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ABSTRACT 

PHYLOGENETIC AND ASSOCIATED PHENOTYPIC ANALYSIS OF SALMONELLA 

ENTERICA SEROVAR MBANDAKA 

LINTO ANTONY 

2017 

Food borne salmonellosis is a global public health concern caused by Salmonella, that 

causes enteric disease both in humans and animals. Most of the pathogenic Salmonella 

serovars fall under Salmonella enterica subspecies enterica, a major subspecies group 

that includes more than 50% of total identified Salmonella serovars. New serovars are 

identified each year and overall incidence of salmonellosis may mask the outbreak 

incidences caused by individual serovars. Infrequently reported serovar outbreaks can be 

a significant threat to public health.   

Salmonella enterica serovar Mbandaka is one of the infrequently reported causative 

agents of non-typhoidal salmonellosis in USA. But it has been considered as one of the 

frequent human Salmonella serovar in other countries such as European countries, Israel, 

Africa as well as in New Zealand. Published researches about this serovar were very 

limited and no prior studies have been reported about S. Mbandaka isolates from USA 

especially at the genomic level. Knowledge about the population structure and intra 

serovar genetic diversity that exists within the S. Mbandaka isolates in a global context 

remains a mystery. 

This research was aimed to understand the population structure of globally distributed 

S. Mbandaka isolates with a hypothesis that isolates of this serovar from different 
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geographical area may be genetically close and form specific clonal groups. Genome 

sequence data of 465 isolates from different parts of the world were collected from NCBI 

database and were used to analyze diversity at single nucleotide level. Phylogenetic tree, 

created based on SNP analysis, revealed partitioning of isolates into two major clusters 

and six sub clusters. Cluster formation was validated by further analysis with core 

genome MLST. This research was also aimed to understand the antimicrobial resistance 

gene pattern and distribution of virulence factors in S. Mbandaka isolates from different 

isolation sources. Analysis of ability to invade host cells and resistance to low pH 

environment in 76 USA isolates showed no major difference in these phenotypic 

properties irrespective of isolation source. Overall this research provides a solid platform 

for the epidemiological investigation of future Salmonella outbreaks caused by serovar S. 

Mbandaka. 
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1 Chapter 1. Literature review and Experimental Objectives 

1.1 The genus Salmonella 

Salmonella, a member of Enterobacteriaceae family [2], is a common foodborne 

pathogen with global public health concern [3]. It has a wide host range from cold 

blooded animals to warm blooded animals and causes infectious disease both in humans 

and animals [4-6]. It was originally discovered by Eberth and cultured by Gaffky in 1884 

from a typhoid patient [7]. But the first successful  isolation was done by Theobald Smith 

and Daniel Elder Salmon from infected pigs with hog cholera (swine fever) in 1885 and 

the name Salmonella was given in honor of D. E. Salmon [8, 9]. 

1.1.1 Morphology and biochemical properties 

The members of Salmonella are morphologically categorized as Gram-negative, 

non-spore forming, rod shaped intracellular pathogens. These facultatively anaerobic 

bacilli are having a size of 0.7 to 1.5µm width and 2.0 to 5.0 µm length [4, 10, 11]. 

Because of the presence of higher lipid content and thinner cell wall they are Gram-

negative in nature while the presence of peritrichous flagella made most of them motile 

except Salmonella enterica serovars Gallinarum and Pullorum. 

The genus Salmonella can grow both in the presence and absence of oxygen [12] and 

they are oxidase negative and catalase positive. Biochemically they can grow on simple 

media containing minimal requirements such as glucose for carbon energy source and 

ammonium ion for nitrogen source. Enrichment broths can be used for the lab scale 

identification of the culturing samples and can be isolated on selective media. Normally 

the bacterium ferments glucose with the production of gas [13]. The biochemical 
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identification of the colonies is possible by the method of Triple Sugar Iron (TSI) agar 

slopes and can be confirmed by slide agglutination of Salmonella somatic antigen groups 

with antisera. Some of the biochemical properties of most Salmonella spp. which help in 

their identification and serovar differentiation are the utilization of citrate, production of 

hydrogen sulphide from inorganic sulphur, decarboxylation of ornithine and lysine. 

Inability to deaminate tryptophan and phenyl alanine and failure to produce indole and 

beta galactosidase also help in this context. 

Table 1. Different biochemical characters of Salmonella species and sub species 

Species   S. enterica    S. bongori 

Subspecies enterica salamae arizonae diarizonae houtenae indica  

Biochemistry        

Dulcitol + + - - - d + 

ONPG(2h) - - + + - d + 

Malonate - + + + - - - 

Gelatinase - + + + + + - 

Sorbitol + + + + + - + 

Growth with 

KCN 

- - - - + - + 

L(+)-tartrate(a) + - - - - - - 

Galacturonate - + - + + + + 
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γ-glutamil-

transferace 

+(*) + - + + + + 

β-

glucuronidace 

d d - + - d - 

Mucate + + + - (70%) - + + 

Salicine - - - - + - - 

Lactose - - - (75%) + (75%) - d - 

Lysed by 

phage O1 

+ + - + - + d 

(a) Dextro rotatory (L-) tartrate; (*) S. enterica serovars Typhimurium (d), Dublin -; (+ ) 90% or more 

positive reactions; (-) 90% or more negative reactions; (d) different reactions by different serovars; 

Adopted from Patrick et al,[14]. 

 

 

1.1.2 Nomenclature and classification 

Taxonomy of genus Salmonella is complex and has changed many times. Formerly, 

this genus was considered as a single species known as  Salmonella choleraesuis [15]. 

Later, in 1987 Le Minor and Popoff suggested the novel name “Salmonella enterica”, 

coined by Kauffman and Edwards in 1952 [5], instead of Salmonella choleraesuis to 

avoid confusion with serovar choleraesuis  [15, 16]. In 1961, Fritz Kauffman used the 

somatic and flagella antigen analysis method developed by Bruce (in 1926) to distinguish 

more than 2000 serovars. Based on this method Kauffman - White in 1980 proposed 

current Salmonella nomenclature [14] and is currently maintained by World Health 

Organization (WHO) Collaborating Centre for Reference and Research on Salmonella at 

the Pasteur Institute, Paris, France (WHO collaborating Center) [5, 14]. 
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Genus Salmonella consists of two species, Salmonella enterica and Salmonella 

bongori [17]. The major difference between these two species is that S. enterica has got 

Salmonella pathogenicity Island-2 (SPI-2) while S. bongori does not have this in its 

genome [18]. Presently, as per supplement 2008-2010 White-Kauffman-Le minor scheme 

(No.48), species Salmonella enterica is divided in to six subspecies [5, 19], the details of 

which are given in table.2. Out of 2659 serovars of genus Salmonella, 1586 of them are 

grouped into subspecies enterica  [19] which is more than 59% of total isolated 

Salmonella strains [14]. 

 

Table 2. Present number of serovars in each species and subspecies of Salmonella [19] 

 

Species and subspecies Serovars(n) 

S. enterica 2637 

       Subsp. enterica 

       Subsp. salamae 

       Subsp. arizonae 

       Subsp. diarizonae 

       Subsp. houtenae 

       Subsp. indica 

1586 

522 

102 

338 

76 

13 

S. bongori 22 

Total 2659 

 

1.1.3 Typing of Salmonella 

Bacterial typing is the analyzation of isolate specific phenotypic and/or genotypic 

characters, below the species/subspecies level that can be used to investigate bacterial 
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transmission pattern, and to find out source of infection. “Subtyping” is often used as 

synonym for typing. Typing helps in the surveillance of infectious disease, outbreak 

investigation, study of pathogenesis and course of infection, as well as in the study of 

bacterial population genetics [20]. There are several typing methods for Salmonella, 

some of them are discussed in the following section. 

1.1.3.1 Bio typing 

Bio typing helps to differentiate Salmonella spp. based on their biochemical 

characteristics and it has been used in several studies to discriminate strains of different 

Salmonella serovars [21, 22]. This typing method has excellent typeability, but variable 

discriminatory power. The advantages of this typing method are that it is technically 

easy, inexpensive and easy to perform in small laboratories [20]. 

1.1.3.2 Serotyping 

The Kauffman and White scheme classified Salmonella serovars based on this 

traditional phenotypic typing method [19]. Serotyping differentiates Salmonella isolates 

based on the surface antigens – Somatic ‘O’ antigen (lipopolysachharide; encoded by rfb 

genes) and H antigen (phase 1 and phase 2 flagellar antigens; encoded by fliC and fliB). 

Isolates are assigned into serotypes or serovars depending on a bacterial agglutination test 

using a panel of antisera prepared against these antigens [23, 24]. Serotyping is the 

predominant method for laboratory based surveillance of Salmonella infections [25] and 

it has significant role in disease outbreak investigation [26]. However, multiple 

drawbacks of this method, including low throughput, high expense and  need of high 

expertise, confined this labor intensive procedure to specialist reference laboratories [24]. 
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1.1.3.3 Bacteriophage typing 

Phage typing relies on the lytic pattern of bacterial isolates of interest that have been 

exposed to a defined panel of typing phages. This typing method has got variable 

discrimination, poor reproducibility and often partial typeability [20]. Limited 

discrimination of phage typing in some important serovars like S. Enteriditis due to 

phenomena like phage type conversion confounded the use of this typing method for 

epidemiological outbreak investigation [27, 28]. Along with other draw backs like 

requirement of production and continuous quality control of phages, and need of 

extensive expertise caused loss of its use as a reference typing method [20]. 

1.1.3.4 Plasmid profile typing 

The basis of the plasmid typing profile in Salmonella is the difference in size, 

frequency and distribution of plasmids among various Salmonella serovars. Plasmids 

with size between 2- 150 kb can be taken by most of the Salmonella strains. The purpose 

of the plasmid profile typing in Salmonella is to inspect the clonality of strains, explain 

the transmission routes and in epidemiological surveillance [29, 30]. However, in case of 

strains without plasmid and the instability of plasmid content rendered it unsuitable as a 

reliable clonal marker in some bacterial studies. Moreover, plasmid typing alone is not 

strain discriminatory [20, 22, 31].  

1.1.3.5 Pulsed - Field Gel Electrophoresis (PFGE) 

This method is considered as the  “gold standard” of molecular typing method few 

years before [32]. It is based on the electrophoretic mobility pattern of the bacterial 

chromosomal DNA fragments, formed by the digestion using restriction enzymes [20, 32, 

33]. It has been widely used in the study of Salmonella organisms as an invaluable tool in 



7 
 

tracing outbreak strains as well as in the study of genetic relatedness. Potential draw 

backs of this technique such as low throughput, time consuming, labor-intensive and the 

requirement of high expertise for the reproducibility caused researchers to think about 

replacing this technique with other efficient typing methods. 

1.1.3.6 Multilocus sequence typing 

Maiden et al, who described MLST for the first time [34], proposed this technique as 

a “gold standard” for molecular typing and characterization of almost all pathogenic and 

non-pathogenic bacterial species as it avoids the drawbacks of traditional typing methods 

like ribotyping, pulsed field gel electrophoresis (PFGE), and PCR with repetitive element 

primers or arbitrary primers [34, 35]. It is an updated version of Multilocus Enzyme 

Electrophoresis (MLEE) [36], where the variation in the house keeping core genes is 

indexed indirectly based on the difference in the electrophoretic mobility of the gene 

products on starch gels [34, 37]. In contrast, MLST analyzes the nucleotide change in the 

internal fragment of selected housekeeping genes [35]. 

MLEE was never generally accepted by microbiologists as it included unrelated 

isolates to the main lineage [24]. One of the serious drawbacks of these gel based 

methods is the difficulty to compare the results achieved by different laboratories [35]. 

MLST identifies the variation in the nucleotide sequence of gene fragment present in the 

multiple housekeeping loci. For a given locus, all unique sequences are assigned an allele 

number. The allele numbers of all loci for a given isolate are combined in to allelic 

profile and assigned a Sequence Type (ST) designation. This ST can be compared with 

other isolates. Isolates with identical STs or STs that differ at a few loci are considered as 

closely related [38]. The general procedures in MLST analysis is shown in Figure 1. 
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MLST is one of the preferred Salmonella typing method. MLST scheme has got 

some advantages over conventional serotyping as it provides the true phylogeny of the 

analyzed isolates [39]. Previous studies have indicated that lateral gene transfer event 

results in the emergence of new serovars. Conventional serotyping thus fails to recognize 

the relationship difference between the new serovar and its predecessor [39]. Researchers 

recommend replacing conventional serotyping by MLST or its equivalents as these 

recognize evolutionary groupings [24]. A few years before PFGE was used for 

genotyping bacterial strains, but it has got limited firmness of purpose for genetic 

differentiation of highly clonal strains [40]. Since MLST involves direct comparison of 

nucleotide sequences, the interpretation and comparison of the data is easy and readily 

accomplished. This sequence based isolate characterization identify the genetic variation 

between isolates with high discrimination which is not possible in PFGE as the later 

requires additional data to understand the genetic reason for the pattern change [41]. Over 

and above, the portability of MLST data, convenience in the data storage and data 

comparison between laboratories gave this high-resolution technique an upper hand over 

other traditional Salmonella typing methods. Although MLST has high resolution for 

typing of any bacterial pathogen, use of this method is limited in case of monomorphic 

pathogens like S. typhi and Paratyphi A. These pathogens show very few polymorphic 

sites and hence, fine typing for epidemiological studies of these bacteria demands the use 

of other typing methods with MLST. 
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Fig.1. Multilocus Sequence Typing (MLST) and analysis. adopted from Urwin et al,   
2003 [38] 

 

1.1.3.7 Multiple-locus variable number tandem repeat analysis (MLVA) 

Prokaryotic organisms have interspersed repetitive sequences that are widely 

distributed in their genome. These low copy number non-coding DNA repeats are called 

as Variable Number Tandem Repeats (VNTR) [42, 43]. MLVA is a PCR based bacterial 

typing which analyzes the multiple VNTR loci on the chromosome and assigns the 

profile based on the number of repeats in each locus [44]. Studies have shown that 

MLVA is faster to perform, easy to analyze and more discriminatory than PFGE that it 
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can be used for surveillance and outbreak analysis of pathogens like S. Typhimurium 

[45]. 

1.1.4 Typhoidal Salmonella 

Salmonella serovars which cause disease in humans and animals can be grouped into 

Typhoidal and Non Typhoidal Salmonella. Despite the fact that most of these serovars 

belong to subsp. enterica and they share genetic similarity, these two groups are 

characterized by host specificity and clinical syndrome. Serovars S. Typhi, Paratyphi A, 

B or C and Sendai are referred as Typhoidal Salmonella serovars which are highly 

adapted to human and cause disease ‘enteric fever’ otherwise known as ‘Typhoid or 

Paratyphoid fever’ [46-48]. Typhoid fever (caused by S. Typhi) and Paratyphoid fever 

caused by (S. Paratyphi) are acute, life threatening febrile illnesses resulted by fatal 

systemic infection of these pathogens [49]. 

It has been estimated that in the year 2000 Typhoid fever caused more than 2.7 

million illnesses and 0.2 million deaths worldwide. Global estimation of illnesses caused 

by paratyphoid fever was 5.4 million [48, 50]. A revised estimate by Buckle et al in 2012 

suggested that in 2010, there were an estimated 13.5 million typhoid fever episodes 

globally [49]. 

1.1.5 Non Typhoidal Salmonella (NTS) 

Salmonella serovars coming under this group are considered as generalist pathogens 

with broad specificity. Only a small number of serovars are commonly responsible for 

human non typhoidal Salmonella infection. Epidemiologically important serovars 

included in this category are S. Typhimurium, and S. Enteritidis [51, 52]. The global 

burden caused by NTS has been estimated to be 93.8 million illnesses and 155,000 deaths 
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each year [53]. Gastroenteritis, bacteremia and subsequent focal infections are the major 

disease manifestation of these food borne pathogens [15]. Non typhoidal Salmonella are 

considered as important zoonotic pathogens as they can easily transmit from animals to 

human [54]. 

1.1.6 Host Range 

The species S. enterica is found in reptiles and warm blooded animals [55]  while the 

species S. bongori is predominantly associated with cold-blooded animals [56]. S. 

enterica subsp. enterica can infect broad range of hosts. Generally, based on hosts 

infected, we can divide members of subsp. enterica as host adapted and host ubiquitous 

(non-adapted) [55]. Host adapted serovars can again be divided into host restricted and 

host specific serovars. Host restricted serovars can infect only a narrow selection of hosts 

while host specific are those which can infect only one specific host. S. Typhi, Paratyphi 

A, Paratyphi B, and Paratyphi C are human specific S. enterica serovars predominantly 

causing Typhoid fever [49, 57]. Examples for another host specific serovars are S. 

Sendai, S. Gallinarum and Abortusovis, these are exclusively associated with systemic 

illnesses in human, fowl [58] and ovines respectively [55, 59, 60].  S. Dublin and S. 

Choleraesuis are generally associated with systemic disease in ruminants and pigs but 

may also cause infection in other mammalian hosts infrequently [55, 61, 62]. Host non-

adapted serovars induce a self-limiting gastroenteritis in a broad range of unrelated host 

species. The important pathogenic serovars of this ubiquitous group are S. Typhimurium 

and Enteritidis which are also referred to as un-restricted serotypes [55, 63]. S. 

Typhimurium is a broad host range serotype frequently associated with disease in 

numerous species including human, livestock, rodents and birds [64]. Domestic animals 
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are the major reservoir for the food borne spread of these unrestricted serovars, which 

account for the high incidence of global non-typhoid Salmonella infections. Based on 

host specificity we can also classify Salmonella serovars as host specialist (example- S. 

Typhi) and host generalist (example – S. Typhimurium) in a broader sense [63]. 

1.1.7 Important genetic features 

Approximately 100 million years ago, Salmonella diverged from Escherichia coli. 

Presence of large number of additional virulence genes distinguished Salmonella from 

this closely related species [65, 66]. With an approximate size of 4.5 – 5 Mbp Salmonella 

chromosome contained nearly 4500 genes, of which nearly 80% genes were shared with 

genetically similar sister species E.Coli. Albeit, study of gene content of well 

characterized Salmonella serovars showed the presence of SPI1-5 with approximately 

same distribution similarities between these serovars. Absence of these SPI loci in E. coli 

indicates that they were acquired soon after the divergence of Salmonella from E. coli 

[67, 68].  

Pangenome analysis of S. enterica genomes suggested that any Salmonella strain has 

a stable large core genome and abundance of accessory genes composed of SPI, 

transposible elements, phages and plasmid DNA [65]. Pairwise comparison of the 

Salmonella serovars reveal that 10-12% of the genome is unique to each serovar. Genes 

in these unique region contribute to different abilities of the serovars to infect a variety of 

hosts [67]. These unique genes may be acquired through a process called Lateral or 

horizontal Gene Transfer (LGT). Conjugation, Transduction and transformation are the 

three mechanisms involved in the transfer of genetic material between bacterial cells. 
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Horizontal gene transfer is considered as the major contributor to Salmonella evolution, 

adaptation as well as emergence of novel serovars [39, 69-71].  

1.1.8 Salmonella virulence 

Pathogenicity of Salmonella depends on the virulence of the strain which in turn is 

determined by so-called virulence factors. These genes are grouped into two classes. The 

first class includes the genes that are involved in physiological process like nutrient 

uptake, synthesis of proteins and factors that protect the bacteria from stressful 

environment like acidic environment in the stomach and anaerobic environment in the 

GIT, cell maintenance and damage repair. These genes are generally found in both 

pathogenic and non-pathogenic bacteria. Examples for these genes in Salmonella are 

regulatory gene phoP/phoQ, and biosynthetic genes such as aroA. Second class of 

virulence genes are unique to pathogens and rarely seen in non-pathogenic organisms. 

This class of genes include classic virulence factors such as endotoxin, exotoxin, 

fimbriae, flagella and virulence plasmids [72]. Majority of virulence genes are clustered 

in regions called SPI distributed over the chromosome. These gene clusters are thought to 

have been acquired by horizontal gene transfer [72-74]. 

Currently 22 SPIs have been Identified from the genomes of S. enterica and S. 

bongori [56, 75]. Distribution of these 22 known SPI are shown in the Table 3. There are 

some distinguishing differences between SPIs of S. enterica from S. bongori. SPI-2, 

encodes Type III Secretion System -2 (T3SS-2), is absent in S. bongori [56, 76, 77]. In S. 

enterica SPI-3 occupies as a single element but it exists as two independent elements in 

S. Bongori, SPI – 3A and SPI – 3B. Instead of two regions of SPI-5 in S. enterica, SPI-5 

in S. bongori composed of only one region [56].  
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The most prominent SPIs are SPI-1 to SPI-5 and SPI7. A brief description of these 

SPIs is given in the following section and distribution of SPI in Salmonella Spp. are 

shown in Table 3. 

SPI-1 has a size of 40-kb and encodes a T3SS which helps in uptake of bacteria by 

the host cell. This T3SS transport effector proteins like actin binding proteins SptP and 

SopE into the cytoplasm of the eukaryotic target cell leading to the rearrangement of the 

cytoskeleton and thereby induce the uptake of bacterium [78]. SPI-2 encodes a second 

T3SS and the genes present in this island help the bacteria in intracellular replication, 

survival and persistence within Salmonella Containing Vacuoles (SCV) by evading the 

oxidative damage. Effector proteins of SPI-2 also take part in modulation of the vesicular 

transporting of the host cell [79-81]. Important effectors encoded by SPI-2 are – spiC, 

sseF, and sseG. SpiC prevent fusion of lysosomes with SCV [82]. SseF and SseG alter 

exocytosolic transport processes and recruit exocytic transport vesicles to SCV [83]. Both 

SPI-1 and SPI-2 gene expressions are regulated by global regulatory systems such as 

OmpR/EnvZ and PhoP/PhoQ [84, 85]. These regulators modulate the gene expression by 

activation of hilE or hilD two important mediators of SPI-1 and SPI-2. 

The 17-kb large SPI-3 haboring 10 Open Reading Frames (ORF) has been identified 

by Blanc-potard and Groisman at the selC tRNA locus in S. Typhimurium [74, 86]. These 

ORFs are organized in 6 transcriptional units out of which one is an important virulence 

factor called mgtCB operon. Presence of this operon is essential for intramacrophage 

survival and growth under low Mg2+ environment [86]. 

SPI-4 was first described by Wong et al in 1998 [87]. This 27-kb pathogenicity 

island located at centisome 92 contains 6 open reading frames. SPI-4 is likely to carry a 
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Type 1 Secretion System (T1SS) involved in secretion of a large (595-kDa) novel protein 

SiiE encoded by siiC, siiD, and siiF. SiiE is non-fimbrial adhesion protein that helps 

Salmonella for epithelial cell surface adhesion [88, 89]. 

SPI-5 appears to be conserved in Salmonella Spp. Genes encoded in SPI-5 are 

necessary for enteropathogenic phenotype. Out of 6 novel genes present in this SPI, sopB 

plays a vital role in cytoskeleton rearrangement and bacterial entry into host cell [90]. 

These genes have been shown to be involved with fluid secretion and inflammatory 

responses [91]. 

SPI-7 is a 134-kb size mosaic pathogenicity island that has been found to be specific 

in serovars Typhi, Paratyphi C and Dublin. This SPI encodes virulence factors like SopE 

and ViaB [92].  

Other factors responsible for Salmonella virulence: 

Salmonella virulence plasmids : They vary in size between 30 and 100-kb and 1-2 

copies per cell are present in  serovar Typhimurium, Enteritidis, Choleraesuis, Dublin, 

Gallinarum and Typhi, but not all the isolates of these serotypes carry the virulence 

plasmid [93]. All plasmids contain a virulence locus called spv locus. Expression of 

genes in spv locus thought to be play roles in intra cellular multiplication of Salmonellae 

and destabilization of eukaryotic cytoskeleton [94, 95]. 

Toxins: Salmonella produce both endotoxin and exotoxin. Exotoxin is again divided 

into cytotoxins and the enterotoxins. Endotoxin is the lipid portion of outer membrane 

lipopolysaccharide (LPS). Examples for exotoxins of Salmonella include Shigella 

dysenteriae-1 like cytotoxin, salmolysin and heat labile Salmonella enterotoxin [74]. 
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Table 3. Distribution of known SPIs in the Salmonellae. Adopted and modified from [56] 

+, all genes are conserved; -, entire SPI is missing; V, partially present; ᴪ, pseudogenes are 

contained on SPI; %, SPI-3 present as two independent genomic islands in S. bongori: SPI-3A 

and SPI-3B; £, only half of this island is represented in S. bongori. 

 

Fimbrial clusters: Fimbriae are the bacterial surface protein structures made up of 

helically arranged protein fimbrin. Fimbriae are important in virulence as these structures 

help bacteria to cell adhesion [96]. Proteins for the biosynthesis, structure and assembly 

of fimbriae are encoded by 8-11 genes clustered in a 7-9 kb large operon [97]. 

 



17 
 

1.1.9 Antimicrobial Resistance in Salmonella 

Indiscriminate use of antimicrobial drugs in animal feed to promote the growth of 

food animals is one of the key reason for the development of Antimicrobial Resistance 

(AMR) in organisms like Salmonella [98]. Acquisition of these resistant Salmonella 

organisms through food chain confound with the treatment of both typhoidal and non-

typhoidal salmonellosis using conventional antibiotics. This  has been associated with 

increased morbidity, mortality, hospitalization as well as  high economic lost [99]. Hence 

the emergence of antimicrobial resistance strains has become a serious threat to public 

health. Studies in the previous years have shown that there is world wide spread, in both 

of developed and developing countries, of Salmonella strains belonging to different 

serovars and showing multiple antimicrobial resistance. Most of the strains are 

zoonotically important. They acquire resistance from food animals and cause infection in 

human through food chain [54, 100].  There are different mechanisms for resistance 

development in a bacterium. Previously susceptible bacteria become resistant to a 

particular antimicrobial agent by one of the following methods: mutation, selection 

and/or resistance gene acquisition from other bacteria. These processes will attribute to 

expression of enzymes that destroy the antimicrobial agent, activation of efflux pumps 

that extrude the antibacterial agent, alteration of cell permeability to these agents and 

modification of drug targets [101]. Plasmids, transposons, gene cassettes and mobile 

genetic elements are the mediators of resistance gene transfer between bacteria [102]. 

Horizontal transfer of plasmid containing resistance genes happens via conjugation. 

Acquisition of several resistance genes may happen by this method [103]. In plasmids, 

resistance genes are located in genetic elements called transposons. Gene expression 
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element called integrons are responsible for the recruitment and expression of resistance 

genes. Integrons are located within transposons and encodes a recombinase called 

integrase. Integrase mediated site-specific recombination mechanism is an efficient 

genetic mechanism that helps bacteria to acquire resistance genes [54]. Critical relevance 

of plasmid mediated antimicrobial resistance in Salmonella is explained by following 

reports. In 1986 incidence report of both Apramycin and Gentamicin resistant S. 

Typhimurium Definitive Type 204c (DT204c) from calves as well as in human provided 

the evidence that use of antibiotic (Apramycin) in animal husbandry gave rise to 

gentamicin resistance, an antibiotic used in human as well [54, 104, 105]. In 1990s, 

several reports pointed out the increased frequency of Salmonella with plasmid 

conferring resistance to Apramycin and Gentamicin, as well as β-lactam resistance 

Salmonella in European countries [106, 107]. Broad spectrum Cephalosporin resistant 

Salmonella emergence was reported by National Antimicrobial Resistance Monitoring 

System (NARMS) in 1999. Several Salmonella isolates with plasmid mediated 

cephalosporin resistance encoded by CMY-2 AmpC β-lactamase were isolated from 

animals and humans in different states of United states in 1990s [108, 109]. This list does 

not end here, but even this much implies that plasmid mediated antimicrobial resistance 

in Salmonella is a global problem irrespective of place, host and serotype. 

In several Salmonella serovars, genes conferring antibiotic resistance are also 

present in an integrative mobilizable element of Salmonella chromosome known as 

Salmonella Genomic Island (SGI). 42.4-kb size SGI 1 from Salmonella serovar 

Typhimurium DT104 is the first completely sequenced and well-studied genomic island 

which carries five resistance genes conferring resistance to seven antibiotics; ampicillin, 
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chloramphenicol, florfenicol, streptomycin, spectinomycin, sulfamethoxazole, and 

tetracyclin [110, 111]. SGI1 structure involves 27.4-kb backbone and a 15kb complex 

class1 integron. SGI1 is found integrated in the end of thdF gene with integron located 

adjacent to resolvase encoding res gene. SGI2 is a SGI1 related SGI with same SGI1 

structure but the integron is in the S023 gene. SGI2 has been identified in serovar Emek 

and Virchow isolates [112]. 

1.1.9.1 Some important antimicrobial genes in Salmonella 

Out of five Tetracycline resistance gene identified so far, tet (A), tet (B), tet (C), tet 

(D), tet (E), two of them (tet (A) and tet (B) are found in transposons. Tet (G) was found 

in Salmonella Genomic Isalnd 1(SGI1) or SGI2. Phenicol resistance in Salmonella is 

offered by type A (cat A1 and cat A2) and type B (cat B2, cat B3 or catB8) 

chloramphenicol acetyl transferase genes, chloramphenicol exporter genes (cmlA1 and 

cmlA4) as well as chloramphenicol/florfenicol exporter genes cmlA9 and floR [113]. 

There are 10 different genes known for aminoglycoside resistance in Salmonella. 

These genes encode for aminoglycoside-3”-O-adenyl transferases and are part of SGI1 or 

SGI2 MDR (Multi Drug Resistance) gene clusters or located on gene cassettes in class 

1or class2 integrons. They - aadA1, aadA2, aadA5, aadA6, aadA7, aadA12, aadA21, 

aadA22, aadA23, aadA24, aadA26, and aadA2 - confer resistance to streptomycin and 

spectinomycin. Other aminoglycoside resistance genes known to found in Salmonella 

include Streptomycin phosphotransferase genes - strA and strB – streptomycin 

resistance, aminoglycoside-2”-O-adenyltransferase gene aadB – gentamicin, Kanamycin 

and tobramycin resistance, aminoglycoside-N-acetyltransferase genes - aacC and aacA -  

gentamicin resistance [113-116]. 
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β-lactam resistance in Salmonella is offered by a broad range of genes which were 

known to code for at least 13 different types of β lactamases [113, 117, 118]. There are 

17 different dfrA genes and one dfrB have been reported in Salmonella for trimethoprim 

resistance [115]. sul1, sul2, and sul3 are the three sulfonamide resistance genes reported 

in Salmonella so far [113]. There are some plasmid mediated genes, which code for DNA 

topoisomerase protecting proteins are responsible for quinolone resistance in Salmonella. 

