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ABSTRACT 

LCD 3D PRINTING OF A PHOTOCURABLE ELASTOMER FOR TISSUE 

ENGINEERING 

 BEATRIZ LUIZA DE SOUZA 

2018 

Three-dimensional scaffolding is an emerging research area in biomedical and 

tissue engineering. Scaffolds provide the possibility of growing tissues in a controlled 

environment, with desired characteristics and properties towards a specific application. A 

new method to 3D print biodegradable and biocompatible material called Polyglycerol 

Sebacate Acrylate (PGSA) is demonstrated. PGSA is essentially an acrylated form of 

PGS using photoinitiator to become a photocurable resin suitable for liquid crystal 

display (LCD) 3D printing. PGSA was selected because its rheological and crosslinking 

behavior (and hence its mechanical properties) can be controlled by changes in curing 

time, temperature, and pressure. This material has been proven cytocompatible, and 

capable of replicating tissue shapes according to detailed computer-aided designs.  

A modified LCD 3D printer consisting of a vat of photocurable resin that is 

suspended above an LCD screen was used. Using a UV-LED light source, the object is 

built layer-by-layer until the model is completed. It differs from traditional 3D printing in 

that the whole layer is cured simultaneously, making this a much faster process. The resin 

needs to be not only be photocurable, but also have optimal rheological property for control 

of 3D printing parameters. Here, we developed a modified PGSA suitable for LCD 3D 

printing. The material viscosity was characterized using a rheometer. Additionally, the 

material was characterized using Fourier Transform Infrared Spectroscopy (FTIR) Nicolet 
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380. Tensile tests were conducted on the build sample to determine its mechanical 

properties. Last, biocompatibility tests were performed on the cell-seeded scaffold to 

validate its cell adhesion, cell proliferation, and cell viability.  

LCD 3D printing is simple, fast and can provide excellent resolution due to small 

pixel sizes of the LCD screen. Therefore, combining LCD 3D printing and PGSA is a very 

promising tool for biomedical applications by allowing complex biocompatible, 

elastomeric tissue scaffolds that can be highly customized without modifying the 

manufacturing process. 
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1  INTRODUCTION 

Over the last two decades, 3D printing has revolutionized health care, with the 

possibility of tissue and organ fabrication, anatomical models, customized prosthetics, 

and drug delivery applications [1]. In tissue engineering, the creation of scaffolds for 

tissue replacements is critical due to high demand of surgical repairs, resulting from 

athletic injuries, aging, and diseases [2]. An effective scaffold needs to be of suitable 

mechanical strength, biocompatible, and should allow surfaces for cell growth, cell 

adherence, and cell proliferation [2]. Moreover, the geometry and the porosity of the 

scaffold should be optimally structured to guide the cells and promote diffusion of 

nutrients and waste [3]. Finally, depending on the application, the scaffold may also need 

to degrade in a controlled matter, without producing toxic products, and with minimal 

inflammatory response. 

The architecture of the scaffold is of extreme importance. Interconnected pore 

structures, porous size and high porosity are essential to guarantee cell penetration, 

satisfactory diffusion of nutrients and waste products, and for the scaffold to successfully 

replicate an extra-cellular matrix [4]. The pore interconnectivity is important for cell 

ingrowth, vascularization, and nutrient diffusion for cell survival [5]. Pore size is critical 

for an optimum scaffold design. The cells connect with the scaffold via ligands (chemical 

groups) on the material. The pores must be large enough to allow the cells to migrate into 

the structure, where they can bound with the scaffold, but small enough to create an 

appropriately high specific surface, and assist with proliferation [6]. 
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In general, the pore size needs to be inside a range close to the size of the cells 

desired for the target tissue replacement, since either too small or too large pore sizes will 

make it harder for cells to adhere and proliferate in the scaffold [7]. Therefore, the 

optimum pore size for specific cell types was found by previous experiments - 5 μm for 

neovascularization, 5–15 μm for fibroblast ingrowth, 20–125 μm for regeneration of adult 

mammalian skin, 100–350 μm for regeneration of bone, 40–100 μm for osteoid ingrowth, 

and 20 μm for the ingrowth of hepatocytes [8].  

Additionally, the balance between porosity and the mechanical properties of the 

scaffold is critical for a successful scaffold on tissue engineering. While high porosity 

and pore sizes ease diffusion of nutrients and oxygen and enhance cell ingrowth, it also 

decreases the mechanical properties of the scaffold due to high voids in the volume [9]. 

Thus, the stiffness of the scaffold decreases as porosity increases [10]. For an optimum 

scaffold design, the equilibrium between these two properties is essential to keep enough 

mechanical strength to preserve the scaffold integrity until new tissue is formed.  

Traditional methods of fabricating scaffolds using polymer materials includes 

molding [11], solvent casting and particulate leaching [12], gas foaming [13], and 

electrospinning [14]. Each of these traditional fabrication methods provide certain 

limitations on scaffold structure in terms of its geometry and porosity, and requires great 

fabrication skills to maintain consistency in the reproducibility of the scaffold [2, 6]. 

Additive manufacturing (also known as three-dimensional (3D) printing or rapid 

prototyping) allows much higher control on macroscale and microscale of the scaffold 

dimensions and architectures, with better design repeatability, being a more reliable and 

improved manufacturing process for tissue engineering scaffolds [15]. In additive 
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manufacturing, objects are created by adding material, layer by layer.  The layers are 

generated through extrusion deposition, solidification, photopolymerization, or binding 

[3]. A model to be printed is first generated in a computer-aided design (CAD) program 

and imported into a 3D printing software, which translates the data into parameters and 

codes for the 3D printer.  

The most common 3D printing technique is Fused Deposition Modeling (FDM) 

which is a material extrusion based method. It is commonly used for biomedical 

applications, mostly with syringe type of extruder with hydrogels [15-18]. However, 

hydrogels are not easy to form a specific structure and structural limitations are common 

[19]. Other 3D printing techniques, such as stereolithography (SLA), in which a deflected 

laser beam or a projected light source is used to cure exposed areas of photopolymer [3] 

are also used for biomedical applications. This allows a greater versatility in terms of 

choice of photopolymer available for SLA 3D printer. Other advantages of SLA printing 

are high accuracy and precision, and fast curing speed, making SLA printing a great tool 

for generating tissue engineering scaffolds. Commercial SLA 3D printers are typically 

very expensive. However, open source desktop SLA 3D printers (like LCD 3D Printers) 

are now available at significantly lower cost [20]. This has opened the power of SLA 

manufacturing to a wider audience, and hence a greater choice in photocurable polymers 

and resins are gradually becoming available for biomedical applications [21].  

There are essentially three main groups of biomaterials used for tissue 

engineering applications, ceramics, synthetic polymers, and natural polymers [4]. Each 

biomaterial has its own advantages and disadvantages, therefore the optimal biomaterial 

for a tissue replacement depends much on desired application. Numerous synthetic 
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polymers have been reported as biodegradable and biocompatible biomaterials for tissue 

engineering applications in the literature. The most commonly used are the polymers poly 

(lactic acid) (PLA)[22], polyglycolic acid (PGA), poly-dl-lactic-co-glycolic acid 

(PLGA)[12], polycaprolactone (PCL)[23] and poly(3-hydroxybutyrate) (PHB) [4]. While 

most of these materials have had much success, due to its tailorable architecture and 

degradation rates, these polymers also have their disadvantages. For example, inferior 

mechanical properties (low elongation) and unsatisfactory biocompatibility with cell and 

tissues (high inflammatory response) [24, 25].   

A biomaterial that has been increasingly used for biomedical applications is Poly 

(glycerol Sebacate) (PGS), first developed in 2002 [26]. The material was described as a 

tough biocompatible elastomer, inexpensive and with excellent biocompatibility [26]. 

PGS has been successfully used in a variety of tissue engineering application including 

replacement of cardiac muscle [27], nerve [28], skin [7], retina [29], and cartilage [30], as 

well as in drug delivery applications [31], and hard tissue regeneration [32]. Furthermore, 

the mechanical properties of PGS, and its degradation rates can be tailored to a desired 

application by controlling its curing time, curing temperature, reactant concentration and 

its degree of acrylation [26, 33]. Moreover, the elastomer can be totally reabsorbed into 

the body and its degradation products can be eliminated through natural pathways [34]. 

PGS has elastomeric properties, and can sustain large deformation without permanent 

changes in its structure or mechanical properties [32]. Those properties are very desired 

on the replacement of soft tissues. However, PGS suffers from manufacturing limitations 

due to high temperatures, high vacuum pressures, and long processing hours [26]. 



5 
 

A recent discovery is the acrylation of poly (glycerol sebacate), resulting in a new 

type of materials called PGSA, which is a photocurable material in presence of a 

photoinitiator [33]. This modification permits photopolymerization of PGSA, and 

significantly decrease its curing time. This approach thus provides the opportunity to 

overcome limitations of PGS manufacturing process. Additionally, this acrylation process 

also allows for increase in its mechanical properties by increasing its degree of acrylation 

[33].  

Another important aspect to be considered when designing a scaffold for tissue 

regeneration is the cytotoxicity. The scaffold must not contain any cytotoxic element that 

can cause the cells to necrose and apoptosis [2]. Typical sources of cytotoxicity consist of 

initiators used in photopolymerization, macromolecules on the scaffold, solvent residue 

from polymer synthesis, and degradation products of the polymer.  

Photoinitiators directly influence the cytotoxicity of the scaffold and its 

biocompatibility are very important [35]. The most common photoinitiator used in tissue 

engineering is Irgacure 2959, since it is the least toxic of Irgacures [35]. However, the 

peak absorption wavelength of this photoinitiator is from 257-276nm, limiting its use to 

ultraviolet (UV) light sources. Other photoinitiators were studied and showed promising 

cytotoxicity. LAP (lithium phenyl-2,4,6-trimethylbenzoylphosphinate), which has a peak 

wavelength of 375nm, was proven to be water soluble and more biocompatible than 

Igracure 2959, with the possibility to initiate using visible blue light due to absorptions 

higher than 400nm [36]. Another biocompatible photoinitiator that is activated using UV 

light is the Azobis [2-methyl-N-(2-hydroxyethyl) propionamide] (VA 086) with peak 

absorption wavelength at 385nm. This photoinitiator is water soluble and it its 
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photodissociation was shown to be noncytotoxic [37, 38]. However, this photoinitiator 

has a narrow activation range, and if 3D printing with seeding cells, the use of UV light 

source on photocrosslinking techniques will expose the cells to UV light, which can 

induce DNA damage and apoptosis of the cells [37]. 

