., 2015). Moreover, many parts of the northwestern landscape have rugged 

topography (Appendix Figure S2 - 5), which may have inhibited fire spread leading to 

lower area burned in the northwestern subregion. These relationships were reflected in 

the BRT analyses, which found that rugged landscapes with steeper slopes had generally 

lower burned area and longer fire seasons than landscapes with lower slopes and more 

gentle terrain.  

In contrast, the shorter fire season and earlier peak fire month in the northeastern 

subregion suggest that flammable and contiguous fuels allowed large areas to burn within 

a shorter period. These findings are consistent with experimental results from the Kruger 

National Park in South Africa which found that total burned area was mainly controlled 

by fuel availability rather than the number of fire events (Archibald, 2016). The 

northeastern landscape was generally flat and encompassed the largest protected areas of 

savanna in the study area, located in central and northern Ghana and north-eastern Côte 

d’Ivoire (Figure 1 and Appendix Figure S2 - 5), thereby providing the most contiguous 

savanna cover with continuous fuel beds that are conducive to ignition and rapid fire 

spread. The BRT results showed that protected eco-reserves, which are mostly savannas, 

had more burned area than other protection categories (Appendix Figure S2 - 2), meaning 

that fires were more likely to burn in continuous savanna landscapes where human 

interference is minimal. 

Notwithstanding these explanations, we acknowledge that this observed dichotomy 

between active fire and burned area may also reflect the geographic variability in the 

probability of ignitions growing into fires large enough to be detectable by the MODIS 

burned area algorithm. Although the current burned area product, MCD64A1, has 
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improved detection of small burned areas (Giglio et al., 2016a), its performance in highly 

heterogeneous landscapes such as this study area has not been quantified. Thus, burned 

area may be underestimated in the northwestern portion of our study area if the fire 

regime there is comprised of many small fires. However, we believe that relative 

geographic differences in fire regimes that we have observed are valid: many smaller 

fires occurring over a longer fire season in the northwest versus fewer, larger fires 

burning more area over a shorter fire season in the northeast. 

Archibald et al. (2013) reported that small-sized and low intensity fires dominate the 

West African fire regime. However, we found particularly high fire intensity values in 

western part of the study area. This distinct pattern of fire intensity could be partly 

explained by the climatic conditions in the far western portion of the study area. This area 

is unique in that it has high annual precipitation combined with high moisture stress 

during the dry season as reflected in high maximum cumulative water deficits (Appendix 

Figure S2 - 5), as well as the latest peak fire months within the study area. The BRT 

results confirmed that precipitation and maximum cumulative water deficit were the two 

most important drivers of fire radiative power. Thus, the high fire radiative power in this 

region may reflect a combination of high fuel loads generated during the growing season 

followed by low fuel moisture during the fire season, leading to relatively high fire 

intensity compared to other portions of the study area with either lower fuel loads or 

higher fuel moisture during the fire season. Furthermore, the late peak fire month in this 

area likely increased the potential for high intensity fires because fuels later in the fire 

season are exposed to prolonged dry and warm conditions and therefore have lower fuel 

moisture than in the early season (Barrett & Kasischke, 2013). 
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4.3. Climatic Influences on Fire Regime Components 

Our findings that more severe moisture deficits were associated with fewer active 

fires and less burned area, but were also associated with longer fire season lengths and 

higher fire radiative power (FRP), emphasize the heterogeneous impacts of moisture 

stress on the fire regime. The general association between drier conditions and lower fire 

activity indicates that after accounting for differences between major vegetation types, 

fuel loads rather than fuel moisture are the primary factor limiting fire initiation and 

spread. High levels of moisture stress lead to reduced primary productivity and 

consequently result in reduced fuel loads that limit fire activity, whereas more rainfall 

and lower moisture stress lead to increased fuel loads and fuel continuity.  

The overriding influence of the three moisture variables on FRP (Figure 9d and 

Appendix Figure S2 - 4) emphasize that climatic variables, rather than vegetation type, 

were the main determinants of fire intensity (Archibald, 2016; Barrett & Kasischke, 

2013). As discussed in the previous section, the BRT results indicate that FRP is 

constrained by a combination of productivity and fuel moisture effects. The highest FRP 

levels occurred where annual precipitation was high and evapotranspiration was low, 

indicating the potential for high productivity throughout the growing season, but 

cumulative moisture stress was high, indicating severe moisture stress and low fuel 

moisture during the dry season.  

Fire season length was most strongly influenced by climate, topography, and 

population density. Although vegetation types and their associated fuels primarily control 

the spatial variability in ignition and fire spread, they have less influence on the timing of 

fire activity during the year. The association of longer fire season length with higher 
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cumulative moisture deficit supports earlier observation by Giglio, et al. (2006) that fire 

season length in the tropics is largely controlled by duration of the dry season. This 

relationship was further supported by the positive associations of fire season length with 

potential evapotranspiration and negative association with precipitation. Nonetheless, our 

analyses also showed that human population density was an important modifier of fire 

season length but not active fire density nor burned area. The association of population 

density with longer fire seasons suggests that anthropogenic activities have more control 

on the timing of fires than the amount of fire events in these highly-human modified 

landscapes. Thus, the longer fire seasons in the Eastern Guinean Forest ecoregion may 

reflect the constraints of climate as well as land use practices, which tend to make fires 

more persistent even though they are less widespread (Chuvieco et al., 2008). 

5. Conclusions 

In the Upper Guinean Region of West Africa, different components of the fire 

regime were influenced by different environmental drivers. As a result, the various 

combinations of these environmental factors create distinctive fire regimes throughout the 

region. The strong gradient of increasing fire activity from the wetter coastal regions to 

the drier regions in the north was related primarily to the shift from forest to savanna 

vegetation types rather than direct climatic effects. Within the savanna zone, there was a 

distinction between fire regimes with high active fire density, low burned area, long fire 

seasons, and late peak fire months compared to fire regimes with fewer active fires, 

higher burned area, shorter fire seasons, and earlier peak fire months. There was also an 

area of particularly high fire intensity located in the westernmost coastal regions of the 
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study area. These differences were attributable to the combined effects of vegetation 

cover, recent land use changes, topography, and climate. Increasing trends in active fire 

detections in parts of the forested zone and decreasing trends in both active fire detections 

and burned area in the savanna zone were likely associated with differential impacts of 

land use change in these distinctive ecoregions. We conclude that while ongoing climate 

change will continue to influence fire regimes throughout the region, land use change and 

the resulting feedbacks between fire and vegetation will have a major impact as well. 

Efforts to project future fire regimes and develop regional strategies for adaptation will 

therefore need to encompass multiple components of the fire regime and consider 

multiple drivers, including land use as well as climate. It will also be essential to develop 

a stronger understanding of how these drivers affect the timing and spatial pattern of 

ignitions, the abundance and spatial connectivity of available fuels, and the amount of 

biomass consumed by fire. 
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Abstract 
Context Terrestrial ecosystems, including tropical forests, are hypothesized to have 

tipping points beyond which environmental change triggers rapid and radical shifts to 

novel alternative states.  

Objective We explored the overarching hypothesis that fire-mediated alternative 

stable states exist in the semi-deciduous tropical forest zone of Ghana, and that increased 

fire activity has pushed some forests to a new state in which a novel ecosystem with low 

tree density is maintained by fire.  

Methods We combined a 30-year time series of remotely-sensed data with field 

measurements to assess land cover trends, the effects of fire on forest vegetation, and the 

reciprocal effects of vegetation change on fire regimes, in four forest reserves. We 

analyzed precipitation trends to determine if shifts in vegetation and fire regime reflected 

a shift to a drier climate. 

Results  Two of the reserves experienced forest loss, were impacted by frequent 

fires, and transitioned to a vegetation community dominated by shrubs and grasses, which 

was maintained by fire-vegetation feedbacks. The other two reserves experienced less 

fire, retained higher levels of forest cover, and resisted fire encroachment from 

surrounding agricultural areas. Precipitation remained relatively stable, suggesting a 

hysteresis effect in which different vegetation states and fire regimes coexist within a 

similar climate.  

Conclusion There is potential for human land use and fire to create novel and 

persistent non-forest vegetation communities in areas that are climatically suitable for 

tropical forests. These disturbance-mediated regime shifts should be taken into account 

when assessing future trajectories of forest landscape change in West Africa. 
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1. Introduction 

There are increasing concerns that human-induced global changes, including climate 

change, land use change, and habitat loss (Brook et al., 2013), could plunge the Earth 

system into a divergent regime with severe ecological consequences, including major 

extinctions and substantial losses of ecosystem function (Barnosky et al., 2012). 

Connected with these concerns is the idea that the Earth’s subsystems, including 

ecosystems, have tipping points beyond which environmental change triggers rapid and 

radical shifts to novel alternative states (Higgins & Scheiter, 2012). Tropical forest 

ecosystems are major components of the terrestrial biosphere that provide vital ecosystem 

services, including protection of biodiversity and large carbon reserviors (Cramer et al., 

2004). Tropical forests are also important for climate regulation and play a key role in the 

global water and energy balance. If these forests are susceptible to rapid state shifts 

occurring at critical thresholds of environmental change, the resulting changes could have 

severe local, regional, and global implications including threats to ecosystem resilience, 

ecosystem services and human wellbeing.  In this study, we used a long-term dataset of 

remotely-sensed Earth observations to provide insights into tropical forest resilience and 

disturbance-mediated tipping points in the West African tropics.  

The term “tipping point” describes the critical threshold beyond which changes 

exceed ecological resilience and the ecosystem shifts radically and nonlinearly into a 

different state that is potentially irreversible (Scheffer et al., 2009). An important 

property of systems exhibiting alternative stable states is hysteresis, a term used to 

describe the difficulty of system recovery once a catastrophic transition is reached 

(Scheffer, 2009). Hysteresis is the net result of both positive and negative feedbacks 
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between the ecosystem state and its rate of change (Scheffer & Carpenter, 2003). Positive 

feedbacks drive rapid state shifts by magnifying small deviations and destabilizing the 

system, and then negative feedbacks maintain the system once it is shifted into a new 

state by countering deviations from that state (Boulton et al., 2013). Environmental 

drivers, including climate variations, nutrient inputs, and land use typically change slowly 

compared to ecosystem responses (Bestelmeyer et al., 2011; Scheffer et al., 2001). 

However, these environmental changes can trigger disturbances such as large fires, 

severe droughts, disease and pest outbreaks, and species invasions that result in rapid 

transitions to other ecosystem states. When there are strong negative system feedbacks, 

the ecosystem may not return to the pre-disturbance state even when environmental 

conditions are similar to those that supported the initial ecosystem condition prior to the 

disturbance.    

Alternative stable states are hypothesized to occur in tropical forests as a result of 

vegetation interactions with fuels, microclimate, and fire regimes (Brando et al., 2014; 

Silvério et al., 2013). Although closed-canopy tropical forests seldom burn because their 

shaded understories support few herbaceous fuels and maintain high fuel moisture, they 

become more fire prone once fire or logging opens the canopy, resulting in more fine 

fuels and drier conditions in the understory (Cochrane et al., 1999; Hoffmann et al., 

2012). Frequent,  severe, or combined fires limit the establishment of fire-sensitive forest 

tree species and favor pyrophilic grass and shrub establishment by increasing mortality of 

seed trees, reducing density and diversity of seedlings, and inhibiting tree seed 

germination (Paritsis et al., 2015; Silvério et al., 2013). As a result of these positive 

feedbacks, forest disturbance can lead to rapid overstory canopy loss, resulting in a 
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switch from a fire-resistant forest to fire-dependent vegetation maintained by a self-

reinforcing negative fire feedback (Devisscher et al., 2016). 

It is extremely difficult, if not impossible, to rigorously test for the existence of 

multiple stable states using observational data (Petraitis, 2013). However, evidence for 

alternative stable states can be inferred from observations in time and space by detecting 

characteristic patterns, including surges in time series; multimodal frequency 

distributions of ecosystem state variables; dual biological response to drivers; and sharp 

spatial boundaries between contrasting communities (Scheffer & Carpenter, 2003). Using 

these approaches, alternative stable states have been documented in a variety of terrestrial 

ecosystems. Odion et al. (2010) affirmed the presence of alternative community states of 

sclerophyll and forest vegetation states that are maintained by different self-reinforcing 

fire feedbacks in northwestern California. Wood & Bowman (2012) similarly concluded 

that vegetation communities in temperate southwest Tasmania may exist as alternative 

stable states maintained by fire-vegetation-soil feedbacks. In tropical regions, intense 

fires associated with droughts can facilitate large-scale grass invasion in tropical forests, 

prompting the suggestion that such triggers could cause significant portions of the 

Amazon forest to be displaced by grass-dominated vegetation (Silvério et al., 2013).  