These PMQR (Plasmid Mediated Quinolone Resistance) genes include qnrD, qnrA, qnrB 

and qnrS variants. qepA coding for a quinolone-specific efflux pump, gene aac(60)-Ib-cr 

nad mutations in the gyrA, gyrB, parC and/or parE  are the other reported quinolone 

resistance genes in Salmonella [118, 119]. 

1.1.9.2 Antimicrobial resistance in Non-typhoidal Salmonella - Trend in USA 

Based on the data available from NARMS for a period of 2004-2013, Micheal et al, 

summarized the trend of antimicrobial resistance in NTS (Fig.2) [113]. According to this 

data the percentage of fully susceptible NTS isolates in USA varied between 79.9% 

(2004) and 80.8% (2013). As per latest NARMS report antimicrobial resistance in 

Salmonella varies by serovar. 



21 
 

 

Fig.2. Summary of trends in resistance to various antimicrobial agents or combinations 
of agents detected among nontyphoidal Salmonella isolates in the USA during 2004-
2013. Summarized data from NARMS. AMC, amoxicillin/clavulanic acid; AMP, ampicillin; 
AXO, ceftriaxone; CHL, chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; NAL, 
nalidixic acid; STR, streptomycin; SUL, sulphonamides; SXT, sulfamethoxazole / trime -
thoprim; TET, tetracycline.  Adopted and Modified from  [113]. 

    

1.1.10 Host cell invasiveness 

Pathogenicity of Salmonella depends upon the ability to invade host intestinal 

epithelial cells [120-122]. Salmonella can invade both phagocytic and non-phagocytic 

cells. Studies have shown that upon infection in non-phagocytic host cells, invasive 

Salmonella induce membranous ruffles formation at the site of bacterium-host cell 

interaction.  This will facilitate the uptake of both invasive and non-invasive Salmonella 

by a mechanism that is distinct from receptor mediated phagocytosis [123]. This 

Salmonella host cell invasion process via trigger mechanism depends upon T3SS-1 
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encoded by SPI-1. The survival inside the host cell depend on T3SS-2 encoded by SPI-2 

[80, 124, 125]. Few years before in vitro studies have shown that Salmonella can invade 

non-phagocytic cells via another T3SS-1 independent mechanism called Zipper 

mechanism. Salmonella thus became the first bacteria shown to be able to invade host 

cells via both Trigger and Zipper mechanism. Rck invasin, a protein encoded by the rck 

gene located on the large virulence plasmid, is the key protein in the zipper mechanism of 

Salmonella cell invasion [126, 127]. This protein is highly conserved in S. Enteritidis and 

S. Typhimurium and could be found in S. Dublin but never found in other serovars [127, 

128]. Membrane ruffling in trigger entry mechanism is mediated by a cocktail of effector 

proteins called T3SS-1 effectors (SipA, SipC, SopB, SopE, SopE2). These effector 

proteins directly or indirectly modulate actin activity and cause cytoskeletal 

rearrangement [129-131]. 

1.1.11 Tolerance to Acidic environment 

Salmonella spp. have well developed regulatory networks that deploy mechanisms to 

sense and respond to environmental changes and thereby protect the organism from a 

range of biotic and abiotic stresses. Food processing and storage, defense mechanisms of 

the hosts like extreme stomach pH, presence of bile salts in the gut, and low oxygen 

tension in the intestine are examples of these stress conditions that these organism 

constantly face during their life cycles [132]. Acid Tolerance Response (ATR) is an 

adaptive mechanism elicited by Salmonella spp. to survive in a low pH environment. 

ATR was first described and had been well studied in S. Typhimurium by Foster et al. in 

1990 [133-135]. ATR is a phenomenon where, if adapted to a low pH (5.5 to 6.0) S. 

Typhimurium has been found to survive extreme low pH (pH 3.0 to 4.0) [133, 136]. 
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Several studies suggested relationship between ATR and pathogenicity of bacterial strain. 

Wilmes - Riesenberg et al. explained the role of acid tolerance response in virulence of S. 

Typhimurium[137]. In another study, de Jonge et al. reported greater ATR for a group of 

highly virulent S. Typhimurium DT104 strains [138]. ATR thus has significant 

importance in case of foodborne pathogens like non-typhoidal Salmonella as these 

organisms should survive low pH environment in stomach as well as in intracellular 

environment to make infection in host. 

1.1.12 Pathogenesis 

Enteric fever caused by typhoidal Salmonella is an endemic disease in developing 

countries. Lack of sanitation and hygiene facilitate the fecal - oral route transmission of 

these pathogens [46, 139]. NTS infections is a worldwide concern. Person to person 

contact, contact with animals as well as consumption of contaminated animal and plant 

food products are the important transmission route of NTS pathogens [140-144]. Both 

groups of bacteria, after reaching the intestine, adhere to the host intestinal epithelial 

cells, which is then followed by cell invasion. As explained before, interaction of 

Salmonella organism with non-phagocytic host cells induces its own entry to the cells 

either by trigger entry or by zipper entry mechanism [123, 126]. SPI-2 encoded T3SS-2 

effector proteins help the bacteria to survive inside the Salmonella Containing Vacuoles 

(SCV) [80, 81]. NTS serovars cause profound intestinal inflammation and induce 

massive neutrophil infiltration [145]. In contrast, Typhoidal Salmonella serovars induce a 

low intestinal inflammatory response characterized by negligible neutrophil recruitment 

during the initial invasion stage [146, 147]. This low inflammatory response will 

facilitate the bacteria to invade deeper tissue of intestine and infection become systemic 
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with bacterial dissemination to mesenteric lymph node, liver, spleen and gall bladder [46, 

148, 149]. 

1.1.13 Clinical manifestation of salmonellosis 

The status of the host determined by age, genetic and environmental factors and 

status of the bacterium determined by virulence factors influence the outcome of 

Salmonella infection [74]. Four different clinical manifestations of human salmonellosis 

are enteric fever, gastroenteritis, bacteremia and other extra intestinal complications, and  

chronic carrier state [150]. Since the symptoms of typhoid fever and paratyphoid fever 

are indistinguishable, the term “Enteric Fever” is used collectively for both fevers [151, 

152]. The average incubation period for typhoidal serovars is 14 days with symptoms, 

such as headache, abdominal pain, diarrhea or constipation and fever, persisting for up to 

3 weeks [153, 154]. Other symptoms are nausea, anorexia, hepatosplenomegaly, chills, 

rose spots, and dry cough [155]. In contrast to enteric fever, NTS infections have a 

shorter incubation period of 6-12 h and symptoms last less than 10 days [156]. NTS 

infection cause self-limiting acute gastroenteritis and watery diarrhea accompanied by 

vomiting, nausea, abdominal cramps, and fever [157]. Cholecystitis, pancreatitis and 

appendicitis are the other complications of enteritis caused by NTS infection [15]. In case 

of typhoidal salmonellosis after the acute stage of infection the infected person may act as 

a chronic carrier and shed the bacteria through stool [154, 158]. Carrier state is less 

frequent in NTS infection as the primary reservoir of NTS is animals, instead of humans 

[15]. 
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1.2 S. Mbandaka - An Overview 

S. Mbandaka is a non-typhoidal food borne pathogen causing diarrheal disease with 

diverse range of host including human. It was first isolated from Belgian, Congo in 1948. 

It was later classified as one of the top ten serovars causing human salmonellosis in 

European Union [159]. Studies have shown that S. Mbandaka (clone ST413) could be able 

to survive more than 15 years in Poland and successfully spread between poultry, feeds, 

food and finally human. S. Mbandaka was represented as one out of the 10 most 

predominant serovars in Poland after its occurrence in humans in1997 [159]. In Australia, 

first identification of this serovar as a cause of human infection was in 1978. Later several 

outbreaks were reported during the period 1985 to 1996 [160]. In USA, reports of human 

outbreak caused by this serovar were very rare. In1999, one of the major outbreak caused 

by S. Mbandaka happened in Oregon, Idaho, Washington and California. Upon 

investigation the source for this multistate outbreak was identified as Alfalfa sprouts and 

ungerminated seeds from a farm in southern California [161]. Data analysis of food borne 

disease outbreak caused by Salmonella enterica serovars and associated food commodities 

in United States during the period 1998 to 2008 by Jackson et al., pointed out that sprouts 

were the common food commodity for S. Mbandaka outbreak. Recent multistate human 

Salmonella outbreaks (2013 and 2016 outbreaks) gained some epidemiological importance 

to this serovar. Upon investigation it was found out that sources of these 2013 and 2016 

outbreaks were tahini sesame paste and live backyard poultry respectively [162, 163].  

This serovar was isolated with similar frequency both in USA and UK [75]. Cattle, 

chicken and pigs are the major isolation source for S. Mbandaka in USA with an isolation 

frequency of 27%, 25% and 14% respectively. While in UK, 65% incidence are from 
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chicken and 20% from cattle [164]. In UK, S. Mbandaka was the most frequently isolated 

Salmonella serovar from animal feed during the year 2013 [165]. 

In an epidemiological study of S. Mbandaka strains isolated from animals, feed and 

human sources in Poland, Hoszowski et al suggested that S. Mbandaka got into chicken 

through animal feed and then to human via food chain [166]. Later in an article, Hayward 

et al. showed that isolates of S. Mbandaka in UK comprised of a single clonal lineage. 

This clonal lineage has the ability to form biofilm at 25oC and to utilize the metabolites of 

the soya bean. Based on these findings they suggested that this serovar might be well 

adapted to survival ex vivo like in animal feed [165]. 

Not many genomic studies or reports are available specifically about serovar S. 

Mbandaka and its strains. First sequencing of S. Mbandaka strains (two strains- M1 and 

M2) was achieved by Hayward et al in 2013. These were UK strains isolated from cattle 

in 2008 and 2009. According to this study, total length of both M1 and M2 strains 

genome were 4.72Mb nucleotides with a GC skew of 51.91% and 52.01% respectively. 

Number of genes predicted were 4616 and 4619 genes respectively. The important 

feature they observed in the genome of these strains was the presence of 860kb sequence 

inversion region, that codes for 909 genes, located between base 1086415 and 1947250 of 

M1, and 1132370 and 1992477 of M2. They reported a less diverse intra serovar 

difference between these serovars which was attributed by phage associated genes [75]. 

Large scale phylogenetic analysis of 78 serovars in Salmonella enterica subsp. 

enterica by Timme et al. showed two major sister lineages Clade A and Clade B. There 

were two sub lineages in Clade A: A1 and A2. S. Mbandaka was grouped into sublineage 

A2 close to sector Typhi, a strong cluster of isolates of serovar S. Typhi and S. Paratyphi 
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[167]. In another study involving UK isolates of S. Mbandaka reported that those isolates 

were comprised of one clonal lineage [165]. No studies have been found in our search 

regarding phylogenetic analysis of USA strains of S. Mbandaka. As mentioned before 

advent of next generation sequencing made possible the global availability of sequence 

data of S. Mbandaka strains. But so far, no phylogenetic studies have been reported in 

large scale including strains of S. Mbandaka from different parts of the world. 

1.3   Concepts of Genomics approaches 

1.3.1 Whole Genome Sequencing (WGS) 

The era of genome sequencing began with the sequencing of phi X 174 

bacteriophage genome in 1977 by Sanger et al. Approximately 5375 nucleotide size, 

single stranded circular DNA  genome was sequenced by Sanger’s “plus and Minus” 

method [168]. Genome sequencing methods then evolved through W.M. Barnes ribo 

substitution method, Maxam Gilberts sequencing method based on chemical degradation 

of DNA and through Sanger’s chain termination method [169] and it reached present era 

of NGS. In 1995 sequencing of Haemophilus influenza genome, the first bacterial 

genome sequenced, opened the gates of microbial genomics world. It was sequenced 

using random shotgun sequencing approach based on Sanger’s chain termination method 

[170]. In a review article by Ronholm et al the microbial WGS has been categorized into 

three generations (Fig.3) [171]. Automated Sanger sequencing introduced by ABI 

replaced the earlier Sanger method of using radiolabeled dideoxy nucleotides with 

fluorescent labelled bases. This relatively high through put sequencing platform formed 

the first-generation sequencing and was used to sequence first finished human genome 
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[171].  This was later followed by second and third generation sequencing platforms each 

with slightly different approaches in DNA preparation, sequencing and analysis. 

 

Fig. 3. Methods of Microbial whole genome sequencing methods described by Ronholm et al. 
[171] 

The advent of WGS revolutionized the world of bacterial typing with high 

discriminatory power and resolution. WGS facilitates the genetic comparison between 

organisms down to the resolution of a single base pair [172]. The resolution achieved by 

WGS broadens the understanding of the evolution of pathogen and their population 

structure. This enabled the accurate study of outbreak epidemiology, pattern of pathogen 

spread, globally and locally, as well as the host adaptation of emerging pathogens. High 

discriminatory power of WGS allowed genome wide analysis of monomorphic pathogens 

with very little nucleotide diversity such as Yersinia pestis [173], Bordetella pertussis 

[174], and Salmonella Typhi [175]. WGS has also showed remarkable differentiation 

ability in case of highly clonal Salmonella serovars like S. Enteritidis [176], S. 
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Typhimurium and S. Montevideo [40, 171] where traditional typing methods like PFGE, 

failed to achieve this level of differentiation. Advancement of sequencing technologies 

extend the WGS implications into the field of epidemiologic investigation and 

surveillance of bacterial pathogen. First application of WGS for food borne outbreak 

investigation was reported in 2010 related to 2008 listeriosis outbreak in Canada. Two 

outbreak associated isolates, which showed similar but distinct PFGE pattern, when 

analyzed with WGS provided the clue that multiple distinct but highly related strains 

might have been responsible for the outbreak [177, 178].  WGS has also been used to link 

historical cases of salmonellosis to current out breaks [179] as well as for the 

identification and source attribution of laboratory – acquired salmonellosis [171, 180]. 

These suggest the integration of WGS application in the public health microbiology. 

WGS technology has proven its potential to identify outbreak source, pathogen virulence 

determinants, mechanism of pathogenicity, drug resistance and spreads [181] and also 

has improved trace back epidemiological investigation studies [182].  

1.3.2 Next Generation Sequencing (NGS) 

Automated Sanger sequencing remained as choice of genome sequencing for almost 

twenty years [171]. In the last five years, tremendous transformation happened in the 

sequence technology. ‘High throughput sequencing’ or ‘NGS platforms now became the 

dominants in the realm of both bacterial and eukaryotic genome sequencing. Roche 

introduced first of this kind massively parallel sequencing platform in 2005 in the form of 

454 GS20 [171]. By 2010, several other sequencing platforms came into industry each 

with different strength and weaknesses. These NGS platforms can generate enormous 

volume of sequence data with less cost and time than with Sangers chain terminating 
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sequence method. Even though all these platforms are based on conceptually similar 

approach on sequencing methods, each one used slightly different strategies for template 

preparation, sequencing, imaging and analysis [183]. NGS platforms are categorized into 

two categories, high end instruments and bench-top instruments. High end instruments 

are usually suitable for large research facilities because of high set up cost. These 

instruments provide high through put sequence data and/or long reads compared to 

bench-top instruments with low set up cost and short read lengths [1]. A general work 

flow and sequencing chemistry of these sequencing platforms are illustrated in figure 4. 

Comparison of different next generation sequencing instruments is shown in table 4. 
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Fig.4. High-throughput sequencing platforms. The schematic shows the main high-throughput 

sequencing platforms, the associated sample preparation and template amplification. Adopted from 

review article by Loman et al, 2012 [1]. 
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Table 4. Comparison of next-generation sequencing platforms. Adopted from review article by 
Loman et al, 2012 [1]. 
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1.3.3 Comparative bacterial genomics 

 Thousands of bacterial genome sequencing data generated by high throughput 

sequencing is available in the public domain like Genbank. Major part of these bacterial 

genome assemblies is in ‘draft form’ (as a set of sequence fragments instead of a single 

sequence representing whole genome). short gun sequencing methods, Short read length 

and assembly using bench top sequencing platform often resulted in fragmented 

assemblies [184, 185]. The general work flow of genome comparison studies using these 

raw sequence data involves assembly of overlapping raw sequence reads to contiguous 

sequences (contigs), ordering of contigs, annotation, genome comparison and typing 

[185]. But the core process of comparative genomics is the alignment of DNA sequences, 

which involves mapping of the nucleotides in one sequence on to the other sequence 

[186]. Comparative genomic analysis provided insights into bacterial evolution, genetic 

differences between closely related as well as distantly related species, horizontal gene 

transfer, gene acquisition and loss, evolution of bacterial pathogens, as well as 

differences in the gene content between members of similar species. 

1.3.3.1 SNP (Single Nucleotide Polymorphism) based analysis 

This is a comparative genomic method to determine the phylogenetic relationship of two 

or more organisms. SNP is the single nucleotide change in the genome sequence. It may 

occur in coding sequence or non-coding sequence. SNP in a gene may be synonymous if 

it does not change the amino acid sequence or non-synonymous if it alters the amino acid 

sequence [171]. Comparison of whole genome sequences forms one of the way to detect 

SNPs. Analysis of SNPs between genomes give insights in to the relatedness of strains by 
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comparison of isolates on phylogenetic basis. Detection of SNP can be done either by 

reference-guided assembly where reads are mapped to reference genome or by analyzing 

the de novo- assembled genome where assembled contigs are annotated and then ORFs 

are compared to reference ORFs [171]. 

1.4 Objectives of this Study 

i. Elucidate the intra serovar genetic diversity within the Salmonella enterica 

serovar Mbandaka in global context by involving publicly available sequence data 

of  many isolates from different parts of the world 

ii. Understand the evolutionary structure of those isolates by using phylogenetic 

analysis based on SNP as well as cgMLST which may provide help in future for 

epidemiological investigation of any outbreaks caused by this serovar  

iii. Find out the existence of any genetic relationships between these isolates with 

regard to isolation source and its geographical origin which may give clues about 

the host specificity, host adaptation and geographical isolation 

iv. Explore the virulence and antimicrobial resistance gene profile in S. Mbandaka 

isolate’s genome to understand the potential pathogenicity of this serovar as well 

as prevalence of antimicrobial resistant strains 

v. Functional analysis of characters such as host cell invasion, resistance to low pH 

and antimicrobial susceptibility to assess the difference among S. Mbandaka 

isolates at the phenotypic level. 
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2 Chapter 2: Whole genome sequencing based phylogenetic 

analysis, virulence gene mapping and antimicrobial 

resistance gene profiling of Salmonella enterica serovar 

Mbandaka 

2.1 Introduction 

Salmonella Mbandaka, a non-typhoidal Salmonella pathogen, has been classified as 

one of the top ten Salmonella serovar causing human food borne illnesses in European 

union. Clones of this serovar have been shown to be capable of surviving for many years 

and to spread between different hosts including feed, animals, food and human [159]. 

Irrespective of geographical location this serovar has been identified as a cause of human 

salmonellosis in many countries [159, 160] that make this serovar as a global concern. 

After its first isolation from Belgian Congo in 1948, this serovar has been reported in 

several countries despite the continental boundaries [159, 166]. Human food borne 

illnesses caused by this serovar were rare in USA, but recent multistate out breaks 

reported in 2013 and 2016 raise concerns about this potential enteric pathogen since the 

sources of these outbreaks were identified as imported food commodity and backyard 

poultry [162, 163]. Based on annually compiled data from public health laboratory 

information system, Hayward et al showed that cattle, chicken and pigs are the major 

sources in USA from which this serovar was mainly isolated [75]. Prevalence in common 

food animals, ability to transmit through food commodities potential to cause illnesses in 
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human and worldwide incidence make this serovar as a serious risk to public health 

safety. 

Very few attempts have been made to understand the genomic features as well as the 

population structure of S. Mbandaka, a Salmonella serovar which also contributes to the 

overall foodborne illnesses caused by Salmonella. Those studies were limited to small 

number of isolates from a specific geographical region. There were no prior studies 

conducted to analyze the population structure of S. Mbandaka isolates from USA. More 

than that, despite the advancement of next generation sequencing and public availability 

of worldwide distributed isolate’s sequence data, no studies ever conducted before in a 

global context to infer the evolutionary history of this serovar. Since there was lack of 

reliable information of any isolate included in this study in relation to outbreak 

occurrence this study does not really investigate epidemiological evidence of any 

outbreak caused by this serovar. However, understanding the phylogenetic structure of 

genetic diversity between the isolates within serovar will promote immediate traceback of 

future outbreaks caused by this serovar. 

In this study, we sought to determine the intra serovar genetic diversity of S. 

Mbandaka isolates using a whole genome single nucleotide polymorphism based 

approach to answer several questions regarding the evolution, host adaptation and 

geographical distribution of this serovar. Specifically, we aimed to answer following 

questions, how well isolates of this serovar are genetically diversified, how closely 

related these isolates from different geographical origin are, whether they show any host 

dependent discrimination in genetic relatedness, and if present, genetically at which level 

they show the relatedness or diversification. Apart from this we attempted to elucidate 
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virulence gene profile and antimicrobial resistance of this serovar to explore the potential 

of this serovar to pose public health concerns. 

2.2 Materials and Methods 

2.2.1 Bacterial culture and genomic DNA isolation 

Seventy-Six S. Mbandaka isolates contributed by different centers (Animal disease 

research and diagnostic laboratory (ADRDL) (3), Kansas state university (50), Oklahoma 

state university (9), Michigan state university (13), Immunology and Microbiology 

Laboratory, PUCRS (1)) were used in this study. Details including their origin, bio 

sample and SRA accession numbers are described in Table 5. One ml of overnight 

culture of all isolates was used for genomic DNA extraction after pelleting the bacteria by 

spinning down at 8000 rpm for 5 minutes. DNA was extracted using Qiagen’s DNeasy 

blood and tissue kit (Qiagen, Inc., Valencia, CA) according to manufacturer’s protocol. 

Quality of DNA was assessed using Nanodrop TM one (Thermo scientificTM, DE). 

Quantity of DNA was measured using Qubit® 3.0 (Thermo Fisher Scientific Inc., MA) 

fluorometer and stored at -200 C until further use. 

2.2.2 Library preparation, sequencing and assembling 

For whole genome sequencing (WGS), all 76 DNA samples were processed using 

Nextera XT DNA sample prep kit (Illumina inc. San Diego, CA) after adjusting the DNA 

concentration to 0.3ng/µl. DNA libraries thus prepared then normalized using bead based 

procedure and pooled together at equal volume. Pooled libararies were then sequenced 

using Miseq reagent (version 2.0) (Illumina Inc., CA) on Illumina Miseq platform using 

2X 250 paired end V2 chemistry. 



38 
 

 

 

2.2.3 Phylogenetic Analysis 

After sequencing by Illumina Miseq next generation sequencing (NGS) platform, 

raw read sequence data of forward and reverse sequences were kept in the form of 

separate Fastq format files. That means there were two files for a specific sample. For 

newly sequenced 76 S. Mbandaka samples, sequence data (raw reads) were obtained from 

Illumina Mi seq platform. Sequence data of remaining 389 isolates was downloaded from 

NCBI - SRA (National Center for Biotechnology Information – Sequence Read Archive) 

database using sra tool kit (version 2.8.1-2). Details of 465 isolates used in this study 

were shown in table 5. Sequence data of all 465 samples was then imported in to CLC 

Genomics Workbench (version 9.5.3) by Qiagen bioinformatics. Sequence data were 

imported as a single file of paired reads by selecting paired end (forward –reverse) 

method while importing. Reads having a base length of 200 to 500 bases were imported. 

Those reads with length below 200 and above 500 bases as well as failed reads were 

discarded while importing. Fig. 5 shows schematic representation of one out of 1,988,838 

Fig. 5. Sequence read pairing by CLC genomics: Forward and reverse sequence data imported 
into CLC Genomics workbench as raw sequence reads in Fast Q format. These forward and 
reverse raw reads are paired before further analysis. Figure shows paired sequences along with 
their quality score as bar plot and G/C content as Quality scores and GC content as line graph. 
Adopted from CLC Genomics Workbench manual 
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paired reads of isolate ADRDL01 sequence data after importing to CLC Genomics 

workbench. 

Trimming sequence reads: Before doing any analysis imported reads were trimmed 

to remove any ambiguous nucleotides and to remove sequences with low quality scores. 

We performed quality trimming based on quality scores, ambiguous trimming to avoid 

ambiguous nucleotides and length trimming to remove reads shorter or longer than a 

specified threshold. Trimming here does not mean it will remove any data instead, 

software tool will create annotation in the region that needs to be trimmed (Fig. 6). 

 

Fig.6. Trimming sequence reads: A) Schematic representation of creating annotation on region that 
is ignored in the further processing. B) Trimming report of sample ADRDL01 that shows trim 
summary, read length after trimming and settings used for trimming. 
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For trimming based on quality scores the program uses the modified-Mott trimming 

algorithm. Quality score limit that we used in this study is 0.05. Ambiguous nucleotides 

(for example N) are incorporated by the sequencer program which were removed before 

any analysis or assembling of sequence data. Maximum allowed ambiguities we selected 

was 2, that means this is the maximal number of ambiguous nucleotides allowed in the 

sequence data after trimming. Length trimming is a process of filtering the reads based on 

their length. For this study, we discarded those reads having a length below 15 bases and 

above 1000.  

 Assembling of Sequence reads to contigs: 

De novo assembling of sequence reads is required for some analysis such as AMR 

gene mapping, virulence gene profile and MLST analysis etc. Assembling was carried 

out in the same CLC genomics work bench using an algorithm that works by using de 

Bruijn graphs. This creates stretches of contiguous sequences known as contigs. A 

minimum contig length of 200 bases was used as the assembling parameter and 

assembling was done without any scaffolding. Assembled sequences were then used for 

further analysis in CLC genomics. Assembled data exported in FASTA file format were 

used for MLST analysis as well as for protein clustering analysis. 

2.2.3.1 SNP Analysis and Tree construction  

Before doing actual SNP tree construction, paired, trimmed reads were mapped to 

contigs using reference genome ATCC51958 (NZ_CP019183.1). Variant detection was 

done using fixed ploidy variant detection using parameter ploidy 1 (for bacteria) and 

variant probability percentage of 90. Variant calls and read mappings results were used to 

determine the SNP positions. Read mappings were used to estimate the consensus 
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sequence. SNP tree was constructed using neighbor joining method. Distance between 

samples computed as “Number of input positions used where the consensus sequence is 

different / number of input positions used”. Branch length was based on the distance 

between the samples. 

Representative isolates from each cluster were selected to do comparative SNP 

detection between cluster 1 and other sub clusters of cluster 2 to elucidate number of 

unique SNVs that differentiate each cluster. Unique SNPs present in representative 

isolates of each sub cluster were also identified. Details of genes/coding sequences from 

which the unique SNPs that characterize each cluster were described in table 7. 

Additional data filtering was carried out to extract the specific SNVs present in selected 

isolate of each cluster by removing SNVs which were present both in reference genome 

and selected representative sample. Only SNVs, that meet the criteria of minimum 

coverage ≥ 50x and with a minimum frequency of 100 were selected avoiding InDels 

(Insertions and Deletions) and MNVs to identify SNVs unique to a specific cluster.   

2.2.3.2 Core genome multilocus sequence typing (cgMLST): 

Cluster formation in SNP analysis was validated by gneration of Minimum Spanning 

Tree (MST) based on core genome MLST. Instead of using few (usually 7) house 

keeping genes  as in traditional multi locus sequence typing, core genome MLST make 

use of a fixed set of conserved genome wide genes (core genes) for sequence comparison 

and genotyping providing higher resolution and accurate strain typing [187, 188]. De 

novo assembled sequences in CLC genomics workbench were used in another 

bioinformatics software Ridome seq sphere+ (Ridom©GmbH, Germany) for cg MLST. 

2502 core genes identified common to both reference genome (ATCC51958, accession : 
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NZ_CP019183.1) and study isolates were used for sequence typing. Those isolates which 

were having any missing genes were not used in this study which reduced the study 

isolates number from 465 to 399. Sequence typing was performed by the program based 

on the single nucleotide variation in the selected target alleles. Sequence type generated 

for each isolate was then used to generate the MST (fig.9). MST was generated using a 

modified version of Kruskal’s algorithm [189, 190]. Based on genotype multiple samples 

can be represented by a single node. Distance between genotypes were represented as 

links between the nodes. 

2.2.3.3 Pangenome analysis and protein clustering 

A high-resolution genome content variation between isolates was identified by 

analyzing the presence and absence of genes in 12 selected isolate genomes and reference 

genome (S. Mbandaka strain ATCC 51958). An analysis and visualization platform 

called Anvi’o (Meren lab) [191]. FASTA file format of de nova assembled selected 

genomes were used for gene annotation, protein identification and amino acid sequence 

alignment in Anvi’o.  Platform Anvi’o uses other programs such NCBI’s blastp for 

protein search, muscle for amino acid sequence alignment and MCL for clustering. 

2.2.4 Virulence and antimicrobial resistance mapping 

Assembled genomes of study isolates were used for virulence gene and resistance 

mapping. Virulence gene sequences downloaded from Virulence Factor Database 

(VFDB) [192, 193] and AMR gene sequences downloaded from ResFinder database were 

used to do the analysis. A BLAST (Basic Local Alignment Search Tool, NCBI) search 

was done between the isolate genome and gene sequences from the database to identify 

the presence and absence of respective genes. Minimum sequence length identity of 90% 
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for virulence gene profiling and 85% for AMR gene mapping was used with minimum 

sequence length criteria of 50%. 
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Table 5.Metadata of S. Mbandaka isolates analyzed in this study. Sample ID was given corresponding to sequence center. Name of 
the center collected the isolate was given under the title center name. First part of source location indicates the country and second 
part represents the state if given. Any unavailable information was left blank. 