 The next photoinitiator studied with a visible light absorption (peak at 515nm) is 

Eosin Y disodium salt [38-40]. Eosin Y is very biocompatible, less toxic than Irgacure 

2959 and by using visible green light, it is much safer for long term cell functionality 

[38]. Unfortunately, a co-initiator such as triethanolamine (TEOA) is required to generate 

enough radicals to produce enough functional group conversion [38, 40].  

In this study, it is shown that it is possible to 3D print PGSA using an LCD 3D 

Printer. This method of 3D printing is fast, simple and provides excellent resolution. The 

material characterization, biocompatibility, swelling, rheology, and the mechanical 

properties of the polymer were investigated and presented below.  

1.1. Goals for this study 

 
In this study, the strengths of PGSA were exploited to successfully manufacture a 

tough biodegradable elastomeric material samples using LCD 3D printing. For a 

successful tissue scaffold to be created, the material must be biologically compatible, 

chemical and mechanical properties must work well with the 3D printing process, the 

scaffold must match real tissue properties, and eventually must biodegrade safely in the 

body. Figure 1 shows a schematic of the iterative process required to develop this 3D 

printing method.  Therefore, combining LCD 3D printing and PGSA is a very promising 

tool for biomedical applications by allowing the production of complex biocompatible, 
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elastomeric tissue scaffolds that can be highly customized without modifying the 

manufacturing process. This method of 3D printing is inexpensive, is a simple and user-

friendly process, and provides the option to easily change light sources for the desired 

application. 

 

Figure 1. Iterative process to develop a successful scaffold 

2 BACKGROUND AND LITERATURE SURVEY  

The following paragraphs will provide background information on epithelial 

regeneration, focused on skin tissue, on the material used in this project, PGSA, and 

on Microstereolithography. First, the necessary background in skin regeneration is 

presented, highlining the most recent advances on 3D printing scaffolds for skin 

regeneration. Then, the most significant advances on PGS and PGSA are also 



8 
 

summarized in this section, presenting the important results obtained by leader groups 

in the field. Finally, a summary on Microstereolithography is presented, to give the 

readers background information on 3D printers and explain the reasons of why some 

of the design decision that were made in this project.  

2.1 Epithelial Tissue Engineering  

As the largest organ in the human body, the skin serves as the primary barrier to the 

outside environment, also helping with thermoregulation and hydration retention [41]. 

The skin has the ability to selfheal, sensory detection and immunity surveillance [42]. 

Underlying organs have the protection of the skin from pathogens and microorganisms 

[43]. However, the skin is unavoidably exposed to injuries, such as burns, trauma and 

chronic ulcers [7]. Sometimes, these wounds are too deep to repair itself and skin grafts 

or surgical repairs are needed. The goal procedure in these situations is a skin graft, 

which has some limitations regarding donor shortages, scar formation, pain, and other 

long-term complications [44].   

Epithelial lines both the external skin and inside cavities and lumina of bodies. The 

skin is essentially composed of three layers presented in Figure 2. The outermost layer is 

the epidermis, which acts as a barrier on top of the dermis. It is avascular and consists of 

95% of keratinocytes [45]. The middle layer is the dermis, the thickest part of the skin, it 

consists of thin collagen fibers, with collagen, elastin and reticular fibers [45]. On this 

layer, the fibroblasts are the main cellular component responsible for secreting collagen 

and proteoglycans, but other cells such as melanocytes (pigmentation of skin) and 

Langerhans cells (defending against microbes) are also present [45]. Moreover, in 

between these layers, there are stem cells and epidermal basal cells that are responsible 
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for the regeneration of the epidermis [45]. The hypodermis is the inner layer responsible 

for the thermoregulations of the system. It is made of loose connective tissue and lipid 

moieties [45]. The epithelial tissue also lines the inside of the mouth, the esophagus, the 

vagina, and part of the rectum. Other epithelial cells line the surface of the cornea, the 

inside of the lungs, the inner lining of blood vessels, the gastrointestinal tract, the 

reproductive and urinary tracts, and both exocrine and endocrine glands [46].  

 

Figure 2. Schematic representation of the three layers of the skin [45] 

Over the past few decades, skin regeneration has advanced significantly, evolving 

from simple epidermal and dermal equivalent to complex bi-layered skin substitutes [47]. 

Multiple materials and techniques have been used in skin tissue engineering, including 

both natural and synthetic materials. The list includes collagen [48, 49], chitosan [50, 51], 
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alginate [50], hyaluronic acid (HA) [52], polylactic acid (PLA) [22] and polycaprolactone 

(PCL) [53]. However, there is an unmet need for skin regeneration that these materials 

still cannot provide.    

Type I Collagen is the most commonly used material in skin tissue regeneration as a 

hydrogel. However, it has variable degradability, risks of infection due to its 

immunogenicity with low homogeneity and repeatability, with additional contraction 

problems. Alginate has slow degradation rates, poor mechanical integrity, but great 

biocompatibility [50]. PLA is well known for its high strength and stiffness; however, it 

generates acidic environments during its degradation process [54]. PCL also presents 

slow degradation and reabsorption rates [23].  

Moreover, multiple techniques have been explored to produce the skin grafts needed 

for skin regeneration. The recent advances of 3D Printing has emerged as a flexible tool, 

with the possibility of printing cells and desired biomaterials in a desired path with high 

precision [55]. There are two main strategies used in 3D bioprinting skin for wound 

healing. The first is in situ bioprinting, which consists of printing full thickness wound of 

nude mice using fibrin-collagen layers with derived stem cells or human fibroblasts and 

keratinocytes [56]. Although these results were promising, further optimization is still 

required before human trials [56]. The second approach consists of in vitro production, 

followed by in vitro and in vivo testing. The first group used a free-form fabrication 

(FFF) to deposit layers of crosslinked collagen with human fibroblasts or keratinocytes 

[57, 58]. The second group used laser assisted bioprinting (LaBP) to deposit alternating 

layers, summing to 20 sublayers each of immortal murine fibroblasts and immortal 

human keratinocytes embedded in collagen matrix [59, 60]. However these methods have 
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a few drawbacks of now using human primary cells, the skin produce does not have the 

structural quality of the normal skin, and the duration of the process is still far from the 

desired range [61]. Recently, Cubo and his group in Spain developed an FFF 3D 

bioprinting to create a engineered human plasma-derived fibrin matrix bilayer skin using 

human fibroblasts and human keratinocytes [61]. They showed the most promising 

results, with structural and functional characteristics as well as appearance and 

consistency [61]. According to the literature, this is the closest of a functional skin 

engineered so far, but there are still limitations to overcome.   

Considering the disadvantages of the biomaterials presented above, from most 

materials used in skin regeneration, newly materials have been developed and explored to 

fulfil these requirements. PGS and PGSA have interesting properties that can be very 

useful in skin tissue engineering. For a successful tissue skin replacement, scaffolding 

materials should be tough, with fast rates of biodegradability and very biocompatible. 

PGSA fulfills these characteristics and also adds the tailorable mechanical and 

degradation properties according to the desired application, with an additional control 

over the porosity of the desired shape [7]. PGSA also presents better mechanical integrity 

than commonly used hydrogels, with great biocompatibility and hydrophilicity. 

Therefore, PGSA scaffolds can be a very promising tool for skin tissue engineering 

combined with 3D bioprinting technologies. 

2.2  Polymer Synthesis and Characterization of PGS and PGSA 

There are essentially two main groups working on the development of PGS and 

PGSA. Langer’s group, besides developing the biomaterial itself, is working on different 

application using both PGS and PGSA [10, 26, 29, 33, 34, 62-65]. Burdick group has 
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been working on the development of PGS and PGSA since 2008 [66, 67]. Recently his 

group published one article about 3D printing photocurable PGSA and another about 3D 

printing norbornene-functionalized PGS, both using an FDM 3D printing method [68, 

69]. The significant results of their work are summarized on the following sections.   

2.2.1 Synthesis of PGS prepolymer and PGSA 

The traditional synthesis process of PGS has two phases. The first phase is the 

prepolymer phase which consists of the polycondensation of an equimolar amount of 

glycerol with sebacic acid at 120°C for 24 hours, under presence of argon and a pressure 

of 1 torr. Then, the pressure is reduced to 40 mtorr after 4 hours, and kept it for an 

additional 48 hours to conclude its crosslinking phase. After this stage, the polymer 

becomes a thermoset, meaning that the material cannot be modified by re-heating [26]. 

Wang used molds and salt leaching processes to create PGS scaffolds [26]. In this 

process, after the prepolymer is complete, PGS is dispensed into a mold with salt, and the 

curing procedure is continued until its crosslinking phase is finished. This process results 

with a porous scaffold, and the salt is then removed by dissolving the scaffold into 

deionized water. The biomaterial was also shown to have tough elastomeric 

characteristics [26].  

The acrylation of PGS was further introduced in 2007 by Nijst [33]. The 

acrylation of PGS provided an extra level of control of the mechanical properties of PGS. 

The synthesis process of PGSA consists of the PGS prepolymer being dissolved in 

anhydrous methylene chloride and cooled to 0°C under nitrogen flow for 10min. An 

equimolar amount of acryloyl chloride and triethylamine were added into the solution and 

then stirred at room temperature. 4-methoxyphenol was added to the reaction solution 



13 
 

and methylene chloride was removed using a rotary evaporator. Ethyl acetate was used as 

a solvent and the solution was vacuum filtered to remove TEA salts. Ethyl acetate was 

then removed using a rotary evaporator resulting on a viscous liquid, which was then 

dissolved in methylene chloride and stored at 4°C. The photo-initiator 2,2-dimethoxy2-

phenylacetophenone (DMPA) was added to the samples in methylene chloride which was 

then removed with a rotary evaporator prior to use. Photopolymerization reaction was 

initiated using an ultraviolet light of 4mW/cm2 for 10 minutes [33]. The new polymer 

remained biocompatible, with similar elastomeric properties. Moreover, the biomaterial 

was photocured by photopolymerization much faster than PGS. Likewise, PGSA kept its 

ability of tailorable mechanical properties according to its desired application.  