Despite widespread interest in the topic, there is still a dearth of long-term 

empirical studies focused on fire-driven alternative stable states in tropical forests. Here 

we utilize a 30-year time series of satellite remote sensing data to explore fire-mediated 

alternative stable states in the West African tropical forest (referred to as the Upper 

Guinean forest).  The Upper Guinean forest is a global biodiversity hotspot and has 

become one of the most human-modified forest ecosystems in the tropics (Norris et al., 
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2010; Poorter et al., 2004), having lost over 80% of its original forest cover, with the 

remainder distributed in a fragmented agriculture-forest mosaic (Norris et al., 2010). The 

Upper Guinean forest is also considered climatically marginal, having the highest 

temperatures and longest dry seasons of all tropical forest systems worldwide (Malhi & 

Wright, 2004). Moreover, a number of protected areas in this region were impacted by 

large fire events during the 1980s El Niño–driven droughts (Hawthorne, 1994). Thus, the 

remnant Upper Guinean forests are highly vulnerable to fire and fire-mediated forest loss, 

and the region provides a suitable testbed for studying alternative stable states established 

and maintained by fire in tropical forest ecosystems.  

This paper addresses the overarching hypothesis that fire-driven alternative stable 

states exist in the semi-deciduous tropical forest zones of Ghana, and that increased fire 

activity has compromised forest resilience by pushing the system past a tipping point to 

an alternative stable state in which a novel ecosystem with low tree density is maintained 

by fire. We used an exploratory approach in which we quantified patterns of landscape 

change and fire activity in space and time and then qualitatively assessed whether the 

observations were consistent with expectations for a system with alternative stable states. 

We addressed three research questions, each focused on a specific characteristic of 

systems with alternative stable states: persistent change, feedbacks, and hysteresis 

(Bestelmeyer et al., 2011; Petraitis, 2013; Scheffer, 2009).  

(i) Is there evidence of persistent forest loss? If the system has shifted to an 

alternative stable state, then we expect to see a major shift in vegetation structure and 

composition with no trends of recovery to a forested condition.  
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(ii) Is there evidence of fire-vegetation feedbacks? We interpret spatial and 

temporal associations of high fire activity with low forest canopy cover as evidence of a 

positive feedback between fire and forest loss. We also contrast fire activity between 

reserved areas and the surrounding agricultural matrix to determine whether forests resist 

the spread of agricultural fires (negative feedback) and whether deforested areas facilitate 

the spread of agricultural fires (positive feedback). 

(iii) Is there evidence of hysteresis? If persistent shifts to non-forest vegetation 

and increases in fire activity have occurred over periods when precipitation has remained 

stable or increased rather than decreasing, then we can infer a hysteresis effects in which 

the different states can exist under similar climatic conditions.  

2. Methods 

2.1 Study Area 

The study area is located between latitudes 7°00’ - 7°40' north and longitudes  

2°20' - 3°00' west in the Brong Ahafo region of western Ghana (Figure 1). A forest 

landscape including four forest reserves was selected for this study. Pamu Berekum and 

Tain Tributaries Block II (hereafter called Tain II) measure 189 km
2
 and 509 km

2
 

respectively. Pamu Berekum is located at the northern edge of the dry semi-deciduous 

forest type. Tain II is located at the southern edge the fire-zone subtype of the dry demi-

deciduous forest type. Asukese and Mpameso measure 265 km
2 

and 323 km
2 

, 

respectively and are located approximately 60 km to the south near the northern boundary 

of the moist semi-deciduous northwest forest type (Figure 1). These sites were chosen 

because they allow us to compare two sets of reserves in a relatively similar climatic 
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setting but with very distinctive change trajectories following a period of high fire 

activity associated with the exceptional pan-tropical El Niño-induced droughts in the 

1980s (Swaine, 1992). In this cloudy and data-poor region, the selected reserves are 

among the few for which relatively long time series of Earth observation data are 

available. 

 

Based on data collected from 1976 to 2013 from three meteorological stations 

located within the study area, mean annual rainfall ranges from 1194 to 1292 mm, and 

mean daily temperature is about 25° C in the wet season (April-October) and 27°C during 

the dry season (November-March). The study area is among the most floristically diverse 

and economically important forest areas in Ghana. Historically, forests in this region 

Figure 1. Vegetation map of Ghana (right) with the study area (left) on a background 

Landsat ETM+ image from 5 February 2013 in 743 false color composite. On the left, 

dark green represents forest cover, dark purple represents recently burned vegetation, and 

white spaces indicate no data due to Landsat 7 SLC-off data gaps. AS Asukese Forest 

Reserve, MP Mpameso Forest Reserve, PB Pamu Berekum Forest Reserve, TT 

TainTributaries Block II Forest Reserve. 
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were densely stocked and characterized by multi-layered and continuous canopies with 

abundant lianas and many large, buttressed trees (Hall & Swaine, 1981).  The most 

common valuable timber species in the area include Antiaria toxicaria, Triplochiton 

scleroxylon, Khaya spp., Entandrophragma spp. and Milicia excelsa.  

Currently, the most significant original tropical forests left in the region are those 

contained in protected forest reserves (Alo & Pontius, 2008). Outside of the protected 

areas, farming represents their primary source of food, income, and security (Blay et al., 

2008). The high human population density outside protected areas makes them 

susceptible to fires because of forest fragmentation and fire spread from agricultural 

areas. There is also considerable pressure from both legal and illegal logging inside the 

protected areas to meet high wood demands (Hawthorne, 1994; Marfo, 2010).  

2.2 Remote Sensing Data  

We used Landsat TM/ETM+ images acquired during the dry season (November-

March) to maximize cloud-free acquisitions and minimize false change detection due to 

seasonality and phenological differences. A total of 26 images from 1984 to 2015, with 

cloud cover 25% or lower, were selected from Landsat path/row 195/055. Whenever 

more than one image was available for a particular dry season, the image with the most 

conspicuous burn scars and the least cloud contamination was selected. The periods 

1984-1995, 1996-2005, and 2006-2015 had nine, seven, and 10 images, respectively. All 

the images were Level 1 terrain corrected (LT1), atmospherically corrected, and 

converted to surface reflectance using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) tool (Masek et al., 2006). With the exception of a few 
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images from the European Space Agency, most images were downloaded from the USGS 

EROS archive (Table S3 - 1 in Appendix). 

Cloud and cloud shadow masks were obtained through an automated cloud and 

cloud shadow detection algorithm, Fmask (Zhu & Woodcock, 2012). A separate Random 

Forest classification approach, using both the reflective and thermal bands, was used to 

mask clouds from the 1984 image due to poor performance of the Fmask algorithm. The 

Carlotto technique for de-hazing implemented in the ImgTools software was used to 

correct for atmospheric contamination of  images affected by haze and smoke (Souza et 

al., 2013).  

2.3 Mapping Fires 

The normalized burn ratio (NBR) was used to map burned area in each image. 

After fire, the reflectance of burned areas typically increases in the middle infrared (MIR) 

because of soil exposure and decreases in the near infrared (NIR) due to leaf tissue 

damage. The NBR thus uses MIR and NIR reflectance to map burned areas (Key & 

Benson, 2006). We used NBR thresholds, guided by manual interpretation of the Landsat 

imagery and field observations, to map fire perimeters in all years with available Landsat 

imagery with threshold values ranging from 0.06 – 0.18. 

The differenced NBR (dNBR) calculates the change between pre- and post-fire 

NBR estimates as a measure of severity and has been shown to be effective in broadleaf 

as well as coniferous forest types (Wimberly & Reilly, 2007). We mapped fire severity 

within burned perimeters using the dNBR in 1989 because suitable images for both pre- 

and post-fire were available only for that year. Because there is no systematic way of 

generating fire severity classes from continuous values of dNBR, we adopted the 
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approach employed by Numata et al. (2011) using a mean cluster analysis  to classify the 

dNBR values of burned pixels into three classes of fire severity (low, medium and high).  

We also obtained MODIS active fire detections at 1-km resolution at the time of 

Terra (10:30 am/pm Equatorial nominal overpass time) and Aqua (1:30 pm/am 

Equatorial nominal overpass time) satellite overpass from the monthly product 

MCD14ML, level 3 Collection 6 (Giglio et al., 2016). We characterized the spatial 

distribution and frequency of active fires for the period 2001-2015. We summarized the 

active fire detections into an annual active fire density time series (number of active fires 

per 100 km
2
) for each forest reserve, as well as the 5-km buffer zone surrounding each 

reserve.  

2.4 Mapping Forest Vegetation Change 

We used the disturbance index (DI), which is based on the tasseled cap (TC) 

transformation, to map changes in forest conditions over time (Healey et al., 2005)  The 

TC transformation compresses the data in the six optical-infrared bands of Landsat 

TM/ETM+ images to three orthogonal indices called brightness, greenness and wetness 

(Baig et al., 2014).  Brightness is a weighted sum of all the bands, and is often used as a 

measure of soil exposure.  Greenness is a measure of the contrast between the NIR band 

and the visible bands and is sensitive to the amount of photosynthetically active 

vegetation (Baig et al., 2014). Greenness is thus analogous to Red/NIR-based greenness 

indices such as NDVI and EVI. Wetness is a measure of contrast between the NIR and 

MIR bands and is sensitive to the moisture content of soil and vegetation. In vegetated 

areas, wetness can be interpreted as an indicator of canopy structure, soil or surface 
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moisture, or the amount of dead or dried vegetation (Cohen & Goward, 2004). Tasseled 

Cap transformation coefficients were obtained from Crist (1985).  

We rescaled the TC indices into normalized brightness (Br), normalized 

greenness (Gr) and normalized wetness (Wr) by normalizing the respective TC index by 

the mean and standard deviation of representative forested pixels in each image scene. 

The reference forest pixels were selected from local image windows containing a mask of 

stable forest reserves across the entire image scene. This forest mask comprised 14 forest 

reserves, including national parks that were identified as relatively stable through time in 

the Landsat images time series. Compared to other vegetated surfaces, dense forest pixels 

are generally darker in the visible and middle infrared bands. Therefore, these pixels 

formed a peak at the lower end of the histograms for these bands (Huang et al., 2008). 

Our reference forest pixels were selected by identifying the first peak in the histogram of 

the Landsat red band from our stable forest mask. Even though reflectance values of the 

reference pixels might change between images due to scene-to-scene variability, the 

selection approach has been shown to be insensitive to these inter-image variations as 

long as the histogram peaks can be identified (Huang et al., 2008).  

The DI is a linear transformation of the three normalized TC indices derived from 

Landsat TM/ETM+ images.  

DI =  Br – (Gr +  Wr)       Equation 1 

 The DI works on the assumption that disturbed forest exhibits high brightness, 

low greenness and low wetness. Thus, disturbed areas are spectrally dissimilar to forests 

and therefore have high DI values. Undisturbed forest has spectral characteristics close to 

the reference forest pixels and therefore has low DI values (Healey et al., 2005). This 
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approach has been shown to be effective at detecting changes in forested land cover 

(Hilker et al., 2009; Sieber et al., 2013). Validation of the 2015 DI index with the 

available Google Earth high-resolution imagery indicated a good separation of forest 

canopy cover classes by the DI, with a multi-class AUC value of 0.98 (see Appendix S3 - 

1).  

2.5 Field Inventory 

In March 2014 we conducted forest inventory in 11 representative sample plots 

distributed across the four forest reserves to characterize the conditions shown by the 

vegetation indices. The numbers of plots sampled in each reserve were two (AS), four 

(MP), two (PB), and three (TT). In each plot we established belt transects of 100 m x 10 

m (0.1 ha).  Within these transects, we measured and recorded the diameter at breast 

height (DBH in cm) of all trees with DBH ≥10 cm. Also, we estimated canopy cover (%) 

at 1 m intervals along each transect. We established three circular subplots of radius 5.65 

m (area 100 m
2
) at every 50 m along the belt transect to measure all small trees of DBH 

≥2 cm and <10 cm. (>2 m tall). Within each subplot, we took ocular estimates of litter 

and combined grass/shrub cover. The tree counts were summarized to provide tree 

density and basal area estimates.  

2.6 Meteorological Data 

We analyzed precipitation data from three meteorological stations located in the 

towns of Bechem, Sunyani, and Wenchi, spanning the latitudinal gradient of the study 

area (Appendix, Figure S3 - 1). We considered two rainfall metrics: the total annual 

precipitation (TAP) and the maximum climatological water deficit (MCWD). MCWD 

estimates accumulated water deficit within a particular year, and this rainfall metric is a 
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useful indicator of the intensity and length of the dry season (Aragão et al., 2007). We 

computed MCWD using methods described by Aragão et al. (2007). TAP is a major 

determinant in the distribution of tropical tree cover and vegetation types, whereas 

rainfall seasonality (here represented by MCWD) affects fuel moisture and fire regimes 

in the tropics (Hirota et al., 2011; Staver et al., 2011). 

2.7 Analysis methods 

Question 1: Is there evidence of persistent forest loss? 

We graphed time series of mean DI, brightness, greenness and wetness indices for 

each reserve and conducted trend analysis to quantify trajectories of vegetation change. 

We used the non-parametric Mann-Kendall test to test for increasing monotonic upward 

or downward trend in forest canopy disturbance after 1989 (Gocic & Trajkovic, 2013). 

We also used the field inventory data collected in March 2014 to provide a more detailed 

characterization of current vegetation structure and composition in representative plots 

distributed across the reserves.  

Question 2: Is there evidence of fire-vegetation feedbacks? 