Sample ID Biosample 
accession 

SRA 
accession 

Center Name Collection date 
(Year) 

Source location Isolation_Source Isolation Source 
Group 

ADRDL-01 SAMN04993480 SRR4446618 CFSAN 2016 USA:SD GROUND PORK Food 

ADRDL-02 SAMN05366692 SRR5380863 CFSAN 2003 USA:OK Canine feces Canine 

ADRDL-03 SAMN05366694 SRR5380864 CFSAN 2006 USA:OK Equine feces Equine 

ADRDL-04 SAMN05366696 SRR4256594 CFSAN 2007 USA:OK Porcine intestine Porcine 

ADRDL-05 SAMN05366697 SRR4256593 CFSAN 2008 USA:AR Kangaroo intestine Others 

ADRDL-06 SAMN05366698 SRR4256087 CFSAN 2009 USA:OK Caprine intestine Caprine 

ADRDL-07 SAMN06669733 SRR5418728 CFSAN 2010 USA:MI Chicken drag swab Environmental 

ADRDL-08 SAMN06669732 SRR5418726 CFSAN 2010 USA:MI Chicken feed Animal Feed 

ADRDL-09 SAMN06669731 SRR5418724 CFSAN 2010 USA:MI Chick box paper Environmental 

ADRDL-10 SAMN06669730 SRR5418725 CFSAN 2010 USA:FL Bovine feces (Bos taurus) Bovine 

ADRDL-11 SAMN06669729 SRR5418727 CFSAN 2010 USA:MI Chick box paper Environmental 

ADRDL-12 SAMN06669728 SRR5418517 CFSAN 2010 USA:FL Bovine feces  Bovine 

ADRDL-13 SAMN06669727 SRR5418515 CFSAN 2011 USA:SC Feline Small Intestine Feline 

ADRDL-14 SAMN06669739 SRR5418516 CFSAN 2012 USA:MI Equine feces  Equine 

ADRDL-15 SAMN06669738 SRR5418512 CFSAN 2013 USA:MI Chicken tissue pool  Avian 

ADRDL-16 SAMN06669737 SRR5418508 CFSAN 2013 USA:MI Chicken drag swab Environmental 

ADRDL-17 SAMN06669736 SRR5418514 CFSAN 2016 USA:MI Chicken feed Animal Feed 

ADRDL-18 SAMN06669735 SRR5418510 CFSAN 2016 USA:MI Bovine feces  Bovine 

ADRDL-19 SAMN06669734 SRR5418509 CFSAN 2012 USA:MI Chicken drag swab Environmental 

ADRDL-20 SAMN03734321 SRR5380867 CFSAN 2014 USA:MN bovine colon Bovine 
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ADRDL-21 SAMN04240663 SRR2971412 CFSAN 2015 USA:NE bovine intestin Bovine 

ADRDL-22 SAMN06113938 SRR5173676 CFSAN 2008 Brazil Meat and bones Meal Animal Feed 

ADRDL-23 SAMN06113971 SRR5182179 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-24 SAMN06113970 SRR5182188 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-25 SAMN06113969 SRR5182189 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-26 SAMN06113968 SRR5182178 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-27 SAMN06113967 SRR5182191 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-28 SAMN06113966 SRR5182192 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-29 SAMN06113965 SRR5182186 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-30 SAMN06114003 SRR5182180 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-31 SAMN06114002 SRR5185864 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-32 SAMN06114001 SRR5185869 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-33 SAMN06114022 SRR5185871 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-34 SAMN06114021 SRR5185863 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-35 SAMN06114020 SRR5185866 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-36 SAMN06114019 SRR5185862 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-37 SAMN06114018 SRR5185860 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-38 SAMN06114017 SRR5185737 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-39 SAMN06114016 SRR5185861 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-40 SAMN06114015 SRR5185739 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-41 SAMN06114014 SRR5185735 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-42 SAMN06114013 SRR5185738 CFSAN 2006 USA:TX bovine feces  Bovine 

ADRDL-43 SAMN06114012 SRR5380960 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-44 SAMN06114011 SRR5185726 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-45 SAMN06114010 SRR5182185 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-46 SAMN06114009 SRR5182181 CFSAN 2007 USA:TX bovine feces  Bovine 
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ADRDL-47 SAMN06114008 SRR5292186 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-48 SAMN06114007 SRR5292183 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-49 SAMN06114006 SRR5292182 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-50 SAMN06114005 SRR5292180 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-51 SAMN06114040 SRR5292177 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-52 SAMN06114039 SRR5292172 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-53 SAMN06114038 SRR5292170 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-54 SAMN06114037 SRR5292169 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-55 SAMN06114036 SRR5292171 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-56 SAMN06114035 SRR5292166 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-57 SAMN06114034 SRR5292168 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-58 SAMN06114033 SRR5292167 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-59 SAMN06114032 SRR5292163 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-60 SAMN06114031 SRR5292165 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-61 SAMN06114030 SRR5292161 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-62 SAMN06114029 SRR5292156 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-63 SAMN06114028 SRR5291672 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-64 SAMN06114027 SRR5291669 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-65 SAMN06114026 SRR5291673 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-66 SAMN06114025 SRR5291670 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-67 SAMN06114024 SRR5291660 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-68 SAMN06114023 SRR5291663 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-69 SAMN06114044 SRR5291659 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-70 SAMN06114043 SRR5291668 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-71 SAMN06114042 SRR5291662 CFSAN 2007 USA:TX bovine feces  Bovine 

ADRDL-72 SAMN06114041 SRR5291667 CFSAN 2007 USA:TX bovine feces  Bovine 
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ADRDL-73 SAMN05366685 SRR4256089 CFSAN 1988 USA:OK Bovine fecal swab Bovine 

ADRDL-74 SAMN05366686 SRR4256088 CFSAN 1989 USA:OK Bovine feces Bovine 

ADRDL-75 SAMN05366690 SRR4256085 CFSAN 1992 USA:OK Bovine feces Bovine 

ADRDL-76 SAMN05366691 SRR5386735 CFSAN 1998 USA:OK Porcine intestine Porcine 

CDC001 SAMN03469748 SRR1970582 EDLB-CDC 
 

USA Stool Human 

CFSAN001 SAMN05195908 SRR5120746 CFSAN 2014 USA:GA Environmental (Pond) Environmental 

CFSAN002 SAMN05195909 SRR5120748 CFSAN 2014 USA:GA Environmental (Pond) Environmental 

CFSAN003 SAMN05195910 SRR5120749 CFSAN 2014 USA:GA Environmental (Pond) Environmental 

CFSAN004 SAMN05195911 SRR5120750 CFSAN 2014 USA:GA Environmental (Pond) Environmental 

EUR001 SAMN02368725 SRR1106374 UCD-100K 
   

Others 

EUR002 SAMN02368608 SRR1106454 UCD-100K 2010 Denmark feed Animal Feed 

EUR003 SAMN02368607 SRR1106455 UCD-100K 2010 Denmark broiler Avian 

EUR004 SAMN02368606 SRR1106456 UCD-100K 2009 Nigeria Chicken Avian 

EUR005 SAMN02368605 SRR1106457 UCD-100K 2002 Taiwan Human Human 

EUR006 SAMN03168592 SRR1645208 GBRU 2013 United Kingdom: North of 
England 

Human Human 

EUR007 SAMN03169272 SRR1645959 GBRU 2013 United Kingdom: London Human Human 

EUR008 SAMN03465654 SRR1957759 GBRU 2014 United Kingdom: London Human Human 

EUR009 SAMN03465692 SRR1957797 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 

EUR010 SAMN03465905 SRR1958003 GBRU 2014 United Kingdom: London Food Food 

EUR011 SAMN03466060 SRR1958160 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 

EUR012 SAMN03466356 SRR1958463 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 

EUR013 SAMN03466359 SRR1958466 GBRU 2014 United Kingdom: London Food Food 

EUR014 SAMN03466390 SRR1958496 GBRU 2014 United Kingdom: North of 
England 

Human Human 
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EUR015 SAMN03466483 SRR1958590 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR016 SAMN03466562 SRR1958669 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR017 SAMN03468476 SRR1959271 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 

EUR018 SAMN03468502 SRR1959297 GBRU 2015 United Kingdom Food Food 

EUR019 SAMN03468506 SRR1959301 GBRU 2014 United Kingdom: London Human Human 

EUR020 SAMN03468513 SRR1959308 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR021 SAMN03468528 SRR1959359 GBRU 2014 United Kingdom: London Human Human 

EUR022 SAMN03468627 SRR1959446 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR023 SAMN03468723 SRR1959508 GBRU 2015 United Kingdom Food Food 

EUR024 SAMN03469065 SRR1960295 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR025 SAMN03469072 SRR1960313 GBRU 2014 United Kingdom: London Human Human 

EUR026 SAMN03469127 SRR1960594 GBRU 2015 United Kingdom Food Food 

EUR027 SAMN03469153 SRR1961019 GBRU 2015 United Kingdom Food Food 

EUR028 SAMN03469202 SRR1962339 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR029 SAMN03469950 SRR1963497 GBRU 2014 United Kingdom Food Food 

EUR030 SAMN03475134 SRR1965197 GBRU 2014 United Kingdom: London Human Human 

EUR031 SAMN03475839 SRR1965734 GBRU 2014 United Kingdom: London Human Human 

EUR032 SAMN03476011 SRR1965919 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR033 SAMN03476017 SRR1965925 GBRU 2015 United Kingdom: South of 
England 

Human Human 

EUR034 SAMN03476320 SRR1966237 GBRU 2015 United Kingdom: London Human Human 
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EUR035 SAMN03476477 SRR1966394 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR036 SAMN03476573 SRR1966490 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 

EUR037 SAMN03477023 SRR1966945 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 

EUR038 SAMN03477095 SRR1967017 GBRU 2014 United Kingdom: London Human Human 

EUR039 SAMN03477383 SRR1967293 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR040 SAMN03477432 SRR1967342 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR041 SAMN03477597 SRR1967507 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR042 SAMN03477643 SRR1967553 GBRU 2014 United Kingdom: London Human Human 

EUR043 SAMN03477732 SRR1967642 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR044 SAMN03478181 SRR1968090 GBRU 2014 United Kingdom Food Food 

EUR045 SAMN03478321 SRR1968230 GBRU 2014 United Kingdom: London Human Human 

EUR046 SAMN03478626 SRR1968533 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR048 SAMN03478819 SRR1968721 GBRU 2014 United Kingdom: London Human Human 

EUR049 SAMN03478825 SRR1968727 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR050 SAMN03478828 SRR1968730 GBRU 2014 United Kingdom Food Food 

EUR051 SAMN03479022 SRR1968924 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR052 SAMN03479182 SRR1969105 GBRU 2014 United Kingdom: London Human Human 

EUR053 SAMN03479325 SRR1969248 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR054 SAMN03479539 SRR1969462 GBRU 2014 United Kingdom: Midlands and 
East of England 

Human Human 
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EUR055 SAMN03480046 SRR1969968 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR056 SAMN03480253 SRR1970177 GBRU 2014 United Kingdom: South of 
England 

Human Human 

EUR057 SAMN03480286 SRR1970210 GBRU 2015 United Kingdom: South of 
England 

Human Human 

EUR058 SAMN03480306 SRR1970230 GBRU 2014 United Kingdom: North of 
England 

Human Human 

EUR059 SAMN03480345 SRR1970269 GBRU 2014 United Kingdom: London Human Human 

EUR060 SAMN04362942 SRR3048574 PHE 
 

United Kingdom Human Human 

EUR061 SAMN04363133 SRR3048881 PHE 
 

United Kingdom Human Human 

EUR062 SAMN04363136 SRR3048884 PHE 
 

United Kingdom Human Human 

EUR063 SAMN04363203 SRR3048963 PHE 
 

United Kingdom Human Human 

EUR064 SAMN04363401 SRR3049163 PHE 
 

United Kingdom Human Human 

EUR065 SAMN04363579 SRR3049284 PHE 
 

United Kingdom Human Human 

EUR066 SAMN04363778 SRR3049483 PHE 
 

United Kingdom Human Human 

EUR067 SAMN04600314 SRR3321900 PHE 
 

United Kingdom Food Food 

EUR068 SAMN04600345 SRR3322012 PHE 2015 United Kingdom Environmental Environmental 

EUR069 SAMN04600394 SRR3322073 PHE 2015 United Kingdom Human Human 

EUR070 SAMN04600544 SRR3322144 PHE 2015 United Kingdom Human Human 

EUR071 SAMN04600657 SRR3322361 PHE 2015 United Kingdom Human Human 

EUR072 SAMN04600934 SRR3322687 PHE 
 

United Kingdom Human Human 

EUR073 SAMN04601072 SRR3322985 PHE 2015 United Kingdom Environmental Environmental 

EUR074 SAMN04601151 SRR3323062 PHE 
 

United Kingdom Human Human 

EUR075 SAMN06247684 SRR5193613 PHE 
 

United Kingdom Human Human 

EUR076 SAMN06247764 SRR5193691 PHE 
 

United Kingdom Human Human 

FDA001 SAMN02367951 SRR1122614 UCD-100K 2011 
 

Chicken Breast Food 

FDA002 SAMN02698272 SRR1220767 CFSAN 2013 Turkey tahini Food 
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FDA003 SAMN02678886 SRR1264976 CFSAN 2013 Turkey ground cumin Food 

FDA004 SAMN02640947 SRR1272810 CFSAN 2003 USA:GA Chicken breasts Food 

FDA005 SAMN02698203 SRR1287031 CFSAN 2011 India manchow soup powder Food 

FDA006 SAMN02698218 SRR1288381 CFSAN 2011 India tilapia Food 

FDA007 SAMN02678733 SRR1292256 CFSAN 2008 Mexico chipotle chili powder Food 

FDA008 SAMN02640920 SRR1299303 CFSAN 2002 USA:GA Chicken breasts Food 

FDA009 SAMN02766991 SRR1300634 CFSAN 2004 USA:MN Chicken Breast Food 

FDA010 SAMN02766992 SRR1300670 CFSAN 2004 USA:MN Chicken Breast Food 

FDA011 SAMN02678490 SRR1300724 CFSAN 2010 Canada sesame seed Food 

FDA012 SAMN02698309 SRR1425261 CFSAN 2013 Turkey tahini Food 

FDA013 SAMN02698311 SRR1425281 CFSAN 2013 India spice mix Food 

FDA015 SAMN02698295 SRR1481937 CFSAN 2013 Bangladesh chili powder Food 

FDA016 SAMN02849739 SRR1501485 CFSAN 2007 USA:WA Bovine (feed) Animal Feed 

FDA017 SAMN02849762 SRR1501639 CFSAN 2007 USA:ID Bovine Bovine 

FDA018 SAMN02849784 SRR1501668 CFSAN 2007 USA:ID Bovine (feces) Bovine 

FDA019 SAMN02698446 SRR1503322 CFSAN 2010 USA:NE meat and bone meal Animal Feed 

FDA020 SAMN02678763 SRR1509602 CFSAN 2008 El Salvador iguana meat, frz Food 

FDA021 SAMN02678567 SRR1511519 CFSAN 2010 USA:IN swab Environmental 

FDA022 SAMN02678569 SRR1511540 CFSAN 2010 Mexico sesame seed Food 

FDA023 SAMN02678566 SRR1511552 CFSAN 2010 USA:IN swab Environmental 

FDA024 SAMN02849949 SRR1515029 CFSAN 2007 USA:WA Avian Avian 

FDA025 SAMN02849964 SRR1515964 CFSAN 2007 USA:UT Bovine (feces) Bovine 

FDA026 SAMN02698164 SRR1553806 CFSAN 2010 China isolated soy protein Food 

FDA027 SAMN02782539 SRR1553817 CFSAN 2004 USA:GA Chicken Breast Food 

FDA028 SAMN02782559 SRR1556105 CFSAN 2004 USA:GA Chicken Breast Food 

FDA029 SAMN02698313 SRR1560594 CFSAN 2013 Syria anise seeds Food 
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FDA030 SAMN02678668 SRR1586544 CFSAN 2013 Lebanon halawa candy Food 

FDA031 SAMN02847332 SRR1593394 CFSAN 2011 Mexico papaya Food 

FDA032 SAMN02847333 SRR1593396 CFSAN 2011 Mexico papaya Food 

FDA033 SAMN02847334 SRR1593414 CFSAN 2011 Mexico papayas Food 

FDA034 SAMN02847337 SRR1596368 CFSAN 2011 Mexico papayas Food 

FDA035 SAMN02847338 SRR1596369 CFSAN 2011 Mexico papaya Food 

FDA036 SAMN02847339 SRR1596372 CFSAN 2011 Mexico papaya Food 

FDA037 SAMN02847349 SRR1596381 CFSAN 2011 Mexico papaya Food 

FDA038 SAMN02847354 SRR1596382 CFSAN 2011 Mexico papaya Food 

FDA039 SAMN02847348 SRR1596388 CFSAN 2011 Mexico papaya Food 

FDA040 SAMN02847346 SRR1596394 CFSAN 2011 Mexico papaya Food 

FDA041 SAMN02847347 SRR1596395 CFSAN 2011 Mexico papaya Food 

FDA042 SAMN02847336 SRR1596402 CFSAN 2011 Mexico papaya Food 

FDA043 SAMN02847353 SRR1596408 CFSAN 2011 Mexico papaya Food 

FDA044 SAMN02847340 SRR1596413 CFSAN 2011 Mexico papayas Food 

FDA045 SAMN02847352 SRR1596414 CFSAN 2011 Mexico papaya Food 

FDA046 SAMN02678608 SRR1613889 CFSAN 2008 Singapore sultana biscuits Food 

FDA047 SAMN02678613 SRR1613890 CFSAN 2008 Mexico serrano pepper Food 

FDA048 SAMN02678609 SRR1613910 CFSAN 2008 India cashew snack Food 

FDA049 SAMN02678788 SRR1615081 CFSAN 2009 Mexico senna tea Food 

FDA050 SAMN02844023 SRR1619530 CFSAN 2004 India sesame seeds Food 

FDA051 SAMN02843931 SRR1619598 CFSAN 2004 USA:GA animal feed blend Animal Feed 

FDA052 SAMN02918992 SRR1623027 CFSAN 2012 Mexico animal feed, wheat millrun Animal Feed 

FDA053 SAMN02777685 SRR1637012 CFSAN 2003 USA:MN Chicken Breast Food 

FDA054 SAMN02777687 SRR1637016 CFSAN 2003 USA:MN Chicken Breast Food 

FDA055 SAMN02777684 SRR1637044 CFSAN 2003 USA:MN Chicken Breast Food 
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FDA056 SAMN02777688 SRR1637049 CFSAN 2003 USA:MN Chicken Breast Food 

FDA057 SAMN02777686 SRR1637054 CFSAN 2003 USA:MN Chicken Breast Food 

FDA058 SAMN02847395 SRR1638895 CFSAN 2012 Mexico peanut, shelled Food 

FDA059 SAMN02846970 SRR1646539 CFSAN 2010 USA:CA pistachio, in shell Food 

FDA060 SAMN02846971 SRR1646581 CFSAN 2010 USA:CA pistachio, in shell Food 

FDA061 SAMN02846533 SRR1658072 CFSAN 2010 USA:CA environmental swabs Environmental 

FDA062 SAMN02846531 SRR1658077 CFSAN 2010 USA:CA environmental swabs Environmental 

FDA063 SAMN02846532 SRR1658078 CFSAN 2010 USA:CA environmental swabs Environmental 

FDA064 SAMN02846534 SRR1658083 CFSAN 2010 USA:CA environmental swabs Environmental 

FDA065 SAMN02846687 SRR1685379 CFSAN 2009 India rte snack food - cornflakes & 
potato bits 

Food 

FDA066 SAMN02843821 SRR1687189 CFSAN 2003 USA animal feed Animal Feed 

FDA067 SAMN02918862 SRR1705573 CFSAN 2012 USA:CO environmental swab Environmental 

FDA068 SAMN02846688 SRR1720474 CFSAN 2009 India rte snack food - cornflakes & 
potato bits 

Food 

FDA069 SAMN02843438 SRR1730384 CFSAN 2001 India celery seed Food 

FDA070 SAMN02847149 SRR1732582 CFSAN 2010 Canada sesame seed Food 

FDA071 SAMN02918827 SRR1745632 CFSAN 2011 USA:AR animal feed, poultry feed Animal Feed 

FDA072 SAMN02777760 SRR1778004 CFSAN 2003 USA:GA Chicken Breast Food 

FDA073 SAMN03285412 SRR1778061 CFSAN 2014 Mexico arbol peppers Food 

FDA074 SAMN03269470 SRR1783178 CFSAN 2005 USA:GA chicken breast Food 

FDA075 SAMN03269469 SRR1783205 CFSAN 2005 USA:GA chicken breast Food 

FDA076 SAMN02846555 SRR1802945 CFSAN 2009 Japan curry powder Food 

FDA077 SAMN02844670 SRR1803114 CFSAN 2009 Mexico cucumber Food 

FDA078 SAMN02844630 SRR1805606 CFSAN 2008 Mexico serrano peppers Food 

FDA079 SAMN03344531 SRR1810505 CFSAN 2015 USA:CO beef tracheas Food 
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FDA080 SAMN03269471 SRR1812835 CFSAN 2006 USA:CO chicken breast Food 

FDA081 SAMN02846488 SRR1821290 CFSAN 2009 Taiwan garlic powder Food 

FDA082 SAMN02846487 SRR1821304 CFSAN 2009 Taiwan garlic powder Food 

FDA083 SAMN03269472 SRR1823694 CFSAN 2006 USA:CT ground beef Food 

FDA084 SAMN02367998 SRR1840623 UCD-100K 2011 USA:Maryland Chicken Breast Food 

FDA085 SAMN02368017 SRR1840628 UCD-100K 2011 USA:New York Chicken Breast Food 

FDA086 SAMN02846612 SRR1916078 CFSAN 2009 Viet Nam curry powder Food 

FDA087 SAMN02846606 SRR1916123 CFSAN 2009 Indonesia cheese roll cake Food 

FDA088 SAMN02844503 SRR1946898 CFSAN 2007 USA parsley powder Food 

FDA089 SAMN02846047 SRR1952752 CFSAN 2008 USA:CA alfalfa seed Food 

FDA090 SAMN02846046 SRR1974111 CFSAN 2008 USA:CA alfalfa seed Food 

FDA091 SAMN02845928 SRR1980615 CFSAN 2007 USA:AR peanut butter Food 

FDA092 SAMN03276007 SRR1980731 CFSAN 2007 USA:CA pork chop Food 

FDA093 SAMN02844258 SRR1982186 CFSAN 2005 China spice powder Food 

FDA094 SAMN02846007 SRR2005920 CFSAN 2007 India coconut shredded Food 

FDA095 SAMN02844040 SRR2025278 CFSAN 2004 China dog chew Animal Feed 

FDA096 SAMN02844751 SRR2075974 CFSAN 2009 India frz grated coconut Food 

FDA097 SAMN02844770 SRR2076020 CFSAN 2009 India moth beans crisp disc Food 

FDA098 SAMN02845156 SRR2078204 CFSAN 2002 USA:CA meat and bone meal Animal Feed 

FDA099 SAMN02844799 SRR2085686 CFSAN 2010 India sesame seeds, indian hulled Food 

FDA100 SAMN02844596 SRR2086584 CFSAN 2008 Syria cumin, ground Food 

FDA101 SAMN03276097 SRR2086981 CFSAN 2007 USA:GA pork chop Food 

FDA102 SAMN02844635 SRR2087270 CFSAN 2008 Taiwan tilapia Food 

FDA103 SAMN02844236 SRR2096626 CFSAN 2005 USA:IN custom feed mix Animal Feed 

FDA104 SAMN03842241 SRR2143502 CFSAN 2007 USA:CA chicken breast Food 

FDA105 SAMN02845473 SRR2156506 CFSAN 2004 India hulled sesame seeds Food 
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FDA106 SAMN02845474 SRR2156565 CFSAN 2004 India hulled sesame seeds Food 

FDA107 SAMN02845472 SRR2173998 CFSAN 2004 India hulled sesame seeds Food 

FDA108 SAMN02845471 SRR2174059 CFSAN 2004 India hulled sesame seeds Food 

FDA109 SAMN03988234 SRR2407554 FDA 2014 USA:MO Chicken Wings Food 

FDA110 SAMN03988418 SRR2407738 FDA 2014 USA:NM Chicken Breast Food 

FDA111 SAMN03988424 SRR2407744 FDA 2014 USA:NM Chicken Breast Food 

FDA112 SAMN03842301 SRR2532630 FDA 2007 USA:NM chicken breast Food 

FDA113 SAMN03291697 SRR2533345 FDA 2006 USA:OR ground turkey Food 

FDA114 SAMN03291698 SRR2533346 FDA 2006 USA:OR ground beef Food 

FDA115 SAMN03894188 SRR2566990 FDA 2013 USA:TN Chicken Wings Food 

FDA116 SAMN03894384 SRR2567186 FDA 2013 USA: NM Ground Beef Food 

FDA117 SAMN03894393 SRR2567195 FDA 2013 USA: NY Chicken Breast Food 

FDA118 SAMN03894406 SRR2567208 FDA 2013 USA:WA Chicken Breast Food 

FDA119 SAMN03842397 SRR2670701 CFSAN 2008 USA:NY chicken breast Food 

FDA120 SAMN02918825 SRR2728278 CFSAN 2011 USA:NY animal feed, dairy cattle 
feed 

Animal Feed 

FDA121 SAMN02918913 SRR2728282 CFSAN 2012 Canada animal feed, canola meal Animal Feed 

FDA122 SAMN03938825 SRR2939007 CFSAN 2008 USA:MD chicken breast Food 

FDA123 SAMN02845059 SRR3038212 CFSAN 2002 USA:AZ cottonseed Animal Feed 

FDA124 SAMN04224256 SRR3055310 CFSAN 2008 USA:MD Chicken Breast Food 

FDA125 SAMN02843508 SRR3057159 CFSAN 2002 USA:AZ blood meal Animal Feed 

FDA126 SAMN04256097 SRR3098665 CFSAN 2010 USA:NY Chicken Breast Food 

FDA127 SAMN04396122 SRR3110510 CFSAN 2015 USA:MN Raw Cashews Pieces Food 

FDA128 SAMN04224384 SRR3115191 CFSAN 2009 USA:CT Chicken Breast Food 

FDA129 SAMN02844212 SRR3156748 CFSAN 2005 Canada saw palmetto seed powder Food 

FDA130 SAMN02846022 SRR3173513 CFSAN 2009 USA:GA environmental swab Environmental 
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FDA131 SAMN04255401 SRR3173557 CFSAN 2009 USA:PA Chicken Breast Food 

FDA132 SAMN02918555 SRR3191380 CFSAN 2009 USA:OH poultry feed Animal Feed 

FDA133 SAMN04218119 SRR3194547 CFSAN 2008 USA:TN Chicken Breast Food 

FDA134 SAMN04218120 SRR3194548 CFSAN 2008 USA:TN Chicken Breast Food 

FDA135 SAMN04218126 SRR3199879 CFSAN 2008 USA:TN Chicken Breast Food 

FDA136 SAMN04218123 SRR3199882 CFSAN 2008 USA:TN Chicken Breast Food 

FDA137 SAMN02847454 SRR3205946 CFSAN 2012 Mexico papaya Food 

FDA138 SAMN04218138 SRR3210390 CFSAN 2008 USA:TN Ground Beef Food 

FDA139 SAMN04218140 SRR3210391 CFSAN 2008 USA:TN Ground Beef Food 

FDA140 SAMN04218142 SRR3210393 CFSAN 2008 USA:TN Ground Beef Food 

FDA141 SAMN04218145 SRR3210530 CFSAN 2008 USA:TN Ground Beef Food 

FDA142 SAMN04218146 SRR3210531 CFSAN 2008 USA:TN Ground Beef Food 

FDA143 SAMN04218147 SRR3210532 CFSAN 2008 USA:TN Ground Beef Food 

FDA144 SAMN04218150 SRR3210535 CFSAN 2008 USA:TN Pork Chop Food 

FDA145 SAMN04218151 SRR3210536 CFSAN 2008 USA:TN Pork Chop Food 

FDA146 SAMN04218152 SRR3210537 CFSAN 2008 USA:TN Pork Chop Food 

FDA147 SAMN04218153 SRR3210538 CFSAN 2008 USA:TN Pork Chop Food 

FDA148 SAMN04218155 SRR3210540 CFSAN 2008 USA:TN Pork Chop Food 

FDA149 SAMN04218157 SRR3210542 CFSAN 2008 USA:TN Pork Chop Food 

FDA150 SAMN04217422 SRR3217374 CFSAN 2009 USA:NY Chicken Breast Food 

FDA151 SAMN02846382 SRR3219072 CFSAN 2009 Egypt artificially flavored beef 
bouillon 

Food 

FDA152 SAMN02918837 SRR3223732 CFSAN 2011 USA:PA animal feed, chicken meal Animal Feed 

FDA153 SAMN02843451 SRR3242144 CFSAN 2001 Lebanon halva Food 

FDA154 SAMN04577302 SRR3295755 FDA 2014 USA:FL Dairy Cattle Bovine 

FDA155 SAMN04577361 SRR3295814 FDA 2014 USA:PA Hogs Porcine 
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FDA156 SAMN04577366 SRR3295819 FDA 2014 USA:FL Dairy Cattle Bovine 