2.2.2. Characterization of PGSA 

The physico-chemical, mechanical and thermal properties of PGS and PGSA are 

essential to understanding and selecting a biomaterial for tissue replacement applications. 

Fourier Transform Infrared Spectroscopy (FTIR) analysis were carried to characterize the 

chemical structure of the polymer. Wang’s studies [26] showed the signature bands for 

ester linkage of PGS showing peaks at 2930 cm-1 and 2855 cm-1 for alkaline groups, an 

intense band at 1740 cm-1 for C=0 stretching and at 1164 cm-1 due to C-0 stretching [26]. 

A broad peak at 3475 cm-1 was detected and assigned to hydrogen-bonded hydroxyl 

groups, likely from free hydroxyl groups which are not modified by acryloyl chloride 

[33]. Additionally, the formation of a polymer network was confirmed by the increase of 

the band at 2930 cm-1, corresponding to the vibration of alkyl groups, and the elimination 

of the band at 1375 cm-1, known to be associated with acrylate groups after photocuring 

of PGSA [33]. The FTIR results from this study is shown on Figure 3.  
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Figure 3. FTIR spectrum of (c)i. PGS prepolymer ii. PGSA(0.2DA); iii. PGSA (0.54 
DA); (d) i. thermally cured PGSA ii. Photocured PGSA (0.2DA); and  iii. Photcured 

PGSA (0.54DA)[33]. 

Another method used by Maliger and his group to characterize PGS was the FT-

Raman spectroscopy [70]. Raman spectroscopy analysis determines the presence of 

functional and end-groups, monomer and polymer structure and conformation, 

orientation of chains, and to follow changes in structural parameters due to mechanical or 

environmental stresses [70]. The peaks obtained by the Raman spectroscopy represents 

fundamental transitions providing chemical information. Maliger [70] characterized the 

dependence of reaction rate on concentration and temperature using three molar ratios 

(0.6, 0.8, 1.0) of the reactants concentration, and three different temperatures (120°C, 

130°C, 140°C), using a laser of wavelength equal to 1064nm.  
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The results presented a typical spectrum on the range of 200-3800cm-1 at a laser 

power of 320 mW and at spectral resolution of 8cm-1. The FT-Raman spectrum of PGS 

with 0.6 molar ratio and at 120°C is shown on Figure 4. The spectra show acid (1642cm-

1) and ester (1738cm-1) peaks and similar results were obtained for the other molar ratios 

and temperature. 

 

Figure 4. FT-Raman spectrum of PGS at 120C and 0.6 molar ratio [70]  

2.2.3 Mechanical Testing 

 Tensile and compression tests were performed in previous studies to show its 

viscous elastic behavior, typical for soft elastomeric materials.  The typical stress-strain 

curve of PGS resembles the curve form vulcanized rubber as shown in Figure 5. The PGS 

and the vulcanized rubber curves are characterized by low modulus and large elongation, 

representing their elastomeric and tough materials. The opposite can be seen on the P4HB 

curve, with high modulus and low yield strain, characterizing a stiff material.  
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Figure 5. Stress and Stain curves of PGS, Vulcanized Rubber and P4HB[26]. 

The first experiments showed that PGS has an average tensile Young-Modulus of 

0.025 -1.2 MPa, ultimate strength higher than 0.5MPa and strain failure greater than 

330% [26, 28, 71].  However, the mechanical properties of PGS and PGSA can be 

tailored by changes in curing temperature, reactants concentration and degree of 

acrylation, and can be modified according to the desired application. In the PGSA 

studies, the degree of acylation was linearly proportional to the Young’s modulus and 

ultimate tensile strength as shown on Figure 6. It was found that PGSA had Young’s 

modulus between 0.05 to 1.38MPa and an ultimate tensile strength of 0.05 and 0.5MPa 

[33].  
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Figure 6. (a) Stress and Strain curve for photocured PGSA with different degrees of 
acrylation. (b) By increasing the degree of acrylation, the ultimate tensile strenght and 

Young Modulus also increased linearly [33]. 

In another study, Gerecht studied PGSA scaffolds for cell encapsulation and 

culture [10]. The compression modulus of PGSA with 15% extra glycerol and 35% extra 

glycerol were found to be 119±65kPa and 80.2±28 kPa respectively [10]. The Young’s 

Modulus of Elasticity is reported to significantly decrease after the addition of glycerol. 

The Young’s Modulus was found to be 59.9±4.1 kPa for PGSA with 15% of glycerol and 

42.3±5 kPa for 35% glycerol, compared to 568±220 kPa of only PGSA [10]. 
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2.2.4 Thermal Characterization 

 The thermal properties of PGS were detected using a Differential scanning 

calorimetry (DSC). The two important properties are essentially glass transition 

temperature and melting temperature. The first studies by Wang [26] showed two 

crystallization temperatures at -52.14°C and -18.5°C, and two melting temperatures of 

5.23°C and 37.62°C. He also found that the that polymer is totally amorphous at 37°C 

and that PGS is a thermoset polymer. On Jaafer study, he found that the degree of 

acrylation of PGS decreases meaningfully with increasing curing time and temperature as 

shown on the DSC spectra on the Figure 4 below [72]. By analyzing the Figure 7, it can 

be determined that the recrystallization peak height at -20°C reduced significantly with 

curing time and temperature. Moreover, the slight discernible sweep between -30 and -

40°C represents the glass transition temperature, which was constant with the changes in 

time and temperature [72].  
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Figure 7. DSC curves for PGS prepolymer at different curing times and temperatures 
[72]. 

2.2.5 Rheological Characterization  

 The rheological properties of PGSA were previously characterized using an 

AR2000 stress-controlled rheometer (TA Instruments). Dynamic sweeps were performed 

to find the Storage(G′) and loss (G′′) moduli with time under 0.5% strain and 1Hz, as well 

as the viscosity of PGSA was obtained by the slope of the shear stress versus shear rate 

plot, under a continuous flow of (0.0–50.0s−1) [68]. The viscosity results are shown in 

Figure 8. The study demonstrates how the changes in molecular weight can directly 

influence the viscosity of the polymer.  



20 
 

 

Figure 8. Shear stress-shear rate plots of different ratios of PGSA blends [68] 

2.2.6 Scaffold Characterization and Polymer Degradation 

To verify the geometry and sizes of the porous structures on the scaffold, typically 

scanning electron microscopy was used on most of previous leading studies [68]. To 

obtain the density of the printed scaffold, dimensions were measured, specimens were 

weighted, and the mass per volume was calculated, and finally compared to solid samples 

to determine the percent density of the scaffolds.  

In a follow on publication [34], the in vivo degradation of PGS was described. 

The author analyzed the changes in weight, mechanical strength, implant shape, surface, 

and degree of swelling of PGS and PLG [34]. Additionally, five samples were implanted 

subcutaneously in 15 female rats. The samples were removed every seven days and 

rinsed in phosphate-buffered saline (PBS) solution and deionized (DI) water. The results 

are presented on Figure 9. 
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Figure 9. SEM of PGS in vivo studies at various points of degradation. PGS (A) 0 days; 
(B) 7 days; (C) 14 days; (D) 21 days; (E) 28 days and (F) 35 days [34]. 

 The conclusions of this study were that PGS degrades by surface erosion, 

showing a linear mass degradation profile. Macroscopically PGS implants maintained 

their geometries, and microscopic observations showed that the PGS surface maintained 

its integrity, it preserved its shape and most of its mechanical strength, besides not 

presenting any surface cracks. For the degree of swelling, the amount of water increased 
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linearly, and after 35 days, when the polymer had degraded steadily by 70% of its mass, 

its water content was 15% [34]. Figure 10 describes the findings of the study.  

 

Figure 10.  Assessment of the changes in mass (square), mechanical strength (X), and 
water content (circle) of PGS (solid line) and PLG (dashed line) implants upon 

degradation. (A) Steady changes of PGS. (B) Abrupt changes of PLG [34].  

In vitro degradation was obtained by enzymatic degradation study [33]. The 

samples were placed on a phosphate-buffered saline (PBS) solution, with bovine 

pancreatic cholesterol esterase (40 units/mL) and incubated at 37 °C. The samples were 

removed, washed on deionized water and then dried at 90 °C for 7 days and weighed 

again to control the mass loss [33]. He found that the PGS samples degraded 15% in 10 
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weeks in PBS and 6 weeks in vivo. Similarly, PGSA only degraded 10% after 10 weeks 

[33].  

In two other studies [66] and [68], the degradation of PGSA scaffolds were 

characterized following a similar process. According to Ifkovits study, the samples were 

placed on a mold, cured, photocured and constructed on the shape of a disk (1mm thick, 5 

mm diameter). The results of his study are shown of Figure 11.  

 

Figure 11. In vivo (black) and in vitro (white) degradation results at 2, 4 and 8 weeks 
[66]. 

In [68], the samples were 3D printed with various densities and in the shape of 

disks (1mm thick, 3mm diameter), weighted, and incubated in 1.5ml of phosphate-

buffered saline (pH 7.4), and placed on an orbital shaker at 37°C for up to 8 weeks [66, 

68]. The solution was replaced weekly with fresh phosphate-buffered saline. Every two 

weeks, three samples were removed, lyophilized and weighted to control the mass loss. 

As expected since PGS degrades by surface erosion, the material lost only 20% of their 

mass during the 8-week period and the results are presented on Figure 12.  
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Figure 12. Degradation profile of PGSA scaffolds in PBS at 37°C after 8 weeks. From 
Ref. [68] 

2.2.7 Cell Culture and Biocompatibility  

 Biocompatibility tests were also performed, and it was concluded that PGS is 

biocompatible both in vitro and in vivo. Most of the studies used NIH 3T3 fibroblast 

cells[26, 49, 68, 73]. Yeh used the same cells and cultured it under a 37°C humidified 

atmosphere of 5% CO2 in high glucose with 10% fetal bovine serum and 1% 

penicillin/streptomycin [68]. 3D printed scaffolds were sterilized by incubation in ethanol 

for half an hour, washed with PBS, and incubated in serum-containing media for 24 hours 

[68]. Their initial tests used 3T3 cell suspensions dripped into the PGSA scaffold in a 24-

well cell culture plate to test cell adhesion and viability. After 24h, the scaffolds were 

transported to new well sand stained with calcein-AM at room temperature for 20 

minutes [68]. To verify cell proliferation, 3T3 cell suspensions were dripped in the top 

center of the PGSA scaffolds (10 layer, 10x10mm with height of 1.45mm), in a 24-well 
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cell culture plate [68]. The specimens were incubated for 2 hours and 2mm of culture 

medium was added. Then, the scaffold were transferred to a new plate after 24 hours to 

assess the metabolic activity after 4 days using an Alamar blue assay according to the 

manufacturer’s protocol (Invitrogen Biosource,USA) [68]. 