To determine whether fire regimes were different in reserves that experienced 

forest loss compared to the intact reserves, we also graphed the annual time series of 

MODIS active fire density and Landsat percent area burned for each reserve. We used 

Welch’s one way ANOVA test and the Games-Howell post-hoc test, from the 

userfriendlyscience package in R, to compare mean differences in active fire density and 

burned area among the four reserves for the entire time series. We used these tests 

because the data were heteroscedastic and also violated the normality assumption, and 
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therefore did not meet the assumptions for one-way ANOVA or its non-parametric 

equivalent, the Kruskal-Wallis test. We also compared fire severity in the four reserves in 

1989 using the Landsat-derived dNBR measurements. 

To assess the interactions between vegetation in the reserves and fire ignited in 

the surrounding agricultural matrix, we used paired t-tests to evaluate differences in fire 

activity between the interior and the 5-km buffer surrounding each reserve. This analysis 

tested whether the vegetation in the reserves generated negative fire feedbacks by 

resisting the spread of fires ignited in the surrounding agricultural matrix, or generated 

positive feedbacks by facilitating fire spread from the matrix.  

Question 3: Is there evidence of hysteresis? 

We analyzed TAP and MCWD from 1990-2013 using the non-parametric Mann-

Kendall test and breakpoint analysis to determine whether or not the changes in 

vegetation and fire regime after 1990 could be explained by a shift to a drier climate. 

Breakpoints in time series are points at which the mean changes, and such analyses are 

useful for determining when abrupt transitions occur and thus identifying potential 

regime shifts (Bestelmeyer et al., 2011). Cumulative sum (CUSUM) plots, residual sums 

of squares (RSS), Bayesian Information Criterion (BIC) and F-statistic analyses were 

used for abrupt change point detection in the precipitation time series (Bestelmeyer et al., 

2011).  

3. Results 

Question 1: Is there evidence of persistent forest loss? 
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The time series of DI, brightness, greenness, and wetness showed varied 

responses across the study sites (Figures 2 & 3). From 1990 onward, DI was higher and 

exhibited a significant increasing trend in PB (0.1 significance level) and TT (0.05 

significance level), but remained low with no significant trend in AS and MP (Table 1). 

No significant increasing or decreasing trend in greenness was detected in any of the 

reserves. There were significant decreasing trends in wetness in the northern reserves (PB 

and TT), but no significant trends in the southern reserves (AS and MP). There was a 

significant increasing trend in the brightness index in TT, but no significant trends in PB 

and the southern reserves. Based on these results and visual inspections of the trends, 

there was no evidence of recovery of forest conditions in PB and TT, and no evidence of 

increasing forest disturbance in AS and MP. 

 

 

 

Figure 2. Time series of disturbance index and tasseled cap brightness, greenness and 

wetness indices across the four reserves. 



74 

 

 

Figure 3. Disturbance index time series maps showing vegetation cover changes within 

the forest reserves. Colors represent a gradient from closed forest (green) to degraded 

forests or low vegetation cover (blue). Red represents recently burned sites; white spaces 

indicate non-vegetated surfaces or no data. 

Vegetation Index Statistic AS MP PB TT 

Disturbance index 

 

tau -0.158 -0.15 0.316 0.432 

p-value 0.363 0.405 0.056* 0.009** 

Brightness index 

 

tau -0.018 -0.072 0.221 0.284 

p-value 0.944 0.705 0.183 0.086* 

Greenness index 

 

tau 0.205 0.268 0.032 0.053 

p-value 0.234 0.13 0.871 0.77 

Wetness index 

 

tau -0.018 -0.111 -0.326 -0.4 

p-value 0.944 0.544 0.048** 0.015** 

Positive Kandall’s tau statistic values indicate increasing trends, whilst negative values indicate 

decreasing trends. ** Significant at 0.05 significance level, * significant at 0.1 significance level 

 

Table 1. Nonparametric Mann-Kendall test to detect trends in DI, brightness, greenness, 

and wetness indices from 1990 to 2015  
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The forest inventory data from 2014 indicated that most of PB and TT lacked a 

forest canopy (Table 2). We also sampled one small remnant forest patch in TT, which 

had a relatively high basal area but also had lower tree density and canopy cover than the 

other plots located in unlogged forests. In contrast, the representative plots in AS and MP 

had higher tree densities, basal areas and canopy cover, although canopy cover tended to 

be lower in plots with evidence of recent logging.  

Reserve Logging status Tree density (stems ha-1) Basal area (m2 ha-1) 

Canopy 

cover (%) 

Shrub 

cover (%) 

Litter 

cover (%) 

  

Trees  

5-10cm dbh 

All tree  

≥5 cm dbh 

Trees  

5-10cm dbh 

All tree 

 ≥5 cm dbh 

   

AS Recent logging* 67 137 0.28 4.7 27 100 100 

AS No recent logging 500 900 2.18 30.99 64 0 53 

MP Recent logging 767 1067 3.07 34.87 45 47 50 

MP No recent logging 533 953 2.01 22.39 73 5 72 

MP Recent logging 200 470 0.74 8.38 27 53 45 

MP Recent logging 433 863 1.68 27.75 70 5 90 

PB No forest 0 0 0 0 0 100 85 

PB No forest 167 207 0.47 1.71 1 100 85 

TT No forest 67 67 0.15 0.15 0 98 100 

TT No recent logging  0 230 0 27.15 40 68 85 

TT No forest 0 10 0 4.36 5 100 100 

* Recent logging indicates field evidence of logging activity at least in the recent two decades. 

The inventory data showed that shrub/grass cover was generally lower in the AS 

and MP plots than in the PB and TT plots (Table 2). In AS and MP the shrub and 

herbaceous layers were dominated by species typical in forest gaps and the forest 

understory, including herbs in the genus Afromomum and the family Marantaceae. 

However, in PB and TT the shrub and herbaceous layers were dominated by heavy 

thickets formed by a mixture of Pennisetum purpureum (elephant grass), the shrubs 

Table 2. Summary of vegetation characteristics of representative field plots sampled in 

March 2014 
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Chromolaena odorata and Solanum erianthum, and copious regeneration of Ficus spp. 

The percentage of the forest floor covered by litter varied widely among all the sampled 

locations, but was generally higher in PB and TT and in plots with recent logging.  

Question 2: Is there evidence of fire-vegetation feedbacks? 

The time series of Landsat burned area showed that the largest annual burned area 

was recorded in 1989 and that this fire in this year was more widespread in the two 

northern reserves, PB and TT, than the southern reserves, AS and MP (Figure 4). During 

that year, 66.0% of PB and 39.0% of TT were burned at moderate to high severity 

(Figure 5). In contrast, only 2% of MP and less than 0.10% of AS were burned at 

moderate to high severities.  

 

Figure 4. Time series of burned area mapped from Landsat TM/ETM+ imagery. 
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There were significant differences in Landsat burned area (F= 8.67, p < 0.001, 

Welch’s one-way ANOVA; Figure 4) and MODIS active fire density (F= 21.92, p < 

0.001, Welch’s one-way ANOVA; Figure 6 and Figure 7) across all the reserves. For 

both the Landsat burned area and the MODIS active fire annual time series, there was 

more fire activity in the two northern reserves that had minimal forest cover (PB and TT) 

than in the two southern reserves that retained a mostly intact forest canopy (AS and MP, 

Figure 4 and Figure 6). The Games-Howell post hoc tests confirmed that for both fire 

variables, there were no significant differences (0.05 significance level) between TT and 

PB, or between AS and MP (Appendix, Figure S3 - 4). However, mean values in TT and 

PB were significantly higher than in AS and MP. 

Figure 5. Immediate (7-weeks) post-fire burn severity measured by the differenced 

normalized burn ratio (dNBR) summarized across four forest reserves in 1989. 
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Figure 6. MODIS active fire density time series 

Figure 7. Spatial distribution of MODIS active fires, 2001 - 2015, within forest reserves 

and 5 km buffer zones around the reserves. 
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There were more active fires in the reserve interiors than in their corresponding 

buffers in the highly disturbed northern reserves (Figures 7, 8; paired t-test, p= 0.002 and 

p<0.001 in PB and TT, respectively). In contrast to the northern reserves, there were 

more active fires in the buffer zones of each reserve than within reserve boundary in the 

less disturbed southern reserves (Figures 7, 8; paired t-test, p< 0.0001 in both AS and 

MP). Overall active fire densities were lower both in the reserves and buffer of AS and 

MP compared to PB and TT. We inferred that the non-forest vegetation in PB and TT 

exhibited positive feedbacks that facilitated the growth and spread of agricultural fires 

ignited in the surrounding matrix, whereas the forest vegetation in AS and MP exhibited 

negative feedbacks and resisted spread of fires from the surrounding matrix. This 

inference is supported by the fire patterns shown in Figure 3, in which fire scars in PB 

and TT after 2000 tend to be adjacent to the edge of the reserve and extend into and 

sometimes through the entire reserve, whereas no substantial fire scars are seen in AS and 

MP. 

 

Figure 8. Mean annual MODIS active fire density within reserves and 5-km buffers 

around each reserve. 
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Question 3: Is there evidence of hysteresis? 

Precipitation was similar along a north-south gradient throughout the study area. 

Mean annual precipitation (± standard deviation) from 1976 to 2013 ranged from 1244 ± 

171 at Wenchi in the north to 1194 ± 171 at Sunyani between the northern and southern 

reserves to 1282 ± 228 at Bechem in the south.  

Precipitation trends indicated a gradual increase in TAP in all the weather stations 

punctuated by some dry years in 1990s and the 2000s (Figure 9). These increases were 

statistically significant in all the weather stations (p-value <0.01), except at Wenchi. The 

MCWD trend did not show evidence of worsening drought stress during the dry season 

(Appendix, Figure S3 - 3). Instead there was a statistically significant improvement in 

moisture conditions in Bechem (p-value <0.05), and no statistically significant change in 

Sunyani and Wenchi. No abrupt changes in precipitation were detected in any of the time 

series. Thus, the non-forested conditions in PB and TT have been maintained throughout 

a time period during which precipitation has generally been stable or increasing, and thus 

climatic suitability for forests has also been stable or increasing.   
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Figure 9. Time series of annual precipitation from three meteorological stations spanning 

the latitudinal gradient of the study area. Data cover the periods (a) 1976-2009, (b) & (c) 

1976-2013. Dashed lines represent linear trends; solid lines represent locally smoothed 

trends. 
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4. Discussion 

Although our time series of Landsat observations encompassed more than 30 years 

from 1984 through 2015, the results need to be interpreted in the context of longer-term 

trends. Mentions were made of historical fires in the reserves in our study area for several 

decades before the 1980s, noting that they were mainly occasional forest-floor fires 

which did not cause severe damage to the forest (Hall & Swaine, 1981). A study of 

historical fire records in Ghana’s forest zone from 1910 to 1993 showed that periods of 

widespread fires coincided with droughts, but also found a sharp rise in fire frequency 

beginning in the early 1980s (Orgle, 1994). Swaine (1992) also observed this trend of 

increasing fire incidence in the 1980s and argued that a coupled interaction between 

human land use changes and climatic changes were responsible. Forest assessments 

conducted between 1986 and 1988 indicated that widespread burning had occurred in 

numerous reserves in the semi-deciduous forest zone, and that large portions of the 

reserves that we studied burned in the early 1980s (Hawthorne, 1994), although we did 

not detect these fires in the Landsat record. However, only PB and TT were reburned by 

the extensive and severe fires that we observed in 1989.  

These repeated fires in the 1980s played a key role in a shift from forest to grass 

and shrub-dominated vegetation in the two northern reserves. Even though the spectral 

indices showed rapid recovery in 1990, these reserves likely became more susceptible to 

subsequent fires because of reduced canopy cover, increased fuel loads, and decreased 

fuel moisture following multiple disturbances (Brando et al., 2014; Cochrane et al., 

1999). Therefore, we strongly suspect that PB and TT experienced additional fires that 

were not detected in the sparse Landsat record of the 1990s. Generally, large canopy trees 
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have thicker bark and are able to survive fires than smaller trees, but they succumb to fire 

upon repeated burns (Balch et al., 2015). It is also possible that fire damage to canopy 

trees during the 1980s could have led to delayed mortality of the injured trees over the 

subsequent decade. Based on our satellite observations combined with information from 

the historical record and knowledge of tropical forest fire ecology, we suggest that the 

most likely scenario is that repeated fires gradually eroded the resilience of the two 

northern reserves. 

From 2000 onward, the deforested northern reserves burned more frequently than 

the forested southern reserves, and these frequent fires have maintained grass and shrub-

dominated vegetation in the northern reserves by limiting the establishment of fire-

sensitive forest tree seedlings. Results from experimental and field-based studies in the 

Amazon affirm that repeated fires significantly impede successful regeneration of woody 

forest species, but foster the spread of invasive grasses (Balch et al., 2015; Silvério et al., 

2013). In the northern reserves, the fire-maintained vegetation is mainly a mosaic of the 

invasive and fire-prone shrub, Chromolaena odorata and tall grasses such as Pennisetum 

purpureum (elephant grass), and Panicum maximum (Amissah et al., 2011; Swaine, 

1992) with low densities of forest tree species (Figure 10). The grasses and shrubs tend to 

be very aggressive competitors, curtailing seedling establishment and growth of forest 

tree species. In an experimental study in Ghana, Honu & Dang (2000) recorded that 

decreased seedling growth and survival was associated with Chromolaena odorata 

infestation, and that tree regeneration was significantly enhanced following removal of 

this invasive shrub. Loss of overstory trees due to fire also reduces seed sources and 
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limits seedling establishment due to the absence of nurse trees, reduced competitive 

advantage, and harsh environmental conditions (Paritsis et al., 2015).   