FDA157 SAMN04577373 SRR3295826 FDA 2014 USA:FL Beef Cattle Bovine 

FDA158 SAMN02847343 SRR3379320 CFSAN 2011 Mexico papayas Food 

FDA159 SAMN02845941 SRR3453119 CFSAN 2008 USA swab Environmental 

FDA160 SAMN02845942 SRR3453120 CFSAN 2008 USA swab Environmental 

FDA161 SAMN02845945 SRR3453123 CFSAN 2008 USA swab Environmental 

FDA162 SAMN02699294 SRR3664643 FDA 2012 USA:NM chicken breast Food 

FDA163 SAMN02699344 SRR3664883 FDA 2012 USA:CA chicken breast Food 

FDA164 SAMN05201964 SRR3664884 FDA 2012 USA:CA Chicken Breast Food 

FDA165 SAMN02699356 SRR3664919 FDA 2012 USA:NM chicken breast Food 

FDA166 SAMN05201503 SRR3664987 FDA 2011 USA:OR Chicken Breast Food 

FDA167 SAMN05201613 SRR3665138 FDA 2011 USA:MD Chicken Breast Food 

FDA168 SAMN02699252 SRR3665190 FDA 2011 USA:NY chicken breast Food 

FDA169 SAMN05201660 SRR3665205 FDA 2011 USA:GA Ground Beef Food 

FDA170 SAMN02846717 SRR3721579 CFSAN 2012 Mexico papaya Food 

FDA171 SAMN05416490 SRR3932996 FDA 2015 USA:GA Chicken Breast Food 

FDA172 SAMN05417586 SRR3933129 FDA 2013 USA:NJ fecal Canine 

FDA173 SAMN05417587 SRR3933130 FDA 2013 USA:PA fecal Canine 

FDA174 SAMN02918523 SRR3938672 CFSAN 2008 China soybean meal, animal feed Animal Feed 

FDA175 SAMN02918591 SRR3952228 CFSAN 2009 Mexico animal feed, fish meal Animal Feed 

FDA176 SAMN04962024 SRR4012815 CFSAN 2013 USA:GA Environmental (Pond) Environmental 

FDA177 SAMN04962031 SRR4012822 CFSAN 2013 USA:GA Environmental (Pond) Environmental 

FDA178 SAMN02918607 SRR4014994 CFSAN 2010 USA:ID dog food Animal Feed 

FDA179 SAMN02847019 SRR4015002 CFSAN 2010 Mexico barley drink Food 

FDA180 SAMN02844839 SRR4119781 CFSAN 2010 India sesame seeds Food 

FDA181 SAMN02847372 SRR4124944 CFSAN 2012 USA:NM environmental sample Environmental 
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FDA182 SAMN02847371 SRR4124946 CFSAN 2012 USA:NM environmental sample Environmental 

FDA183 SAMN02847344 SRR4279933 CFSAN 2011 Mexico papaya Food 

FDA184 SAMN02847319 SRR4292702 CFSAN 2011 Mexico papaya Food 

FDA185 SAMN02918989 SRR4301128 CFSAN 2012 Mexico animal feed, wheat millrun Animal Feed 

FDA186 SAMN02918994 SRR4301131 CFSAN 2012 Mexico animal feed, wheat millrun Animal Feed 

FDA187 SAMN02843824 SRR4427087 CFSAN 2003 Taiwan black pepper Food 

FDA188 SAMN05897854 SRR4733929 CFSAN 2016 India Mix Spice Powder Food 

FDA189 SAMN02919045 SRR4733957 CFSAN 2014 USA:MI animal feed, dry cat food Animal Feed 

FDA190 SAMN02845884 SRR5105537 CFSAN 2007 Mexico dried pepper flakes Food 

FDA191 SAMN06213901 SRR5195799 CFSAN 2016 United Kingdom Pistachio Kernels Food 

FMA001 SAMN02345360 SRR1139518 CFSAN 2011 USA:NM peanut butter Food 

FMA002 SAMN02345449 SRR1158009 CFSAN 2012 USA:NM environmental sample Environmental 

FMA003 SAMN02345424 SRR1175791 CFSAN 2011 USA:NM environmental sample Environmental 

FMA004 SAMN02345578 SRR1198887 FSIS SRCAMB 2012 Mexico papaya Food 

FMA005 SAMN02345577 SRR1198926 FSIS SRCAMB 2012 Mexico papaya Food 

FNE001 SAMN02345251 SRR1097807 CFSAN 2011 Turkey halva cocoa Food 

FNE002 SAMN02345073 SRR1185831 FSIS SRCAMB 2011 Hong Kong dried gecko Food 

FNW001 SAMN02344770 SRR1170779 CFSAN 2010 Mexico barley drink Food 

FNW002 SAMN02344928 SRR1177185 CFSAN 2010 Mexico papaya Food 

FNW003 SAMN02344972 SRR1177233 CFSAN 2010 Mexico frozen octopus Food 

FNW004 SAMN02344962 SRR1177258 CFSAN 2010 Mexico papayas Food 

FNW005 SAMN02344963 SRR1177558 CFSAN 2010 Mexico papayas Food 

FNW006 SAMN02345274 SRR1203043 CFSAN 2011 Mexico papayas Food 

FSW001 SAMN02344988 SRR1068334 CFSAN 2010 Mexico papaya Food 

FSW002 SAMN02344985 SRR1068343 CFSAN 2010 Mexico papaya Food 

MDH001 SAMN02378204 SRR1029568 CFSAN 2013 USA:MN tahini Food 
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MDH002 SAMN02646878 SRR1265009 CFSAN 2004 USA:MN Chicken Breast Food 

MDH003 SAMN02646867 SRR1269360 CFSAN 2003 USA:NC Porcine Tissue Porcine 

MDH004 SAMN02646849 SRR1272512 CFSAN 2003 USA:NC Porcine Tissue Porcine 

MDH005 SAMN02646792 SRR1299349 CFSAN 2003 USA:WI Bovine Feces Bovine 

MDH006 SAMN02699424 SRR1300702 CFSAN 2000 
 

Chicken Thigh Food 

MDH007 SAMN02699477 SRR1425269 CFSAN 2002 USA:MN Canine Feces Canine 

MDH008 SAMN02699511 SRR1461784 CFSAN 2002 USA:MN Porcine Tissue Porcine 

MDH009 SAMN02699522 SRR1501631 CFSAN 2002 USA:MN Canine Feces Canine 

MDH010 SAMN02699596 SRR1553727 CFSAN 2003 USA:MN Porcine Tissue Porcine 

NYSDH001 SAMN02222898 SRR1030357 CFSAN 2007 USA:CT raw meat for pet food Animal Feed 

NYSDH002 SAMN02222934 SRR1067637 CFSAN 2013 USA:CT Milk, Raw Food 

NYSDH003 SAMN01902330 SRR1106268 CFSAN 2009 USA:NY DOG FOOD Animal Feed 

NYSDH004 SAMN01902413 SRR1107476 CFSAN 2012 USA:NY GROUND BEEF Food 

NYSDH005 SAMN01902362 SRR1157834 CFSAN 2010 USA:NY CHICKEN BREAST Food 

NYSDH006 SAMN01902345 SRR1272891 CFSAN 2009 USA:NY CHICKEN BREAST Food 

NYSDH007 SAMN03795424 SRR2847927 CFSAN 2017 USA:NY stool Human 

ODA001 SAMN05721600 SRR4237694 CFSAN 2012 USA:OH Animal Feed Animal Feed 

ODA002 SAMN05577716 SRR4237742 CFSAN 2010 USA:OH Feed Animal Feed 

ODA003 SAMN05721585 SRR5040864 CFSAN 2013 USA:OH Dog Food Animal Feed 

ODA004 SAMN05721573 SRR5104745 CFSAN 2015 USA:OH Animal Feed Animal Feed 

OSU001 SAMN03577516 SRR3392184 CFSAN 2008 USA:NC floor swab Environmental 

OSU002 SAMN03577713 SRR3554452 CFSAN 2014 USA:OH poultry env. Environmental 

OSU003 SAMN03577719 SRR3554464 CFSAN 2013 USA:OH poultry env. Environmental 

OSU004 SAMN03577717 SRR3554467 CFSAN 2013 USA:OH poultry env. Environmental 

OTH001 SAMN01924646 SRR1030358 CFSAN 2011 
 

Water GA Pond- VH1 Environmental 

OTH002 SAMN02345576 SRR1033524 CFSAN 2012 USA:MD organic anise seed, whole Food 
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OTH003 SAMN02344971 SRR1041533 CFSAN 2010 Mexico papayas Food 

OTH004 SAMN02183004 SRR1106152 CFSAN 2011 USA:WA chicken Avian 

OTH005 SAMN02182958 SRR1106269 CFSAN 2012 USA:WA giblets combo Food 

OTH006 SAMN02368517 SRR1118716 UCD-100K 
 

USA 
 

Others 

OTH007 SAMN02345100 SRR1175817 CFSAN 2011 Mexico peanut, shelled Food 

OTH008 SAMN02403245 SRR1188475 FSIS SRCAMB 2005 USA:VA Chicken Avian 

OTH009 SAMN02403247 SRR1207489 CFSAN 2005 USA:VA Chicken Avian 

OTH010 SAMN02344968 SRR1212275 CFSAN 2010 Mexico papaya Food 

OTH011 SAMN02403373 SRR1212353 CFSAN 2006 USA:VA Horse Equine 

OTH012 SAMN02645801 SRR1548424 CFSAN 2009 USA:Dauphin PA Chicken Breast Food 

OTH013 SAMN02345456 SRR1615964 CFSAN 2012 USA:NM peanut butter Food 

OTH014 SAMN02345467 SRR1615965 CFSAN 2012 USA:NM environmental swab Environmental 

OTH015 SAMN03112866 SRR1618705 CFSAN 2011 USA:VA seagull Avian 

OTH016 SAMN03112867 SRR1618710 CFSAN 2011 USA:VA seagull Avian 

OTH017 SAMN02908542 SRR1686510 USDA 2004 USA Market hog swab Porcine 

OTH018 SAMN02908629 SRR1686597 USDA 2006 USA Ground chicken Food 

OTH019 SAMN02908630 SRR1686598 USDA 2010 USA Market hog Porcine 

OTH020 SAMN03255329 SRR1745631 CFSAN 2012 Turkey egg Food 

OTH021 SAMN03702749 SRR2054190 CFSAN 2015 USA:TX raw ground beef Food 

OTH022 SAMN03702738 SRR2096542 CFSAN 2014 USA:TX ground hamburger Food 

OTH023 SAMN03702740 SRR2096596 CFSAN 2014 USA:TX hamburger Food 

OTH024 SAMN04506151 SRR3185059 EDLB-CDC 
 

USA Urine Environmental 

OTH025 SAMN04528237 SRR3205869 CFSAN 2013 USA:NC Soil Environmental 

OTH026 SAMN04528240 SRR3205872 CFSAN 2013 USA:NC Soil Environmental 

OTH027 SAMN04544918 SRR3278367 CFSAN 2013 USA:NC Lagoon Environmental 

OTH028 SAMN03800261 SRR3394981 CFSAN 2012 Chile:Rancagua feces Environmental 
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OTH029 SAMN03218269 SRR4011083 CFSAN 2008 United Kingdom retail meat Food 

OTH030 SAMN05560723 SRR4069542 CFSAN 2015 USA:IA Raw Beef materials Food 

OTH031 SAMN05829080 SRR4299026 CFSAN 2015 USA:NY canis rufus feces Canine 

OTH032 SAMN05948800 SRR4473729 CFSAN 2016 USA:IA Beef Trim Food 

OTH033 SAMN05203386 SRR5010543 CFSAN 
 

USA:WA orange juice Food 

OTH034 SAMN05203387 SRR5010546 CFSAN 2013 USA:MN tahini Food 

OTH035 SAMN03743881 SRR5057141 CFSAN 2005 Argentina:Buenos Aires factory swab Environmental 

OTH036 SAMN03743905 SRR5057145 CFSAN 2005 Argentina:Buenos Aires flour Environmental 

OTH037 SAMN03743880 SRR5057147 CFSAN 2005 Argentina:Buenos Aires environmental sample Environmental 

USDA001 SAMN03218359 SRR1720462 CFSAN 2012 USA:GA whole eggs Food 

USDA002 SAMN03218356 SRR1720470 CFSAN 2012 USA:GA egg yolks Food 

USDA003 SAMN03218378 SRR1745534 CFSAN 2012 USA:GA egg whites Food 

USDA004 SAMN03218236 SRR1745544 CFSAN 2012 USA:GA egg whites Food 

USDA005 SAMN03218249 SRR1745558 CFSAN 2012 USA:GA whole eggs Food 

USDA006 SAMN03218253 SRR1745623 CFSAN 2012 USA:AR egg whites Food 

USDA007 SAMN03285092 SRR1774090 CFSAN 2012 USA:GA product-eggs-raw-whole Food 

USDA008 SAMN03776990 SRR2068068 USDA FSIS 2015 USA:NC NRTE Comminuted Poultry 
Exploratory Sampling  

Food 

USDA009 SAMN03649173 SRR2075049 CFSAN 2012 USA:AR product-eggs-raw-whole Food 

USDA010 SAMN03763518 SRR2078900 CFSAN 2012 USA:AL product-eggs-raw-whole Food 

USDA011 SAMN03464558 SRR2124289 CFSAN 2012 USA:NY product-eggs-raw-whites Food 

USDA012 SAMN03464560 SRR2124492 CFSAN 2012 USA:IA product-eggs-raw-yolks Food 

USDA013 SAMN03921964 SRR2125864 USDA-FSIS 2015 USA:GA NRTE Comminuted Poultry 
Exploratory Sampling  

Food 

USDA014 SAMN03838236 SRR2152998 CFSAN 2012 USA:GA product-eggs-raw-yolks Food 

USDA015 SAMN03649168 SRR2156500 CFSAN 2012 USA:TX product-eggs-raw-whole Food 
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USDA016 SAMN03838261 SRR2174022 CFSAN 2012 USA:MN product-eggs-raw-whole Food 

USDA017 SAMN04014662 SRR2188119 USDA-FSIS 2015 USA:PA Animal-Swine-Sow Porcine 

USDA018 SAMN04027097 SRR2239755 USDA-FSIS 2015 USA:NC Animal-Swine-Market Swine Porcine 

USDA019 SAMN04090025 SRR2421589 USDA-FSIS 2015 USA:IN Raw Intact Chicken Avian 

USDA020 SAMN03218369 SRR2890151 CFSAN 2012 USA:NY whole eggs Food 

USDA021 SAMN03218366 SRR2890153 CFSAN 2012 USA:NY egg yolks Food 

USDA022 SAMN04260528 SRR2920118 USDA-FSIS 2015 USA:WI Animal-Cattle-Beef Cow Bovine 

USDA023 SAMN04260961 SRR2920120 USDA-FSIS 2015 USA:ID Animal-Cattle-Dairy Cow Bovine 

USDA024 SAMN04376256 SRR3062684 USDA-FSIS 2015 USA:IA Animal-Swine-Market Swine Porcine 

USDA025 SAMN04437782 SRR3115432 USDA-FSIS 2015 USA:TX Animal-Swine-Market Swine Porcine 

USDA026 SAMN04481314 SRR3156224 USDA-FSIS 2016 USA:TX Animal-Cattle-Steer Bovine 

USDA027 SAMN04575036 SRR3284587 USDA-FSIS 2016 USA:TX Animal-Cattle-Steer Bovine 

USDA028 SAMN03922164 SRR3323110 USDA-FSIS 2015 USA:GA NRTE Comminuted Poultry 
Exploratory Sampling  

Food 

USDA029 SAMN04942710 SRR3475887 USDA-FSIS 2016 USA:CA Animal-Cattle-Dairy Cow Bovine 

USDA030 SAMN04942595 SRR3476439 USDA-FSIS 2015 USA:AL Chicken Carcass Avian 

USDA031 SAMN05150605 SRR3555083 USDA-FSIS 2016 USA:KS Animal-Cattle-Beef Cow Bovine 

USDA032 SAMN05150600 SRR3555189 USDA-FSIS 2016 USA:MI Animal-Swine-Sow Porcine 

USDA033 SAMN05720506 SRR4106448 USDA-FSIS 2016 USA:MA Animal-Swine-Market Swine Porcine 

USDA034 SAMN05900914 SRR4418021 USDA-FSIS 2016 USA:GA Animal-Cattle-Dairy Cow Bovine 

USDA035 SAMN05900903 SRR4419039 USDA-FSIS 2016 USA:WA Product-Raw-Intact-Beef Food 

USDA036 SAMN05945097 SRR4453696 USDA-FSIS 2016 USA:TN Animal-Chicken-Young 
Chicken 

Avian 

USDA037 SAMN06015764 SRR5019458 USDA-FSIS 2016 USA:MD Animal-Chicken-Young 
Chicken 

Avian 

USDA038 SAMN06015786 SRR5019515 USDA-FSIS 2016 USA:PA Animal-Swine-Sow Porcine 

USDA039 SAMN06046041 SRR5043210 USDA-FSIS 2016 USA:OK Raw-Ground, Comminuted 
Pork 

Food 
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USDA040 SAMN06048913 SRR5045370 USDA-FSIS 2016 USA:FL Comminuted Chicken Food 

USDA041 SAMN06187008 SRR5132770 USDA-FSIS 2016 USA:FL Raw Intact Chicken Avian 

USDA042 SAMN06235216 SRR5182328 USDA-FSIS 2016 USA:TN Animal-Swine-Market Swine Porcine 

*EUR047 and FDA014 were deliberately removed as those isolates were not included in this study 
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2.3 Results and Discussion 

2.3.1 Phylogenetic analysis of S. Mbandaka 

Currently, no information is available regarding phylogenetic organization within 

single serovar S. Mbandaka. A phylogenetic tree was constructed using next-generation 

sequence data of 465 S. Mbandaka isolates to explore the evolutionary genetic diversity 

of Salmonella serovar Mbandaka. Sequences for newly sequenced 76 S. Mbandaka 

isolates from 9 different North American States and one South American state were 

phylogenetically analyzed along with sequences for 388 isolates from different parts of 

the world. Metadata including biosample accession number and NCBI SRA accession 

number were given in table 5. A comprehensive phylogenetic characterization, using 

next-generation sequencing based SNP analysis and cgMLST methods, was performed to 

elucidate the evolutionary relationship of these isolates in a global context. Resultant 

phylogenetic trees were used to generate various hypothesis related to the evolution, host 

distribution and ability to cause human outbreaks from various sources. 

2.3.1.1 SNP based Analysis 

A total of 87,089 genome positions with SNPs were detected by pairwise 

comparison of all S. Mbandaka isolate genomes to the reference genome S. Mbandaka str. 

ATCC 51958 (NCBI Reference Sequence accession: NZ_CP019183.1). Similar 

nucleotide changes happened at 1974 genome positions in all 465 isolates. Remaining 
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SNVs at 85115 genome positions with varying nucleotide changes were distributed 

between study isolates. Phylogenetic analysis of above SNP data generated an 

evolutionary tree comprised of two primary clusters, ‘Cluster 1’ and ‘Cluster 2’. For the 

ease of understanding, we identified six sub clusters in ‘Cluster 2’ based on the close 

relationship of isolates in the context of isolation source group and geographical origin 

(fig.7). Number of unique SNPs that differentiate each cluster from any other cluster 

were identified by comparing representative isolates from each cluster. The details of 

identified SNPs were given in table 7. 

Cluster 1 

A cluster consists of minimum number of genomic positions with SNPs from the 

reference genome. Cluster1 included 13 isolates, all of which were collected from same 

geographical area, Texas USA (Fig.8). This outlying group was again characterized by 

the presence of isolates collected from same isolation source, cattle, except for one isolate 

(USDA015), which was isolated from raw whole egg. Interestingly, 35 isolates collected 

from the same location (Texas, USA) and from same isolation source (Cattle) were 

clustered together in another place of the phylogenetic tree forming a sub cluster (sub 

cluster 2B). Out of 85115 only 9 genomic position with SNVs distributed between the 

members of this cluster. Remaining 85106 SNVs distributed in cluster 2. When compared 

with sub cluster 2B (representative sample ADRDL27 of cluster 1and FDA083 of 

subcluster2B) 14 SNPs present in coding sequences (CDS) were unique to cluster 1 that 

differentiated this primary cluster from sub cluster 2B. Eight of these SNPs were non-

synonymous resulting in an amino acid change in respective proteins while six of them 

were synonymous. Important ones include Non-Synonymous SNP in Gene pyrG 
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encoding CTP synthatse and in CDS for protein magnesium translocating P-type ATPase 

resulted in amino acid change asparagine (Asn) to (Tyr) tyrosine and (Val) Valine to 

Leucine (Leu) respectively. Poultry isolate USDA015, on the other hand carried one 

unique SNP differentially from other bovine isolates of the cluster 1. This unique SNP 

occurred in CDS for type II secretion system protein GSpE resulting in an amino acid 

change Glutamine(Glu) to Aspartate (Asp). 

Cluster 2 

Remaining 452 S. Mbandaka isolates constituted cluster 2. These isolates were again 

sub clustered into 6 sub clusters in correlation to isolation source and geographical area 

of isolate collection.  

Sub cluster 2A: A cluster consisting of 40 isolates differentiated by SNPs in 89 genomic 

positions. Correlating factor that outline this cluster is the isolation source especially for 

29 S. Mbandaka isolates from 14 different states of USA collected over a period of 2002 

to 2015. All these 29 isolates were obtained from poultry and/or poultry related products 

such as chicken breast, egg and chicken wings. Isolation source of other closely related 

isolates in this cluster consisting of equine (1), porcine (2), human (1), animal feed (2) 

and environmental sources (4). Two non-synonymous SNPs by frame shift mutation in 

the coding sequences of phage tail proteins were found unique to this cluster (represent- 

ative sample USDA005) compared to cluster1. A total of 21 unique SNPs that includes 

10 non-synonymous SNPs resided in this cluster separated sub cluster 2A from its sister 

lineage sub cluster 2B containing mainly bovine isolates. 
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Sub cluster 2B:  Fifty isolates, out of seventy-six newly sequenced S. Mbandaka isolates 

here in our lab, were bovine isolates collected from Texas, USA during the period 2006- 

2007. Out of these fifty isolates, 12 were clustered in cluster 1, while 35 were clustered 

together along with 18 other isolates forming a sub cluster (2B) in cluster 2.  There were 

39 unique SNPs including 27 non - synonymous SNPs differentiated this sub cluster 

(representative sample FDA083 for sub cluster 2B) from cluster 1 bovine isolates. There 

was a total of 53 isolates in sub cluster 2B. 51 isolates shared a common characteristic of 

isolation source, that they were isolated either from cattle, beef or beef products. Two 

exceptions (OTH019 and FDA092), were from pig or pig products. There were 268 

genomic positions with SNPs distributed between members of this sub cluster. Out of 39 

unique SNPs, 15 SNPs were in phage elements and 9 were in hypothetical proteins. Nine 

non-synonymous SNPs were identified in major bacterial protein coding sequences that 

include sequences encoding flagellin FliC, SPI-1 effector StpP.  

Analysis of SNPs between representative isolates from cluster1 (ADRDL27) and sub 

cluster2B (ADRDL 45) collected from same isolation source (cattle) and location 

(Texas:USA)  revealed 82 unique SNPs that contain 61 non-synonymous SNPs in sub 

cluster 2B isolate (ADRDL 45) which is nearly five times greater than what had for the 

cluster1. Out of 61, two of the non- synonymous SNPs occurred in ligA (SEEM1958 

_RS07470) and thiP (SEEM1958_RS19865) genes that encode for DNA ligase and 

thiamine/thiamine pyrophosphate ABC transporter permease ThiP respectively. ligA 

protein is essential for DNA replication and repair. Protein encoded by thiP functions in 

the transport of thiamine in to the cell. Non-synonymous SNPs in coding sequences of 

two integrases (SEEM1958_RS06125 and SEEM1958_RS10835), MFS transporter 
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(SEEM1958_RS17580), CesD/SycD/LcrH family type III secretion system chaperone 

(SEEM1958_RS13550) might be playing important roles as the first two are related to 

antimicrobial resistance and later one to pathogenicity. Nearly 22 SNPs occured in phage 

related protein coding sequences (CDS) and 14 were in CDS for hypothetical proteins.  

Moreover, 36 SNPs were identified as unique to this cluster when did a comparison 

between sub cluster 2A poultry isolate (USDA005) with sub cluster 2B isolate (FDA 

083).  Twenty-four SNPs were non-synonymous SNPs that involve SNPs in CDS of 

diamino- pimelate decarboxylase, flagellin FliC, tRNA (guanosine(18)-2'-O)-methyl 

transferase TrmH, Integrase, and AraC family transcriptional regulator. Remaining ones 

occurred mainly in phage related elements. 

Sub cluster 2C: Twenty-eight isolates obtained from two different isolation source group 

constitute this cluster. 71% of isolates in this cluster (20 isolates- including two isolates 

FDA046 and -048 in the sister lineage) were obtained from food commodities of Asia, 

North America and Europe.  Remaining 29% (8 isolates) were human isolates from 

Europe alone. SNPs at 141 genomic positions were distributed in this cluster. Fifteen 

unique SNPs identified in the representative sample FDA015, differentiated this sub 

cluster from cluster 1bovine isolates. Eleven SNPs were non-synonymous including SNP 

in a gene srlA (SEEM1958_RS05760) that encodes a protein PTS sorbitol transporter 

subunit IIC. Sub unit IIC domain forms the PTS system translocation channel required 

for the translocation of sugar substrate across the cell membrane. Irrespective of 

geographical location these closely related S. Mbandaka strains shared a common 

ancestry. Apart from that, clustering of these genetically similar isolates from food 
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commodities and human source may indicate the transmission capabilities and potential 

strength of food related S. Mbandaka strains to cause food borne salmonellosis in human.  

Sub cluster 2D: Sixteen isolates collected from Tennessee state of USA, clustered 

together forming a sister cluster of sub cluster 2C and sub cluster 2E. All isolates in this 

cluster isolated from meat products that includes chicken breast, ground beef, and pork 

chop collected during the year 2008. There were no SNPs unique to this cluster at ≥50x 

coverage compared with cluster 1. Since this cluster shared a common ancestry with sub 

cluster 2C as well as with sub cluster 2E, an analysis was done to find out how many 

unique SNPs differentiate this sub cluster from other two sub clusters.  There were no 

SNPs found at coverage of  ≥50x. When we reduce the criteria to ≥ 20x, for the 

representative sample FDA133, there were 11 SNPs in comparison with sub cluster 2C 

(FDA015) and 14 with sub cluster 2E (EUR069). Ten were common in comparison with 

subcluster2C and 2E that included SNPs in two genes flil (codes for flagellum specific 

ATP synthase) and artM (codes for arginine transporter permease subunit ArtM). Non-

synonymous SNP that causes an aminoacid change Valine (Val) to isoleucine (Ile) 

happened in artM gene while synonymous SNP occurred in flil gene. Out of ten, six were 

non-synonymous unique SNPs.  
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Fig.7. SNP Tree phylogram in increasing order of branch length. Major 
clusters identified in SNP based phylogenetic analysis of S. Mbandaka 
serovar are depicted in different branch colors. Leaf nodes are colored 
based on isolation source group as shown in legend. Branches inside 
the blue dot box is not corresponding to scale 
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Cluster 1 

Sub cluster 2A 

Sub cluster 2B 

Sub cluster 2C 

Sub cluster 2D 

Fig.8. Major clusters in SNP tree phylogram in increasing order of branch length. 
Major clusters identified in phylogenetic analysis of S. Mbandaka serovar are shown 
in different branch colors. Cluster 1 and six sub clusters of primary cluster 2 are shown 
individually. To make leaf label visible magnified images shown in this cartoon are not 
corresponding to any scale. Leaf label represents sample ID and color represents 
isolation source group 
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Fig. 9. Minimum spanning tree (MST) created by cgMLST. For distance calculation, 2502 
targets with good QC results were selected out of 4869 targets identified in reference 
genome S. Mbandaka str. ATCC 51958. 399 samples without any missing targets were 
analyzed to generate sequence type based MST (Minimum spanning tree). Based on the 
genotype multiple samples can be represented by a single node. Links between nodes 
represent genotype distance between samples. Node color represents the major clusters 
identified in SNP tree. Legend: Node color representing each cluster 
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Sub cluster 2E: Comprised of 34 total isolates this cluster is defined by 157 SNPs. 

Isolates from UK formed 70.5% (24 isolates) of this cluster of which 23 were human 

isolates and one from food commodity. Isolates from Asian continent constituted 

remaining 29.5% all of which were obtained from food commodities. A close genetic 

relationship of Asian isolates from food commodities and human isolates from different 

geographical locations of UK form highlighting feature of this cluster formation. There 

were 15 unique SNPs identified for this cluster compared to cluster 1 including 

synonymous SNP in carB gene that codes for large subunit of carbamoyl phosphate 

synthase. Eight SNPs were non-synonymous SNPs, the important ones include SNPs in 

the coding sequences for MFS transporter (locus tag: SEEM1958_RS18305) that confers 

resistance to antibiotic fosfomycin, integrase (SEEM1958_RS17410), PhoPQ regulated 

protein (SEEM1958 _RS12735) and sugar efflux transporter (SEEM1958_RS12855). 

Out of these 15 SNPs, 13 SNPs made this cluster different from its closely related cluster 

sub cluster 2C, which contained isolates from similar sources, though they shared a 

common ancestor. Non-synonymous SNP in a CDS (locus tag SEEM1958_RS13070) 

that codes for major facilitator superfamily (MFS) transporter and a synonymous SNP at 

SEEM1958_RS02400 that codes for tRNA dihydrouridine synthase DusB were the two 

additional unique SNPs identified from cluster 1. The number of SNPs unique to sub 

cluster 2E from sub cluster 2D is similar as that from cluster 1, but three SNPs occurred 

at different locus. One non-synonymous SNP was in a hypothetical protein 

(SEEM1958_RS18715) while other two were synonymous ones in CDS for Rhs family 

protein (SEEM1958_RS18815) and flagellin FliC (SEEM1958_RS06100). Basically, 
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twelve SNPs unique to sub cluster 2E were similar in comparison with cluster1, sub 

cluster 2C and 2D. 