Cytocompatibility is essential to prove that 3D printed PGSA scaffold can be 

successfully used in tissue engineering and showing that the same scaffold can promote 

cell growth and proliferation. Yeh’s results showed that the fibroblasts were viable and 

spread into continuous layers onto the 3D oriented scaffold [68]. These results were 

expected according to previous findings on cell adhesion of PGS [74]. Yeh also used an 

Alamar blue to assay the cellular metabolism, he observed an increase in the number of 

fibroblasts for the 3D printed PGSA scaffold over time. On the second day, the cell 

population doubled and continued to increase up to the fourth day, as shown on Figure 13 

[68]. Therefore, he concluded that the 3D printing process did not affect the PGS 

cytocompatibility.  

 

Figure 13. (a) 3T3 fibroblasts cultured on a 2-layered scaffold and stained with calcein-A 
Mafter culture for 24 hours. (b) Normalized cell viability of 3T3 fibroblasts cells on a 10-

layered 3DP scaffold. From Ref. [68] 
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2.3 PGS Applications 

PGS is a known synthetic biocompatible material proposed originally for soft 

tissue engineering. However, over time, because of its desirable properties, this 

biomaterial has attracted more attention, with applications varying from scaffold material 

for both soft and hard tissue replacement, tissue adhesives, and drug delivery systems 

applications [75].  

2.3.1 Cardiac Tissue Engineering  

One of the main causes of myocardial infarction is the cell death produced by 

ventricle expansion [74]. Common strategies to treat heart failure are cell therapy, and 

cardiac patches for cardiac support. Chen provided an innovative treatment strategy for 

heart failure using PGS augmented with cardiomyocytes [76]. He observed that unless 

willingly interrupted, the active cell cardiomyocytes continued beating continuously for 

more than three months [76]. Moreover, in vivo tests showed that the cardiac patches 

remained stable for two weeks without any loss of the ventricular function [76]. 

Therefore, PGS provided mechanical support for the cardiac cell with cell delivery.   

Moreover, to improve the properties of engineering cardiac tissue, pre-treatment 

of PGS with fibroblasts was performed by Radisc [63]. The study showed that the cardiac 

fibroblasts were successfully recovered and that the PGS scaffold provided a similar 

ventricular environment and support for the cardiac tissue [63]. Furthermore, the in vivo 

studies using rat models showed that the scaffold was vascularized, and the results are 

presented on Figure 14. Therefore, PGS has great potential for cardiac tissue 

replacements.  
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Figure 14. In vivo results of PGS scaffold in a rat heart infarction model. According to 
results of Radisc,[63]  (A) Implantation of the scaffold. (B and C) Macroscopic view of 

the same are after 2 weeks of implantation. (D) Cross-sectional area of the graft-host 
interface after 2 weeks. (E) Higher magnitude of image D showing excellent integration 
between the graft (arrows) and the host (stars). Scale bars: 0.5mm (D) and 100μm (E). 

From Ref. [63] 

2.3.2 Cartilage Tissue Engineering 

One of the most challenging tissue to replicate is cartilage tissue. Mostly due to its 

complex extracellular matrix designs as well as its viscoelastic properties. This tissue can 

withstand multiple loading cycles (on the joints), providing minimal wear as well as 

demonstrating elastic characteristics, such as in the nose and ears [32]. Depending on the 

location and extent of an injury, articular cartilage can selfheal. However, some tissues 

lack vasculature, with almost no capacity to repair itself. Therefore, the use of tissue 

engineering to repair cartilage tissue has been widely explored.  
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One of the first attempts to use PGS scaffold for cartilage tissue engineering was 

performed by Kemppainen and Hollister [30]. They used free form techniques to generate 

a 3D PGS scaffold. The results showed that PGS has the capability to produce 

cartilaginous matrix [30]. Another study carried out by the same authors showed that the 

PGS scaffolds were still able to promote chondrocytes to proliferate. However, in this 

study, there was also formation of a gene expression for cartilage elimination and 

ossification [23].  

2.3.3 Retinal Tissue Engineering 

The retina is an eye tissue that converts light into electrical signals using 

photoreceptor cells. These signals go to the brain to be interpreted and images are 

eventually created. Diseases that can degenerate this tissue are very difficult to be cured, 

affecting the photoreceptor functions, and no cures have been found yet. However, 

alternative methods to replace the damaged photoreceptor cells have been created [29]. 

The successful membrane selected to replace retinal tissue should be biodegradable, 

inserted into the subretinal space to induce specific photoreceptors to be eliminated, or 

scaffold to support and proliferate the photoreceptors cells [29, 64]. Moreover, the 

material must have similar mechanical properties to the retinal tissue, with high 

flexibility, large elongation, and with a scaffold designed to cell attachment and 

proliferation, without producing any toxicity.  

Thus, PGS membranes were developed. One of the most promising study using 

PGS on this application was the creating of a PGS scaffold for photoreceptor cells 

delivery [29, 64]. The study showed high potential to target distribution of progenitor 

cells to the retina and endorsed cell differentiation [64]. Even though there is limited data 
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available, the results were very promising for PGS membranes to be used in retinal tissue 

replacements, due to its tailoring properties, high compatibility with photoreceptor cells 

and high cell differentiation rates [29, 32].  

2.3.4 Nerve Tissue Engineering  

 Various biomaterials have been studied so solve problems related to nerve tissue 

engineering. Most of the synthetic materials presented exhibit unfavorable swelling and 

inflammatory responses. Therefore, due to its biocompatibility characteristics, PGS was 

selected to be explored for nerve tissue engineering [28]. Several in vitro tests using 

Schwann cells and in vivo compatibility tests were performed on rats. The in vitro tests 

were positive, showing biocompatibility with minimal toxicity [28]. In vivo tests showed 

that PGS demonstrated less inflammatory response and fibrosis than the commonly used 

poly(lactide-co-glycoilide) (PLGA), with no swelling detected. Therefore, it could be 

concluded that PGS is a promising material for neural reconstruction applications.  

 A recent study published in 2017 presented a modified PGS using atom transfer 

radical polymerization with methyl methacrylate so that the polymer could be electrospun 

into nanofibers for electrospinning. They also added gelatin into the copolymer to 

increase its hydrophilicity and biocompatibility. It was found that the PGS-based 

nanofibers promoted cell proliferation for nerve regeneration [14]. Therefore, the authors 

concluded that this new PGS-based copolymer can be a new promising tool in various 

tissue engineering applications [14].  

2.3.5 Skin Tissue Engineering 

 Recently, PGS elastomer scaffolds were fabricated using particulate leaching 

techniques for skin tissue regeneration [7]. As mentioned earlier, since the conventional 
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materials used in skin regeneration still cannot satisfy the essential needs of skin tissue 

engineering, PGS and PGSA show promising advantages such as great biocompatibility, 

fast tailorable degradation rates, and sufficient mechanical integrity as it is an elastomer.  

As a significant property in tissue engineered scaffolds, the porosity was essential 

to improve the water uptake of PGS. Zhang also used the porous structure of the scaffold 

to control degradability of the polymer, which it is of great importance in skin tissue 

engineering [7]. The feasibility of these scaffolds was tested using mouse dermal 

fibroblasts (MDFs) on the scaffold. The results showed good cell attachment, 

proliferation and deep penetration of MDFs into the scaffold, confirming the 

biocompatibility of the material [7]. 

2.3.6 Hard Tissue Engineering  

  PGS elastomeric properties were also desired on hard tissue engineering mostly 

involved with bone replacement. PGS was previously investigated for this application in 

combination with various composites materials [77]. However, a series of papers 

published investigated the mechanisms inducing bone formation with PGS [78, 79]. In 

the first study, the quantity and quality of the bone regenerated using microcomputed 

tomography and by four-point bending flexural tests after 8 week implantation [79]. It 

was concluded that PGS’s lower stiffness allowed load-transducing, where bone 

deposition and maturation takes place [79]. Therefore, PGS elastomer can be an 

osteoconductive material with much potential for regeneration of bone. I the second 

study, PGS was characterized for its mechanical properties (with cyclic compression 

loads), biocompatibility with osteoprogenitor cells, and in vivo regenerations effects [78]. 

The PGS scaffolds were also compared with a common biomaterial used in this 
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application called poly lactic-co- glycolic-acid (PLA/PGA). This study concluded that 

PGS is osteocompatible and was great with bone regeneration and transmitting 

mechanical signals to adjacent cells, promoting cell differentiation and matrix maturation 

to proper bone remodeling [78].  

2.3.7 Tissue Adhesive  

 It is difficult to find biomaterials that can sustain mechanical deformations while 

still adhering to the tissue. The traditional methods used in medicine today, sutures and 

staples, do not have highly elasticity properties, and can produce inflammatory responses 

to the tissue and toxicity. Therefore, the properties of PGS became so attractive to the 

tissue adhesives applications. In 2008, Mahdavi showed a new generation of tissue 

adhesives using PGSA, to produce an adjustable elastic product and minimal tissue 

response [65]. Therefore, PGSA has much potential in the tissue adhesive, with many 

practical applications on the surgical world. 

2.3.8 Drug Delivery  

Controlled drug delivery has multiple advantages over conventional delivery 

drugs. It allows the possibility of a target site, continuous maintenance, with reduced 

toxicity [31]. The possibility of integrating drug delivery with tissue engineering 

applications allows a great advantage for local drug delivery [80]. Using a scaffold as a 

delivery vehicle is crucial for a delivery because the biomaterial has a strong influence on 

the drug encapsulation and its release. Additionally, the material must be biocompatible 

and biodegradable. 

This approach has been used for anti-cancer therapies. PGS implants were used as 

drug delivery vehicles for anticancer therapy [31]. PGS was selected because of its 
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tailorable degradability and great biocompatibility. The anti-cancer therapy using PGS 

consists of delivering the drugs to target cancerous tissues to reduce toxicity [31]. PGS 

samples were prepared with anti-cancer drugs and went through comprehensive 

examination involving chemical characterization, in vitro degradation, drug release 

behavior, in vivo degradation and tissue biocompatibility [31]. 