 

Our results showing more fires in the interiors than outside the northern reserves 

suggest that fires ignited in the surrounding landscape matrix and subsequently burned 

into these reserves, where the pyrophilic grasses and shrubs facilitated their spread. Fire 

is the main land preparation tool for agriculture in the area, and fire spread from 

agricultural areas is one of the main sources of fire ignition in the forest reserves (Appiah 

Figure 10. Pictures showing conditions of: a) canopy cover in unburned forest in AS, b) 

a degraded and recently burned area in PB with few isolated trees, c) frequently burned 

vegetation in TT dominated by Chromolaena odorata, and d) frequently burned 

vegetation in PB dominated by Pennisetum purpureum (elephant grass). 
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et al., 2010). We infer a positive feedback whereby the vegetation in these reserves 

amplified the effect of these ignitions through rapid spread rates and propagated fires 

through the reserve and back into the surrounding landscape. Contrasting results showed 

fewer fires in the interiors than in the buffers of the relatively intact southern forest 

reserves, suggesting a negative feedback, whereby the closed canopy forests inside the 

reserves prevented fire spread from the adjacent agricultural matrix because of less live 

fuels and higher fuel moisture in the shaded understory.  

These interactions between the reserves and the surrounding landscapes 

emphasize the important effects of human land use on fire regimes. Forest reserves in 

Ghana have mostly been protected against conversion to cropland and other agricultural 

land uses. However, forest rehabilitation and plantation activities, such as the Taungya 

agroforestry system, do occur inside some reserves and have been cited as sources of 

forest fires in Ghana (Orgle, 1994). Most forest reserves in Ghana are logged, primarily 

through selective logging of individual trees (Adam et al., 2006) , and illegal logging is 

also widespread (Marfo, 2010). Logging disturbs the forest canopy and result in 

fragmented forests that are more vulnerable to fire (Hawthorne et al., 2012). Many forests 

in Ghana were subjected to heavy timber exploitation beginning in the early 1960s and 

continued into the early 1980s (Adam et al., 2006; Treue, 2001). All the reserves in our 

study area are known to have experienced heavy logging prior to the 1980s, and this 

logging is believed to have led to increased fire susceptibility following the severe 

drought of 1982 - 1983 (Hawthorne, 1994; Hawthorne & Abu-Juam, 1995; Orgle, 1994). 

Thus, human activities such as agriculture and timber extraction helped to create the 
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conditions that resulted in increased fire susceptibility and led to the observed regime 

shifts in the northern reserves. 

Our finding of divergent fire regimes associated with contrasting vegetation types 

in areas with similar rainfall suggests that fire-vegetation feedbacks can maintain 

distinctive vegetation and fire regimes in areas with similar climate, a finding also 

confirmed by Dantas et al. (2013). This result also fits the conceptual model of Staver et 

al. (2011), who concluded that in climates with intermediate annual rainfall (1000 – 2500 

mm) and a dry season shorter than seven months, fire is a major determinant of 

alternative vegetation states. Another recent assessment of Afrotropical vegetation 

similarly concluded that fire has the potential to maintain tropical forests and savannas as 

alternative biome states under a broad range of environmental conditions (Dantas et al., 

2016). Our results thus suggest a hysteresis effect, in which a disturbance-driven state 

change was followed by maintenance of a new, non-forested vegetation community under 

levels of precipitation that continued to support forests at nearby locations. Even though 

the variability in soils, topography, and other climatic conditions across our study area is 

not large, there is also the potential for fire-vegetation feedbacks and the resulting 

hysteresis to magnify relatively small environmental differences into much larger 

disparities in disturbance regimes and vegetation characteristics (Beisner et al., 2003).  

It is important to note several challenges associated with the present study. Like 

most tropical regions, there are few historical data documenting changes in the landscape, 

so we gleaned pieces of evidence from multiple sources to arrive at our conclusions. We 

acknowledge that persistent cloud cover and missing image data constrained our remote 

sensing analyses to years when cloud-free Landsat images were available. In particular, 
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Landsat acquisitions in our study area were rare in the 1990s due to downlinking 

problems as well as the commercialization of the Landsat program during that era 

(Goward et al., 2006). Our Landsat record did not go far back enough to capture earlier 

fires associated with the 1982-1983 severe droughts. There are also areas of missing data 

in images acquired after May 2003 due to failure of the Landsat 7 ETM+ Scan Line 

Corrector (SLC-Off). It is also recognized that MODIS hotspot detections may be limited 

by unfavorable observing conditions and the timing of the satellite overpass (Giglio et al., 

2016). The coarse spatial resolution of MODIS also means that we may have missed 

lower intensity and smaller fires, especially understory fires. Hence, total numbers of 

fires are likely underestimated, although spatial and temporal comparisons of relative 

numbers of hot spots are still valid.  

  Whilst there are few empirical studies on alternative stable states in terrestrial 

ecosystems, such studies on tropical forests are even rarer. Although the use of remotely 

sensed data in the study of alternative stable states is not new, previous studies have often 

neglected the temporal component by substituting time for space in their analyses (Hirota 

et al., 2011; Staver et al., 2011). Our approach combining field measurements and 

multiple spectral vegetation indices from long-term time series Landsat imagery is thus a 

unique contribution. This study demonstrates the potential for land use change and fire to 

create novel and persistent non-forested vegetation communities in regions that are 

climatically suitable for forests. These changes were not immediate, but occurred slowly 

because of delayed tree mortality, continued impacts of human disturbances such as 

logging, and gradual erosion of forest resilience due to repeated fires. A critical 

implication is that assessments of future vegetation dynamics in the region will need to 
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consider land use, fires, and their dynamic landscape-scale interactions in the context of 

broader drivers related to climate change and human population growth. In particular, 

further research focused on elucidating the drivers and mechanisms of forest degradation 

and fire encroachment may allow for the detection of early warning signals and the 

development of strategies to prevent further forest loss in tropical West Africa. 
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Abstract 

Forest reserves in Ghana are the only significant refugia of natural tropical forest 

relics, but they are threatened by significant land use pressures leading to widespread 

forest degradation. Additional stress from climate perturbations, such as droughts, can 

reduce fuel moisture and lead to fires that render the reserves more vulnerable to further 

degradation. Here we explore recent drought-associated wildfires in the forest zone of 

Ghana to better understand the combined effects of forest degradation and drought stress 

on fire in the forest reserves. We used remotely sensed Earth observations from MODIS 

and Landsat 8 along with precipitation data from the Climate Hazards Group Infrared 

Precipitation with Stations (CHIRPS). In 2016, Ghana’s forest reserves experienced an 

uncharacteristic surge in active fire detections that was associated with intense drought 

during that year. Approximately 2,137 km
2 

of forest reserve area were burned. We further 

found that reserves in the moist semi-deciduous forests, the largest and most 

economically valuable forest type, were the most affected by fire, accounting for more 

than 50% of all active fires and burned area in 2016. There was a higher percentage of 

burned area in degraded forest reserves than in more intact reserves. These results suggest 

that although drought predisposes tropical forests to fire, forest degradation also critically 

influences the spatial pattern and extent of burned forests. These results underscore the 

vulnerability of Ghana’s forest reserves, particularly in the moist semi-deciduous type, to 

fires during severe droughts.Thus, it will be essential to reduce forest degradation and 

implement effective fire management to maintain forest resilience under changing future 

climates.  
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1. Introduction 

Climate change can lead to extreme droughts that facilitate large tropical forest fires, 

and such disturbances are currently among the most formidable threats to tropical forest 

ecosystems worldwide (Brando et al., 2014; Silvestrini et al., 2010). Several studies have 

examined the impact of recent droughts on tropical forests, especially in the Amazon 

(Alencar et al., 2011; Alencar et al., 2015; Brando et al., 2014), but the effects of drought 

on the highly fragmented tropical forests of West Africa has received less attention. 

However, fragmented forests are known to be particularly vulnerable to drought and fire 

due to increased edge effects that alter forest microclimates and foster rapid forest 

degradation (Numata & Cochrane, 2012). As a result, warmer and drier climates could 

lead to more frequent fires that compromise forest resilience and ultimately lead to loss of 

tropical forest (Brando et al., 2014). Moreover, positive feedbacks in the forest fire 

regime involving land use change, logging and climate change will likely accelerate 

forest degradation and forest loss (Nepstad et al., 2008; Silvério et al., 2013; Silvestrini et 

al., 2010).  

Within the West African humid tropics, Ghana has maintained a substantial area of 

closed-canopy forests in a protected network of reserves, which are currently the only 

significant refugia of the original tropical forest relics. However, these reserves are under 

immense pressure due to timber harvesting and agricultural encroachment, raising 

concerns about their sustainability (Damnyag et al., 2013; Hawthorne et al., 2012; Vaglio 

Laurin et al., 2016). These concerns have been exacerbated by additional stresses caused 

by ongoing climate change. In particular, in 2016 the forest zone of Ghana experienced 

an upsurge in fire activity, further heightening concerns among forest stakeholders. The 



97 

 

forest zone is largely assumed to be fire-resistant due to high canopy cover that retains 

high humidity and limits growth of herbaceous fuels. Consequently, fire spread is 

inhibited by forests, and fire frequency is therefore much lower than in the drier 

woodland and savanna regions to the north (Dwomoh & Wimberly, 2017b). However, a 

recent study has shown that fires encroached into the northern portions of the forest zone 

during the 1980’s and 1990’s, leading to degradation and eventual loss of forests 

(Dwomoh & Wimberly, 2017a).  

Tropical forest degradation and deforestation ultimately result in substantial 

carbon emissions, with global impacts on the balance and stability of the climate system 

(Gibbs et al., 2007; Mollicone et al., 2007; Skutsch et al., 2007). This concern prompted 

the United Nations Framework Convention on Climate Change (UNFCCC) initiative 

called Reducing Emissions from Deforestation and Degradation (REDD+) as a global 

strategy to curb tropical deforestation and forest degradation (Pistorius, 2012). 

Essentially, REDD+ is a climate change mitigation mechanism that aims to curb 

emissions from deforestation and forest degradation by enhancing forest carbon stocks in 

developing countries. In return, developing countries are expected to be compensated by 

wealthy nations for achieving REDD+ goals.  

In the framework of REDD+, conservation of protected areas, especially forested 

ones, is critically important (Melillo et al., 2016; Nogueira et al., 2018). Protected areas 

cover about 12.2% of Earth’s land area and store approximately 15% of the terrestrial 

carbon stocks (Campbell et al., 2008). Ghana, having already lost over 75% of its original 

forest cover, has turned to REDD+ as an opportunity to better manage its remaining 

forest fragments and to restore degraded ones. As a result, Ghana has since 2008 been at 
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the forefront of REDD+ processes within the West African sub-region, and the country’s 

high forest zone remain the focus of REDD+ activities (Stanturf et al., 2011). Large 

amounts of carbon held in the forest biomass are released into the atmosphere when trees 

burn, and fire-induced forest loss is a major hindrance to achieving REDD+ because fire 

not only leads to loss of carbon in trees, but also limits the future potential of forests to 

sequester more carbon.  Drought increases the risk of forest fires, leading to further forest 

degradation, and as a consequence can deter the achievement of forest conservation 

goals. 

Our overarching objective was to assess the influences of drought conditions and 

forest degradation on temporal and spatial patterns of fire occurrence in tropical West 

Africa. We used satellite-based earth observations of fire, precipitation, and forest 

condition to study forest fires in the forest zone of Ghana to answer the following 

research questions:  

1. Was the extent of forest fire in 2016 higher than expected compared with the 

entire 15-year study period? 

2. Were the 2016 fires associated with unusually severe drought conditions? 

3. Were spatial patterns of forest canopy condition and drought severity related to 

the pattern of burning inside forest reserves during the 2016 fires?    

By examining the combined influences of forest degradation and drought stress on 

fires in forest reserves, this study provides insights into the specific environmental factors 

that increase the risk of fire encroachment into moist tropical forests. This new 

knowledge can help to inform management efforts in protected areas and support ongoing 

climate change adaptation and mitigation processes (including REDD+) in the region. 
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The findings are also relevant for predicting and mitigating similar fire impacts in 

tropical forests worldwide.   

2. Materials and Methods  

2.1 Study area 

Ghana is located in West Africa along the Atlantic coast between latitudes 4.5-

11.5°N, and longitudes 3.50W - 1.30E. It has a total area of 238,500 km
2
 and a 

population of over 25 million. Ghana’s climate is largely modulated by the movement of 

the Inter-Tropical Convergence Zone (ITCZ) and the West African Monsoon, leading to 

distinctive wet and dry seasons. These seasons vary from north to south along a series of 

eco-climatic zones (Stanturf et al., 2011). Vegetation distribution is associated with a 

precipitation gradient, where precipitation is highest in the south-western corner of Ghana 

and lowest in the northern and eastern parts of the country. There are two major 

vegetation types: the tropical high forest zone (hereafter referred to as the forest zone) 

made up of closed forest of tall trees, and savanna vegetation characterized by more or 

less open canopy trees and shrubs scattered among a distinct ground layer of grass. Our 

analysis focused on the forest zone, which covers approximately 8.1 million hectares and 

occupies the southern third of the country with an arm stretching into the northern part of 

the Volta Region (Hall & Swaine, 1981) (Figure 1 a).  