Sub cluster 2F: This is a geographically well-defined cluster comprising 43 out of 47 

Mexican isolates contained in this study. A total of 47 isolates sharing SNPs in 136 

genomic positions were included in this cluster. Two isolates from Michigan, one from 

Pennsylvania and one from New Mexico were the remaining 4 isolates in the cluster. Out 

of 43 Mexican isolates, twenty-nine isolates were clustered together correlating with their 

common isolation source papaya. In contradiction to this unique clustering, one Isolate 

(OTH010), which was also a Mexican isolate from papaya located phylogenetically away 

from this cluster. Remaining fourteen isolates in this cluster were isolated either from a 

food commodity or from Animal feed. A total of 33 unique SNPs that differentiate this 

cluster from cluster 1. Fourteen were non-synonymous and 19 were synonymous 

substitutions within protein coding sequences. More than half of the non-synonymous 

substitutions happened in phage elements. 

Further evaluation with cgMLST was performed to validate the consistencies of the 

clusters formed in SNP analysis. 

2.3.1.2 Sequence type (ST) based Analysis 

In contrast to SNP based neighbor joining tree method, where sequence reads were used 

to analyze single nucleotide variation, de novo assembled sequence contigs were used for 

MLST analysis. Instead of looking for nucleotide variations in the whole genome, 

variations in selected target genes common to reference as well as sample genomes were 

identified in MLST analysis. Distance calculation calculated using different algorithm 

based on genotype makes this analysis as an entirely different approach for phylogenetic 
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analysis. Genetic relatedness of isolates in different clusters in SNP analysis was 

reaffirmed by this different approach indicating that those isolates are truly remain close 

phylogenetically.  

For MLST distance calculation 2502 targets with good QC results were selected out 

of 4869 targets identified in reference genome. Three hundred and ninety nine samples 

without any missing targets were filtered to generate sequence type based MST (Fig. 9). 

There were 14 SNV positions in 14 target sequences identified between 10 isolates of 

cluster1. SNVs were synonymous at two places while at 12 targets at least one sample 

showed non-synonymous SNVs. Including SNVs from reference sequences a total of 

21115 non InDel SNV positions identified from 2300 targets identified between cluster1 

isolates. While for sub cluster 2B total filtered SNVs without InDels (including SNVs 

from reference sequences) were 21409 from 2313 targets (Data not shown).  

2.3.1.3 Pangenome analysis and protein clustering of S. Mbandaka 

A much more resolution in the analysis of intra serovar genetic diversity within the 

serovar S. Mbandaka was accomplished by pangenome and protein clustering analysis 

based on distribution of presence and absence of genes between isolate’s genome. In 

contrast to previous analysis methods that were based on nucleotide variations either in 

the genome sequences as in SNP analysis or in selected core genes as in cgMLST, 

pangenome analysis elucidate the gene content variation between isolates. SNP and 

cgMLST analysis provide information regarding genes or sequences in comparison with 

reference genome and does not give information about any additional genes present or 

absent in study isolates. Pangenome analysis can provide information about variable 

genes present in each isolate.  
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Salmonella core genome and pangenome were estimated to be around 2800 and 10000 

gene families respectively [65]. Pangenome of a Salmonella strain is the total of stable 

core genome as well as abundance of accessory genome, including SPIs, plasmids, phage 

and transposable elements [65]. Pangenome has also been described as addition of core 

genome (orthologs shared among multiple genomes) and variable genome which includes 

gene families shared by two or more organism and singletons (referred to as strain 

specific genes having no orthologs in corresponding genomic strains) [194]. Orthologs 

are the genes in different species that evolved by speciation from an ancestor gene but 

maintaining similar function. 

Twelve Selected isolate genomes representing different clusters and positions in SNP 

phylogenetic tree were selected for pangenome analysis along with ATCC 51958 

reference strain genome. De novo assembled genomes in FASTA file format were 

analysed in Anvi’o (Meren lab,) a software for analysis and visualization of ‘omics data 

[191].  Exclusive ortholog proteins were identified in all thirteen isolates, which were 

clustered into 13 PC Bins (Protein cluster bins – PCB) (Fig.10). Two other PC bins 

(PCB14 and PCB15) were created to analyze proteins that were present in all strains 

except either in isolate FDA176 alone or in both FDA176 and reference strain. A detailed 

information regarding exclusive COG (Cluster of orthologous groups) proteins identified 

in pan genome analysis in all the selected bins are given in table 8. Proteins without any 

known function are not mentioned in the table. A summary of number of exclusive COGs 

present in each cluster are shown in table 6.  
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Table 6. Summary of COGs exclusively present in representative isolate of each cluster 

PC Bin 
number 

Cluster/sub 
cluster name 

Sample ID Exclusive 
orthologs 

Un- 
characteriz
ed 

predicted Phage 
elements 

Other 
Known 
function 

Unknown 
function 

1  Sub cluster 2E EUR069 13 1   1 11 

2 Sub cluster 2A USDA005 16    7 9 

3 Cluster 1 (poultry) USDA015 17 1   4 12 

4 Cluster 2 USDA032 20     20 

5 Cluster 2 USDA037 26 1   2 23 

6 Sub cluster 2F  OTH007 44 3  1 15 25 

7 Cluster 1(Bovine) ADRDL27 64 1 1 1 12 49 

8 Sub cluster 2C EUR034 79 1 1 11 12 54 

9 Cluster 2 EUR062 90  1 5 15 69 

10 Sub cluster 2D FDA135 106 1 2 2 27 74 

11 Sub cluster 2B ADRDL045 219 3 4 9 33 170 

12 Reference ATCC_51958 344 10 19 10 124 181 

13 Cluster 2 FDA176 1117 37 32 41 404 603 

 

PC bins from 1 to 13 were selected to pick proteins that were uniquely acquired by the 

representative isolates. In case of  PC bin 4, 7 and 10 some of the proteins were also 

present in 2 or 3 other isolates, which were not included in finding exclusive orthologs 

for a selected bin. A higher degree of accessory gene presence as well as absence were 

found in FDA176. From PCB13 we could identified presence of additional 1117 proteins 

in this pond isolate from USA. In PC bin 14, there were some proteins that were present 

in all isolates except ATCC51958 and FDA176.  Over all, this analysis revealed the 

higher degree acquisition of variable genes in the genome of salmonella isolate 

irrespective of geographical origin and isolation source which may attribute to the overall 

gene diversity within the serovar. 
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Fig. 10. Pan-genome analysis and visualization of thirteen S. Mbandaka isolates genome 
content. Outer most circle depicts selected protein cluster bins (PCB) based on the presence and 
absence of protein clusters. Inside this circle is a green circle that indicates COG (Cluster of 
orthologous groups) functions. Green color in this circle represents known function and white 
indicates unknown function. Brown circle Inner to green one shows single copy core genes. Next 
two circles show histogram of number of genes in protein cluster and number of genome. 
Remaining circles from outer to inner indicates genome of 13 S. Mbandaka isolate. 
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2.3.2 High-resolution phylogenetic analysis reveals genetic diversity and    

partitioning of S. Mbandaka isolates from similar isolation source 

By the application of NGS method, this study presents a highly-resolved phylogeny 

of the Salmonella serovar Mbandaka isolates. SNP analysis of 465 S. Mbandaka isolates 

was validated by cgMLST to explore the genomic diversity within the serovar. Complete 

genome of S. Mbandaka str. ATCC 51958 (NCBI accession: NZ_CP019183.1) with a 

total length of 4.9 Mb was used as a reference sequence for the comparative analysis. 

Comparative analysis using WGS allowed us to identify two primary clusters and six sub 

clusters within the population structure of this serovar. Cluster 1 remained as an outlying 

group distinguished by 9 SNPs from cluster 2. Minimum number of nucleotide variations 

of cluster 1 isolates from the reference genome as well as homogeneity of the isolates 

with respect to the isolation source and geographical origin may shed light to the 

possibility of these isolates being closest, compared to all other isolates in this study, to 

the evolutionary origin of the Salmonella serovar Mbandaka. All isolates in cluster 1, 

twelve isolates from cattle and one from raw whole egg, were obtained from Texas state 

of USA. At the same time, 37 isolates from the same geographical location and isolation 

source (cattle) were clustered separately in cluster2 forming a sub cluster denoted as sub 

cluster 2B together with 16 other S. Mbandaka isolates. This represents the genetically 

diverse nature of S. Mbandaka isolates from the same host and geographical location. 

Closely related 16 other isolates in sub cluster 2B varied in their isolation source and 

location. Three isolates (OTH021,022, and 023) were from Texas itself but from different 

sources (hamburger :2, ground beef:1) while remaining 13 isolates were from 7 different 
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states of USA except one isolate for which there was no record from which state it was 

collected. However, out of these 13, seven isolates were from cattle. Isolation source for 

remaining isolates were; four from ground beef, one from hog and one from pork chop.  

Interesting observation is that out of 400 isolates, other than those from Texas USA, 

no strain from any other place showed any close relationship to cluster1 strains. Same 

thing applies to sub cluster 2B, where all the isolates were from North America and no 

isolates from any other countries clustered with cluster 2B isolates. This bring forth the 

assumption that in USA there is prevalence of two groups of S. Mbandaka strains, one 

containing geographically isolated and evolutionarily less diverse strains and second one 

accommodating more genetic diversity. Presence of a minimum number of unique SNPs 

provided by the comparative analysis between representative strains of these clusters may 

give substantial evidence for this assumption. Above all in our analysis we identified that 

number of unique SNPs that resides in two bovine isolates from Texas, one representing 

cluster 1 (ADRDL27: 14 SNPs) and the other representing sub cluster 2B (ADRDL 45: 

82 SNPs), differed by five times. Further substantial evidence provided by MLST based 

MST that verified this phylogenetic separation of isolates from similar source and 

location. Sequence typing based on SNV analysis on 2502 targets showed a clear 

separation of cluster 1 isolates from sub cluster 2B irrespective of the isolation source and 

location.  

Sub cluster 2B, which contains more bovine isolates is a sister clade of sub cluster 

2A, one which contains more poultry associated isolates, without any overlap of isolation 

sources between clusters. That is, there was no bovine isolates in sub cluster 2A and no 

poultry associated isolates in sub cluster 2B. This is somewhat similar what we found in 
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cluster1 where poultry isolate and bovine isolates formed two separate lineages inside the 

cluster from their MCRA. Similar pattern exists here between sub cluster 2A and 2B as 

they also formed two separate lineages from their MCRA with a clear discrimination by 

accommodating 21 and 36 unique SNPs respectively. Interestingly we found that all the 

poultry related isolates in sub cluster 2A were obtained from USA. Based on this 

inference we suggest that in USA, cattle and poultry isolates of serovar Mbandaka 

undergone evolutionary changes maintaining their population structure. However, both 

theses clusters shared genetic similarity with porcine isolates. Sub cluster 2A isolates 

shared similarity also with equine, human, animal feed and environmental isolates 

indicating wide host adaptation of these strains. Poultry isolate USDA 015 in cluster 1 

carried one unique SNP in a coding sequence of a type II secretion system protein GspE 

(SEEM1958_RS19665) in comparison with ADRDL027 bovine isolate in the same 

cluster. In sub cluster 2A isolate USDA005, we identified two unique SNPs (frame shift 

mutation) in CDS for phage tail proteins in comparison with cluster1 bovine isolate. 

However as mentioned earlier the number of unique SNPs difference between subcluster 

2A and 2B was much more higher and most of them happened in phage related elements. 

This may suggest that changes in gene content happened in S. Mbandaka isolates as 

shown by pangenome analysis, but acquisition of genetic elements happened maintaining 

the specificity of the host especially in case of isolates from bovine and poultry, two 

major isolation sources of S. Mbandaka isolates in USA.  

Sub cluster 2C and 2E shared their lineage with a small cluster of isolates from 

Tennessee state of USA i.e., sub cluster 2D. 2C and 2E sub clusters have a common 

feature, that they both contain human isolates from Europe and Food commodity isolates 
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from Asian countries. Majority of food commodity sources were plant commodities. 

Interestingly, isolates from tahini collected in 2013 by FDA and MDA, were clustered 

together in this sub cluster. Based on the collection year and collection center that 

matches with CDC investigation reports, we assume these isolates were the ones related 

to multistate outbreak caused by S. Mbandaka in United States in 2013. As per 

investigation report the outbreak was caused by Salmonella from contaminated tahini 

sesame paste imported from Turkey. If that is true, inferred from the close genetic 

relationship between isolates, our study reveals that the contaminated food commodities 

exported from Asian countries might be the source of human isolates in UK.  

Isolates from Tennessee were collected from chicken breast, ground beef, and pork 

chop during the year 2008. These isolates were clustered together forming a sister clade 

to sub cluster 2C and 2E. These three clusters have a most common recent ancestor. The 

genomic evidence here in thus gives us clues that Tennessee isolates have the potential to 

adapt to different host environments. This well nested clustering also put forward the 

possibility of contamination meat products in a common place like a food processing 

facility. Tennessee isolates clustered together as clones from different isolation source. 

This cluster carried more than ten unique SNPs from other two nearby sub clusters 2C 

and 2E indicating these isolates are unique from other two clusters. There were 6 non-

synonymous SNPs unique to this cluster from other two sub clusters, the important one is 

a SNP occured in a gene called artM that codes a protein required for the arginine 

transport across the inner membrane. 

In general, a clear demarcation of clusters in the context of origin of isolates could 

not be seen in this study but clusters were selected based on the preference of more 
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isolates from similar isolation source to be grouped together. One exception is sub cluster 

2F which was clearly defined by the geographical location of isolates. Forty three 

Mexican isolates clustered together in this cluster. Four more Mexican isolates contained 

in this study located some other positions in the phylogenetic tree were the exceptions.  

2.3.3 Virulence gene mapping  

De novo assembled 465 S. Mbandaka isolate genomes were analyzed for virulence 

determinants by BLAST search against virulence gene sequences available from 

virulence factor database [192, 193]. Virulence factors identification was performed in 

CLC Genomics workbench (Version 9.5.3, Qiagen) based on the parameters of minimum 

sequence identity of 90% and minimum sequence length of 50%. 

Overall, 195 virulence genes grouped into 9 categories were identified in our S. 

Mbandaka study strains. Results were shown as heat map in Fig.11. Fimbrial adherence 

determinanats, non-fimbrial adherence determinants, Macrophage inducible genes, 

Magnesium uptake genes, Genes involved with secretion system, serum resistance genes, 

stress protein genes, Toxin factors, and two component system genes were the 9 

categories under which all 196 virulence factors available from VFDB were grouped for 

better understanding. 49% of the identified virulence factors belong to the group Fimbrial 

Adherence Determinant (FAD). FADs play important roles in host cell adherence and 

invasion. 42.6% genes were secretory system related genes. Nine genes (4.5%) were 

plasmid encoded genes. 

Out of 196 genes represented by database 63 genes were present in all 465 isolates. 

Presence of 93 genes varied between 97.4% to 99.8% of isolates. One gene was not 

identified in any isolate while remaining 39 genes were highly varied in their presence.  
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Adherence determinants: 

Ninety-seven fimbrial adherence determinants and 4 non- fimbrial adherence 

determinants were identified in total. Twenty fimbrial adherence genes were present in all 

465 isolates. These twenty fimbrial genes include 6 bcf, 4 csg, 3fim, 5stb and 2 std genes. 

More than 99.5% isolates carried 
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Fig. 11. Heat map showing identified virulence factors in S. Mbandaka serovar isolates. De novo assembled sequences of 465 S.Mbandaka isolates 
under this study  were analyzed for known virulence factors by performing a BLAST search against 196 virulence gene sequences available from 
Virulence factor database (VFDB) using CLC Genomics workbench. Minimum identity of 90% and minimum sequence length of 50 % were the criteria 
used for the identification of each virulence factor. For the better understanding, Virulence factors were categorized in to nine different types depicted 
as Type I to Type IX arranged in a serial order from top to bottom on Y axis. All 465 samples were arranged in alphabetical order from left to right on X 
axis. Type I – Fimbrial adherence determinants, Type II – Macrophage inducible gene, Type III – Magnsium uptake, Type IV – Non fimbrial adherence 
determinants, Type V – Secretion system, Type VI – Serum resistance, Type VII – stress protein, Type VIII – Toxin, Type IX – Two component system. 
Legend: heat color based on percentage identity of each gene ranging from 90 to 100. 
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virulence factor Fim encoded by 9 genes (fimA,C,D,F,H,L,W,Y,and Z). Other virulence 

factors and genes that were present in more than 97.4% of isolates include Factors Stj, 

Ste, Stf, Sth, Sti, Stk and genes bcfG, csgD,F,G, lpfA,B,C,E,stdA,tcfB and tcfC. 

Unique presence of 8 fimbrial genes (pefB, pefC, pefD, sefC, spvA,spvB,spvC and 

spvR) were found in a human isolate (EUR033) from  United Kingdom. Isolate EUR033 

carried maximum number 83 out of 97 fimbrial adherence genes. Minimum number of 

FADs were identified in two USA isolates FDA 176 and FDA 177 isolated from pond 

samples.   

Virulance factor sta was present in only 5 isolates. All these five contained 7 sta 

(staA-staG) determinants in their genome. Similarly, virulence factor stc was identified in 

8 isolates. Genes stcA,B C and D were present in 6 isolates. One human isolate EUR066 

carried stcB, C,and D. Only stcB was present in MDH010 (Porcine isolate from USA). In 

case of another virulence factor Tcf only three isolates (FDA019, FDA071, OTH026) 

were identified with tcfD, but they were also present with tcfB and tcfC. Gene tcfB and C 

were present in a total of 456 samples. All these three determinants were absent in 7 

isolates.  

Virulence factors associated with Secretory system  

48.8% of identified genes (41 out of 84) in this category were found present in all 

isolates. 39 out of 84 genes were found present in ≥ 98% of isolates analyzed suggesting 

that most of the genes in this category are highly conserved in S. Mbandaka isolates. 

Only four genes (sspH2, sopE, srfH, and gog B) encoding for Type three secretion 

effector proteins showed major variation in their presence. They were found only in < 10 
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isolates with gene gogB as the least one identified only in two isolates (ADRDL73 and 

FDA013). The virulence genes in this category are mainly from SPI1 or SPI-2. There 

were 30 SPI-1 genes encoding Type III secretion system proteins that includes hil and inv 

genes along with ten T3SS-1 effector genes. From SPI-2 there were 28 genes for T3SS 

and 15 for T3SS-2 effectors. Gene slrP encoding effectors that are translocated via both 

system were also identified. 

Other virulence genes identified in S. Mbandaka serovar: 

There were two macrophage inducible genes mig14 and mig5 identified in our study 

isolates.  Virulence gene Mig14 that encodes for transcriptional regulator was identified 

in 463 S. Mbandaka isolates. Mig5 is a plasmid encoded gene was uniquely identified in 

human isolate EUR033. 

Two Magnesium uptake genes mgtB and mgtC were identified in 464 and 4654 

isolate respectively. mgtB was not identified in FDA168 for the set criteria of ≥ 90% of 

sequence identity. Plasmid encoded serum resistance gene rck was unique to EUR033, 

human isolate from UK. Stress protein virulence factor was present in 5 isolates 

ADRDL30, 33, 73, EUR033, and NYSDH005. Gene sodCl encodes for a superoxide 

dismutase (Cu-Zn) precursor was identified in these 5 isolates.  

Two genes encoding for typhoid toxin subunits were also identified in S. Mbandaka 

isolates. Eight isolates (ADRDL11, 28, FDA013, 176, 177, OTH001, 10, 26) were 

identified with virulence gene cdtB that has limited amino acid sequence similarity with 

DNAse 1  family of proteins [195] and encodes a subunit of typhoid toxin. All but three 
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isolates FDA176, 177 and OTH001 in this group, were identified with another typhoid 

toxin subunit gene pltA.  

Two PhoPQ virulence factors were found universally in all isolates except one 

EUR050 in which one gene phoQ was not identified. 

 

2.3.4 Plasmid encoded as well as typhoid associated virulence factors were 

identified in S. Mbandaka isolates 

A set of Five Fimbrial operons (bcf, csg, fim, stb, and std ) were identified as 

common virulent factors present in our study set of 465 S. Mbandaka isolates irrespective 

of isolation source and geographical location.  Some of these operons (Bcf, stb, std and stj 

fimbrial operons) have been found to contribute intestinal persistence and long term 

carriage of S. enterica serotype Typhimurium in genetically resistant mice [196, 197]. 

Curli fibers, thin aggregative fibers were found to be present and expressed in many 

enteropathogens including Salmonella and E. coli. Two operons, csgBA 

(C) and csgDEFG, involved with curli biogenesis [198] have been identified in S. 

Typhimurium[199]. All seven ORFs in these operons have been identified in >97% of S. 

Mbandaka isolates.  

Presence of virulence plasmid, not in all isolates, has been reported in several 

Salmonella serovars such as serovar Abortusovis, Choleraesuis, Dublin, Enteritidis, 

Gallinarum/Pullorum, Paratyphi C, Sendai and Typhimurium [200-205]. All virulence 

plasmids contain Salmonella plasmid virulence locus, highly conserved 8-kb region. 

Presence of virulence plasmid with this spv operon, consisting of regulatory spvR locus 
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and structural spvABCD genes, was reported to sufficient to enable systemic infection in 

animal models [206, 207]. Out of five plasmid virulence genes spv R is a transcriptional 

activator that encodes for a positive regulatory protein required for the expression of 

spvABCD [206, 208]. Out of five genes in spv locus, four of them, spvRABC, were found 

unique to a human isolate from UK (EUR033). But spvD was not identified in any 

isolates of S. Mbandaka in our study dataset. Six more plasmid encoded genes (pefB, 

pefC, pefD, sefC, (FADs), mig-5 (MIG) and rck (serum resistance gene)) were also found 

unique to this UK isolate obtained from human. According to Feng et al, Salmonella 

serovars acquire virulence plasmids mainly through vertical transmission, although 

exceptions are there as in case of Enteritidis where the acquisition was found via 

horizontal transfer [205]. If vertical transmission was the way of plasmid acquisition in 

this isolate, comparing virulence plasmid between this and other serovars may give 

insights to the source of this virulence plasmid acquisition and much more evolutionary 

information about this serovar. Since presence or absence of plasmid plays some role in 

host adaptation a comparison between isolates in this aspect may reveal the original 

causes of outbreaks as well. 

Baumler et al, described scattered phylogenetic distribution of certain fimbrial 

operons, either  due to evolutionary loss as in  lpf (long polar fimbriae) operon, or by 

horizontal gene transfer as in sef (S. enteritidis fimbriae) and pef (plasmid encode 

fimbriae) operons,  and their limited presence in small number of serovars [209, 210] . 

They also suggested with several examples that presence or absence of these fimbriae 

operons might have played role in host adaptation of certain Salmonella serovars. Our 

result showed that serovar Mbandaka carry lpf operon with the presence of lpf A,B,C,and 
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E genes in more than 96% isolates and  lpf D gene in around 2.3% isolates. Interestingly 

one human isolate EUR033 showed unique presence of three pef genes (pef B, C and D) 

and one sef gene (sef C) suggesting the horizontal acquisition of fimbrial operons in S. 

Mbandaka isolates. 

Presence of typhoid associated virulence factor genes in S.Mbandaka: 

Certain virulence factors (cdtB, pltA and pltB) which were originally characterized in 

S. Typhi have already been identified in isolates of NTS serovars Montevideo, 

Schwarzengrund, Bredeney and 9,12:l,v:- by Comparative Genomic Hybridization 

(CGH) technique [211]. Cytolethal distending toxin subunit B (CdtB) and Putative 

pertussis-like toxin subunit (PltA) virulence factor genes (cdtB and pltA) were identified 

in eight and five isolates respectively in our study isolates. It has been shown that 

intracellular S. Typhi express a protein homologous to active enzymatic subunit of 

Cytolethal Distending Toxin (CDT) CdtB that cause cell cycle arrest, host cell distension 

and nuclear enlargement [195]. cdtB and pltA are encoded within SPI-11 together with 

pltB. These three genes were shown to produce a tripartite exotoxin intracellularly by S. 

Typhi, which was then transported extracellularly via vesicular mechanism [211, 212]. 

All eight isolates (ADRDL11, 28, FDA013, 176, 177, OTH001, 10, 26) with cdtB gene 

were isolated mainly from environmental (chicken box paper, pond, soil, and spice mix) 

samples except two isolates OTH001 (papaya) and ADRDL 28 (Bovine). This suggests 

the prevalence of Typhoid toxin producing S. Mbandaka isolates in environment and the 

transmission through food chain to hosts. 

Typhi colonizing factor (tcf) operon was described as a putative fimbrial operon 

encoded in SPI-6, with four reading frames (tcfA, B, C, and D), that plays important role 
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in host specificity of S. typhi[209, 211]. This operon was reported to found in Salmonella 

serovars, Choleraesuis, Schwarzengrund and Heidelberg, Virchow and Montevideo in 

addition to Typhi and Paratyphi [213-215]. ORFs tcfB and C were identified in 98% of 

our isolates under study. In our result tcfD was found only in three USA isolates 

FDA019, FDA071, OTH026. First two isolates were collected from animal feed while 

third one from soil indicate the prevalence of S. Mbandaka strains in environment, which 

has the gene repertoire to cause serious Salmonella infection. 

2.3.5 Antimicrobial Resistance pattern 

All 465 isolates in this study were subjected to whole genome short gun sequencing. 

Using CLC genomics workbench (version 9.5.3 Qiagen) de novo Assembled sequences 

were used to identify resistance genes by BLAST search against 2156 resistance genes 

data set available from ResFinder database (Center for Genomic Epidemiology). 

Minimum percentage sequence identity of ≥ 85% and sequence length identity of ≥ 50% 

were the criteria used to identify resistance determinants. A total of 376 (17.4%) 

resistance genes were identified in 125 genomes (26.9% of total genomes analyzed). We 

identified genes that confer resistance to 9 different class of antimicrobial agents. Out of 

newly sequenced 76 isolates only 11 isolates were identified with resistance genes. Fig.12 

shows heat map of identified genes against isolates showed at least one resistant gene. 

Most common gene identified was for tetracycline resistance (tetB) followed by 

streptomycin resistance genes (strA and strB). More than hundred determinants were 

identified in 5 isolates (FDA003, ADRDL7, MDH004, EUR059 and EUR044) with one 

Isolate (FDA 003) (turkey isolate collected from ground cumin) contained highest 

number, 246 determinants, in our strain set. Genes that confer resistance to all 9 class of 
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antimicrobial agents were identified in isolate FDA003. Forty-three isolates contained 

only one AMR determinants, the most common was tetB gene. No AMR determinants 

were identified in cluster 1, and subcluster 2C isolates but were identified in 36, 11, 10 

and 28 isolates of Sub cluster2A, 2B, 2D and 2E. There were 5 resistant strains from 

Texas (Bovine-4, ground beef-1) in sub cluster 2B.  Out of 5, one bovine isolate 

(ADRDL 45) carried aminoglycoside (strA and strB), sulphonamide (sul2) and 

tetracycline (tetA)AMR genes. One isolate (OTH021) from ground beef carried 67 

quinolone resistance genes. All 5 bovine isolates from Florida (ADRDL10, 12, FDA 154, 

156 and 157) carried genes for tetracycline resistance (tetC). Along with this gene, 

FDA156 contained two additional aminoglycoside genes (aph (3')-Ia and aph(3')-Ic) and 

FDA 157 carried 65 quinolone resistance genes. 

Out of 60 human isolates in our study, 58 were from United Kingdom, one from 

Taiwan (EUR005) and one from USA (NYSDH005) Taiwan isolate (EUR005) identified 

with the presence of only one tetracycline resistant tetB gene. Isolate from USA 

(NYSDH005) was found to carry tetracycline (tetA), Sulfonamide (sul2) and beta lactam 

(blaCFE1, bla LAT-1, blaCMY and blaBIL) resistance genes. Fifteen UK isolates 

showed resistance determinants in their genome that include resistance against six group 

of antimicrobials but not for rifampicin, macrolides and phenicols. Eleven were identified 

either with qnrB or qnrS quinolone resistance genes. No human isolates with both qnrB 

and qnrS were found in our sample set. 

In sub cluster 2E, 26 out of 28 resistant strains genome carried resistance genes strA 

and strB only. All those 26 strains were from papaya in Mexico. AMR determinants for 

aminoglycoside (13 genes), phenicol (1 gene), sulfonamide (2) and tetracycline (1) were 
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identified in one resistant strain (FDA047) from serrano pepper in Mexico. Another 

isolate in this cluster collected from chicken drag swab in USA:MI contained 65 genes 

for quinolone resistance. 
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Fig. 12. Heat map showing presence of antimicrobial resistance genes in S. Mbandaka serovar isolates. For the identification of AMR 
genes, de novo assembled genome sequences of 465 S. Mbandaka isolates were BLAST searched against 2156 AMR gene sequences 
available from ResFinder database. Minimum sequence identity of 85% and sequence length identity of 50% were parameters used for the 
identification of AMR gene presence.  A total of 376 resistance genes belong to 8 classes of antimicrobial agents were identified in overall 
125 isolates. Legend: heat color based on percentage identity of each gene ranging from 85 to 100. 
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Tetracycline resistance: 

Genes tetA, tetB, tetC and tetG were the only four tetracycline genes identified out of 

104 total genes available in the ResFinder reference data set. These genes were involved 

with efflux pump mechanism that confers drug resistance to bacteria [216]. A total of 82 

isolates out of 125 resistant strains in our strain set showed tetracycline resistance 

determinants in their genome. The tetB gene was the commonest in our strain set 

identified in 50 isolates (60.9%). Prevalence of tetA, most frequently occurring 

tetracycline gene in Gram-negative bacteria [216], was 30.5% occurring in 25 isolates. 

Genes tetC and tetG were identified in 7 and 1 isolates respectively. All except one (FDA 

079) contained no more than one tet genes. Both tetA and tetB were identified in FDA 

079 along with 89 other AMR determinants. Gene tetB was the common gene identified 

in most of the isolates with only a single AMR determinant. One human isolate from 

Taiwan (EUR005) belongs to this category which carries only one determinant in its 

genome ie, tetB. 