In vitro degradation showed that after 30 days the sample maintained their 

geometry while degrading, and the degradation rate directly increased with increasing the 

drug concentration [31]. In vivo degradation studies performed intramuscularly on rats 

exhibited that PGS degraded in a much faster rate when compared to the in vitro 

degradation, with no notable inflammation, good biocompatibility and no toxicity [31]. 

Therefore, with the results obtained was possible to conclude that PGS is a great 

candidate for bioresorbable drug delivery carrier for anticancer therapy. 

PGS has also been used in a different study on the treatment of chronic prostatitis 

[81]. An antibiotic called ciprofloxacin-HCL (CIP) was encapsulated into a tubular PGS 

and the drug was released via osmosis and diffusion mechanisms. The results obtained 

from these studies showed that OGS was again successful on delivering the drug to the 

target tissue acting as a semipermeable material. 

2.4 Microstereolithography   

2.4.1 Background  

With the advances in Additive Manufacturing and the stereolithography 3D 

printing (SLA) becoming more available, the resolution of these well-established 

technologies started to improve significantly, with features as small as 75µm on a 



33 
 

photocurable resin using ultraviolet (UV) laser beam [82]. Mask projection 

microstereolithography is a slight modification of the traditional SLA printing process, 

which uses a UV light source with a dynamic pattern mask (generator) to pattern the light 

and expose the entire cross-sectional area at once, differently from the traditional SLA 

methods that are limited to the laser beam diameter. This type of 3D printer can feature 

sizes smaller than 10µm while also dropping build times significantly [21, 82-84].  

 Mask projection microstereolithography consists of a light source, either a lamp, 

laser or a light emitting diode (LED), passing through a series of optics, such as 

collimating lenses, wavelength filters, and homogenizing rods. A mirror can be used to 

guide the light into the dynamic mask that is usually used to pattern the light source into 

the desired digitally patterns created from a CAD file. Typical dynamic masks include 

Liquid Crystal Display (LCD) and Digital Micromirror Devices (DMD). Finally, if 

desired, the patterned light is resized by a series of lenses to focus the final image on the 

surface of the photopolymer or at the bottom of a vat. The light projected causes the 

photopolymer to crosslink, causing it to change phases from liquid to solid in 

polymerization process [82]. Figure 15 shows a schematic of a common mask projection 

microstereolithography system. 
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Figure 15. Schematic of a typical mask projection microstereolithography system. The 
purple lines represents the light traveling on the system [82] 

 In the setup shown in Figure 15, the light source is projected from above. 

Therefore, the first layer is cured on the build plate. After, the build plate lowers a desired 

layer height and additional resin recoats the previously cured layer to provide enough 

resin for the subsequent layers. The next cross-sectional layer is projected and the 

photocurable resin cures on top of the previous layer. This process is repeated until the 

final object is completed and the part is removed and post-processed if required. 

2.4.2 Design Considerations in Microstereolithography  

When designing a mask projection microstereolithography system, there are some 

requirements to be considered. The most important factors that directly affect the 

accuracy and speed of the 3D printing process are the light source, the dynamic mask, 

and the projection orientation of the system. The following paragraphs describes the 

available and previously used options in detail, with their advantages and disadvantages. 

This design analysis has led to the selection of an LCD 3D printer using a LED light 

source, an LCD screen as the dynamic mask and the light to be projected from bottom.  
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2.4.2.1  Light Source  

 When selecting a light source, the first important choice is to select the emission 

spectrum of the light source. It must include the useful wavelength of the photopolymer 

used on the 3D printer (match with the selected photoinitiator). Second, the intensity of 

the light source must be powerful enough to cure the photopolymer in a reasonable time 

(ideally less than 60 seconds) because this has a direct influence on the printing time.  

There are three common light sources used in mask projection 

microstereolithography. The most commonly used light source is a lamp. It emits light in 

all directions, has high output intensities, and a broad spectrum. Therefore, lamps can be 

compatible with multiple photopolymers [83, 84]. The second light source is the LED 

sources. LED sources usually have longer operating lives, with lower cost, smaller sizes, 

and lower heat generations (more energy efficient) than lamps and lasers [85]. They 

usually output light in a particular wavelength, which can be tailored according to the 

desired photopolymer. Last, lasers should be considered.  Lasers emit light at one or more 

wavelengths from ultraviolet, visible to infrared. However, even though lasers provide 

better accuracy, they are much more expensive than the other two light sources [86].    

2.4.2.2  Patterned Light  

 The pattering of the light is the most important aspect of the mask projection 

microstereolithography system and is what provides the accuracy and the precision of the 

shape projected. There are two main dynamic masks available to digitally pattern the 

light source and project the light. Important aspects to be considered are the resolution, 

pixel pitch (the size of each pixel and the space in between), and the transmission of the 

dynamic mask.  
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 The Liquid Crystal Display (LCD) screens were the first dynamic mask to be 

implemented in mask projection microstereolithography. LCD displays pattern light by 

switching pixels from opaque to transparent. This is the most inexpensive option, with 

the high quality of the LCD resolution (e.g. 1920x1080, and 2560x1440). The biggest 

disadvantage of LCD screen is that it blocks a significant amount of UV light, only 

transmitting 12.5% of UV light [86, 87].  

 The most commonly used dynamic mask is the Digital Micromirror Device 

(DMD) was developed due to the constraints originated from the LCD screen not 

transmitting UV light. This digital mask can be easily found on standard projectors. 

DMD discretize light over a 2D array of micromirrors, that can be individually actuated 

to an on and off orientation [82].  DMD offers many advantages over LCD screen, such 

as the possibility of using UV light sources, provides a more uniform intensity, and has 

greater control of exposure time. However, the DMD requires optical components to 

direct and scale the image produce, which can increase the price of the overall setup [21, 

83, 86].  

2.4.2.3  Projection orientation 

 When considering designs for mask projection microstereolithography, the second 

most important characteristic is the projection orientation. It essentially consists of 

selecting if the light source will be projecting from above or below the build plate. As 

shown if Figure 16, the two projection orientations are described. The first is a top-down 

orientation, where the light is projected from the top, and the second is a bottom-up 

orientation, where the light is projected from the bottom surface of a vat with a 

transparent film.  
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Figure 16. Diagram of the different projection orientations. a. the light source is above 
and b. the light source is below [82] 

 The most common setup in microstereolithography is when the light is projected 

from above. Additionally, it requires a recoat method to continue 3D printing the desired 

shape, which can be hard to effectively keep the layer height constant. Moreover, the 

recoating can significantly increase the printing time [82]. 

 There are several advantages of bottom projection compared to top projection. 

Bottom projection requires less amount of photopolymer in the vat, since the build height 

is independent of the reservoir container [82]. Moreover, thinner layers are possible, with 

higher accuracy, since they are determined by the gap between the vat and the build plate. 

The photopolymer can also crosslink faster, because there will not be any oxygen 

reacting during the polymerization, increasing the reaction speed.  

 However, a common disadvantage of this type of orientation is that the polymer 

adheres in both the build plate and the thin film on the floor of the vat. Therefore, it can 

require about 50N to overcome this adhesion depending on the photopolymer, which can 

affect the printing product [83]. Researcher have been studying and developing 
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alternatives, such as implementing different pulling mechanisms or applying a silicon 

membrane on the floor of the vat [83].    

3 METHODS  

3.1 3D Printer 

In this study, a modified LCD 3D printer (X-cube, Beijing China) shown in 

Figure 17, consisting of a vat of photocurable resin suspended above an LCD screen was 

used. This method provides excellent resolution because LCD screens can have very 

small pixel sizes (5.5 inches screen, 2K resolution, 2560x1440). A UV-LED (100W, 

520nm CHTPON Epistar, China) was used to project the desired slices of the 3D model 

through the bottom of the vat. Creation Workshop software was selected to control the 

LCD screen, slice the CAD models and generate the G-codes that control the 3D printer. 

A build plate lowers into the vat of material from the top and the first layer of resin is 

cured on the plate. Next, the build plate rises out of the resin with the first slice of the 

object attached to the build plate to “peel” the object from the vat. As the object moves 

up, the still liquid resin flows underneath the previously cured layer. The LCD screen 

then projects the next layer. The uncured resin cures to the previous layer and begins to 

form the object (scaffold). The process is repeated, building the object layer by layer, 

until the model is completed. Because an entire layer of the scaffold is exposed at once, 

this type of 3D printing is fast, and complexity of the model does not add manufacturing 

time. Figure 18 shows a schematic of an LCD 3D printer.  
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Figure 17. Modified X-Cube LCD 3D Printer

 

Figure 18. Schematic of an LCD 3D printer 
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3.2 Design modification history  

 The X-Cube was purchased for LCD 3D printing of PGSA. It originally had a 

30W LED chip at 405nm. The first attempt to 3D print PGSA was to try to replicate the 

literature and use the same photoinitiator DMAP as was previously used [68]. Therefore, 

the wavelength of the LED chip had to be modified from 405nm to 365nm. However, 

that modification did not work because the LCD blocked all the UV-light source below 

400nm. Next, the photoinitiator used with PGSA was replaced with a different 

photoinitiator that does uses wavelengths above 400nm (LCD cutoff frequency). The 

VA-086 was selected due to its respective spectrum with a peak wavelength at 385nm, 

and previous reported used with hydrogels using an SLA 3D printed laser at 405nm. 

However, this photoinitiator generated multiple bubbles after cured, and had a very slow 

curing time since its activation wavelength was below 405nm. Finally, Eosin Y was 

selected as the optimum photoinitiator. It is a very biocompatible photoinitiator and water 

soluble. However, it requires the addition of triethanolamine as a reducing agent for a 

faster photocrosslinking reaction. Additionally, since Eosin Y has a peak wavelength at 

515nm, a 520nm 100W LED chip was purchased and implemented into the X-Cube as 

the final design of the printer. 

 The original LED chip of the 3D printer X-cube was 30W. Modifications had to 

be made on the printer to allow a 100W LED chip to be the light source and significantly 

decrease the curing time of the polymer. To accomplish this, the LED could not connect 

directly to the main control circuit board because it could only handle passing 30W. 

Modifications were made to the printer to use the signal from main board as the signal to 
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an externally added relay with a separate power source in order to use a much higher 

power LED (100W). 