At the beginning of the 20
th

 century about a third of the country was estimated to 

have been forested (Hall & Swaine, 1981). However, substantial portions of the forest 

cover were lost during the 20
th

 century, and by the late 1980s only about 25% of the 

original forest (2.1 million ha) remained (Adam et al., 2006). Currently, the only large 
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areas of natural forest left in the forest zone are contained in a protected network of 

reserves, which are embedded with an agriculture-dominated landscape matrix. Majority 

of these forest reserves are actively managed for sustainable timber production. Timber 

harvesting is done through selective logging, in which selected commercial timber 

species of merchantable size and typically scattered over the forest area, are felled during 

cutting cycles. Mean annual rainfall ranges from less than 750 to over 2,000 mm. Mean 

annual maximum and minimum temperatures within the forest zone range 29.3 – 32.0 °C 

and 21.8 – 23.6°C respectively (Amissah et al., 2014). February and March are typically 

the hottest and driest months, whereas August is typically the coldest and wettest month 

(Hall & Swaine, 1981).  

The forest zone has been classified into seven main forest types based on floristic 

composition and rainfall regime (Hall & Swaine, 1981) (Figure 1 a). Ranging from 

wettest to driest, these zones include Wet Evergreen (EW), Moist Evergreen (ME), 

Upland Evergreen (UE), Moist Semi-deciduous (MS, with two subtypes: North-west and 

South-east), Dry Semi-deciduous (DS, with two subtypes: Fire Zone and Inner Zone), 

Southern Marginal (SM), and South-east Outlier (SO). The Wet Evergreen (1750 – 2250 

mm annual rainfall) zone has the highest diversity of plant species. However, many 

important commercial timber species are contained in the moist (1500-1750 mm annual 

rainfall), and dry (<1500 mm annual rainfall) forest types (Adam et al., 2006). 
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Figure 1. Study area map showing: a) The southern portion of Ghana (inset) highlighting 

the forest zone and the distribution of forest types and forest reserves; b) Active fire 

detections within the forest zone in 2016. Note: The area of the South-east outlier forest 

type is very small and not mapped, but it is dispersed to the south and east of the 

Southern Marginal forests (Hawthorne, 1995). In the inset map, the background is a 

digital elevation model indicating low (dark gray) to high elevation (bright gray). The 

high forest zone is outlined in red. 

 

 

a) 

b) 
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2.2 Data 

2.2.1 Active fire dataset  

We obtained active fire detections at 1-km resolution from the combined MODIS 

Terra (10:30 am/pm equatorial nominal overpass time) and Aqua (1:30 pm/am equatorial 

nominal overpass time) active fire product MCD14ML, level 3 Collection 6 (Giglio, 

2013; Giglio et al., 2016). After removing low confidence (<30% confidence) and non-

vegetation fires, we summarized the fire points as annual active fire density time series 

(fires km
-2

 year
-1

) for each forest type and the entire study area. We also partitioned the 

the time series into fires falling either inside  or outside forest reserves. These data were 

summarised for the 2003 to 2017 hydrological years. The hydrological year was defined 

as the 12-month period beginning May 1
st
, which approximates the start of the rainy 

season, through April 30
th

 of the following year. Thus, the period May 1
st
, 2002 to April 

30
th

, 2003 belongs to the 2003 hydrological year. 

2.2.2 Precipitation dataset and precipitation indices  

We used the Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS) monthly precipitation dataset at 0.05° spatial resolution (Funk et al., 2015) to 

generate seasonal and annual rainfall anomalies, including  the annual maximum 

cumulative water deficit (MCWD). MCWD estimates accumulated water deficit within a 

particular year and is a useful indicator of the intensity and length of the dry season 

(Aragão et al., 2007). Low, negative values of MCWD indicate greater moisture stress. 

We calculated MCWD using methods described by Aragão et al. (2007) and also 

generated time series of total annual precipitation and dry season (November to March) 
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water deficit. These indices were based on the same hydrological years as the active fire 

data. All precipitation indices were calculated for each CHIRPS grid cell and then 

summarized for each forest type and for the entire high forest zone. 

2.2.3 Landsat data and Landsat-derived datasets 

We mapped forest degradation and burned area using the Landsat-8 Operational Land 

Imager (OLI) Level-2 surface reflectance product generated from the Landsat Surface 

Reflectance Code (LaSRC). We used only the subset of Landsat TM/ETM+ equivalent 

bands (OLI bands 2-7) for further processing. Our study area was covered by six Land 

path/rows (paths 193 to195, and rows 055 to 056, appendix Figure S4 -1, appendix Table 

S4 - 1). We compiled all relatively cloud-free (≤ 30% cloud cover) images within the 

period 6
th

 December 2015 - 3
rd

 April 2016, although one January 2015 image was used to 

fill minor data gaps on path/row 195/055. We did not obtain satisfactory results from the 

Fmask cloud screening product (Zhu & Woodcock, 2012) delivered with the images. 

Hence, we masked out clouds, cloud shadow and water pixels using Tasseled Cap (TC) 

vegetation index thresholds as follows:  

a. cloud = TC wetness ≤ -0.13 and TC brightness >0.44  

b. cloud shadow and water = TC wetness ≥ -0.05 and NIR ≤0.2 and TC brightness 

≤0.31  

In each path/row, the earliest available images without conspicuous evidence of fire scars 

were used as the pre-fire image (mainly December and early January images) against 

which all subsequent images within the period were paired to assess immediate post-fire 

effects. 
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Landsat burned area mapping 

We used the relative delta normalized burn ratio (RdNBR) to map burned area in 

forest reserves during the 2016 fire season. The RdNBR relies on changes in the short-

wave infrared (SWIR, wavelength 1.547 – 1.749µm) and near infrared (NIR, wavelength 

0.772 – 0.898µm) reflectance values between pre- and post-fire to detect burned 

vegetation, and it has been shown to be advantageous over similar indices in eliminating 

biases due to pre-fire vegetation conditions (Miller et al., 2009; Miller & Thode, 2007). 

We employed an RdNBR threshold approach in which a manually selected RdNBR 

thresholds greater than 200 was used to identify burned pixels. However, due to the 

highly heterogeneous vegetation cover in the study area we found that the RdNBR 

threshold alone tended to overestimate fire scars in highly degraded forests. We thus used 

change between pre- and post-fire normalized difference moisture index (dNDMI > 0.16) 

to further constrain burn scar detection by RdNBR. The normalized difference moisture 

index, which is based on Landsat NIR and SWIR bands, is sensitive to canopy water 

content and has been used as an input for mapping burned vegetation in other studies 

(Meddens et al., 2016).   

Using these vegetation indices thresholds, we identified all burned pixels during 

the main 2016 fire season, which encompassed the period December 2015 to March 

2016. We composited all the burned pixels to derive the burned area map and applied a 

majority filter within a seven-pixel circular radius moving window to the burned area 

map to minimize image noise.  

Landsat-derived forest disturbance mapping 
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We mapped pre-fire forest canopy disturbance using the tasseled cap (TC) 

transformation-based forest disturbance index (DI), developed by Healey et al. (2005). 

Three TC indices derived from six optical-infrared bands of Landsat imagery were 

required for computing the DI: brightness, greenness, and wetness. Brightness is a 

weighted sum of all the bands and is used an indicator of soil exposure.  Greenness is a 

measure of the contrast between the NIR band and the visible bands and is sensitive to 

the amount of photosynthetically active vegetation (Baig et al., 2014). Wetness is a 

measure of the contrast between the NIR and SWIR bands and is sensitive to the moisture 

content of soil and vegetation. In vegetated landscapes, wetness can be interpreted as an 

indicator of canopy structure, soil or surface moisture, or the amount of vegetation 

biomass (Cohen & Goward, 2004). We applied TC transformation coefficients based on 

surface reflectance from Crist (1985).  

The DI is a straightforward index that has been widely used for mapping forest 

disturbances in a variety of ecosystems (de Beurs et al., 2016; Dwomoh & Wimberly, 

2017a; Sieber et al., 2013). Essentially, the DI is a linear transformation of standardized 

values of the three TC indices (normalized brightness - Bn, normalized greenness - Gn 

and normalized wetness - Wn) as follows: 

DI =  Bn – (Gn +  Wn)       Equation 1 

Disturbance events disrupt the forest canopy, thereby exposing more background soil, 

and reducing both vegetation greenness and wetness simultaneously. Consequently, 

disturbed forests have higher DI values than intact or less disturbed forests. 

 We obtained Bn, Gn, and Wn by standardizing the respective TC indices by the 

mean and standard deviation of representative forested pixels within each Landsat 
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path/row of the available pre-fire images. We manually selected representative forested 

pixels using Brightness and Wetness thresholds. Definition of these thresholds was 

guided by visual interpretation of the Landsat imagery, high-resolution imagery from 

Google Earth, and field observations. Brightness thresholds were less than or equal to the 

range 0.27 to 0.32, whereas TC Wetness thresholds were greater than the range - 0.070 to 

- 0.075. To be selected as a reference forest pixel, a pixel had to meet both criteria.   

2.3 Analysis methods 

Research question 1: Was the extent of forest fire in 2016 higher than expected 

compared with the entire 15-year study period? 

We computed time series standardized anomalies of active fire density for each 

forest type and the entire high forest zone. Similarly, we computed time series 

standardized anomalies of active fire density inside and outside forest reserves for each 

forest type and the entire high forest zone. We calculated the anomalies for each year as 

departures from the 2003 – 2017 mean, normalized by the standard deviation (σ). We 

graphed these time series anomalies by forest type and location inside or outside forest 

reserves. 

Research question 2: Were the 2016 fires associated with unusually severe drought 

conditions?  

We calculated time series of standardized anomalies of precipitation indices for 

each forest type and the entire high forest zone following the same procedure used for 

active fire density. To evaluate the relationship between fire detections inside reserves 
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and drought intensity, we used Spearman rank correlation tests between standardized 

anomalies of active fire density and the maximum cumulative water deficit (MCWD). 

We carried out these tests for the entire high forest zone and for the moist semi-deciduous 

forest types where most fires were concentrated. We also mapped the pixel-level MCWD 

standardized anomaly to examine the spatial extent of drought in 2016. We followed 

same procedure used by Saatchi et al. (2013), in which the anomaly for each pixel in a 

particular year was calculated as a departure from the 2003 – 2017 mean, excluding the 

measurement from that year and normalized by the standard deviation (σ). 

Research question 3: Were spatial patterns of forest canopy condition and drought 

severity related to the pattern of burning inside forest reserves during the 2016 fires? 

To focus this analysis on the forest reserves, we masked the Landsat-derived 

burned area and DI data to the forest reserve boundaries. From the burned area map, we 

calculated the percent burned area of each reserve and summarized area burned and 

percent reserve area burned by forest zone. We also calculated the mean drought anomaly 

(MCWD anomaly) for each forest reserve. 

We used DI thresholds to categorize the DI map into degraded and intact forest. 

Based on visual interpretation of the Landsat imagery, high-resolution imagery from 

Google Earth, supplemented by field observations and our knowledge from previous field 

work (Dwomoh & Wimberly, 2017a), we set a DI value of two (2) as the threshold 

beyond which a pixel was considered disturbed or degraded.  Similar DI threshold values 

have been used in previous studies (de Beurs et al., 2016; Healey et al., 2005; Hilker et 

al., 2009). We calculated the percentage of each reserve classified as disturbed (hereafter 

called percent degraded forest) or relatively intact (hereafter called percent intact forest). 
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We also estimated mean DI for each reserve. Based on the mean DI values we further 

classified each reserve into one of two disturbance status, “degraded reserve” or “intact 

reserve” using the same DI threshold of two (2) defined above.  

 To infer the relationships between pre-fire forest canopy condition and area 

burned, we used Spearman rank correlation test between percent reserve area burned and 

percent degraded forest for all reserves in the forest zone. We also run the same 

correlation test between percent reserve area burned and drought anomalies (MCWD 

anomalies) for all reserves. The same correlation tests were also performed using only 

burned reserves in the semi-deciduous forest type where fire was widespread in 2016. In 

addition, we used one-tailed Wilcoxon rank test to compare differences in percent reserve 

area burned between degraded and intact reserves for all burned reserves in the semi-

deciduous forest type. 

3. Results 

Research question 1: Was the extent of forest fire in 2016 higher than expected 

compared with the entire 15-year study period? 

For the study period 2003 – 2017 there were 87,169 active fires in the entire forest 

zone, of which 15,987 were located inside forest reserves. The year 2016 had the most 

active fire detections in the entire forest zone (Figure 1b), with fire anomaly 2.1 times 

higher than the long-term average fire detections for the overall forest zone (Figure 2a).  