Aminoglycoside resistance: 

In total 34 resistance genes were detected in 64 resistant strains. Genes strA and strB 

were the most common resistance genes present in >60% of resistant strains followed by 

genes aadA1, aadA2, aadA3, aadA12, aadA13, aadA15, aadA17, aadA21, aadA22, 

aadA23, aadA24, aadA8, and aadA8b (37.9%). Thirteen resistant genes (ant (3'')-Ih- aac 

(6')-IId, aadA6, aadA10, aadA11, aadA16, aac (3)-Ib-aac (6')-Ib, aac (3)-IIa, aac (3)-IIc, 

aac (3)-IId, aac (3)-IIe, aac (6')-Ib, aac (6') Ib-cr,and aacA4) which form 38.2% of total 

aminoglycoside resistance genes identified were unique to Turkey isolate (FDA003) 

obtained  from ground cumin. 
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Beta lactam resistance: 

Beta lactam resistant genes blaCARB1, blaCARB2, blaCARB3, blaCARB4, 

blaCARB6, blaCARB11 and blaCARB12 were unique to a bovine isolate from Oklahoma, 

United states (ADRDL73) collected in the year 1988. Another bovine isolate from Texas 

(ADRDL31) contained only one resistant gene that is a beta lactam resistant determinant 

blaSED1. This gene was identified as unique to ADRDL 31. 84 blaCMY genes were 

identified only in 4 isolates (EUR46, FDA166, MDH005, NYSDH005). 153 blaTEM 

genes were identified in only 5 isolates (ADRDL73, EUR044, EUR059, FDA003, 

MDH004). 

Quinolone resistance: 

73 quinolone resistant determinants were identified in our study strain set. Eight 

isolates were identified with 67 genes (EUR 011, 025, 030, 056, 066, FDA 003, 079, 

OTH021), one with 66 genes (ADRDL 07) followed by two with 65 genes (FDA157 and 

OTH 031). All of them were qnrB genes. Isolation sources of these above isolates were 

distributed widely including human, bovine canine and environmental isolates. Six genes 

(QnrS1 – S6) were uniquely present in 6 human isolates (EUR 54, 59, 61, 65, 71 and 74) 

from United Kingdom. qnr genes are plasmid mediated quinolone resistance (PMQR) 

determinants that have been  identified in several enterobacterial organisms including 

Salmonella [217]. Aac (6’) lb-cr determinant unique to isolate FDA 003 was the only 

fluoroquinolone resistant gene identified in our study. Aminoglycoside acetyltransferase 

aac (6’) lb-cr determinant acetylates several fluoroquinolones and offer resistance to 

agents such as norfloxacin and ciprofloxacin [218]. Eleven human isolates from UK were 
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identified with quinolone resistant genes. Five of them carried 67 QnrB genes (EUR 011, 

025, 030, 056, 066) and six of them carried 6 QnrS genes. 

Sulfonamide and Trimethoprim resistance: 

Three sulfonamide resistance determinants, sul1, sul2 and sul3 were identified in a 

total of 39 isolates. Sul2 alone was present in 8 isolates (EUR 054,62, 65, 74, MDH 005, 

NYSDH 005, ADRDL 45, and ADRDL 73) from Human, Bovine and chicken sources, 

while three isolates FDA003, MDH 008, MDH 010 from ground cumin and porcine 

contained all three determinants. Sul1 and sul3 were identified together in 28 isolates 

from widely different isolation sources. But no isolates were identified with either sul1 or 

sul3 alone. Dfr12 was the common determinant identified in 12 of our study strains. 11 

isolates out of 12 contained only this allele. One isolate (FDA 0079) contained both 

dfrA12 and dfrA1. Including this one there were total 7 isolates identified with dfrA1 out 

of which remaining 6 of them contained only dfrA1 trimethoprim resistant allele. 

Determinants dfrA16 (ADRDL 73), dfrA15 and dfrA15b (EUR 004) dfrA27 and dfrA28 

(FDA 003) were identified in one isolate each. dfrA14, dfrA30 and dfrA5, all three 

occurred in 5 isolates in which no other trimethoprim resistant genes were identified. 

Four of them were human isolates while one (EUR044) was food isolate. 

Macrolide, phenicol and rifampicin resistance: 

Macrolide resistant determinant ereA was identified in bovine isolate from 

Oklahoma and mphA was identified in FDA003, Turkey isolate from ground cumin. 

Phenicol resistant determinant gene floR was identified in 4 isolates. Three rifampicin 

resistant genes were identified in this study which were all present in FDA 003. 
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2.3.6 Resistance to multiple antimicrobial agents was identified in S. Mbandaka 

isolates  

Potential of WGS to predict antimicrobial susceptibility of bacteria has already been 

described by several research studies [182, 219, 220]. Here, we report antimicrobial 

resistance gene pattern in 465 S. Mbandaka isolates by analyzing publicly available 

sequence data using WGS. Overall, 376 genes that confer resistance to 9 classes of 

antimicrobial agents were identified from 125 S. Mbandaka isolates. 65.6% of isolates 

showed resistance to tetracycline followed by resistance to aminoglycosides (52.8% 

isolates). Our analysis revealed resistance of S. Mbandaka isolates to more than three 

classes of anti-microbial agents.  Fifteen isolates showed presence of resistance genes 

against more than three classes of antimicrobial agents. Twenty-two isolates showed 

resistance against more than three classes of antimicrobial agents. One isolate from 

Turkey carried 246 resistant determinants involved with resistance to all 9 classes of 

antimicrobial agents. This MDR isolate obtained from ground cumin was the only one in 

our study strains that harbored 3 rifampicin resistant determinants as well as one 

macrolide resistant gene mph (A).  

Extended Spectrum Beta Lactamase  (ESBLs) CTX-2 has been identified in a S. 

Mbandaka strain, isolated from a Algerian infant, with reduced susceptibility to 

cefotaxime [221]. In another study bla SHV-12, a ESBL gene that confers resistance to 

Extended spectrum cephalosporins has been identified in a S. Mbandaka isolate [222]. 

But both these were not identified in our study strains. However, blaTEM genes, that 

have been reported to code for ESBLs [223], were identified in five isolates 
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(ADRDL73,EUR44, 59, FDA003, and MDH004). A total of 153 blaTEM genes were 

found uniquely present in these five isolates. 

Ceftriaxone resistance is a serious concern because of its use in the treatment of 

salmonellosis in children. In Salmonella, resistance to ceftriaxone is mainly due to AmpC 

β-lactamase (blaCMY-2) gene[224, 225]. There were four S. Mbandaka isolates (EUR046, 

FDA166, MDH005, and NYSDH005) in our study harbored bla CMY-2 genes. EUR046 

was a human isolate while others were from poultry product (FDA166 and NYSDH005) 

and cattle (MDH005). This explains the prevalence of ceftriaxone resistant S. Mbandaka 

isolates in human as well as in food animals or animal products. These four isolates 

harbored a total of 82 blaCMY genes which were found unique to these four in our study. 

CMY- β-lactamases are cephalosporinases that can hydrolyze all β-lactams except 

carbapenems [223]. 

Majority of human isolates in our study were from UK. Out of total 60 human 

isolates 58 were from UK. Of these 11 isolates carried quinolone resistant genes, five 

isolates with qnrB and six with qnrS. These are PMQR genes that confer resistance by 

protecting DNA gyrase and topoisomerase IV from quinolone inhibition [226]. First 

report of PMQR was in 1998 in Klebsiella pneumoniae isolate from USA [227]. Qnr 

proteins, aminoglycoside acetyl transferase AAC (6’)-lb-cr and the efflux pump protein 

QepA were the different kinds of identified PMQR mechanisms [218, 228, 229]. 

Epidemiology of  three types of qnr determinants has been very well explained in a 

review article by Cattoir et al, in 2009 [218]. Quinolones are widely used antimicrobial 

agents in both human and veterinary clinical practices. Development of quinolone 

resistance in Gram- negative and Gram-positive bacteria limits the use of quinolones for 
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various clinical applications [230]. Indiscriminate use of antibiotics in food animals is 

considered to be one of the major reasons for development of quinolone resistant strains 

of bacteria that may gain access to human through food chain. There were six strains 

from other isolation source also showed quinolone resistance in our study. These isolates 

were from chicken drag swab (1), cattle (1), beef products (2), ground cumin (1), and 

canine feces (1). 

2.4 Conclusions 

This study explores the genetic and evolutionary diversity of Salmonella enterica 

serovar Mbandaka iterating the power of massively parallel sequencing technologies to 

assess the diversity within a serovar at single base resolution. For the first time, we have 

studied the phylogenetic structure of S. Mbandaka incorporating sequence data of 

massive number isolates from different parts of the world. We also aimed to define the 

virulence and antimicrobial resistance gene repertoire of S. Mbandaka to reveal the 

capability of this serovar as a potential threat to public health. Our data show a split in 

the cluster formation of S. Mbandaka isolates from similar isolation source and origin.  

Although acquisition of accessory genes may result in the genetic diversity within 

this serovar, this acquired diversity does not appears to alter host adaptiveness at least in 

poultry and bovine isolates which needs to be further substantiated by analyzing more 

number of host specific isolates. Moreover, we could show that irrespective of isolation 

source most of the isolates in our study carried a similar virulence repertoire. 

Additionally, existence of isolates with resistance to more than three classes of 

antimicrobial agents was also revealed by this analysis. To the best of our knowledge 
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this study forms the first high resolution genetic analysis of S. Mbandaka which may 

support future outbreak investigations and researches on this serovar. 
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3 Chapter 3: Analysis of host cell invasion and acid resistance 

phenotypic characters of S. Mbandaka  

3.1 Introduction  

Food borne infections caused by Salmonellae are an important worldwide concern 

[53, 231]. As per the latest reports based on CDC Salmonella outbreak analysis data, the 

overall incidence of Salmonella outbreak remains same for the last few years in USA but 

incidence scenario due to different serovars has changed [232]. Some of the serovars 

which were not a concern previously, started to became a concerned source of recently 

occured food borne outbreaks. S. Mbandaka is one of such Salmonella serovar which 

caused multistate human Salmonella outbreaks in USA in 2013 and 2016 [162, 163]. 

Cattle, chicken and pigs are the major host of S. Mbandaka in USA, and many of these 

act as asymptomatic carriers [75]. S. Mbandaka has also been isolated from a variety of 

sources including animal feed, plant and meat food products, as well as from 

environmental samples.  

Comparative genomic analysis of global collection of 465 S. Mbandaka sequence 

data elucidate the population structure, intra serovar distribution of virulence factor and 

antimicrobial resistance genes of this serovar (chapter2).  Since the genotype may not 

always reflect the phenotypic behavior of the bacteria, analysis of phenotypic properties 

is well demanded to understand functional relationship between strains from different 

isolation source especially clinical and non-clinical strains. For this purpose, seventy-six 

S. Mbandaka strains collected from different places of USA has been used for cell 

invasion assay, acid tolerance assay as well as for antimicrobial resistance study. Data 
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comparison between strains of bacteria was carried out to see whether any intra serovar 

differences exist between strains based on their source of isolation, geographical area of 

collection, clinical and non-clinical properties. 

3.2 Materials 

• LB (Luria Broth/Lysogeny broth/Luria bertani) Broth and LB plates  

For one liter of broth, 25g LB broth powder (LB Broth, Fisher Bio reagent; BP1426-

2) was added to 1000ml of Milli Q water. When completely dissolved, autoclaved the 

media at 121oC, at 15 psi pressure for 20 minutes. For LB plates, after mixing LB 

broth powder 1.5% bacteriological agar (Agar granulated, Fisher Bioreagent; 

BP9744-5) was added. Agar containing media was then autoclaved, cooled down 40-

50o C and then immediately poured out into petridishes. 

• pH adjusted LB broth 

Normal LB broth had a pH ranges from 6.8 to 7.0. Broth with lower pH was prepared 

by using 12 N Hydrochloric Acid (HCL). LB broth with pH of 4.0, 5.0, 6.0, and 7.0 

were prepared. 

• Cell culture media 

Complete media: Dulbeccos Modified Eagle Medium (DMEM(1X) + Glutamax-I, 

Gibco; 10569-010) supplemented with 10% (v/v) FBS (Fetal Bovine Serum) and 1% 

Antibiotic and Antimycotic solution  

Plain media: contains no supplements 

• Antibiotic (Gentamicin) containing Cell culture media 
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Added Antibiotic Gentamicin sulfate (Gentamicin sulfate, Across organics; 

455310050) at a concentration of 100µg/Liter to Plain DMEM + Glutamax media. 

Filter sterilized the media with 0.2µ filter and stored at 4oC. 

• 1% Triton X 

Prepared 1% Triton X in Phosphate Buffered Saline (PBS) from 100x.  To make 

100ml of 1% Triton X, 1ml of 100x Triton X was mixed to 99ml of PBS (1x). After 

Vortexing well, the mixture was kept at room temperature for overnight. Filter 

sterilizing was carried out using 0.2µ filter before use. 

• 0.125% Trypsin EDTA (1X): Gibco by life technologies, Cat# 25200-056 

• Fetal bovine serum (heat inactivated), premium: Atlanta biologicals, Cat # S11150H 

• T75 tissue culture flask: Fisherbrand, Cat # 353136 

3.3 Methods 

3.3.1 Cell invasion Assay 

3.3.1.1 Bacterial culture and preparation 

All 76 S. Mbandaka strains under study were cultured in 3ml LB broth. 3ml of LB 

broth without bacterial inoculation was used as a control to rule out the media 

contamination. After overnight incubation at 37oC, OD (Optical Density) at 600nm was 

measured keeping the normal uninoculated LB broth as blank. An OD600 of 1 was 

considered as 109 Colony Forming Units (CFU)/ml of culture. Based on the number of 

epithelial cells per well in tissue culture plate, we calculated number of bacteria required 

to infect cells with a MOI (Multiplicity of Infection) of 100, that is 100 bacteria per cell. 

Once the number of bacteria required was determined, we found out the volume of each 
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bacterial strain culture based on OD600 value to get the number of bacteria to infect the 

epithelial cells. Respective volume of each bacterial culture was then aliquoted into 1.5ml 

Eppendorff’s tube (Autoclaved). Duplicate tubes were prepared for each bacterial strain. 

Spun down the bacteria at 8000 rpm for 5 minutes and discarded the supernatant media. 

Re-suspended the bacterial pellet in 500µl sterile PBS (1X) by vortexing and then 

pelleted again the bacteria at 8000 rpm for 5 minutes. Repeated the PBS wash one more 

time and then discarded the supernatant after the final spin. Two times washed (with 

PBS) bacterial pellet was then re-suspended in 600µl of plain DMEM cell culture media. 

3.3.1.2 Caco2 cell culture and preparation 

Human Colorectal Adenocarcinoma cells (Caco2 cells) were obtained from ATCC. 

Cells culture Passage number ranged from 53 to 70 during the entire experiment period. 

Cells were grown in DMEM medium containing Glutamine (DMEM(1x) + Glutamine; 

Gibco) supplemented with 10% (v/v) FBS and 1% Antibioic and antimycotic solution at 

37oC in 5% CO2 (v/v) in T75 Tissue culture flask. Once the cell monolayer was 70 - 80% 

confluent, cells were trypsinized with 0.125% Trypsin EDTA for 5-10 minutes. 

Trypsinization was stopped by adding FBS supplemented DMEM media. The cell 

suspension was centrifuged at 1200 rpm for 5 minutes and the supernatant medium was 

discarded to wash off the trypsin EDTA. The cells were re-suspended in complete 

DMEM + Glutamax media and uniform cell suspension was made by gentle pipetting. 

Cell count per ml of cell suspension was determined using Neubours hemocyto- 

meter. Volume of cell suspension required for a seeding density of 0.3x 105 per well of a 

24 well plate was determined. A total volume of 1.5 ml media per well was used for cell 

culture in 24 well plate. Plate was then incubated at 37oC in 5% CO2 for 48 hours. After 
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incubation trypsinized cells in two wells of the plate and determined average number of 

cells per well based on which number of bacteria required for each well was calculated 

for a MOI of 100. 

3.3.1.3 Cell invasion assay protocol 

Gentamicin protection assay as described by Lee et al. was used with slight 

modification [233]. Cell monolayers in the 24 well plate were washed two times with 

sterile 1x PBS. Inoculated the Caco2 cells in each well with 600µl of bacterial suspension 

already prepared. In each experiment two wells for each bacterial strain were used. These 

wells were inoculated with duplicate tubes of each bacterial suspension. Incubated the 

plate at 37oC in 5% CO2 for 2 hours. After incubation, we removed the media containing 

bacteria from each well and then washed one time with 1ml of sterile PBS (1x). Cells 

were then treated with 400µl of Gentamicin containing (100 µg/ml) DMEM media. 

Gentamicin treatment  kills extracellular non-invading bacteria while intracellular 

bacteria remain viable [233] . Incubated the plate next 1 hour at 37oC in 5% CO2. Washed 

the cells two times with sterile PBS (1x) followed by lysis of the cells with PBS 

containing 1% Triton X-100 (Sigma) for 10 minutes to release intracellular bacteria. 100 

µl of lysed cell suspension from each well was then serially diluted using sterile PBS 

(1x). Dilutions of 10-1 to 10-5 were prepared, 100 µl of which were then used for spread 

plating on LB agar plates. Plate count was then taken after overnight incubation. Average 

CFU/ml was then calculated for each bacterial strain. The experiment was done two times 

with duplicate wells for each bacterial strain. 
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3.3.2 Acid Tolerance Assay 

Bacterial strains were cultured overnight as mentioned before. Two hundred and 

forty microliter culture was then aliquoted into a non-tissue culture treated flat bottom 96 

well plate. OD600 was measured using an ELISA plate reader. Plain LB broth was used as 

blank. Subtracted the blank reading from the sample OD600 reading to get the actual 

OD600 of the bacterial culture. Calculated the volume of LB broth needed to add in each 

sample to adjust the OD600 to 0.4. Set up flat bottom, non-tissue culture treated 96 well 

plates with LB broth, the pH of which was adjusted to 4.0. Triplicate wells for each 

bacterial sample were arranged with 180µl of sterile LB broth (pH=4.0). Aliquoted 20µl 

from the OD adjusted (OD=0.4) bacterial culture and mixed with respective wells 

(triplicate) of each sample with pH 4.0 media to make the total volume 200µl per well. 

Immediately after mixing OD600 was measured using the ELISA reader plate. This was 

considered as 0th hour measurement. Plates were then incubated at 37oC in 5% CO2. 

OD600 was measured at time points 3hours and 6 hours.  

3.3.3 Antibiotic Sensitivity Assay 

Susceptibility to 14 antimicrobial agents were determined for 76 S. Mbandaka 

isolates using the Sensititre NARMS Gram Negative Plate (CMV3AGNF, Thermofisher). 

Resistance to Antimicrobial agents was determined as per Clinical and Laboratory 

Standards Institute (CLSI) guidelines. Five beta lactams (Amoxicillin/ Clavulanic acid, 

Ampicillin, Cefoxitin, Ceftiofur, and Ceftriaxone), two quinolones (Ciprofloxacin and 

Nalidixic acid), two aminoglycosides (Gentamicin and Streptomycin), azithromycin 

tetracycline, Sulfa trimethoprim (Trimethoprim/ sulfamethoxazole), sulfisoxazole and 

Chloramphenicol were the antibiotics used for susceptibility testing. Test results acquired 
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for antibiotics Azithromycin and sulfisoxazole were indeterminate and were excluded in 

further analysis. 

3.3.4 Statistical analysis 

Single factor ANOVA (one way ANOVA) and Tukey multiple comparison test were 

performed in Prism 7 (GraphPad software, Inc.), where a p-value less than 0.05 was 

considered as significant [165]. Significant difference in Tukey multiple comparison test 

was determined by pair wise comparison sample means. Difference between two means 

was computed at confidence interval of 95%. For each comparison, critical value q was 

calculated using the equation q = q=sqrt (2) *D/SED, where, D is the difference between 

two means and SED is the standard error of that difference (computed from all data).  

3.4 Results and discussion 

3.4.1 Analysis of host cell invasiveness of S. Mbandaka on Caco2 cells 

Gentamicin protection assay [233] with slight modification was used for invasion 

assays. The results are shown in Fig.13. A MOI of 100:1 (100 bacteria per cell) was used 

to infect Caco2 cells as in vitro cell culture model. Cells were incubated with bacteria for 

2 hours. Non-invading extra cellular bacteria were killed by gentamicin treatment at a 

concentration of 100µg/ml. Lysis of the cells with 1% triton X exposed the live intra 

cellular bacteria which were then quantified by plating on LB agar plates for CFU.  

All strains have shown the property of cell invasion on Caco2 cells. Comparative 

analysis of the data between strains shows ADRDL-42, ADRDL-41 and ADRDL-60 

invaded Caco2 cells with higher number compared to other strains. This increased cell 

invasion property does not correlate with virulence factors present in their genome as 
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analyzed in this study (not shown). These strains have similar virulence factors as most of 

other strains in this study.  One way ANOVA showed an P value of 0.0063 which is 

lower than 0.05 indicating that there is significant difference among means of isolates. A 

multiple comparison analysis (Tukeys test) was performed to identify actual isolates 

which were showing the significant difference. Only one isolate, ADRDL 42, showed 

significant difference from others at a confidence interval of 95%. ADRDL-16 an isolate 

from chicken drag swab showed least number of bacteria invaded the cells. But this strain 

also has similar virulence factors as those other strains which showed the higher 

invasiveness. We expected a higher degree of cell invasiveness in case of eighteen 

isolates in our study group that had a background as clinical isolates from cattle. But in 

contrary, it was a non-clinical bovine isolate from Texas, ADRDL42, showed more 

invasiveness than any other isolates in this study. ADRDL16 was an environmental 

sample. Considering these two samples we may suggest that host associated strains may 

be more invasive than   environmental sample but to confirm this further studies based on 

more host specific isolates is required.
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Fig. 13. Result of S. Mbandaka invasion assay using Caco2 cells. Invasion assay was performed using all 76 strains under this study. Graph 
represents one way ANOVA of data from 2 experiments, each with 2 replicates of bacterial treatment. Data is expressed as number of 
bacteria in CFU per ml that invaded Caco2 cells. 
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3.4.2 Tolerance to low pH varied between S. Mbandaka strains 

To study the tolerance ability of different S. Mbandaka strains in low pH, overnight 

culture of bacteria in LB broth (pH 7.0 ± 0.2) were shifted to a low pH (pH 4.0 ± 0.1) LB 

media. The adaptation and survival of each strain to this low pH environment were 

assessed by overtime growth measured at different time points. Overnight cultures, OD600 

of which was adjusted to 0.4 ± 0.03, of all strains were used to inoculate LB media with a 

pH of 4.0 ± 0.1. An initial OD600 was measured immediately after inoculation (0th hour) 

which was later used to normalize the final reading taken after 6 hours of incubation. All 

76 S. Mbandaka strains in this study survived the treatment with LB broth (pH 4.0 ± 0.1) 

without any acid adaptation treatment. An increase in OD600 could be observed in all the 

samples indicating an increase in the number of bacteria after incubation at 37oC for a 

period of 6 hours. Results were shown in Fig 14.  

Salmonella are neutrophilic organisms capable of growing in a pH range of 5 to 9. 

Acid tolerance response of Nontyphoidal Salmonella such as S. Typhimurium has been 

well studied previously. In pioneering studies of Foster et al., it has been shown that S. 

Typhimurium can adapt to survive conditions of severe low pH (pH 3.3) by a 

phenomenon called Acid Tolerance Response (ATR). An adaptation treatment with low 

pH media (acid shock) for a short time was shown to be required for a maximum 

induction of ATR in S. Typhimurium. But acid shock (at pH 4.3) exposure of >30min 

does not induce this response [133]. Here, in this study we were trying to find out how 

well the bacterial strains adapt to a low pH and is there any difference in the adaptation 

performance between strains. Results showed all the strains under this study could 
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survive an immediate exposure to a low pH environment. Single factor ANOVA of the 

present data has shown that there is significant difference in the OD600 value between 

different strains with a p value < 0.05. The difference was irrespective of the isolation 

source, geographical location of strain collection and clinical significance (clinical or 

non-clinical strains). Upon multiple comparison test (Tukeys test) only one isolate 

ADRDL44 showed significant difference in mean OD600 with other four isolate 

ADRDL73, 58, 38, 34, and 31.   ADRDL 44 a non-clinical bovine isolate from Texas 

showed faster adaptance to low pH than isolates from similar location and source. Except  

ADRDL73 ,which was from Oklahoma, all other four were from Texas. Growth phase of 

the bacteria used for the treatment, the type of acidulant used for adjusting the pH of the 

media, composition of the adaptation media, and growth temperature were reported to be 

the factors which influence the ATR of Salmonella spp.[132]. Use of complex LB media, 

an incubation temperature of 37oC, and overnight grown bacteria culture might have 

favored the development of this resistance to low pH in strains used in this study. But the 

explanation for the difference in resistance level, reflected by a relative difference in the 

growth, between different strains remains questionable. Wide variation in acid tolerance 

response among Salmonella serovars and even between strains of a given serovar has 

been reported previously [132], which may not be applicable here since we were looking 

the adaptation of strains when  immediate exposure to low pH without any low pH 

adaptation treatment. Even then our data shows ability of S. Mbandaka isolates from 

different isolation source to be capable of adjusting to a low pH without any prior 

treatment. 
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Fig. 14. Growth of S. Mbandaka strains at pH 4.0.  Overnight culture of all 76 S. Mbandaka strains (OD adjusted to 0.4) were inoculated to a low pH (pH 
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3.4.3 Antimicrobial sensitivity 

Antimicrobial resistance was determined by using Sensititre NARMS Gram 

Negative Plate. Out of 76 S. Mbandaka strains tested, only 48 isolate showed resistance 

against 12 antibiotics tested (fig.7). Forty-six isolates were resistant to streptomycin. 

Seventy-eight percentage of them (36 isolates) were resistant to only streptomycin. 

Remaining ones showed resistance to other antibiotics also.  Beta lactam resistance was 

shown by only four isolates. Out of four ADRDL- 48, ADRDL-58 and ADRDL-09 

showed only intermediate resistance to antibiotic Cefoxitin. The remaining one, ADRDL-

73 showed resistance to Ampicillin (intermediate) and Amoxicillin/Clavulanic acid. 

Except ADRDL – 09, which showed intermediate resistance to Chloramphenicol as well, 

all beta lactam resistant strains were also resistant to streptomycin.  

 

Five isolates showed resistance to both streptomycin and tetracycline. One isolate, 

ADRDL-14, was resistant to only tetracycline. Only two streptomycin resistant isolates 

Fig.15. Heat map showing resistance to Antimicrobial agents. Resistance against 12 

antimicrobial agents were determined using Sensititre NARMS Gram Negative Plate based 

on CLSI standards. Out of 76 Salmonella isolates, only 48 isolates showed resistance to at 

least one antibiotic. Only 10 isolates showed resistance to more than one antibiotic. Legend 

description: 0 = Susceptible, 1 = Resistant. (Intermediate resistance phenotypes were 

counted as resistant in this study) 
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also showed resistance against trimethoprim/sulfamethoxazole. Isolate ADRDL-73 was 

the one with resistant to more number of antibiotics (4) followed by ADRDL – 21 which 

was resistant to 3 antibiotics. 

Theoretically, phenotypic features can be explained by the underlined genetic 

features. But in this study certain discrepancies exist between genotypic and phenotypic 

features of antimicrobial resistance in our study isolates.  This may be explained by the 

currently unknown resistance mechanisms and related genes that were not included in the 

database. Although high degree of congruencies was expected between genotypic and 

phenotypic results, disagreements were also noticed. 

In genotypic method, only 11 newly sequenced isolates were identified with 

resistance genes. Streptomycin resistant genes (strA and strB) were identified in three 

isolates ADRDL33, ADRDL45 and ADRDL 74. All three showed concordant results in 

phenotypic identification of streptomycin resistance. ADRDL 21 and ADRDL 73 that 

contained 13 aadA genes (aminoglycoside resistance genes) also showed resistant to 

streptomycin phenotypically. Remaining 41 isolates that were phenotypically resistant to 

streptomycin, showed disagreement with genotypic methods. Concordant results were 

obtained for tetracycline resistance in case of 6 isolates (ADRDL10, 12, 14, 21, 45, and 

74), but isolates ADRDL 33 and 39 were showed disagreement to phenotypic methods 

since they were identified with tetracycline resistant genes (tetA). Genes for betalactam 

resistance were identified in ADRDL 31 (blaSED) and ADRDL 73 (blaTEM-153 genes, 

blaCARB – 7 genes), but only later one showed resistance phenotypically to 

Amoxicillin/clavulanic acid and ampicillin. There were other isolates (ADRDL 09, 48 
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and 58) that showed resistance to beta lactams (Cefoxitin) in Antibiotic sensitivity assay 

even though no resistance genes were identified.  

In case of sulfonamide trimethoprim resistance, ADRDL21 (sul1, sul3, and dfrA12), 

and ADRDL73 (sul2) showed concordant result with Antibiotic sensitivity assay using 

trimethoprim/sulfamethoxazole. Gene sul2 was present in ADRDL 45 but no resistance 

showed in phenotypic assay. ADRDL7 was identified with 66 qnrB quinolone resistant 

genes but no resistance showed in sensitivity assay against ciprofloxacin and nalidixic 

acid. No phenicol resistant genes identified in ADRDL9, but showed resistance against 

chloramphenicol. 