3.3 Synthesis/Processing of PGS and PGSA 

PGS prepolymer was prepared using a condensation reaction by a procedure 

modified from previously published methods [26]. Three batches were made with 

different prepolymer curing times, but with the same acrylation procedure. These changes 

were made in order verify how the molecular weight of the polymer would affect the 

properties of the material, and to find the optimum curing time of the prepolymer for the 

desired application. An equimolar amount of glycerol (ThermoFisher Scientific) and 

sebacic acid (Sigma-Aldrich) were mixed in a 100ml round bottom flask. The reagents 

were stirred for approximately 4 hours (optimum value) at 140°C using an oil bath. For 

Batch 1 the prepolymer was cured for 3 hours, Batch 2 for 3.5 hours 4 hours for Batch 3. 

A vacuum of 25mbar was applied during the reaction to remove moisture and drive the 

reaction to completion.  

For acrylation, the PGS prepolymer was dissolved in dichloromethane (DCM, 

ThermoFisher Scientific). 0.1wt% of 4-(dimethylamino) pyridine (Sigma-Aldrich) was 

added into the mixture. An equimolar amount of triethylamine (TEA- Sigma-Aldrich) 

and Acryloyl Chloride (Sigma-Aldrich) were added dropwise simultaneously into the 

stirred solution. The reaction flask was kept at room temperature for 10 minutes. Ethyl 

acetate (Sigma-Aldrich) was added into the mixture and the flask was placed on the 

freezer for 3 hours to cool. The solution was removed from the freezer and the mixture 

was vacuum filtered immediately to remove the TEA salt produced during the reaction. 

Ethyl acetate was then removed using a rotary evaporator under vacuum with a 50°C 
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water bath to leave a viscous liquid of PGSA. This procedure was slightly modified from 

previously reported acylation methods of PGS prepolymer [33, 66]. The photoinitiator 

Eosin Y was used as a photoinitiator with triethanolamine as a reducing agent. 0.75 vol% 

of triethanolamine was mixed with 0.1mM of Eosin Y, with an additional 0.1 vol% of 

ethanol. Figure 19 illustrates a schematic of the synthesis process of PGSA and Figure 20 

shows the reaction schematic of PGS prepolymer and PGSA. 
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Figure 19. Schematic of the synthesis process of PGSA 
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Figure 20. Reaction schematic for PGS prepolymer and Polyglycerol Sebacate Acrylate 

3.4 Polymer characterization 

3.4.1 Polymer characterization via FTIR 

Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on a 

Nicolet 380 (Thermo-Scientific, USA) to characterize the prepolymer and photocured 

PGSA (LCD 3D printer). The tests were performed on the following machine shown in 

Figure 21. 



45 
 

 

Figure 21. Machined used to perform FTIR tests 

3.4.2 Rheological measurement 

The viscosity is a major material parameter in many processes [88]. In LCD 3D 

printing, the viscosity of the resin is critical for a successful print and characterizing the 

rheological properties of the polymer can be used to find the optimum printing 

parameters. Moreover, after the desired shape is cured into the build plate, the remainder 

resin needs to slide underneath the build pate before the next layer begins to cure. Most 

rheological tests are performed by keeping the bottom plate fixed while the top plate 

either rotates or oscillates [89]. By using a rheometer, multiple characteristics of a 

polymer can be determined, such as its shear viscosity (Pas), storage and loss modulus 

(Pa), phase angle (δ), angular frequency (rad/s), and time dependent properties such as 

stress relaxation modulus, creep, and recoverable compliance. 

Rotational and oscillatory rheological tests were performed on the prepared PGSA 

samples using an AR2000 stress-controlled rheometer (TA Instruments, USA) shown in 
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Figure 22. The rheological measurements were made using a parallel plate configuration. 

The viscosity of the different batches of PGSA were determined by measuring the slope 

of the shear rate versus shear stress plot. The rotational test on the three batches were 

conducted under continuous flow (0.0–50.0 s−1) with an equilibration duration time of 

two minutes and the gap distance was set to 1500 microns for the entire test. A similar 

procedure was performed in a previous study [68]. Additionally, two commonly used 3D 

printing resins were used to for direct comparison (Makerjuice [90] and Formlabs [91]) 

following the same procedure. Figure 23 shows the rheological test being performed with 

PGSA.   

 

Figure 22. AR2000 Rheometer used to perform viscosity tests 
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Oscillatory tests were performed on the viscoelastic polymer. A frequency sweep 

was performed at a constant temperature (25°C), and angular frequency varied from 0 to 

100 rad/s. Time dependent properties and crossover point of the storage modulus (G’, 

which is equal to the deformation of energy saved by the biomaterial) and the loss 

modulus (G”, which is how much of deformation energy that was used by the 

biomaterial) were determined [89].  A strain sweep was also performed to provide a 

deeper understanding of the material rigidity and strength [92]. The sample was subjected 

to a small amplitude oscillatory test. The storage G′ and loss G′′ moduli were monitored 

under 0.5% strain, constant frequency of 1 Hz, and at 25 °C. 

 

Figure 23. Rheological test being performed at a PGSA sample 
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3.5 Swelling testing  

 Swelling by hydration was measured by the mass differential after the PGSA 

samples were submerged into a PBS media for a total of 72 hours. The PGSA samples 

used were the same as used for biocompatibility tests, where they were 3D printed with 

10mm diameter and 3mm thickness. The PGSA samples were weighted (W0) before the 

swelling test. PGSA samples were submerged in PBS media for 24 hours until peak 

swelling and was kept for an additional 48 hours until it reached equilibrium. Then, the 

fully swelled samples were weighed and measured again (W1) following the same 

procedure. The swelling ratio was calculated based on the weight change using the 

following equation: 

𝑆𝑅 =
𝑊 − 𝑊

𝑊
𝑥100% 

3.6 Mechanical testing 

For tensile testing, four samples from each batch of PGSA samples were prepared 

on LCD 3D Printer as dog bone shaped specimens (∼ 3mm height, overall length of 

24mm, and a narrowed section that was 5.5mm long and 4mm wide) [26] as shown in 

Figure 24. Samples were loaded into textured grips on an MTS Insight electromechanical 

testing system as shown in Figure 25 (MTS Insight, USA, 250N loadcell), and tested with 

a 0.01N pre-load a rate of 5mmmin−1 until failure. The texture grips were attached into 

the fabric clamps fixture (glued sand paper into the fixture), which are shown in Figure 

26, which were essential for the samples not to slip or cause any damage during the tests. 

All the samples were soaked in a PBS media for approximately 24 hours before the 

testing was performed. 
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Figure 24. Drawing of the tensile specimen with dimensions in mm used for mechanical 
characterization 

 

Figure 25. Tensile test setup at MTS Insight 
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Figure 26. Representative test setup for the tensile test showing modified texture grips 

Displacement and force data were recorded during loading, and then post 

processed using a custom written analysis code (MATLAB, MathWorks) to determine 

sample stresses (forces divided by cross-sectional areas), ultimate stresses (the highest 

stress attained), failure strains (strain values where failure stresses were achieved), and 

elastic moduli (calculated from the slopes from 40% to 50% of failure strains) [68] . 

Additionally, the crosslinking density (n) was calculated according to the theory of 

rubber elasticity using the following equation [26]:  

𝑛 =
𝐸

3𝑅𝑇
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Where E0 is Young’s modulus, R is the universal gas constant, T is the absolute 

temperature (K), and n represents the number of active network chain segments per unit 

volume (mol m-3) [26]. 

3.7 Biocompatibility  

 Biocompatibility tests were performed to verify the cytocompatibility of the 

polymer and to prove that no harmful substances remained behind after fabrication and 

printing of the PGSA. Before testing, hydrophilic crystals remaining in the liquid polymer 

were removed by washing with DI water. After several minutes, the water and the material 

were visually separated since PGSA is hydrophobic, and the DI water could be removed. 

Water and PGSA were separated using centrifugation and the water was discarded.  On 

one occasion, water remained after centrifugation but separated from the PGSA overnight 

at 4oC.  

3D printed, biocompatible growth chambers with dimensions of 10mm diameter 

and 3mm thick were created with a hollow square trough with dimensions of 5mm long 

and 0.25mm thick to help trap cells and enable a longer period of time for adhesion.  The 

chambers are shown in Figure 27. Chinese Hamster Ovary (CHO) Cells were cultured in 

Dulbecco’s Modified Eagles Medium (DMEM) without phenol red, with 10% fetal 

bovine serum and 1% penicillin-streptomycin (10K index units) at 37°C under a 

humidified atmosphere with 5% CO2. For cell seeding, 3D printed PGSA scaffolds were 

sterilized by incubation in PBS with antibiotic for three days, with daily rinses in PBS-

antibiotic of 20 times the volume of the chamber. Additionally, one rinse in 4 mL of 

media was made before plating cells. As an initial test of cell adhesion and viability, 

CHO cells were placed onto a 3D printed chamber from each batch and incubated 
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overnight in PBS with antibiotic. PGSA chambers were kept in small 35mm diameter 

culture dishes. Images of cells were acquired using an Olympus FV1200 confocal system 

with an IX81 inverted microscope showing that the cell adhered within the PGSA 

chamber and also to the bottom of the culture dish.  Cells adhered to the bottom of the 

dish were imaged using phase contrast with a Face contrast inverted microscope Zeiss 

Axiovert S100TV.  Cells adhered inside the chambers were imaged with a fluorescent 

marker, GPI-td-tomato, which is made and secreted to the plasma membrane of live cells.  

GPI-td-tomato is a lipid anchored surface protein with excitation-emission spectra similar 

to rhodamine. 

 

Figure 27. 3D Printed chambers for biocompatibility tests 

3.8 3D Printing  

The customized LCD 3D printer was used to create all the mechanical, swelling 

and biocompatibility samples for testing purposes. The output resolution was set to 50 

microns, with a slice thickness of 0.05mm. The exposure time for was set to 

approximately one minute for Batch 3, one minute and a half for Batch 2, and two 

minutes for Batch 1. This value can also be tailored according to the desired stuffiness of 

the sample (decreasing curing time directly decreases the stuffiness of the sample), and 
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by the amount of photoinitiator in each sample. Moreover, since Batch 3 had a higher 

prepolymer curing time and therefore higher molecular weight, it required a lower curing 

time when compared to the other batches. For testing purposes, the amount of 

photoinitiator was kept constant as previously mentioned in the synthesis and processing 

section of PGSA. 