The 2016 fire season was uncharacteristic because it recorded not only the highest 

number of active fire detections (9,123), but also the highest proportion of active fire 

detections inside forest reserves (2,819 fires). The standardized fire anomaly for fires 
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occurring inside forest reserves was three times higher than the long-term average (Figure 

2a). Overall, 30.9% of all active fires in 2016 (2,819 fires) were located inside forest 

reserves, versus an annual average of 18.3% (1,066 fires) over the 15 years study period. 

The year 2007 was also identified as a high fire year over the entire study area (Figure 

2a).  However, in 2007 only 17.5% of all active fires were located inside forest reserves, 

and fire anomalies were higher outside than inside forest reserves. 

The distribution of 2016 fire detections inside forest reserves by forest type 

indicated high active fire densities in the two moist semi-deciduous forest types (Figure 2 

b & Appendix Figure S4 - 2 a), which together accounted for 52.3% (1,475 fires) of all 

active fires detected inside forest reserves in the entire forest zone that year. In 2016, the 

Moist Semi-deciduous North-West sub-type (MSNW) and the Moist Semi-deciduous 

South-East sub-type (MSSE) both recorded standardized fire anomalies that were three 

times larger than the long-term average (2016 anomalies: 3.5 σ in MSNW and 3.1 σ in 

MSSE). However, the difference in fire anomalies inside and outside forest reserves was 

much higher in the MSNW than the MSSE. It was only in the 2016 fire year that 

exceptionally high fire detections were found inside forest reserves in the entire forest 

zone, and that forest reserves within the two moist semi-deciduous forest types had the 

largest fire anomalies. 
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Figure 2. Standardized anomalies of: a) active fire density over the entire forest zone of 

Ghana; b) active fire density in the moist semi-deciduous forest types; and c) maximum 

cumulative water deficit (MCWD) for the two moist semi-deciduous forest types and the 

entire forest zone: MSNW = Moist Semi-deciduous North-West sub-type, MSSE = Moist 

Semi-deciduous South-East sub-type. 
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Research question 2: Were the 2016 fires associated with unusually severe drought 

conditions? 

The year 2016 was the driest during the 15-year study period, showing the largest 

negative precipitation anomalies with a cumulative water deficit anomaly twice as low as 

the long-term average for the overall forest zone (Figure 2c & 3). Similar trends were 

observed with other precipitation metrics, including total annual precipitation and dry 

season water deficit anomalies (Appendix Figure S4 - 2a & S 3). Partitioning of 2016 

precipitation anomaly by forest type indicated large negative water deficits in the two 

moist semi-deciduous forest types (Figure 2 c & 3; Appendix Figure S4 – 2b), the Moist 

Semi-deciduous North-West sub-type (-1.4 σ) and the Moist Semi-deciduous South-East 

sub-type (-2.3 σ). All the other forest types were similarly dry (Appendix Figure S4 – 2b 

& S 3). The years 2007 and 2012 were also identified as potential drought years over the 

entire study area (Figure 2c), albeit with lower drought intensity than 2016. 

We found a significant negative association between active fire density inside 

reserves and cumulative water deficit for the entire forest zone (Figure 2 c, ρ = -0.68, p = 

0.0069). Similarly, we found a significant negative association between active fire 

density inside reserves and cumulative water deficit for each of the semi-deciduous forest 

types (MSNW: ρ = -0.72, p < 0.005; MSSE: ρ = -0.58, p < 0.05). Thus, lower 

precipitation in 2016 was associated with higher fire detections in the forest zone during 

the study period. 
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Figure 3. Standardized anomalies of maximum cumulative water deficit (MCWD) 

showing the spatial pattern of drought in the forest zone of Ghana in 2016. Blue indicates 

positive anomalies and red indicates negative anomalies. 

Research question 3: Were spatial patterns of forest canopy condition and drought 

severity related to the pattern of burning inside forest reserves during the 2016 fires? 

We estimate that 2,137 km
2
 burned inside forest reserves during the 2016 fire 

season, representing approximately 12.5% of the forest reserve area in the entire forest 

zone (Figure 4a). Out of the total area burned, the majority (58%) occurred in the North-

west (MSNW) and South-east (MSSE) moist semi-deciduous forest types subtypes, 

which accounted for 42.5% and 15.5% (Figure 5a) respectively. Approximately 38% of 

the total burned area occurred in the fire zone (DSFZ) and inner zone (DSIZ) dry semi-

deciduous forest types subtypes, which accounted for 21.8% and 16.2% (Figure 5a) 
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respectively. Approximately 1.5% and 0.5% of the total burned area occurred in the moist 

evergreen (ME) and wet evergreen (WE) forest types respectively. The remaining minor 

forest types collectively accounted for 2.4% the total burned area.  

We estimate that 7,016 km
2
 was degraded immediately prior to the fires in 2016, 

representing approximately 41% of the forest reserve area in the entire forest zone, 

(Figure 4b). Approximately 40% of the reserved area of the Moist Semi- deciduous type 

was degraded, and together this forest type accounted for 14% (9% of the MSNW and 

5% of the MSSE) of total degraded forest area in the forest zone (Figure 4b & Figure 5b). 

Almost the entire reserved area of Dry Semi-deciduous forest was degraded, and together 

this forest type accounted for 15.7% (11% of the DSFZ and 4.6% of the DSIZ) of total 

degraded forest area in the forest zone. Approximately a third of the reserved area of the 

Moist Evergreen forest type was degraded, and accounting for 9.8% of total degraded 

forest area in the forest zone. Approximately 10% of the reserved area of the Wet 

Evergreen forest type was degraded, accounting for 1.2% of total degraded forest area in 

the forest zone. The remaining minor forest types collectively accounted for less than 

0.5% of the total degraded forest area. Our binary classification of reserves into degraded 

or intact indicated that 109 out of the total 197 reserves covered in this study were 

degraded.  
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Figure 4. Maps of Landsat-derived: a) burned scars indicating forest reserves burned in 

2016; b) disturbance index indicating 2016 pre-fire forest canopy conditions in forest 

reserves. White color represents non-vegetated areas and missing data due to clouds. 

a) 

b) 
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There was a positive correlation between percent degraded forest and percent 

reserve area burned for all reserves in the entire forest zone (r = 0.56, p < 0.001). 

Similarly, there was a positive correlation between percent degraded forest and percent 

reserve area burned involving burned reserves in the semi-deciduous forest types alone (r 

= 0.45, p < 0.001) (Appendix Figure S4 - 6). Median percent reserve area burned was 

higher in degraded forest reserves than intact forest reserves (Figure 6, W = 492, p-value 

Figure 5.: a) Percent distribution of total area burned and active fire detections inside 

forest reserves in the entire high forest zone in 2016; b) Summary, per forest zone, of 

immediate pre-fire forest canopy condition and area burned inside forest reserves. Note: 

DSFZ = Dry Semi-deciduous Fire Zone sub-type, DSIZ = Dry Semi-deciduous Inner 

Zone sub-type, ME = Moist Evergreen Forest Zone, MSNW = Moist Semi-deciduous 

North-West sub-type, MSSE = Moist Semi-deciduous South-East sub-type. 

a) 

b) 
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= 0.01363). There was a positive correlation between drought anomalies and percent 

reserve area burned for all reserves in the entire forest zone (r = 0.52, p < 0.001). 

However, there was no significant correlation between drought anomalies and percent 

reserve area burned involving burned reserves in the semi-deciduous forest types alone (r 

= 0.05, p = 0.71). 

 

4. Discussion 

This study documented a surge in fire activity inside forest reserves in Ghana during 

the 2016 fire season. Burned area was particularly high in the moist semi-deciduous 

forest type, which is the most extensive and economically important forest type in Ghana. 

The widespread occurrence of fire in the moist semi-deciduous forests reflected the 

relatively high levels of degradation and extremely dry conditions in this forest type. 

Within the moist semi-deciduous forest type, burned area was more strongly associated 

Figure 6. Percent forest reserve area burned in 2016 by disturbance class as a proxy for 

pre-fire forest canopy condition of burned forest reserves in the moist semi-deciduous 

forest type (number of reserves burned = 55). 
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with the spatial pattern of forest degradation than with precipitation anomalies. In 

particular, we observed more severe drought in the South-east subtype (MSSE) than the 

North-west subtype (MSNW). However, both active fires and burned area were much 

higher and more widespread in the North-west subtype than the South-east subtype, 

suggesting that extensive forest degradation in this subtype was the main factor 

promoting more spread of fire into the forest reserves. 

Forest degradation has become a widespread phenomenon in tropical countries, 

impacting large forest areas annually and sometimes even more area than forest loss 

(Baccini et al., 2017; Nophea & Francis, 2009; Souza et al., 2013; Zhuravleva et al., 

2013). Our finding of positive associations between forest degradation and burned area 

concurs with previous studies in the Amazon that found higher fire activity in degraded 

forest than relatively intact forest (Balch et al., 2015; Brando et al., 2014; Brando et al., 

2016). Similarly, in a broader-scale analysis of fire regimes in the Upper Guinean 

subregion of West Africa, Dwomoh and Wimberly (2017b) found that forested regions 

with less forest cover, which is likely the result of forest degradation, were associated 

with more burned area. Closed-canopy tropical forests are usually fire-resistant because 

they have insufficient fine fuel loads and maintain high fuel moisture in their shaded 

understories (Cochrane, 2003). However, forest degradation breaks down the canopy and 

renders forests more flammable and fire-prone, because the understory becomes drier and 

fine fuels build up quickly (Cochrane et al., 1999; Hoffmann et al., 2012).  

Degradation makes forests more susceptible to fire, but fire is also an agent of forest 

degradation that leads to further reductions in tree density and canopy cover. Thus, the 

extensive fires in 2016 have the potential to lead to more fires and forest loss in the 
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future, as observed in a long-term study of four reserves in the northwestern part of the 

current study area (Dwomoh & Wimberly, 2017a). Time-series analysis of vegetation and 

fire indicated that widespread fires during the 1980s precipitated positive fire-vegetation 

feedbacks that led to eventual loss of forest cover in two of the reserves studied 

(Dwomoh & Wimberly, 2017a). We postulate that if forests burned in 2016 experience 

fires again sooner than they can recover, the future fires may be more severe and 

widespread due in part to greater fuel loads from vegetation killed by earlier fires and 

lower humidity due to reduced canopy cover (Cochrane et al., 1999). Damage from such 

repeated fires is expected to be substantial even in fire years without severe drought.  

In the forested zone of Ghana, there are multiple, interacting drivers of forest 

degradation. Previous increases in fire detections were associated with earlier droughts in 

2007 and 2012. Here, we speculate that fire-vegetation feedbacks from these previous 

drought-associated fires may have contributed to forest degradation in some reserves and 

helped to facilitate the widespread fires of 2016. Other drivers of forest degradation, 

including legal and illegal logging as well as agriculture encroachment in the reserves 

(Hawthorne et al., 2012; Marfo, 2010; Vaglio Laurin et al., 2016) have also likely 

enhanced these fire – vegetation feedbacks. It is important to note that timber harvesting 

in the reserves is by selective logging, which typically involves the removal of individual 

matured commercial trees at the rate of 2-3 trees/ha (Duah-Gyamfi et al., 2014). As a 

result, timber logging does not directly cause forest loss, but reduces canopy cover 

thereby increasing fire risk. Agriculture encroachment occur at very fine spatial scales 

and are mostly based on food and cash crops including cocoa, cereals, tubers and fruit 

trees. The use of fire for agricultural land preparation may provide ignition sources 
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because slash-and-burn is the main method for clearing the land for cultivation. 

Occasionally, ignitions may emanate from within the reserves, when fires used in land 

preparation at the initiation of forest restoration and rehabilitation operations, such as the 

Taungya agroforestry system, get out of control. Therefore, careful fire protection, 

combined with efforts to reduce degradation, will be required to ensure resilience of these 

moist forests in this era of climate change characterized by frequent climatic extremes.  

Satellite remote sensing is the only source of data that is suitable for this kind of 

broad-scale study, but we acknowledge that understory forest attributes and processes are 

often not adequately captured. Optical-infrared sensors such as the Landsat Operational 

Land Imager and MODIS only observe the top of the canopy and not condition of the 

understory. Although they can reliably detect variability in canopy cover, they cannot 

estimate fuel loads or other understory characteristics that may also influence fire 

susceptibility. We also believe that our estimates of burned area are conservative, 

particularly in the moister forest zones where the canopy obscures evidence of low-

severity understory fires. Moreover, active fires in tropical forest understories are 

difficult to detect, especially those with very low intensity. Cloud cover also obscures 

satellite observations and may also result in underestimation of active fire detections.  

Based on results of this and previous studies (Dwomoh & Wimberly, 2017a), we 

argue that fire has become a key driver of forest degradation and loss in the moist forest 

areas of Ghana, and that ongoing climate change and climate variability will intensify fire 

risk and ultimately compromise  forest resilience. Tropical forests become more 

susceptible to fire during severe drought, when high moisture stress desiccates the 

otherwise moist fuels making them more flammable (Cochrane, 2003). Future research 
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priorities should include predictive models for forecasting potentially high-risk fire 

seasons and locations ahead of time, as well as longer-term projections of fire regime 

shifts as a function of climate and land use change.  Such research outcomes may allow 

for the detection of early warning signals and the development of strategies to prevent 

further forest loss in tropical West Africa. Furthermore, in prospective studies, it will be 

necessary to examine the impact of droughts and fires on tree mortality, timber stocks, 

watersheds, biodiversity, carbon emissions, and the livelihoods of forest-dependent local 

communities.  