3.5 Conclusions 

In this study, we demonstrate that S. Mbandaka isolates could invade human colon 

carcinoma cells (Caco2 cells) without much significant difference among selected 

isolates. This clearly explains the ability of this serovar to cause significant human 

disease. However, a comparative study with other invasive non-typhoidal Salmonella 

may be needed to explain how well they differ from other serovars in the expression of 

this phenotypic character. Additionally, we showed the potential of this serovar to adapt 

to a low pH environment and thereby the capability of this serovar to survive in food 

commodities as well as to overcome host defense barriers like acidic environment in the 

stomach. Moreover, existence of isolates with multi drug resistance revealed by this study 

raises a serious concern as this serovar is more prevalent in food animals. 
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Table 7. Unique SNPs that define S. Mbandaka clusters in SNP tree 

 

Sample ID Chromos
ome 
Region 

Refer
ence 

Allele Gene  Locus_tag 
(NZ_CP0191
83 (CDS)) 

Note  Product  Protein 
ID 

Coding 
region 
change 

Amino 
acid 
change 

Non-
synony
mous 

Unique SNPs of cluster 1 bovine isolates from Texas in comparison with sub cluster 2B bovine isolates from Texas 
  
ADRDL27  
(Cluster 1) 

320976 G A   SEEM1958_
RS01505 

  branched-chain 
amino acid ABC 
transporter 
permease 

WP_000
003007.1 

   

 
2212564 C T   SEEM1958_

RS11240 
  flagellar brake 

protein YcgR 
WP_000
017418.1 

G>A Gly-Asp Yes 

 
4223531 G A   SEEM1958_

RS21295 
  peptide-

methionine (S)-S-
oxide reductase 

WP_000
051467.1 

G>A Gly-Asp Yes 

 
82888 G T   SEEM1958_

RS00410 
  magnesium-

translocating P-
type ATPase 

WP_000
131288.1 

G>T Val-Leu Yes 

 
1003669 C T pyrG SEEM1958_

RS05115 
CTP synthase; cytidine 
triphosphate synthetase; 
catalyzes the ATP-dependent 
amination of UTP to CTP with 
either L-glutamine or 
ammonia as the source of 
nitrogen; in Escherichia coli 
this enzyme forms a 
homotetramer 

CTP synthetase WP_000
210863.1 

A>T Asn-Tyr Yes 
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2586466 A T   SEEM1958_

RS13125 
  amino acid 

transporter 
WP_000
412353.1 

A>T Glu-Val Yes 

 
3434830 T A   SEEM1958_

RS17535 
  hypothetical 

protein 
WP_000
495330.1 

   

 
2858628 G T   SEEM1958_

RS14605 
  cell division protein 

YceG 
WP_000
736459.1 

   

 
904588 G A   SEEM1958_

RS04660 
  fimbrial protein WP_001

244646.1 
G>A Gly-Glu Yes 

 
398475 T C   SEEM1958_

RS01835 
  carboxypeptidase/

penicillin-binding 
protein 1A 

WP_001
663100.1 

   

 
144061 T A   SEEM1958_

RS00695 
  glycosyltransferase WP_023

217918.1 
T>A Asp-Glu Yes 

 
1598613 C T   SEEM1958_

RS08030 
  citrate transporter WP_023

218370.1 

   

 
3358397 G T   SEEM1958_

RS17120 
  oxidoreductase WP_023

218841.1 
C>A Ser Yes 

 
2350269 G T   SEEM1958_

RS11960 
  two-partner 

secretion 
translocator ZirT 

WP_023
227594.1 

   

Unique SNPs of cluster1 poultry isolates in comparison with cluster1 bovine isolates  

USDA015  
(Cluster 1) 

3874840 A C   SEEM1958_
RS19665 

  type II secretion 
system protein 
GspE 

WP_076
031835.1 

A>C Glu-Asp Yes 

Unique SNPs of sub clusters in comparison with cluster1 

USDA005  
(Sub 
cluster 
2A) 

1224826 A C   SEEM1958_
RS06300 

frameshifted phage tail protein   A>C Lys-Thr Yes 

 
1225044 A C   SEEM1958_

RS06305 
frameshifted phage tail protein   A>C His-Pro Yes 



120 
 

 

            

FDA083  
(Sub 
cluster 
2B) 

3415090 A T   SEEM1958_
RS17400 

incomplete; partial in the 
middle of a contig; 
missing stop 

hypothetical 
protein 

  A>T Thr-Ser Yes 

 
1223450 A G   SEEM1958_

RS06300 
frameshifted phage tail protein   G>A Gly-Asp Yes 

 
1224913 C G   SEEM1958_

RS06305 
frameshifted phage tail protein   T>C Cys-Arg Yes 

 
1227644 C T   SEEM1958_

RS06325 
  tail sheath protein WP_000

046109.1 

   

 
1200943 A G   SEEM1958_

RS06130 
  phage repressor 

protein 
WP_000
052560.1 

G>A Asp-Asn Yes 

 
922239 A C   SEEM1958_

RS04755 
  diaminopimelate 

decarboxylase 
WP_000
056587.1 

A>C Ile-Leu Yes 

 
2057250 G A   SEEM1958_

RS10400 
structural flagella protein; 
individual Salmonella 
serotypes usually alternate 
between the production of 2 
antigenic forms of flagella, 
termed phase 1 and phase 2, 
each specified by separate 
structural genes 

flagellin FliC WP_000
079802.1 

G>A Ala-Thr Yes 

 
1201562 T A   SEEM1958_

RS06135 
  hypothetical 

protein 
WP_000
102104.1 

T>A Lys Yes 

 
1217272 A G   SEEM1958_

RS06245 
  hypothetical 

protein 
WP_000
171565.1 

G>C Val-Leu Yes 

 
1221428 A G   SEEM1958_

RS06285 
  baseplate assembly 

protein 
WP_000
177484.1 

A>G Ile-Val Yes 

 
488911 C T   SEEM1958_

RS02390 
  adenine-specific 

DNA-
methyltransferase 

WP_000
642611.1 
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3847405 G A   SEEM1958_

RS19550 
  DeoR family 

transcriptional 
regulator 

WP_000
678254.1 

   

 
1214990 C T   SEEM1958_

RS06225 
  phage capsid 

protein 
WP_000
730757.1 

A>G Thr-Ala Yes 

 
1229644 C T   SEEM1958_

RS06340 
  GpE family phage 

tail protein 
WP_000
763316.1 

   

 
33143 G T   SEEM1958_

RS00145 
  hypothetical 

protein 
WP_000
809951.1 

   

 
4544964 G A   SEEM1958_

RS22885 
  isocitrate lyase WP_000

857884.1 

   

 
1217113 A G   SEEM1958_

RS06240 
  tail protein X WP_000

868184.1 
C>A Gln-Lys Yes 

 
4566649 C A   SEEM1958_

RS22985 
binds specifically to the major 
sigma factor sigma 
70; active in stationary phase 

sigma D regulator WP_000
934317.1 

C>A Ser-Tyr Yes 

 
1202399 G A   SEEM1958_

RS06145 
  hypothetical 

protein 
WP_000
956168.1 

   

 
1202521 T G   SEEM1958_

RS06150 
  hypothetical 

protein 
WP_000
963480.1 

A>T Leu-Phe Yes 

 
1225847 C T   SEEM1958_

RS06310 
  tail fiber assembly 

protein 
WP_000
972188.1 

G>A Val-Ile Yes 

 
1219184 A C   SEEM1958_

RS06265 
  tail protein WP_001

039961.1 
A>C Met-Leu Yes 

 
109552 T A   SEEM1958_

RS00510 
  tRNA 

(guanosine(18)-2'-
O)-
methyltransferase 
TrmH 

WP_001
068433.1 

A>T Glu-Val Yes 

 
1217549 T G   SEEM1958_

RS06250 
  glycoside hydrolase WP_001

069919.1 
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1207353 G T   SEEM1958_

RS06180 
  hypothetical 

protein 
WP_001
154444.1 

A>C Ile-Leu Yes 

 
1229006 C T   SEEM1958_

RS06330 
  major tail tube 

protein 
WP_001
207652.1 

G>A Ser-Asn Yes 

 
1207577 C T   SEEM1958_

RS06185 
  DinI family protein WP_001

217581.1 

  
  

 
1229315 C T   SEEM1958_

RS06335 
  phage tail assembly 

protein 
WP_001
280962.1 

T>A Leu-Gln Yes 

 
1200547 A T   SEEM1958_

RS06125 
  integrase WP_001

536726.1 

  
  

 
1221029 A G   SEEM1958_

RS06280 
  phage baseplate 

assembly protein V 
WP_001
556169.1 

C>A Leu-Met Yes 

 
1205863 G A   SEEM1958_

RS06175 
  replication 

endonuclease 
WP_023
218233.1 

A>G Glu-Gly Yes 

 
1211708 G C   SEEM1958_

RS06210 
  phage capsid portal 

protein 
WP_023
218236.1 

G>T Ala-Ser Yes 

 
1212256 C G   SEEM1958_

RS06215 
  terminase subunit WP_023

218237.1 
C>G Pro-Ala Yes 

 
1214089 G C   SEEM1958_

RS06220 
  phage capsid 

scaffolding protein 
WP_023
218238.1 

G>C Glu-Asp Yes 

 
1216763 T A   SEEM1958_

RS06235 
  hypothetical 

protein 
WP_023
218239.1 

  
  

 
1222504 T C   SEEM1958_

RS06295 
  phage tail protein I WP_023

218240.1 

  
  

 
2143283 A G   SEEM1958_

RS10880 
  hypothetical 

protein 
WP_023
218578.1 

A>G Gln-Arg Yes 

 
3616455 C T   SEEM1958_

RS18405 
  AraC family 

transcriptional 
regulator 

WP_023
219097.1 

G>A Ala-Thr Yes 

 
1087107 A G   SEEM1958_

RS05520 
GTP-activating 
protein/tyrosine phosphatase; 

pathogenicity 
island 1 effector 
protein StpP 

WP_076
031708.1 

A>G Glu-Gly Yes 
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facilitates bacterial survival in 
host cells 

FDA015 
(Sub 
cluster 
2C) 

1226005 C T   SEEM1958_
RS06315 

frameshifted phage tail protein   A>G Lys-Arg Yes 

 
4448414 A T   SEEM1958_

RS22520 
  acetyl-coenzyme A 

synthetase 
WP_000
083883.1 

  
  

 
3728054 A T   SEEM1958_

RS18975 
  hypothetical 

protein 
WP_000
145239.1 

A>T His-Leu Yes 

 
2444591 A G   SEEM1958_

RS12420 
  acyltransferase WP_000

155373.1 

  
  

 
937099 G A   SEEM1958_

RS04810 
  prolipoprotein 

diacylglyceryl 
transferase 

WP_000
204647.1 

G>A Met-Ile Yes 

 
1132162 T C srlA SEEM1958_

RS05760 
catalyzes the phosphorylation 
of incoming sugar 
substrates along with their 
translocation across the cell 
membrane; the IIC domain 
forms the PTS system 
translocation channel and 
contains the specific 
substrate-binding site 

PTS sorbitol 
transporter subunit 
IIC 

WP_000
573333.1 

A>G Asn-Asp Yes 

 
4577367 G A   SEEM1958_

RS23040 
  DNA-directed RNA 

polymerase 
subunit beta' 

WP_000
653965.1 

C>T Ala-Val Yes 

 
4202506 G A   SEEM1958_

RS21195 
  2-dehydro-3-

deoxyphosphoocto
nate aldolase 

WP_000
779253.1 
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1225552 T C   SEEM1958_

RS06310 
  tail fiber assembly 

protein 
WP_000
972188.1 

A>G Gln-Arg Yes 

 
489693 C T   SEEM1958_

RS02400 
  tRNA 

dihydrouridine 
synthase DusB 

WP_001
219664.1 

   

 
304734 C A   SEEM1958_

RS01425 
  hypothetical 

protein 
WP_021
000870.1 

G>T Gly-Val Yes 

 
1240217 C T   SEEM1958_

RS06385 
  VCBS repeat-

containing protein 
WP_023
218145.1 

G>A Val-Ile Yes 

 
2666853 A G   SEEM1958_

RS13600 
  pathogenicity 

island protein 
WP_023
218254.1 

A>G His-Arg Yes 

 
3959663 G A   SEEM1958_

RS20055 
  L-carnitine CoA-

transferase 
WP_023
218424.1 

G>A Arg-His Yes 

 
623204 T A   SEEM1958_

RS03095 
  glycerate 2-kinase WP_023

219238.1 
T>A Asp-Glu Yes 

            

EUR069 
(Sub 
Cluster 
2E) 

2576538 C A   SEEM1958_
RS13070 

  MFS transporter WP_000
091796.1 

C>A Tyr Yes 

 
2534501 C T   SEEM1958_

RS12855 
  sugar efflux 

transporter 
WP_000
154617.1 

C>T Gln Yes 

 
1149094 G A   SEEM1958_

RS05870 
DNA-binding transcriptional 
repressor of microcin 
B17 synthesis and multidrug 
efflux; negative regulator of 
the multidrug operon emrAB 

transcriptional 
regulator 

WP_000
378431.1 

   

 
3592002 T A   SEEM1958_

RS18305 
Confers resistance to 
fosfomycin and deoxycholate; 

MFS transporter WP_000
446768.1 

A>T Asn-Ile Yes 

 
3094297 G A   SEEM1958_

RS15795 
  membrane protein WP_000

505788.1 
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497337 A T   SEEM1958_

RS02435 
  mononuclear 

molybdenum 
enzyme YedY 

WP_000
723876.1 

   

 
342809 C A   SEEM1958_

RS01620 
  aspartate-

semialdehyde 
dehydrogenase 

WP_000
799940.1 

   

 
926076 C T   SEEM1958_

RS04770 
  bifunctional 2-

acylglycerophosph
oethanolamine 
acyltransferase/acy
l-ACP synthetase 

WP_000
896101.1 

C>T Pro-Leu Yes 

 
1603990 G A   SEEM1958_

RS24795 
  hypothetical 

protein 
WP_001
121022.1 

G>A Met-Ile Yes 

 
489693 C T   SEEM1958_

RS02400 
  tRNA 

dihydrouridine 
synthase DusB 

WP_001
219664.1 

   

 
3964150 C T carB SEEM1958_

RS20080 
four CarB-CarA dimers form 
the carbamoyl phosphate 
synthetase holoenzyme that 
catalyzes the production of 
carbamoyl phosphate; CarB is 
responsible for the 
amidotransferase activity 

carbamoyl 
phosphate 
synthase large 
subunit 

WP_023
218427.1 

   

 
2786092 G A   SEEM1958_

RS14210 
  hypothetical 

protein 
WP_023
219026.1 

   

 
2350181 C T   SEEM1958_

RS11960 
  two-partner 

secretion 
translocator ZirT 

WP_023
227594.1 

C>T Thr-Ile Yes 

 
3415888 G T   SEEM1958_

RS17410 
  integrase WP_023

237847.1 
G>T Met-Ile Yes 

 
2512377 C T   SEEM1958_

RS12735 
  PhoPQ-regulated 

protein 
WP_076
031773.1 

C>T Thr-Ile Yes 
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FDA058  
(Sub 
cluster 2F) 

3968645 C T   SEEM1958_
RS25005 

frameshifted hypothetical 
protein 

  
   

 
1223302 G A   SEEM1958_

RS06300 
frameshifted phage tail protein   G>A Ser-Asn Yes 

 
1224908 G A   SEEM1958_

RS06305 
frameshifted phage tail protein   G>A Asp-Asn Yes 

 
1227683 C T   SEEM1958_

RS06325 
  tail sheath protein WP_000

046109.1 
C>A Ala-Asp Yes 

 
563931 G A   SEEM1958_

RS02780 
  LPS export ABC 

transporter 
periplasmic protein 
LptC 

WP_000
047845.1 

C>T Thr-Met Yes 

 
1216391 A G   SEEM1958_

RS06230 
  terminase 

endonuclease 
subunit 

WP_000
059172.1 

   

 
2576538 C A   SEEM1958_

RS13070 
  MFS transporter WP_000

091796.1 
C>A Tyr Yes 

 
456794 T G   SEEM1958_

RS02190 
  50S ribosomal 

protein L6 
WP_000
091939.1 

    
 

 
1201676 A G   SEEM1958_

RS06135 
  hypothetical 

protein 
WP_000
102104.1 

    
 

 
1217302 T C   SEEM1958_

RS06245 
  hypothetical 

protein 
WP_000
171565.1 

    
 

 
1221349 C T   SEEM1958_

RS06285 
  baseplate assembly 

protein 
WP_000
177484.1 

G>A Arg-Gln Yes 

 
1221773 T C   SEEM1958_

RS06290 
  baseplate assembly 

protein 
WP_000
268273.1 

A>G Gln-Arg Yes 

 
284614 G A   SEEM1958_

RS01330 
involved in resistance to DNA-
damaging agents; 

universal stress 
protein A 

WP_000
323565.1 
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3171839 C T   SEEM1958_

RS16160 
  permease WP_000

373611.1 
    

 

 
1215164 C T   SEEM1958_

RS06225 
  phage capsid 

protein 
WP_000
730757.1 

   

 
1217113 A G   SEEM1958_

RS06240 
  tail protein X WP_000

868184.1 

   

 
1232683 T C   SEEM1958_

RS06350 
  tail assembly 

protein 
WP_000
980409.1 

   

 
1218916 C T   SEEM1958_

RS06265 
  tail protein WP_001

039961.1 
C>A Leu-Met Yes 

 
1217489 C T   SEEM1958_

RS06250 
  glycoside hydrolase WP_001

069919.1 

   

 
1226936 T C   SEEM1958_

RS06320 
  multiple promoter 

invertase 
WP_001
165558.1 

   

 
1229243 C T   SEEM1958_

RS06330 
  major tail tube 

protein 
WP_001
207652.1 

   

 
489693 C T   SEEM1958_

RS02400 
  tRNA 

dihydrouridine 
synthase DusB 

WP_001
219664.1 

   

 
1199875 G A   SEEM1958_

RS06125 
  integrase WP_001

536726.1 

   

 
1229801 T C   SEEM1958_

RS06345 
  phage tail tape 

measure protein 
WP_023
218142.1 

G>A Arg-Lys Yes 

 
1233309 T A   SEEM1958_

RS06355 
  phage late control 

D family protein 
WP_023
218143.1 

A>C Lys-Gln Yes 

 
1205836 C G   SEEM1958_

RS06175 
  replication 

endonuclease 
WP_023
218233.1 

C>A Asp-Glu Yes 

 
1211306 C T   SEEM1958_

RS06210 
  phage capsid portal 

protein 
WP_023
218236.1 

C>A Leu-Met Yes 

 
1212037 G A   SEEM1958_

RS06215 
  terminase subunit WP_023

218237.1 
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1213954 C T   SEEM1958_

RS06220 
  phage capsid 

scaffolding protein 
WP_023
218238.1 

   

 
1216877 T C   SEEM1958_

RS06235 
  hypothetical 

protein 
WP_023
218239.1 

   

 
1222563 C T   SEEM1958_

RS06295 
  phage tail protein I WP_023

218240.1 
C>T Thr-Ile Yes 

 
1287670 G A   SEEM1958_

RS06580 
catalyzes the acetylation of 
lysine 

CoA-binding 
domain/acetyltrans
ferase 

WP_023
218612.1 

   

 
1207865 T A   SEEM1958_

RS06190 
  hypothetical 

protein 
WP_024
147339.1 

T>A Ser-Thr Yes 

            

ADRDL45 
(Sub 
cluster 
2B) 

3415090 A T   SEEM1958_
RS17400 

incomplete; partial in the 
middle of a contig; 
missing stop 

hypothetical 
protein 

  A>T Thr-Ser Yes 

 
1223100 G A   SEEM1958_

RS06300 
frameshifted phage tail protein   G>A Ala-Thr Yes 

 
1224913 C G   SEEM1958_

RS06305 
frameshifted phage tail protein   A>C His-Pro Yes 

 
1226005 C T   SEEM1958_

RS06315 
frameshifted phage tail protein   G>A Cys-Tyr Yes 

 
2137369 C G   SEEM1958_

RS24840 
frameshifted; internal stop; 
incomplete; partial in 
the middle of a contig; missing 
start 

phage tail protein   C>G Pro-Ala Yes 

 
3446149 T G   SEEM1958_

RS17580 
  MFS transporter WP_000

005070.1 
A>C Ile-Leu Yes 

 
1227594 A G   SEEM1958_

RS06325 
  tail sheath protein WP_000

046109.1 
A>G Ile-Val Yes 

 
1201345 G A   SEEM1958_

RS06130 
  phage repressor 

protein 
WP_000
052560.1 
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1215905 T C   SEEM1958_

RS06230 
  terminase 

endonuclease 
subunit 

WP_000
059172.1 

C>T Leu-Phe Yes 

 
2746480 A C   SEEM1958_

RS13990 
catalyzes the phosphorylation 
of incoming sugar 
substrates concomitant with 
their translocation across the 
cell membrane; involved in 
N,N'-diacetylchitobiose 
transport; protein IIA transfers 
a phosphoryl group to IIB 
which then transfers the 
phosphoryl group to the 
sugar; 
IIC forms the translocation 
channel for the sugar uptake; 

PTS N,N'-
diacetylchitobiose 
transporter subunit 
IIC 

WP_000
073063.1 

T>G Ser-Ala Yes 

 
2575443 G A   SEEM1958_

RS13070 
  MFS transporter WP_000

091796.1 

   

 
1201574 G A   SEEM1958_

RS06135 
  hypothetical 

protein 
WP_000
102104.1 

T>A Lys Yes 

 
1508355 G A   SEEM1958_

RS07570 
  divalent metal 

cation transporter 
WP_000
131734.1 

   

 
2769616 C T   SEEM1958_

RS14115 
  aldehyde 

dehydrogenase 
WP_000
153505.1 

   

 
1217293 T G   SEEM1958_

RS06245 
  hypothetical 

protein 
WP_000
171565.1 

G>A Gly-Asp Yes 

 
1221253 G T   SEEM1958_

RS06285 
  baseplate assembly 

protein 
WP_000
177484.1 

G>T Gln-His Yes 

 
1425996 T C   SEEM1958_

RS07135 
  gluconate:proton 

symporter 
WP_000
200859.1 

T>C Val-Ala Yes 
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3919462 G A thiP SEEM1958_

RS19865 
permease; with TbpA and 
ThiQ functions in transport 
of thiamine and thiamine 
pyrophosphate into the cell; 
repressed in presence of 
exogenous thiamine 

thiamine/thiamine 
pyrophosphate 
ABC transporter 
permease ThiP 

WP_000
235635.1 

G>A Arg-Gln Yes 

 
1607255 C A   SEEM1958_

RS08065 
NuoCD; NDH-1 shuttles 
electrons from NADH, via FMN 
and iron-sulfur (Fe-S) centers, 
to quinones in the 
respiratory chain; subunits 
NuoCD, E, F, and G constitute 
the peripheral sector of the 
complex; in Escherichia coli 
this gene encodes a fusion 
protein of NuoC and NuoD 
that 
are found separate in other 
organisms 

NADH-quinone 
oxidoreductase 
subunit C/D 

WP_000
247855.1 

C>A Pro-Gln Yes 

 
1221611 C G   SEEM1958_

RS06290 
  baseplate assembly 

protein 
WP_000
268273.1 

T>C Tyr-His Yes 

 
1219301 G A   SEEM1958_

RS06270 
  virion 

morphogenesis 
protein 

WP_000
343946.1 

A>G Asn-Ser Yes 

 
3868235 T C   SEEM1958_

RS19625 
  aromatic amino 

acid transporter 
AroP 

WP_000
378222.1 
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1493178 G T ligA SEEM1958_

RS07470 
this protein catalyzes the 
formation of 
phosphodiester linkages 
between 5'-phosphoryl and 
3'-hydroxyl groups in double-
stranded DNA using NAD as a 
coenzyme and as the energy 
source for the reaction; 
essential for DNA replication 
and repair of damaged DNA; 
similar to ligase LigB 

DNA ligase 
(NAD(+)) LigA 

WP_000
433281.1 

G>T Asp-Tyr Yes 

 
2788198 C T   SEEM1958_

RS14230 
  leucine efflux 

protein 
WP_000
457190.1 

G>A Gly-Arg Yes 

 
1201813 T C   SEEM1958_

RS06140 
  hypothetical 

protein 
WP_000
460858.1 

G>T Glu-Asp Yes 

 
4871730 A G   SEEM1958_

RS24525 
  tRNA uridine-5-

carboxymethylami
nomethyl(34) 
synthesis enzyme 
MnmG 

WP_000
499872.1 

A>G Glu-Gly Yes 

 
2948786 C A   SEEM1958_

RS15135 
  3,4-

dihydroxyphenylac
etate 2,3-
dioxygenase 

WP_000
517001.1 

   

 
2105141 A G   SEEM1958_

RS10650 
  tRNA 5-

methoxyuridine(34
)/uridine 5-
oxyacetic 
acid(34) synthase 
CmoB 

WP_000
569026.1 
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2770753 G A   SEEM1958_

RS14125 
  D-hexose-6-

phosphate 
mutarotase 

WP_000
608657.1 

G>A Trp Yes 

 
3319014 C T   SEEM1958_

RS16905 
  2-keto-3-

deoxygluconate 
permease 2 

WP_000
694477.1 

G>A Ala-Thr Yes 

 
2656377 C T   SEEM1958_

RS13550 
  CesD/SycD/LcrH 

family type III 
secretion system 
chaperone 

WP_000
711027.1 

G>A Arg-His Yes 

 
1214783 A G   SEEM1958_

RS06225 
  phage capsid 

protein 
WP_000
730757.1 

A>G Ser-Gly Yes 

 
1229629 G A   SEEM1958_

RS06340 
  GpE family phage 

tail protein 
WP_000
763316.1 

T>C Ser-Pro Yes 

 
2238611 C T   SEEM1958_

RS11360 
  peptide chain 

release factor 1 
WP_000
804703.1 

C>T Pro-Ser Yes 

 
33143 G T   SEEM1958_

RS00145 
  hypothetical 

protein 
WP_000
809951.1 

   

 
1217113 A G   SEEM1958_

RS06240 
  tail protein X WP_000

868184.1 
C>A Gln-Lys Yes 

 
4098702 T C   SEEM1958_

RS20705 
serine sensor receptor methyl-accepting 

chemotaxis protein 
WP_000
919519.1 

A>G Tyr-Cys Yes 

 
4566649 C A   SEEM1958_

RS22985 
binds specifically to the major 
sigma factor sigma 
70; active in stationary phase 

sigma D regulator WP_000
934317.1 

C>A Ser-Tyr Yes 

 
56965 C T   SEEM1958_

RS00280 
membrane protein regulates 
uhpT expression 

MFS transporter 
family glucose-6-
phosphate 
receptor UhpC 

WP_000
948174.1 

   

 
1225461 A C   SEEM1958_

RS06310 
  tail fiber assembly 

protein 
WP_000
972188.1 

T>G His-Gln Yes 
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1232551 A G   SEEM1958_

RS06350 
  tail assembly 

protein 
WP_000
980409.1 

   

 
4680436 A G   SEEM1958_

RS23545 
response regulator in two-
component regulatory 
system with CpxA; part of the 
envelope stress response 
system 

DNA-binding 
response regulator 

WP_001
033731.1 

A>G Glu-Gly Yes 

 
1218880 G A   SEEM1958_

RS06265 
  tail protein WP_001

039961.1 
C>A Asp-Glu Yes 

 
2780356 G A   SEEM1958_

RS14160 
  GGDEF domain-

containing protein 
WP_001
048657.1 

G>A Gly-Asp Yes 

 
1217477 G A   SEEM1958_

RS06250 
  glycoside hydrolase WP_001

069919.1 

   

 
1207342 C T   SEEM1958_

RS06180 
  hypothetical 

protein 
WP_001
154444.1 

C>T Leu-Phe Yes 

 
2365060 G A   SEEM1958_

RS12040 
  tRNA 2-

thiocytidine(32) 
synthetase TtcA 

WP_001
156210.1 

   

 
1226945 A G   SEEM1958_

RS06320 
  multiple promoter 

invertase 
WP_001
165558.1 

   

 
1218560 G A   SEEM1958_

RS06260 
  hypothetical 

protein 
WP_001
201940.1 

G>A Ala-Thr Yes 

 
1228754 G A   SEEM1958_

RS06330 
  major tail tube 

protein 
WP_001
207652.1 

G>T Leu-Phe Yes 

 
1207571 T C   SEEM1958_

RS06185 
  DinI family protein WP_001

217581.1 

   

 
2491669 C T   SEEM1958_

RS12620 
  Na+/H+ antiporter 

NhaC 
WP_001
276631.1 

G>A Val-Met Yes 

 
1229315 C T   SEEM1958_

RS06335 
  phage tail assembly 

protein 
WP_001
280962.1 

T>A Leu-Gln Yes 
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4097339 C T   SEEM1958_

RS20700 
catalyzes the transfer of 
phosphoglycerol to the 
glucan backbone 

phosphoglycerol 
transferase I 

WP_001
292726.1 

   

 
1199788 G A   SEEM1958_

RS06125 
  integrase WP_001

536726.1 
G>A Val-Ile Yes 

 
1220723 C T   SEEM1958_

RS06280 
  phage baseplate 

assembly protein V 
WP_001
556169.1 

A>G Asn-Asp Yes 

 
1725878 C T   SEEM1958_

RS08590 
  hypothetical 

protein 
WP_014
344110.1 

C>T His-Tyr Yes 

 
107659 C T   SEEM1958_

RS00505 
catalyzes branch migration in 
Holliday junction 
intermediates 

DNA helicase RecG WP_017
442022.1 

   

 
1202900 C G   SEEM1958_

RS06155 
  hypothetical 

protein 
WP_021
293768.1 

G>A Met-Ile Yes 

 
99368 T C   SEEM1958_

RS00480 
  alpha-xylosidase WP_023

217903.1 
T>C Ile-Thr Yes 

 
3144512 A G   SEEM1958_

RS16025 
  mechanosensitive 

channel protein 
WP_023
218008.1 

A>G Met-Val Yes 

 
1229744 C T   SEEM1958_

RS06345 
  phage tail tape 

measure protein 
WP_023
218142.1 

C>A Asp-Glu Yes 

 
1233372 G C   SEEM1958_

RS06355 
  phage late control 

D family protein 
WP_023
218143.1 

C>G Asn-Lys Yes 

 
2432965 G A   SEEM1958_

RS12370 
  D-alanyl-D-alanine 

dipeptidase 
WP_023
218164.1 

G>A Arg-Gln Yes 

 
1204577 C T   SEEM1958_

RS06170 
  DNA adenine 

methylase 
WP_023
218232.1 

C>T Thr-Ile Yes 

 
1204817 G A   SEEM1958_

RS06175 
  replication 

endonuclease 
WP_023
218233.1 

G>A Glu-Lys Yes 

 
1211129 G A   SEEM1958_

RS06210 
  phage capsid portal 

protein 
WP_023
218236.1 

C>G Ile-Met Yes 

 
1212037 G A   SEEM1958_

RS06215 
  terminase subunit WP_023

218237.1 
G>T Gln-His Yes 
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1213978 T C   SEEM1958_

RS06220 
  phage capsid 

scaffolding protein 
WP_023
218238.1 

T>A Val-Glu Yes 

 
1216607 C A   SEEM1958_

RS06235 
  hypothetical 

protein 
WP_023
218239.1 

A>G Lys-Arg Yes 

 
1222504 T C   SEEM1958_

RS06295 
  phage tail protein I WP_023

218240.1 
A>G Ser-Gly Yes 

 
2089378 A G   SEEM1958_

RS10585 
  methyl-accepting 

chemotaxis protein 
II 

WP_023
218563.1 

A>G Ile-Val Yes 

 
2143292 T G   SEEM1958_

RS10880 
  hypothetical 

protein 
WP_023
218578.1 

T>G Leu-Arg Yes 

 
4106293 G A   SEEM1958_

RS20740 
  type I restriction-

modification 
enzyme R 
subunit 

WP_023
218593.1 

   