Four solid dog-bone structures were 3D printed for tensile tests for each batch. 

Representative samples from Batch 3 are shown in Figure 28. Four biocompatibility 

chambers were also 3D Printed and used for the swelling tests.  

 

Figure 28. The four tensile samples used for tensile tests from batch 3 
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4 RESULTS 
 

4.1 Polymer characterization 

Fourier Transform Infrared Spectroscopy (FTIR) analysis was used to 

characterize the chemical structure of the material. PGS prepolymer, uncured PGSA and 

LCD 3D printed PGSA samples were characterized using methods previously published 

[26, 33]. Based on Wang’s study [26], the prepolymer results presented comparable 

signature bands with an intense stretch of the C=0 at 1696 cm-1 that confirms the 

formation of ester linkages as shown in Figure 29. Moreover, it also presented an intense 

OH stretch at 3500-3200 cm-1 indicating that the hydroxyl groups are hydrogen bonded 

[26].  

 

Figure 29. Representative FTIR Spectrum of PGS Prepolymer 
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For the photocured PGSA material, Nijst’s study was used to verify our findings 

[33]. The goal was to confirm the crosslinking reaction of the polymer. The addition of 

acrylate groups was confirmed with the appearance of an absorption band that represents 

the CH stretching of the second alkyl group at 1375cm-1 [33].The result for the acrylated 

PGSA is shown in Figure 30. The characteristic absorption bands of hydroxyl (3500-

3200 cm-1) and ester (1800-1600 cm-1) groups in the polymer backbone changed after the 

polymer was photocured. The formation of the polymer network after photocuring PGSA 

was confirmed by the increase of the 1731.4cm-1, and reduction of the absorption bands 

of hydroxyl (3500-3200 cm-1) and the significant reduction of the peak at 1375 cm-1, 

known to be associated with acrylate groups [33]. The results of the photocured PGSA 

are shown on Figure 31. 

 
Figure 30. Representative FTIR Spectrum of Uncured PGSA 
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Figure 31. Representative FTIR spectrum of a cured PGSA using LCD 3D printer 

4.2 Rheological Results  

The viscosity of the photocurable resin is essential for SLA/LCD 3D printer. 

Viscosity for two commonly used resins, MakerJuice [90] (typically used to create solid 

materials) and FormLabs [91] (typically used to create flexible materials) were selected 

for comparison with the viscosities of PGSA before crosslinking, to ensure printability. 

Also tested, the three different batches of PGSA manufactured on separate occasions to 

test repeatability and curing times. PGSA Batch 1 was 3 weeks old, with PGSA Batch 2 

being 5 days old, and PGSA Batch 3 was 1 day old.  All the tests were performed at room 

temperature (25°C).  

The average viscosity of PGSA Batch 1 was found to be 3.57±0.17 Pa.s, PGSA 

Batch 2 was 3.62±0.16 Pa.s, and PGSA Batch 3 was 15.62±0.90 Pa.s, as shown on Table 

1. The results obtained from Batch 1 and 2 were slightly above the ranges of the 
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commonly used resin FormLabs, and Batch 3 had a significant increase in viscosity, due 

to its longer curing time (higher molecular weight that causes the polymer to become 

much more viscous). The FormLabs resin average viscosity was found to be 2.19±0.04 

Pa.s and the average MakerJuice viscosity was found to be 0.12±0.01 Pa.s. Although 

slightly higher than common 3D printing resins, the viscosity of PGSA was showed to be 

consist between the first two batches of PGSA polymer manufactured. However, all the 

PGSA samples are within the acceptable range of viscosities used in SLA/DLP printers 

(less than 20Pa.s). Figure 32 shows the plot of shear stress versus shear rate of all the 

materials tested and the changes in viscosity as the shear rate increases of the same 

materials is shown on Figure 33.  

Table 1. Average Viscosity of commonly used 3D Printing resins and PGSA from 
different batches 

Material Average Viscosity (Pa.s) 
Formlabs 2.19±0.04 

Makerjuice 0.12±0.01 
PGSA1 3.57±0.17 
PGSA2 3.62±0.16 
PGSA3 15.62±0.90 
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Figure 32. Shear stress-shear rate plots of different materials. 

 
Figure 33. Shear rate plots of different materials 

 Next, an oscillatory frequency sweep test was performed on the three batches of 

PGSA and presented on Figure 34, Figure 35 and Figure 36 respectively. When the 

PGSA presents a higher G" than G' it demonstrates a viscous or liquid behavior (also an 
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uncross-linked behavior). On the Batches 1 and 2 the material behaved slightly different, 

showing a higher G" than G' until the material reached the cross-over point at the 

intersection of the G’ and G’’ (at approximately at 40 rad/s on batch 1 and 80 rad/s on 

batch 2), where the gel-solid transition temperature was achieved by shifting the 

molecular weight distribution of the polymer, which it was not visible for the polymer on 

Batch 3. 

 

Figure 34. Frequency Sweep of PGSA from Batch 1 
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Figure 35. Frequency Sweep of PGSA from Batch 2 

 

Figure 36. Frequency Sweep of PGSA from Batch 3 
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disturbance of the polymer structure (yield) causing the phase angles to rise and the 

rigidity to decrease [92]. The test results of each batch of PGSA are shown on Figure 37, 

Figure 38 and Figure 39 respectively. They did not demonstrate any significant damage 

of the polymer, as there was no drastic decrease on any of the modulus.  

 

Figure 37. Strain Sweep results of PGSA from Batch 1 
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Figure 38. Strain Sweep results of PGSA from Batch 2 

 

Figure 39. Strain Sweep results of PGSA from Batch 3 
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4.3 Swelling Results 

 The polymer was found to be insoluble in water. The degree of swelling in PBS 

media for 24 hours of the polymer was found to be 6.45% for Batch 1, 12.94% for Batch 

2 and 13.11% for Batch 3. The sample from Batch 1 and 3 did not present any visual 

cracks due to the swelling, however, the samples in Batch 2 were significantly damaged 

by the stress caused during the swelling test. During further tensile tests, those cracks 

were also visible, and it might have affected the end results of the tests. However, even 

though Batch 3 presented the maximum swelling percentage, the sample was the least 

impacted by the swelling rate on the mechanical tests.  

The test continued with the same media for an extra 48 hours and the samples 

were soaked for a total of 72 hours. After 72 hours, the degree of swelling of the polymer 

were found to be -1.43% for Batch 1, 2.36% for Batch 2 and 9.22% for Batch 3. These 

results show that the polymer likely started degrading in solution for Batch 1. Also, it can 

be concluded that after 72 hours, the sample that was more constant was the sample from 

Batch 3, showing that the changes in swelling ratio affected that sample less than the 

other two samples.   

4.4 Mechanical Properties  

 Four 3D printed dogbone samples from different batches of PGSA were soaked 

for approximately 24 hours prior testing. While the samples were wetted before testing 

and showed some swelling, most of the samples from Batch 2 had visual cracks shown in 

Figure 40, which might have significantly affected the results obtained for that batch. 

Also, Batch 1 presented significant swelling, while Batch 3 did not present significant 

swelling or changes compared to the other two batches. Young’s modulus was 
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determined from the slope of the linear portion of the plot (<15% strain) and varied from 

∼0.0039 to 2.073MPa depending on the batch of the PGSA. The ultimate tensile stress 

from the three batches varied from ∼0.0068 to 0.315MPa. The maximum elongation 

varied from ∼11.6 to 91.1%. A representative graph of each batch is shown in Figure 41.  

 

Figure 40. Tensile samples from batch 2 with visual cracks noticeable 
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Figure 41. Representative Stress vs Strain Curves of batches 1, 2 and 3 of PGSA 

  The significant changes in stiffness and ultimate stress of the polymer is directly 

proportional to the curing time of the prepolymer. Typically, PGS shows elastomeric 

properties and this was clearly shown in the Batch 1 results[26], since this batch had the 

lowest curing times of the three batches. However, due to the longer curing time, Batch 3 

has a higher molecular weight and is much stiffer than the other batches. The average 

Young’s Modulus of Elasticity, Ultimate tensile stress and maximum elongation of the 

three batches are presented on Table 2 and compared on Figure 42 and Figure 43.  
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Table 2. Average mechanical properties of the three batches of PGSA 

 

Figure 42. Direct comparison of the Maximum Tensile Stress on the three batches of 
PGSA (left). Direct comparison of the Young's Modulus of Elasticity of the three batches 

of PGSA (right) 

 

Figure 43. Direct comparison of the maximum strain of the three batches of PGSA 

As shown in Table 2 and on the following figures, as a characteristic of an 

elastomer, Batch 1 has very low ultimate tensile stresses compared to the other two 

batches, but it presents a much higher percent of elongation. Because Batch 2 samples 

showed significant visible cracking, it is hard to know if the results were very accurate. 
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However, because the curing time of Batch 2 was in between of Batch 1 and 3, its 

mechanical properties were also in the middle range of these two. The tensile samples 

form Batch 3 after soaking are shown in Figure 44. Batch 3 is the stiffest batch, with 

higher ultimate stress and Young’s modulus of elasticity but lower percent elongation. 

Therefore, this shows that by controlling the prepolymer curing time, the mechanical, 

swelling and rheological properties of the material can be tailored according to the 

desired application. 

 

Figure 44. 3D printed tensile tests samples wet from Batch 3 

Because Batch 3 showed the lowest amount of swelling in culture media 

environment, comparisons between a dry and wet environment before tensile tests were 

performed and the results are shown below. Table 3 describes the average of the 

mechanical properties of the Batch 3 in a dry and wet environment before the tensile test 
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was performed. Moreover, Figure 45, Figure 46, and Figure 47 describes the direct 

comparison of these properties. 

Table 3. Average mechanical properties of 3D printed samples from batch 3 at a dry and 
wet environment prior to testing 

 

 

Figure 45. Representative Stress vs Strain curves of the 3D printed tensile samples from 
batch 3 at a dry and wet environment prior to testing 
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Figure 46. Direct comparison of the Maximum Tensile Stress of the 3D Printed tensile 
samples on a dry and wet environment prior to the test (left). Direct comparison of the 

Young's Modulus of Elasticity of the 3D Printed tensile samples on a dry and wet 
environment 

 

Figure 47. Direct comparison of the Percentage of elongation of the samples form batch 3 
from a dry and wet environment 

The mechanical properties of PGSA from Batch 3 after a dry and wet 

environment some significant changes. An example of a tensile sample after failure is 
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decreased by 22.5% when compared to the dry samples. Therefore, it can be concluded 

that the Batch 3 is the best batch for biocompatibility tests, since its mechanical 

properties did not significantly change after being soaked for approximately 24 hours, 

and it did not present any visual crack on the samples like the other batches. 