5. Conclusion 

The occurrence of extensive fires inside forest reserves in 2016 underscores the 

vulnerability of Ghana’s forest reserves to fires during severe droughts. Fire activity was 

concentrated in degraded reserves, emphasizing that degradation predisposes forests to 

the impacts of drought and fire. This study provides the first quantitative assessment of a 

widespread fire event covering the entire forest zone of Ghana. Results indicate that 

forest degradation metrics derived from satellite imagery are useful for identifying 

critical areas in the forest zone where extensive forest degradation renders reserves highly 

susceptible to fire in drought years. The concentration of fire in the moist semi-deciduous 

forest type has serious implications for the forestry sector in Ghana because this forest 

type is the most economically valuable in terms of commercial timber species. 

Considering that majority of forest reserves are located in this forest type, it is imperative 

that forest managers integrate fire risk as a core component of current forest management. 

There is a need for urgent action because these extensive fires may initiate positive fire-
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vegetation feedbacks in some reserves and have the potential to lead to more widespread 

forest loss. The consequences can be catastrophic because fire – vegetation feedbacks 

may be strengthened by frequent droughts, which are projected to become more common 

with climate change (Sylla et al., 2016a; Sylla et al., 2016b). In the future, operational 

systems for monitoring forest degradation and fires will be useful for prioritizing 

management efforts in protected areas and support ongoing climate change adaptation 

and mitigation processes (including REDD+) in the region.  
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5.1 Summary of Research Results 

The overarching of goal of this dissertation was to improve our understanding of the 

interactions of climate, land use, and fire regimes, as well as effects of fire on forest 

resilience in the Upper Guinean region of West Africa. My dissertation research 

broadened our understanding of fire regimes and fire-vegetation interations in the West 

African tropics, a region where logistical limitations, including scarcity of data, have 

mostly contrained this kind of sub-regional study.  

This dissertation is a very unique contribution to forest and fire ecology in that it 

addresses critical gaps in baseline knowledge of fire regimes in the study area; pathways 

and drivers of disturbance land cover change; as well as forest resilience in an 

understudied part of the tropics with distinctive biophysical and socio-economic 

environments. More specifically, my research provided the first comprehensive 

assessment of fire regimes across the forest and forest-savanna transition zones, including 

maps and assessments of major drivers of fires in the Upper Guinean region (Dwomoh & 

Wimberly, 2017b). Furthermore, I have presented strong evidence that fire-vegetation 

feedbacks have the potential to drive forest degradation and ultimately forest loss in 

reserves in the forest zone of Ghana (Dwomoh & Wimberly, 2017a).  I have also shown 

that these linkages between degradation and fire are facilitating more encroachment of 

fire into the reserves, as occurred in the widespread fires in 2016. A summary of results 

of the three main research objectives are presented in the sections below. 

 

 



129 

 

Research Objective #1: To understand fire regimes and their drivers in the Upper 

Guinean region of West Africa. 

To address this research objective, we conducted a regional study to characterize 

the spatial patterns and interrelationships of multiple fire regime components, identify 

recent trends in fire activity, and explore the relative influences of climate, topography, 

vegetation type, and human activity on fire regimes. 

We found strong variability in the spatial and temporal patterns of fire activity, as 

well as the drivers of multiple fire regime components, including active fire density, 

burned area, fire season length, and fire radiative power. Both active fire and burned area 

were most strongly associated with vegetation type, whereas fire season length was most 

strongly influenced by climate and topography variables, and fire radiative power was 

most strongly influenced by climate. These associations resulted in a gradient of 

increasing fire activity from forested coastal regions to the savanna-dominated interior, as 

well as large variations in burned area and fire season length within the savanna regions 

and high fire radiative power in the westernmost coastal regions. There were increasing 

trends in active fire detections in parts of the Western Guinean Lowland Forests 

ecoregion and decreasing trends in both active fire detections and burned area in savanna-

dominated ecoregions (Dwomoh & Wimberly, 2017b).  

Research Objective #2: To explore the overarching hypothesis that fire-mediated 

alternative stable states exist in the semi-deciduous tropical forest zone of Ghana, and 

that increased fire activity has pushed some forests to a new state in which a novel 

ecosystem with low tree density is maintained by fire. 



130 

 

To address this objective, we conducted analyses on forest resilience and disturbance-

mediated tipping points in tropical forest ecosystems. By using time series of remotely-

sensed Earth observations and field measurements covering four forest reserves in the 

semi-deciduous forest zone of Ghana, we addressed three specific characteristics of 

systems with alternative stable states: persistent change, feedbacks, and hysteresis.  

Results of this study showed that two of the reserves in the north of the study area 

experienced forest loss, were impacted by frequent fires, and transitioned to a vegetation 

community dominated by shrubs and grasses, which was maintained by fire-vegetation 

feedbacks. The other two reserves experienced less fire, retained higher levels of forest 

cover, and resisted fire encroachment from surrounding agricultural areas. Over the study 

period, precipitation remained relatively stable, suggesting a hysteresis effect in which 

different vegetation states and fire regimes coexist within a similar climate (Dwomoh & 

Wimberly, 2017a). Consistent with earlier studies, this result showing divergent fire 

regimes in association with contrasting vegetation types within similar rainfall regimes 

suggests that fire–vegetation feedbacks can maintain distinctive vegetation and fire 

regimes in areas with similar climate (Dantas et al., 2013; Dantas et al., 2016). 

Research Objective #3: To explore the susceptibility of forest reserves in the moist 

forest zone of Ghana to fire during a regional drought and fire event in 2016  

To meet this objective, we conducted analyses relating pre-fire forest degradation 

and drought stress to fires in forest reserves in the entire high forest zone of Ghana. The 

results showed that in 2016, Ghana’s forest reserves experienced a surge in active fire 

detections that was associated with severe drought during that year. This fire burned 

approximately 12.4% (2,137 km
2
) of the total forest reserve area of the forest zone.  
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Although, the severe drought was widespread throughout the forest zone, fire 

response was particularly high in the moist semi-deciduous forest type, which is the most 

extensive and most economically important forest type in Ghana. While reserves in this 

forest type represents approximately 38% of total reserve area of the forest zone, it 

accounted for approximately 52.3% (1,475 fires) of all active fire detections and 58% 

(1,239 km
2
) of area burned in 2016 in the entire forest zone. In these fire-impacted moist 

forests, there was higher burned area in degraded reserves than relatively intact reserves. 

Within the two sub-divisions of the moist semi-deciduous forest type, we observed more 

severe drought in the South-east subtype (MSSE) than the North-west subtype (MSNW). 

However, fire was more widespread in the North-west subtype than the South-east 

subtype, suggesting that extensive forest degradation in the North-west subtype may have 

promoted more fires in that subtype.  

5.2 Synthesis of Research Results 

Our comprehensive regional analyses of the fire regime revealed that different 

components of the fire regime were influenced by different environmental drivers 

(Dwomoh & Wimberly, 2017b). As a result, the various combinations of these 

environmental factors create distinctive fire regimes throughout the Upper Guinean 

region of West Africa. The regional fire regime analyses revealed decreasing trends in 

fire activity across much of the savannas that were likely linked with increasing 

agriculture and declining woody cover. The same analyses further revealed increasing 

active fire trends in parts of the forested areas that were likely associated with decreasing 

tree cover and increasing amounts of herbaceous/shrub vegetation and fine fuels. 

Furthermore, extensive fires in the forest zone of Ghana during a recent regional drought 
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in 2016 corroborate the increasing importance of fires in the humid forest regions. These 

results suggest that ongoing regional landscape and socio-economic changes along with 

climate change will lead to further changes in the fire regimes in West Africa. Hence, 

efforts to project future fire regimes and develop regional strategies for adaptation will 

require an integrated approach, which encompasses multiple components of the fire 

regime and consider multiple drivers, including land use and climate.  

Moreover, in the rapidly changing environment of West Africa, fire regimes are 

affected by changes that alter fuel conditions and ignitions, but fire also serves as a driver 

of vegetation and land use change. As a result, fire and vegetation change are linked via 

strong positive and negative feedbacks (Dwomoh & Wimberly, 2017a). We found 

evidence for the existence of alternative stable states involving tropical forest and a novel 

non-forest vegetation community maintained by fire-vegetation feedbacks (Dwomoh & 

Wimberly, 2017a). This result highlights the potential for land use change and fire to 

create novel and persistent non-forested vegetation communities in regions that are 

climatically suitable for forests. Findings from the regional fire regime analyses 

indicating increasing fire trends in the Western Guinean Lowland Forests ecoregion 

(Dwomoh & Wimberly, 2017b), further suggest that these fire-vegetation feedbacks may 

be operating in those areas as well.  

The results on forest resilience and fire-mediated regime shifts further revealed that 

the landscape changes were not immediate, but occurred slowly because of delayed tree 

mortality, continued impacts of human disturbances such as logging, and gradual erosion 

of forest resilience due to repeated fires (Balch et al., 2015; Cochrane, 2003; Silvério et 

al., 2013). An important lesson from these results is that assessments of future vegetation 
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dynamics in the region will need to consider land use, fires, and their dynamic landscape-

scale interactions in the context of broader drivers related to climate change and human 

population growth. Likewise, projections of future fire regime shifts will need to consider 

land cover and land use change because the fire regime study found that land use and 

vegetation were important constraints on fire. In future research, detailed assessment of 

the drivers and mechanisms of forest degradation and fire encroachment may allow for 

the detection of early warning signals and the development of strategies to prevent further 

forest loss in tropical West Africa.   

Strong drought in 2016 was associated with an upsurge of fire in hitherto fire–

resistant forest reserves in Ghana. This result provides insights into susceptibility of 

moist tropical forest to fire in the face of disturbances and changing climate (Alencar et 

al., 2015; Aragão et al., 2007; Brando et al., 2014). The finding of more fires in degraded 

reserves with relatively less severe drought and fewer fires in relatively intact reserves 

with more severe drought suggests that though drought predisposes moist tropical forests 

to fires, the extent of forest degradation prior to fire critically influences the spatial 

variability and the extent of forest burned.  

The 2016 widespread fires in the moist semi-deciduous forests, which were 

previously assumed to be largely fire–resistant, underscore vulnerability of Ghana’s 

forest reserves to fires in a changing climate. With this finding, it is reasonable to argue 

that the 2016 widespread fires may be initiating positive fire-vegetation feedbacks in 

some reserves and have the potential to lead to more widespread forest loss as observed 

in the long-term study of the four reserves (Dwomoh & Wimberly, 2017a). Historical 

analysis of fires in the four reserves indicated that large fires in the 1980s potentially 
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precipitated the positive fire-vegetation feedbacks that lead to eventual loss of forest in 

the two northern reserves in the study area. Thus, if forests burned in 2016 experience 

fires again sooner than they can recover, these future fires will potentially be more severe 

and widespread due in part to greater fuel loads from earlier fires and lower humidity due 

to reduced canopy cover (Cochrane et al., 1999). Damage from such repeated fires is 

expected to be substantial even in fire years without severe drought.  

Our results further suggest that previous increases in active fire detections in the 

forest zone were associated with earlier droughts in 2007 and 2012. We thus speculate 

that fire-vegetation feedbacks from these previous drought-associated fires may have 

supported the widespread fires of 2016. This fire – vegetation feedbacks may have been 

strengthened by ongoing forest degradation resulting from legal and illegal logging as 

well as agriculture encroachment in the reserves (Hawthorne et al., 2012; Marfo, 2010; 

Vaglio Laurin et al., 2016). With ongoing climate change, most parts of West Africa is 

projected to become warmer and drier, with frequent climatic extremes (Sylla et al., 

2016a; Sylla et al., 2016b).  These conditions will further enhance fire-risk, and pose 

severe threat to resilience of the already stressed fragmented forests. There is thus the 

urgent need to carefully incorporate fire risk into management of these otherwise fire-

resistant forests to avert a looming catastrophic forest loss due to the interactions of forest 

degradation, climate variability, and fire. 

5.3 Recommendations for Future Research 

By examining multiple components of the fire regime and their drivers in the regional 

analyses of fire regimes, this study provides critical baselines for the projection of future 

fire regimes in the region. The West African region is undergoing substantial socio-
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economic and environmental changes that are modifying its socio-ecological systems. 

Therefore, future research to project fire regimes and develop adaptation strategies should 

consider multiple components of the fire regime and their linkages with future climate, 

socio-economic projections, and land use change in the region. Future research priorities 

should include predictive models for forecasting short-term high-risk fire seasons and 

locations ahead of time, as well as longer-term projections of fire regime shifts as a 

function of climate and land use change.  Such research outcomes may allow for the 

detection of early warning signals and the development of strategies to prevent further 

forest loss in tropical West Africa.  