 

Figure 48. Representative tensile failure of a PGSA sample from Batch 3 

 The crosslinking density of the different batches was expressed by n (moles of 

active network chains per unit volume), which is 0.53 ± 0.00 mol/m3 for Batch 1, 52.73 ± 

9.48 mol/m3 for Batch 2 and 172.70 ± 62.85 mol/m3 for Batch 3, and it was calculated 

from the following equation [26]:  

𝑛 =
𝐸

3𝑅𝑇
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Where E0 is Young’s modulus, R is the universal gas constant, T is the absolute 

temperature. Again, these shows how the crosslinking density increase with curing time 

and increase in curing temperature [32]. The increase in crosslink density also led to a 

notable increase in tensile strength and modulus, as well as hydrophilicity [74]. 

4.5 Biocompatibility  

 The first tests were performed on biocompatibility chambers from Batches 1 and 

2. Several cells were alive, and that they adhere to the PGSA chamber, however the cells 

did not group together. Figure 49 shows on the bottom of the culture dish of the PGSA 

from Batch 1, which most are spread and healthy, indicating that the polymer did not 

produce any toxic elements into the media. Figure 50 shows the same image from the top 

of the chamber using a fluorescence inverted microscope with GIS tdTomato. Figure 51 

shows the cell on top of the PGSA samples from Batch number 2. Both figures showed 

low adherence, but the cell were alive after 24 hours.   
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Figure 49. Cell on the bottom of the dish of the biocompatibility chambers from Batch 1 

 

Figure 50. PGSA from Batch 1 compatibility results with tdTomato  
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Figure 51. PGSA from Batch 2 compatibility results with tdTomato  

The biocompatibility samples from Batch 3 showed the best results when 

compared to the other batches. A higher number of cells were visible on the polymer. 

However, due to the higher magnification (10X) images are distorted due to the depth of 

the chambers. Figure 52 and Figure 53 shows the corner of one of the biocompatibility 

samples. Cells are alive and have a mild adherence. Figure 54 shows how the cells 

agglomerated in the porosity of the polymer, which might be helpful for the proliferation 

of the cells in future scaffold designs.   
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Figure 52. The corner of one of the biocompatibility samples from PGSA from Batch 3 
showing better viability 

 

Figure 53. Biocompatibility chambers from Batch 3 highlighting the outer membrane of 
the cells 
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Figure 54. PGSA samples from Batch 3 with agglomerations of cells on porous 

4.6 3D Printing Results  

 The main goal of the project of successfully LCD 3D print PGSA was completed. 

All the biocompatibility/swelling chambers and tensile samples were manufactured for 

the respective tests. As shown in Figure 55, on one of the first trials of 3D printing 

PGSA, the material successfully adhered to the print bed, and it is not damaged by the 

pealing forces on the material. For future goals, the development of more complex shapes 

should be explored like a bronchial tree scaffold for epithelial regeneration. The results of 

the biocompatibility chambers and the 3D printed tensile samples are shown in Figure 56 

and Figure 57. 
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Figure 55. Primary tests of 3D printing PGSA proving that a thin layer of the material 
adheres to the building plate 

 

 

Figure 56. Side view of 3D printed biocompatibility chambers 
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Figure 57. 3D printed tensile tests samples dry from Batch 3 
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5 SUMMARY AND CONCLUSION  

 The main goal of this thesis was to synthesize a version of PGSA biomaterial that 

can be 3D printed using an LCD 3D printer. This project demonstrates that LCD 3D 

printing is a viable option to create biodegradable and biocompatible scaffolds for 

biomedical applications using a photocurable elastomers. 3D printed objects can be 

created much faster than traditional methods with much higher accuracy and is less 

expensive than other bioprinting options.  

 The curing time of the PGS prepolymer was significantly decreased from 

approximately 72 hours to 3 to 4 hours as the reaction temperature was increased to 

140°C and moisture produced in the reaction was removed periodically. The FTIR 

spectrum of the PGS prepolymer presented comparable signature bands with an intense 

stretch of the C=0 at 1696 cm-1 that confirms the formation of ester linkages and an 

intense OH stretch at 3500-3200 cm-1 indicating that the hydroxyl groups. The addition of 

acrylate groups was confirmed with the appearance of an absorption band that represents 

the CH stretching of the second alkyl group at 1375cm-1. The formation of the polymer 

network after photocuring PGSA was confirmed by the increase of the 1731.4cm-1, and 

reduction of the absorption bands of hydroxyl (3500-3200 cm-1) with a significant 

reduction of the peak at 1375 cm-1, known to be associated with acrylate groups. 

Therefore, these results were found to be similar from previously published papers, 

proving that these alterations on the synthesis process of the polymer did not have a 

significant effect on the material.  

 The average viscosity of PGSA was found to be 3.57±0.17 Pa.s for PGSA Batch 

1, 3.62±0.16 Pa.s for PGSA Batch 2, and 15.62±0.90 Pa.s for PGSA Batch 3. For the 
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traditional 3D printed resins, it was found that the average viscosity of the FormLabs 

resin was 2.19±0.04 Pa.s and the average MakerJuice viscosity was found to be 

0.12±0.01 Pa.s. Therefore, the average viscosity of PGSA was higher than other 

commonly used 3D printed resins, however, it is still inside the range of allowable 3D 

printed viscosities which is lower than 20 Pa.s.  

 The swelling results of the polymer indicated that the polymer is hydrophobic, 

and it does significantly swell, up to 13.11% for Batch 3, but after equilibrium is reached, 

its swelling ratio stayed more constant (decreased to 9.22% after 72 hours) for Batch 3 

than form the other batches. For Batch 1 and 2, after 72 hours, the polymer had a 

significant drop of about 10% of the swelling ratio, which could cause damages in the 

polymer. The samples from Batch 1 presented a weight lower than its original weight, 

showing that degradation started earlier on that Batch.  

 The mechanical properties of 3D printed PGSA presented stiffer characteristics 

for Batch 3, with a Young’s Modulus of Elasticity of 1.2750±0.464 MPa. This result was 

expected since the prepolymer had the higher molecular weight than the other two 

Batches. The polymer that had the least amount of curing time, from Batch 1, presented 

the characteristic elastomeric curve for the mechanical test, with a Young’s Modulus of 

Elasticity of 0.0039±0 MPa. The samples from Batch 2 were between the batches 1 and 

3, with a Young’s Modulus of Elasticity of 0.3893±0.07MPa. Therefore, it can be 

concluded that the mechanical properties can be tailored by changes to the curing process 

of the material, such as decreasing pre-polymer curing time for a more elastomeric 

polymer or increasing the curing time for a more stiffer material.  
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 The 3D printed biocompatibility chambers showed good cell viability with a high 

number of live cells on top of the biocompatibility chambers and mild amount of 

adherence (which can be improved by adding collagen). The cells that did not attach to 

the chamber were also alive in the bottom of the dish, proving that the polymer did not 

produce any toxic components to the cells. The results also showed how the cells 

agglomerated in the porous created in the material, which proves that the proliferation of 

the cells in future scaffold designs are possible. Therefore, since the cells were alive in 

the bottom of all the dishes and they adhered to the biocompatibility chamber, it can be 

concluded that the biomaterial is non-toxic and that the cells have the potential to adhere 

and proliferate in PGSA.  

 In conclusion, LCD 3D printing is simple, fast and can provide excellent 

resolution. The combination of LCD 3D printing and PGSA is a very promising tool for 

biomedical applications that allows complex biocompatible, elastomeric tissue scaffolds 

that can be highly customized without modifying the manufacturing process. Further 3D 

printing of complex scaffolds has the potential to successfully be used in multiple 

biomedical applications including epithelial regeneration.  
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6 FUTURE WORK 

The system designed as part of this work has some areas that could be improved, 

as well as overall efficacy. Suggested improvements to the system include: 

 Improvements to the LCD 3D Printer - Changes should be made to ease the 

manufacturing process of 3D printing, such as decreasing the size of the 

printing bed and vat according to the desired application. This will allow the 

user to fill the vat with a smaller batch of material and allow the printer to 

“load” more material in between layers.  Currently, the vat is too large and 

material is manually loaded in between layers.  Furthermore, changing the 

LCD screen to a more precise and accurate digital mask that does not absorb 

as much of the light intensity will significantly decrease the curing time of 

PGSA. Possible replacement options would be to use a projector as a light 

source with a DMD mask, however this would also require modifications to a 

light wavelength of 525nm.  

 Additional biocompatibility studies - Further biocompatibility tests will be 

required to prove that PGSA is a reliable option for epithelial regeneration. If 

the keratinocytes survive in the material and form epithelial sheets, that is a 

significant scientific advance. Moreover, transepithelial electrical resistance 

(TEER) is a valid option for assessing proliferation of the epithelial cells. 

Additionally, biocompatibility test should be performed on 3D printed 

complex structures, to verify that the cell can successfully grow in a 

controlled matter in a scaffold with complex shapes (bronchial three). Also, 

scaffolds for different stratified squamous epithelial tissues replacements, 
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like skin, rectum, intestines or mucosa of the mouth or esophagus should be 

developed. Moreover, better methods of obtaining biocompatibility images 

should be explored, so the Eosin Y does not affect the end results with its 

fluorescence. 

 Improvements to the polymer - PGSA is a difficult material to work with, 

because of its main advantage of being highly customized. The synthesis and 

manufacturing process must be as consistent as possible, in order to not 

create any unreliable batches/results. Additionally, keeping the temperature 

and pressure constant during the prepolymer reaction is of extreme 

importance. Furthermore, at least two more batches of the same prepolymer 

curing time should be developed to have more data points and improve the 

data analysis.  

o Moreover, not only the prepolymer curing time of the polymer can 

affect the mechanical properties of the PGSA samples, but also the 

curing time on the printer. In this study, the materials were over-

cured in order to assess how the prepolymer curing time would 

affect the mechanical properties of the samples, but further studies 

should be performed to access how the printing curing time can 

affect the 3D printed samples of PGSA.  
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