As pointed out already, empirical studies of alternative stable states in tropical forest 

ecosystems remain scanty, despite the critical need for better understanding of the 

phenomena in real systems. Thus, results from the analyses of fire regimes and forest 

resilience documenting empirical observations of potential regime shift in a tropical 

forest landscape could inform model frameworks on alternative stable states in tropical 

forest ecosystems. In prospective studies, research elucidating the drivers and 

mechanisms of forest degradation and fire encroachment in the humid forest areas should 

have attention. 

Results from the analyses of fire regimes and forest resilience as well as the 2016 

fires in forest reserves of Ghana indicated forest vulnerability, particularly of dry and 

moist tropical forests, to fire encroachment and forest loss. There is the urgent need to 

carefully integrate fire risk in the management of these forests to prevent further fire-

mediated loss of these important ecosystems. It is reasonable to advocate that fire-risk 

management should be a key component of ongoing REDD+ strategies in these forest 
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areas. Furthermore, time-series analysis on the spatial patterns of burned area and fire 

effects in the fire-sensitive forested areas is recommended. Such a study could combine 

Landsat data with newer sensors like Sentinel to get more repeat measurements over 

persistent cloudy areas. In this regard, inclusion of detailed socio-economic data on 

forest-dependent livelihoods, land tenure rights and fire protection, detailed demographic 

and migration data, along with historical logging and forest inventory records may 

provide additional perspectives to complement findings in this research. Field work to 

characterize fuels and micro environments in degraded forest will be helpful to enhance 

our understanding of fire behavior. This knowledge is imperative to enhance 

sustainability of the regions remaining protected areas in this era of rapid global change.  

In tropical forest monitoring, satellite optical remote sensing has largely been 

successful at revealing canopy-level disturbances. Notwithstanding this success, other 

important understory processes are not readily trackable on optical remote sensing 

imagery. For instance, optical remote sensing alone cannot reliably estimate fuel loads or 

other understory characteristics that may also influence fire susceptibility. Likewise, 

tracking and quantifying forest recovery rates for various types of disturbances require an 

integrated approach involving several kinds of remotely-sensed data coupled with 

detailed plot data. Such studies largely remain unexplored in this study area, where both 

data sources remain scarce. In prospective studies, integrated approach involving 

multispectral data from VIIRS, Landsat, and Sentinel and along with lidar and plot data 

will be necessary. It may be helpful to monitor persistent cloudy areas with sensors 

onboard unmanned aircrafts, as these technologies become readily affordable. Moreover, 

establishing operational systems for monitoring forest degradation will be useful for 
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prioritizing management efforts in protected areas and support ongoing climate change 

adaptation and mitigation processes (including REDD+) in the region.  

Whilst we could detect and map the widespread fire scars of 2016 in forest reserves 

on Landsat 8 images, these fire scars were not readily detectable on MODIS burned area 

product MCD64A1. Here, we argue that despite recent improvements in the MCD64A1 

for the detection of small burned areas (Giglio et al., 2016), its performance in highly 

heterogeneous and forested landscapes such as this study area needs more improvement. 

Current efforts on burned area mapping from VIIRS should consider addressing such 

deficiencies, including accuracy assessment of the product in these environments. 

Furthermore, development of alternative regional or globally available burned area data 

from moderate resolution sensors such as Landsat and Sentinel will be helpful to the 

research community. 

Overall, this dissertation produced novel results about the pathways and drivers of 

disturbance land cover change that are necessary for improving our understanding of 

ongoing changes in a lesser-known part of the tropics. This research has provided the first 

comprehensive analyses of the fire regime in the Upper Guinean region, showing 

heterogeneity in multiple components of the fire regime as a consequence of inherent 

heterogeneity in the underlying drivers of fire. These results thus expand our 

understanding of the spatio-temporal dynamics of tropical forest fires in response to 

human and climatic pressures. By providing stronger evidence that tropical forest 

landscapes can exist as alternative stable states, the study provides valuable knowledge 

on fire-mediated tropical forest ecosystem regime shifts, as well as the vulnerability of 

forested protected areas in the region to fire. Furthermore, this dissertation research 
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documented fire-vegetation feedbacks using multiple data sources in four forest reserves, 

and more widespread vegetation impacts on fire in the study of 2016 fires. The study 

indicates that more forests are losing resilience and becoming vulnerable to degradation 

and change to non-forested state than may have been previously thought. These findings 

offer improved insights into the effects of strong positive and negative feedbacks between 

land cover and fire that have pushed some West African forest landscapes past a tipping 

point and culminated in widespread landscape change. These findings are relevant for 

predicting and mitigating similar fire impacts in tropical forests worldwide. This new 

knowledge will also help prioritize management efforts in protected areas and support 

ongoing climate change adaptation and mitigation processes (including REDD+) in the 

region.   
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APPENDIX 

Chapter 2 Supporting Information 

 

Figure S2 - 1: Partial dependence plots of the nine most important variables influencing 

the spatial pattern of active fire density. 
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Figure S2 - 2: Partial dependence plots of the nine most important variables influencing 

the spatial pattern of burned area. 
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Figure S2 - 3: Partial dependence plots of the nine most important variables influencing 

the spatial pattern of fire season length. 
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Figure S2 - 4: Partial dependence plots of the nine most important variables influencing 

the spatial pattern of fire radiative power. 
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Figure S2 - 5: Maps of the 10 most important independent variables in the BRT models. 
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Chapter 3 Supporting Information 

Landsat Scene Identifier Sensor Date Acquired Cloud Cover % Note 

LT51950551984349XXX04 TM 5 14-Dec-84 20  

LT51950551986018XXX07 TM 5 18-Jan-86 0  

LT41950551987365XXX01 TM 4 31-Dec-87 0  

LT41950551988352XXX01 TM 4 17-Dec-88 10  

LT41950551989002XXX02 TM 4 2-Jan-89 0  

LT41950551989050XXX01 TM 4 19-Feb-89 20  

LT51950551990365ESA00 TM 5 31-Dec-90 0 Source: ESA 

LT41950551991008XXX03 TM 4 8-Jan-91 20  

LT51950551994104ESA00 TM 5 14-Apr-94 12 Source: ESA 

LT51950551997016ESA TM 5 16-Jan-97 5 Source: ESA 

LE71950552000033EDC00 ETM+ 2-Feb-00 0  

LE71950552001051EDC00 ETM+ 20-Feb-01 12  

LE71950552002358EDC00 ETM+ 24-Dec-02 0  

LE71950552003073EDC01 ETM+ 14-Mar-03 6  

LE71950552004012EDC01 ETM+ 12-Jan-04 4 SLC-Off 

LE71950552005046ASN00 ETM+ 15-Feb-05 9 SLC-Off 

LE71950552006001ASN00 ETM+ 1-Jan-06 0 SLC-Off 

LE71950552007020ASN00 ETM+ 20-Jan-07 0 SLC-Off 

LE71950552008023ASN00 ETM+ 23-Jan-08 0 SLC-Off 

LE71950552009041ASN00 ETM+ 10-Feb-09 8 SLC-Off 

LE71950552010028EDC00 ETM+ 28-Jan-10 20 SLC-Off 

LE71950552011015ASN00 ETM+ 15-Jan-11 0 SLC-Off 

LE71950552012018ASN00 ETM+ 18-Jan-12 19 SLC-Off 

LE71950552013004ASN00 ETM+ 4-Jan-13 0 SLC-Off 

LE71950552014007ASN00 ETM+ 7-Jan-14 25 SLC-Off 

LE71950552015346ASN00 ETM+ 12-Dec-15 5 SLC-Off 

* ESA = European Space Agency 

Table S3 - 1: List of Landsat TM/ETM+ data used in this study (path/ row 195/055) 
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Appendix S3 - 1: Validation of the Landsat-based disturbance index 

The disturbance index (DI) maps, reflecting the level of tree canopy cover, were assessed 

using Google Earth high-resolution imagery from 2014 and 2015. 100 validation points 

were randomly sampled from the most recent Landsat image taken in 2015. 30 x 30m 

Landsat pixels corresponding to each point was converted into a polygon overlaid on the 

Google Earth imagery, and visually interpreted. The proportion of tree cover within the 

polygon was used as the criteria for categorizing each pixel into three classes as high, 

medium or low tree cover. These classes were defined as follows: 

 High canopy cover: >70% tree canopy cover 

 Medium canopy cover: 30-70% tree canopy cover 

 Figure S3 - 1: Map showing location of weather stations used in this study 
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 Low canopy cover < 30% tree cover 

The area under the Receiver Operating Characteristic (AUC) curve showed a good 

separation between the different classes of tree canopy cover by the DI. A multi-class 

AUC value of 0.98 was obtained by averaging AUC for all pairwise comparisons (Hand 

& Till, 2001).  A graph of the DI validation is shown in Figure S3- 2 below. 

 

 

 Figure S3 - 2: Validation of the disturbance index for 2015 by comparison with tree 

cover classes measured from high resolution imagery in Google Earth. 
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 Figure S3 - 3: Trends in maximum climatological water deficit (MCWD) generated 

from precipitation data from three meteorological stations spanning the latitudinal 

gradient of the study area. Data covers the period (a) 1976-2009, (b) & (c) 1976-2013. 

Dashed lines represent linear trends; solid lines represent locally smoothed trends. 
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 Figure S3 - 4: Multiple comparisons of least significant differences of a) mean active fir

e density, and b) mean  percent burned area across forest reserves. Significance level is 0.

05. Mean values with the same letter are not significantly different. 

 

SI Reference 

Hand, D. J., & Till, R. J. (2001). A Simple Generalisation of the Area Under the ROC 

Curve for Multiple Class Classification Problems. Mach. Learn., 45(2), 171-186. 

doi: 10.1023/a:1010920819831 
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Chapter 4 Supporting Information 

 

  

Figure S4 - 1: Study area map showing forest types in the forest zone, as well as the six 

Landsat path/rows covering the area. 
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Path/Row Scene Identifier  Acquisition 

Date  

Remarks 

193055 LC081930552015120601T1 

LC081930552015122201T1 

LC081930552016012301T1 

LC081930552016031101T1 

06-Dec-2015 

22-Dec-2015 

23-Jan-2016 

11-Mar-2016 

Pre-fire image 

Post-fire image 

Post-fire image 

Post-fire image 

193056 LC081930562015122201T1 

LC081930562016020801T1 

LC081930562016031101T1 

22-Dec-2015 

08-Feb-2016 

11-Mar-2016 

Pre-fire image: No conspicuous fire scars 

Post-fire image 

Post-fire image 

194055 LC081940552015122901T1 

LC081940552016013001T1 

LC081940552016021501T1 

LC081940552016031801T1 

29-Dec-2015 

30-Jan-2016 

15-Feb-2016 

18-Mar-2016 

Pre-fire image 

Post-fire image  

Post-fire image  

Post-fire image  

194056 LC081940562015122901T1 

LC081940562016013001T1 

LC081940562016040301T1 

29-Dec-2015 

30-Jan-2016 

03-Apr-2016 

Pre-fire image 

Post-fire image  

Post-fire image  

195056 LC081950562015122001T1 

LC081950562016010501T1 

 

LC081950562016020601T1 

LC081950562016030901T1 

LC081950562016032501T1 

20-Dec-2015 

05-Jan-2016 

 

06-Feb-2016 

09-Mar-2016 

25-Mar-2016 

Pre-fire image 1 

Pre-fire image 2: Fill minor data gaps in pre-

fire image 1  

Post-fire image  

Post-fire image  

Post-fire image  

195055 LC081950552015122001T1 

LC081950552015011801T1 

 

LC081950552016020601T1 

LC081950552016030901T1 

20-Dec-2015 

18-Jan-2015 

 

06-Feb-2016 

09-Mar-2016 

Pre-fire image 1 

Pre-fire image 2: Fill minor data gaps in pre-

fire image 1  

Post-fire image  

Post-fire image 

  

Table S4 - 1: List of Landsat-8 Operational Land Imager images used for mapping 

disturbance index and burned area  
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Figure S4 - 2: Time series standardized anomaly of: a) active fire density & b) maximum 

cumulative water deficit by forest type.  

a) 

b) 
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Figure S4 - 3: Time series standardized anomaly of: a) total annual precipiation & b) dry 

season (November to March) water deficit by forest type.  

a) 

b) 
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Figure S4 - 4: Maps of maximum cumulative water deficit (MCWD, mm/year) showing 

the spatial extent of drought in the forest zone in 2016 compared to the average MWCD 

the period 2003 to 2017 hydrological years.  
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Figure S4 - 5: Distribution of area burned inside forest reserves in each forest zone. A 

total of 2,137 km
2
 was burned in 2016. Note: DSFZ = Dry Semi-deciduous Fire Zone 

sub-type, DSIZ = Dry Semi-deciduous Inner Zone sub-type, ME = Moist Evergreen 

Forest Zone, MSNW = Moist Semi-deciduous North-West sub-type, MSSE = Moist 

Semi-deciduous South-East sub-type. 
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Figure S4 - 6: Spearman correlation for moist semi-deciduous forest zones only. The 

upper triangle shows the correlations and associated p-values: *** p < 0, ** p < 0.001, ▪ p 

< 0.05. Larger font sizes indicate stronger correlations. 
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