 
831161 A G   SEEM1958_

RS04235 
  IclR family 

transcriptional 
regulator 

WP_023
218731.1 

   

 
2801682 G A   SEEM1958_

RS14315 
  hypothetical 

protein 
WP_023
218768.1 

   

 
616093 C T   SEEM1958_

RS03070 
  tagatose-1,6-

bisphosphate 
aldolase 

WP_023
219240.1 

   

 
1087107 A G   SEEM1958_

RS05520 
GTP-activating 
protein/tyrosine phosphatase; 
facilitates bacterial survival in 
host cells 

pathogenicity 
island 1 effector 
protein StpP 

WP_076
031708.1 

A>G Glu-Gly Yes 

 
1203119 T G   SEEM1958_

RS06160 
  hypothetical 

protein 
WP_076
031711.1 

T>G Ser-Ala Yes 

 
2136830 C G   SEEM1958_

RS10835 
  integrase WP_076

031751.1 
C>T Leu-Phe Yes 
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2465723 G A   SEEM1958_

RS12505 
  MFS transporter WP_076

031765.1 

   

 
3535700 T C   SEEM1958_

RS18015 
  hypothetical 

protein 
WP_078
054929.1 

A>G Tyr-Cys Yes 

Unique SNPs of Sub cluster 2A in comparison with Sub cluster 2B 

USDA005  
(Sub 
cluster 
2A) 

1223166 G A   SEEM1958_
RS06300 

frameshifted phage tail protein   G>A Val-Ile Yes 

 
982690 G A   SEEM1958_

RS05030 
  MFS transporter WP_000

097015.1 

   

 
1201601 G T   SEEM1958_

RS06135 
  hypothetical 

protein 
WP_000
102104.1 

   

 
1217344 T C   SEEM1958_

RS06245 
  hypothetical 

protein 
WP_000
171565.1 

   

 
1003669 C T pyrG SEEM1958_

RS05115 
CTP synthase; cytidine 
triphosphate synthetase; 
catalyzes the ATP-dependent 
amination of UTP to CTP with 
either L-glutamine or 
ammonia as the source of 
nitrogen; 
in Escherichia coli this enzyme 
forms a homotetramer; 

CTP synthetase WP_000
210863.1 

   

 
1221956 T G   SEEM1958_

RS06290 
  baseplate assembly 

protein 
WP_000
268273.1 

T>G Asp-Glu Yes 

 
435944 T G   SEEM1958_

RS02005 
  ABC transporter 

ATP-binding 
protein 

WP_000
634765.1 

A>C Asp-Ala Yes 

 
1215137 G C   SEEM1958_

RS06225 
  phage capsid 

protein 
WP_000
730757.1 
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3044754 T C   SEEM1958_

RS15550 
  dimethyl sulfoxide 

reductase subunit 
A 

WP_000
850250.1 

A>G Asn-Asp Yes 

 
1232624 G A   SEEM1958_

RS06350 
  tail assembly 

protein 
WP_000
980409.1 

G>A Ala-Thr Yes 

 
1218916 C T   SEEM1958_

RS06265 
  tail protein WP_001

039961.1 

   

 
1207492 A T   SEEM1958_

RS06180 
  hypothetical 

protein 
WP_001
154444.1 

A>T Ser-Cys Yes 

 
1227392 A G   SEEM1958_

RS06320 
  multiple promoter 

invertase 
WP_001
165558.1 

   

 
1148368 C A   SEEM1958_

RS05865 
  EmrA/EmrK family 

multidrug efflux 
transporter 
periplasmic 
adaptor subunit 

WP_001
275597.1 

   

 
3511347 G A   SEEM1958_

RS17895 
  multidrug ABC 

transporter 
permease/ATP-
binding 
protein 

WP_023
218106.1 

   

 
1230428 G A   SEEM1958_

RS06345 
  phage tail tape 

measure protein 
WP_023
218142.1 

C>T Arg-Trp Yes 

 
1234121 A G   SEEM1958_

RS06355 
  phage late control 

D family protein 
WP_023
218143.1 

   

 
1206907 T C   SEEM1958_

RS06175 
  replication 

endonuclease 
WP_023
218233.1 

A>G Gln-Arg Yes 

 
1212054 A C   SEEM1958_

RS06215 
  terminase subunit WP_023

218237.1 
T>G Ser-Ala Yes 

 
1222971 C T   SEEM1958_

RS06295 
  phage tail protein I WP_023

218240.1 
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4866604 C T   SEEM1958_

RS24495 
  ATPase RavA WP_023

218914.1 
C>T Pro-Leu Yes 

            

FDA083  
(Sub 
cluster 
2B) 

1223450 A G   SEEM1958_
RS06300 

frameshifted phage tail protein   
   

 
1227644 C T   SEEM1958_

RS06325 
  tail sheath protein WP_000

046109.1 
T>A Ser-Thr Yes 

 
1200770 C T   SEEM1958_

RS06130 
  phage repressor 

protein 
WP_000
052560.1 

G>A Ser-Asn Yes 

 
922239 A C   SEEM1958_

RS04755 
  diaminopimelate 

decarboxylase 
WP_000
056587.1 

A>C Ile-Leu Yes 

 
2057250 G A   SEEM1958_

RS10400 
structural flagella protein; 
individual Salmonella 
serotypes usually alternate 
between the production of 2 
antigenic forms of flagella, 
termed phase 1 and phase 2, 
each specified by separate 
structural genes 

flagellin FliC WP_000
079802.1 

G>A Ala-Thr Yes 

 
1201592 T C   SEEM1958_

RS06135 
  hypothetical 

protein 
WP_000
102104.1 

T>A Lys Yes 

 
1217272 A G   SEEM1958_

RS06245 
  hypothetical 

protein 
WP_000
171565.1 

G>C Val-Leu Yes 

 
1221428 A G   SEEM1958_

RS06285 
  baseplate assembly 

protein 
WP_000
177484.1 

A>G Ile-Val Yes 

 
488911 C T   SEEM1958_

RS02390 
  adenine-specific 

DNA-
methyltransferase 

WP_000
642611.1 
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3847405 G A   SEEM1958_

RS19550 
  DeoR family 

transcriptional 
regulator 

WP_000
678254.1 

   

 
1214990 C T   SEEM1958_

RS06225 
  phage capsid 

protein 
WP_000
730757.1 

A>G Thr-Ala Yes 

 
1229644 C T   SEEM1958_

RS06340 
  GpE family phage 

tail protein 
WP_000
763316.1 

   

 
33143 G T   SEEM1958_

RS00145 
  hypothetical 

protein 
WP_000
809951.1 

   

 
4544964 G A   SEEM1958_

RS22885 
  isocitrate lyase WP_000

857884.1 

   

 
1217131 T G   SEEM1958_

RS06240 
  tail protein X WP_000

868184.1 
C>A Gln-Lys Yes 

 
4566649 C A   SEEM1958_

RS22985 
binds specifically to the major 
sigma factor sigma 
70; active in stationary phase 

sigma D regulator WP_000
934317.1 

C>A Ser-Tyr Yes 

 
1202399 G A   SEEM1958_

RS06145 
  hypothetical 

protein 
WP_000
956168.1 

   

 
1202530 A T   SEEM1958_

RS06150 
  hypothetical 

protein 
WP_000
963480.1 

A>T Leu-Phe Yes 

 
1219184 A C   SEEM1958_

RS06265 
  tail protein WP_001

039961.1 
A>C Met-Leu Yes 

 
109552 T A   SEEM1958_

RS00510 
  tRNA 

(guanosine(18)-2'-
O)-
methyltransferase 
TrmH 

WP_001
068433.1 

A>T Glu-Val Yes 

 
1217549 T G   SEEM1958_

RS06250 
  glycoside hydrolase WP_001

069919.1 

   

 
1207353 G T   SEEM1958_

RS06180 
  hypothetical 

protein 
WP_001
154444.1 

A>C Ile-Leu Yes 
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1229006 C T   SEEM1958_

RS06330 
  major tail tube 

protein 
WP_001
207652.1 

G>A Ser-Asn Yes 

 
1207577 C T   SEEM1958_

RS06185 
  DinI family protein WP_001

217581.1 

   

 
1229315 C T   SEEM1958_

RS06335 
  phage tail assembly 

protein 
WP_001
280962.1 

T>A Leu-Gln Yes 

 
1200532 C G   SEEM1958_

RS06125 
  integrase WP_001

536726.1 
C>T His-Tyr Yes 

 
1221041 C A   SEEM1958_

RS06280 
  phage baseplate 

assembly protein V 
WP_001
556169.1 

C>A Leu-Met Yes 

 
1202882 A T   SEEM1958_

RS06155 
  hypothetical 

protein 
WP_021
293768.1 

   

 
1205863 G A   SEEM1958_

RS06175 
  replication 

endonuclease 
WP_023
218233.1 

A>G Glu-Gly Yes 

 
1211719 C A   SEEM1958_

RS06210 
  phage capsid portal 

protein 
WP_023
218236.1 

G>T Ala-Ser Yes 

 
1212256 C G   SEEM1958_

RS06215 
  terminase subunit WP_023

218237.1 
C>G Pro-Ala Yes 

 
1214089 G C   SEEM1958_

RS06220 
  phage capsid 

scaffolding protein 
WP_023
218238.1 

G>C Glu-Asp Yes 

 
1216763 T A   SEEM1958_

RS06235 
  hypothetical 

protein 
WP_023
218239.1 

   

 
1222504 T C   SEEM1958_

RS06295 
  phage tail protein I WP_023

218240.1 

   

 
2143272 T C   SEEM1958_

RS10880 
  hypothetical 

protein 
WP_023
218578.1 

A>G Gln-Arg Yes 

 
3616455 C T   SEEM1958_

RS18405 
  AraC family 

transcriptional 
regulator 

WP_023
219097.1 

G>A Ala-Thr Yes 

            

Unique SNPs Sub cluster 2C Versus Sub cluster 2D 
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FDA015 
(sub 
cluster 
2C) 

1226005 C T   SEEM1958_
RS06315 

frameshifted phage tail protein   A>G Lys-Arg Yes 

 
4448414 A T   SEEM1958_

RS22520 
  acetyl-coenzyme A 

synthetase 
WP_000
083883.1 

   

 
3728054 A T   SEEM1958_

RS18975 
  hypothetical 

protein 
WP_000
145239.1 

A>T His-Leu Yes 

 
937099 G A   SEEM1958_

RS04810 
  prolipoprotein 

diacylglyceryl 
transferase 

WP_000
204647.1 

G>A Met-Ile Yes 

 
1132162 T C srlA SEEM1958_

RS05760 
catalyzes the phosphorylation 
of incoming sugar 
substrates along with their 
translocation across the cell 
membrane; the IIC domain 
forms the PTS system 
translocation channel and 
contains the specific 
substrate-binding site 

PTS sorbitol 
transporter subunit 
IIC 

WP_000
573333.1 

A>G Asn-Asp Yes 

 
4577367 G A   SEEM1958_

RS23040 
  DNA-directed RNA 

polymerase 
subunit beta' 

WP_000
653965.1 

C>T Ala-Val Yes 

 
4202506 G A   SEEM1958_

RS21195 
  2-dehydro-3-

deoxyphosphoocto
nate aldolase 

WP_000
779253.1 

   

 
4402875 C A   SEEM1958_

RS22315 
  AraC family 

transcriptional 
regulator 

WP_000
921676.1 

C>A Asn-Lys Yes 

 
1225552 T C   SEEM1958_

RS06310 
  tail fiber assembly 

protein 
WP_000
972188.1 

A>G Gln-Arg Yes 



142 
 

 

 
304734 C A   SEEM1958_

RS01425 
  hypothetical 

protein 
WP_021
000870.1 

G>T Gly-Val Yes 

 
1240217 C T   SEEM1958_

RS06385 
  VCBS repeat-

containing protein 
WP_023
218145.1 

G>A Val-Ile Yes 

 
2666853 A G   SEEM1958_

RS13600 
  pathogenicity 

island protein 
WP_023
218254.1 

A>G His-Arg Yes 

 
3959663 G A   SEEM1958_

RS20055 
  L-carnitine CoA-

transferase 
WP_023
218424.1 

G>A Arg-His Yes 

 
623204 T A   SEEM1958_

RS03095 
  glycerate 2-kinase WP_023

219238.1 
T>A Asp-Glu Yes 

            

FDA133 
(Sub 
cluster 
2D) 

303013 C A   SEEM1958_
RS01415 

  pheromone 
autoinducer 2 
transporter 

WP_000
179588.1 

G>T Gly-Val Yes 

 
2045544 G A fliI SEEM1958_

RS10330 
involved in type III protein 
export during 
flagellum assembly 

flagellum-specific 
ATP synthase 

WP_000
213257.1 

   

 
2292255 T A   SEEM1958_

RS11650 
bifunctional anthranilate 
synthase II/anthranilate 
phosphoribosyltransferase; 
TrpD; forms a heterotetramer 
with Trp E and the complex 
catalyzes the formation of 
anthranilate from chorismate 
and glutamine; also catalyzes 
the formation of N-(5-
phospho-D-ribosyl)-
anthranilate from 
athranilate and 5-phospho-
alpha-D-ribose 1-diphosphate; 

bifunctional 
glutamine 
amidotransferase/
anthranilate 
phosphoribosyltran
sferase 

WP_000
763492.1 

A>T Asn-Tyr Yes 
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functions in tryptophan 
biosynthesis 

 
3088180 G A artM SEEM1958_

RS15760 
with ArtPQJI acts to transport 
arginine across the 
inner membrane 

arginine 
transporter 
permease subunit 
ArtM 

WP_000
895393.1 

G>A Val-Ile Yes 

 
3012404 G A   SEEM1958_

RS15420 
  chromosome 

partition protein 
MukF 

WP_001
288828.1 

   

 
3143561 A T   SEEM1958_

RS16025 
  mechanosensitive 

channel protein 
WP_023
218008.1 

A>T Ser-Cys Yes 

 
3725451 A G   SEEM1958_

RS18970 
  hypothetical 

protein 
WP_023
218471.1 

A>G Gln-Arg Yes 

 
4109610 C T   SEEM1958_

RS20745 
  type I restriction 

endonuclease 
subunit M 

WP_023
218594.1 

   

 
1011720 G A   SEEM1958_

RS05145 
  assimilatory sulfite 

reductase (NADPH) 
flavoprotein 
subunit 

WP_023
218864.1 

   

 
2786092 G A   SEEM1958_

RS14210 
  hypothetical 

protein 
WP_023
219026.1 

   

 
2405913 T C   SEEM1958_

RS12235 
  carboxylesterase WP_076

031760.1 
T>C Ile-Thr Yes 

Unique SNPs Sub cluster 2C Versus Sub cluster 2E 
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EUR069 
(Sub 
cluster 2E) 

2534501 C T   SEEM1958_
RS12855 

  sugar efflux 
transporter 

WP_000
154617.1 

C>T Gln Yes 

 
1149094 G A   SEEM1958_

RS05870 
DNA-binding transcriptional 
repressor of microcin 
B17 synthesis and multidrug 
efflux; negative regulator of 
the multidrug operon emrAB 

transcriptional 
regulator 

WP_000
378431.1 

   

 
3592002 T A   SEEM1958_

RS18305 
Confers resistance to 
fosfomycin and deoxycholate; 

MFS transporter WP_000
446768.1 

A>T Asn-Ile Yes 

 
3094297 G A   SEEM1958_

RS15795 
  membrane protein WP_000

505788.1 

   

 
497337 A T   SEEM1958_

RS02435 
  mononuclear 

molybdenum 
enzyme YedY 

WP_000
723876.1 

   

 
342809 C A   SEEM1958_

RS01620 
  aspartate-

semialdehyde 
dehydrogenase 

WP_000
799940.1 

   

 
926076 C T   SEEM1958_

RS04770 
  bifunctional 2-

acylglycerophosph
oethanolamine 
acyltransferase/acy
l-ACP synthetase 

WP_000
896101.1 

C>T Pro-Leu Yes 

 
1603990 G A   SEEM1958_

RS24795 
  hypothetical 

protein 
WP_001
121022.1 

G>A Met-Ile Yes 

 
3964150 C T carB SEEM1958_

RS20080 
four CarB-CarA dimers form 
the carbamoyl phosphate 
synthetase holoenzyme that 
catalyzes the production of 
carbamoyl phosphate; CarB is 

carbamoyl 
phosphate 
synthase large 
subunit 

WP_023
218427.1 
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responsible for the 
amidotransferase activity 

 
2786092 G A   SEEM1958_

RS14210 
  hypothetical 

protein 
WP_023
219026.1 

   

 
2350181 C T   SEEM1958_

RS11960 
  two-partner 

secretion 
translocator ZirT 

WP_023
227594.1 

C>T Thr-Ile Yes 

 
3415888 G T   SEEM1958_

RS17410 
  integrase WP_023

237847.1 
G>T Met-Ile Yes 

 
2512377 C T   SEEM1958_

RS12735 
  PhoPQ-regulated 

protein 
WP_076
031773.1 

C>T Thr-Ile Yes 

            

FDA015 
(Sub 
cluster 
2C) 

1226005 C T   SEEM1958_
RS06315 

frameshifted phage tail protein   A>G Lys-Arg Yes 

 
4448414 A T   SEEM1958_

RS22520 
  acetyl-coenzyme A 

synthetase 
WP_000
083883.1 

   

 
3728054 A T   SEEM1958_

RS18975 
  hypothetical 

protein 
WP_000
145239.1 

A>T His-Leu Yes 

 
937099 G A   SEEM1958_

RS04810 
  prolipoprotein 

diacylglyceryl 
transferase 

WP_000
204647.1 

G>A Met-Ile Yes 

 
1132162 T C srlA SEEM1958_

RS05760 
catalyzes the phosphorylation 
of incoming sugar 
substrates along with their 
translocation across the cell 
membrane; the IIC domain 
forms the PTS system 

PTS sorbitol 
transporter subunit 
IIC 

WP_000
573333.1 

A>G Asn-Asp Yes 



146 
 

 

translocation channel and 
contains the specific 
substrate-binding site 

 
4577367 G A   SEEM1958_

RS23040 
  DNA-directed RNA 

polymerase 
subunit beta' 

WP_000
653965.1 

C>T Ala-Val Yes 

 
4202506 G A   SEEM1958_

RS21195 
  2-dehydro-3-

deoxyphosphoocto
nate aldolase 

WP_000
779253.1 

   

 
1225552 T C   SEEM1958_

RS06310 
  tail fiber assembly 

protein 
WP_000
972188.1 

A>G Gln-Arg Yes 

 
304734 C A   SEEM1958_

RS01425 
  hypothetical 

protein 
WP_021
000870.1 

G>T Gly-Val Yes 

 
1240217 C T   SEEM1958_

RS06385 
  VCBS repeat-

containing protein 
WP_023
218145.1 

G>A Val-Ile Yes 

 
2666853 A G   SEEM1958_

RS13600 
  pathogenicity 

island protein 
WP_023
218254.1 

A>G His-Arg Yes 

 
3959663 G A   SEEM1958_

RS20055 
  L-carnitine CoA-

transferase 
WP_023
218424.1 

G>A Arg-His Yes 

 
623204 T A   SEEM1958_

RS03095 
  glycerate 2-kinase WP_023

219238.1 
T>A Asp-Glu Yes 

 
1386368 G C   SEEM1958_

RS07025 
  hypothetical 

protein 
WP_076
031718.1 

G>C Ala-Pro Yes 

            

Unique SNPs Sub cluster 2D versus Sub cluster 2E 

EUR069 
(Sub 
cluster 2E) 

2534501 C T   SEEM1958_
RS12855 

  sugar efflux 
transporter 

WP_000
154617.1 

C>T Gln Yes 
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1149094 G A   SEEM1958_

RS05870 
DNA-binding transcriptional 
repressor of microcin 
B17 synthesis and multidrug 
efflux; negative regulator of 
the multidrug operon emrAB 

transcriptional 
regulator 

WP_000
378431.1 

   

 
3592002 T A   SEEM1958_

RS18305 
Confers resistance to 
fosfomycin and deoxycholate 

MFS transporter WP_000
446768.1 

A>T Asn-Ile Yes 

 
3094297 G A   SEEM1958_

RS15795 
  membrane protein WP_000

505788.1 

   

 
497337 A T   SEEM1958_

RS02435 
  mononuclear 

molybdenum 
enzyme YedY 

WP_000
723876.1 

   

 
342809 C A   SEEM1958_

RS01620 
  aspartate-

semialdehyde 
dehydrogenase 

WP_000
799940.1 

   

 
926076 C T   SEEM1958_

RS04770 
  bifunctional 2-

acylglycerophosph
oethanolamine 
acyltransferase/acy
l-ACP synthetase 

WP_000
896101.1 

C>T Pro-Leu Yes 

 
1603990 G A   SEEM1958_

RS24795 
  hypothetical 

protein 
WP_001
121022.1 

G>A Met-Ile Yes 

 
3675600 A T   SEEM1958_

RS18715 
  hypothetical 

protein 
WP_006
499449.1 

T>A Val-Glu Yes 

 
3964150 C T carB SEEM1958_

RS20080 
four CarB-CarA dimers form 
the carbamoyl phosphate 
synthetase holoenzyme that 
catalyzes the production of 
carbamoyl phosphate; CarB is 
responsible for the 
amidotransferase activity 

carbamoyl 
phosphate 
synthase large 
subunit 

WP_023
218427.1 
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3697903 G T   SEEM1958_

RS18815 
  Rhs family protein WP_023

218486.1 

   

 
1197125 C T   SEEM1958_

RS06100 
structural flagella protein; 
individual Salmonella 
serotypes usually alternate 
between the production of 2 
antigenic forms of flagella, 
termed phase 1 and phase 2, 
each specified by separate 
structural genes 

flagellin FliC WP_023
219298.1 

   

 
2350181 C T   SEEM1958_

RS11960 
  two-partner 

secretion 
translocator ZirT 

WP_023
227594.1 

C>T Thr-Ile Yes 

 
3415888 G T   SEEM1958_

RS17410 
  integrase WP_023

237847.1 
G>T Met-Ile Yes 

 
2512377 C T   SEEM1958_

RS12735 
  PhoPQ-regulated 

protein 
WP_076
031773.1 

C>T Thr-Ile Yes 

            

FDA133 
(Sub 
cluster 
2D) 

303013 C A   SEEM1958_
RS01415 

  pheromone 
autoinducer 2 
transporter 

WP_000
179588.1 

G>T Gly-Val Yes 

 
2045544 G A fliI SEEM1958_

RS10330 
involved in type III protein 
export during 
flagellum assembly 

flagellum-specific 
ATP synthase 

WP_000
213257.1 

   



149 
 

 

 
2292255 T A   SEEM1958_

RS11650 
bifunctional anthranilate 
synthase II/anthranilate 
phosphoribosyltransferase; 
TrpD; forms a heterotetramer 
with Trp E and the complex 
catalyzes the formation of 
anthranilate from chorismate 
and glutamine; also catalyzes 
the formation of N-(5-
phospho-D-ribosyl)-
anthranilate from 
athranilate and 5-phospho-
alpha-D-ribose 1-diphosphate; 
functions in tryptophan 
biosynthesis 

bifunctional 
glutamine 
amidotransferase/
anthranilate 
phosphoribosyltran
sferase 

WP_000
763492.1 

A>T Asn-Tyr Yes 

 
4572349 G C   SEEM1958_

RS23015 
  2-iminoacetate 

synthase ThiH 
WP_000
847486.1 

   

 
3088180 G A artM SEEM1958_

RS15760 
with ArtPQJI acts to transport 
arginine across the 
inner membrane 

arginine 
transporter 
permease subunit 
ArtM 

WP_000
895393.1 

G>A Val-Ile Yes 

 
3012404 G A   SEEM1958_

RS15420 
  chromosome 

partition protein 
MukF 

WP_001
288828.1 

   

 
3143561 A T   SEEM1958_

RS16025 
  mechanosensitive 

channel protein 
WP_023
218008.1 

A>T Ser-Cys Yes 

 
1382471 T C   SEEM1958_

RS07020 
  hypothetical 

protein 
WP_023
218393.1 

   

 
3725451 A G   SEEM1958_

RS18970 
  hypothetical 

protein 
WP_023
218471.1 

A>G Gln-Arg Yes 
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4109610 C T   SEEM1958_

RS20745 
  type I restriction 

endonuclease 
subunit M 

WP_023
218594.1 

   

 
1011720 G A   SEEM1958_

RS05145 
  assimilatory sulfite 

reductase (NADPH) 
flavoprotein 
subunit 

WP_023
218864.1 

   

 
2589168 C T   SEEM1958_

RS13145 
allows for ions and hydrophilic 
solutes to cross 
the outer membrane 

phosphoporin PhoE WP_023
219003.1 

   

 
1195940 T C   SEEM1958_

RS06100 
structural flagella protein; 
individual Salmonella 
serotypes usually alternate 
between the production of 2 
antigenic forms of flagella, 
termed phase 1 and phase 2, 
each specified by separate 
structural genes 

flagellin FliC WP_023
219298.1 

   

 
2405913 T C   SEEM1958_

RS12235 
  carboxylesterase WP_076

031760.1 
T>C Ile-Thr Yes 
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Table 8.  Details of proteins present or absent in S. Mbandaka isolates in selected protein cluster bins derived from pan genome 
analysis.  Comparative genome content analysis revealed 4701 proteins with known COG function and 2275 with unknown function. 
Protein cluster bins (PCB) 1 to 13were selected to identify exclusive COGs present in each selected S.Mbandaka isolates. PCB 14 and 
15 were selected to identify protein that were found absent in isolate FDA176. Table contains only proteins with known COG 
function after removing duplicates of proteins similar COG function access number. 

 

Bin 
name 

Protein cluster 
ID 

Genome 
ID 

COG function accession COG function 

PCB1 PC_00006821 EUR_069 COG1192 Cellulose biosynthesis protein BcsQ  
PC_00005656 EUR_069 COG4372 Uncharacterized conserved protein, contains DUF3084 domain 

PCB2 PC_00005223 USDA_005 COG4591 ABC-type transport system, involved in lipoprotein release, 
permease component 

 
PC_00004853 USDA_005 COG3052 Citrate lyase, gamma subunit  
PC_00004858 USDA_005 COG2197 DNA-binding response regulator, NarL/FixJ family, contains REC 

and HTH domains 
 

PC_00004857 USDA_005 COG2025 Electron transfer flavoprotein, alpha subunit  
PC_00005645 USDA_005 COG0046|COG0047 Phosphoribosylformylglycinamidine (FGAM) synthase, 

synthetase domain|Phosphoribosylformylglycinamidine (FGAM) 
synthase, glutamine amidotransferase domain 

 
PC_00004864 USDA_005 COG1974 SOS-response transcriptional repressor LexA (RecA-mediated 

autopeptidase) 
 

PC_00005014 USDA_005 COG4694 Wobble nucleotide-excising tRNase 

PCB3 PC_00004914 USDA_015 COG1917|COG2207 Cupin domain protein related to quercetin dioxygenase|AraC-
type DNA-binding domain and AraC-containing proteins 
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PC_00006064 USDA_015 COG0543|COG0633 NAD(P)H-flavin reductase|Ferredoxin  
PC_00004920 USDA_015 COG1762|COG3711 Phosphotransferase system mannitol/fructose-specific IIA 

domain (Ntr-type)|Transcriptional antiterminator 
 

PC_00005657 USDA_015 COG0515|COG0790|COG079
0 

Serine/threonine protein kinase|TPR repeat|TPR repeat 

 
PC_00005040 USDA_015 COG2929 Uncharacterized conserved protein, DUF497 family 

PCB4 
    

PCB5 PC_00005450 USDA_037 COG3727 G:T-mismatch repair DNA endonuclease, very short patch repair 
protein 

 
PC_00006870 USDA_037 COG0270 Site-specific DNA-cytosine methylase  
PC_00005491 USDA_037 COG1479 Uncharacterized conserved protein, contains ParB-like and HNH 

nuclease domains 

PCB6 PC_00005962 OTH_007 COG2217|COG3350 Cation transport ATPase|Uncharacterized conserved protein, 
YHS domain 

 
PC_00004899 OTH_007 COG2372 Copper-binding protein CopC (methionine-rich)  
PC_00004907 OTH_007 COG0419|COG3593 DNA repair exonuclease SbcCD ATPase subunit|Predicted ATP-

dependent endonuclease of the OLD family, contains P-loop 
ATPase and TOPRIM domains 

 
PC_00006357 OTH_007 COG0484 DnaJ-class molecular chaperone with C-terminal Zn finger 

domain 
 

PC_00006378 OTH_007 COG2205 K+-sensing histidine kinase KdpD  
PC_00005750 OTH_007 COG2132|COG2132 Multicopper oxidase with three cupredoxin domains (includes 

cell division protein FtsP and spore coat protein 
CotA)|Multicopper oxidase with three cupredoxin domains 
(includes cell division protein FtsP and spore coat protein CotA) 

 
PC_00006811 OTH_007 COG0845 Multidrug efflux pump subunit AcrA (membrane-fusion protein) 
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PC_00006760 OTH_007 COG0739 Murein DD-endopeptidase MepM and murein hydrolase 

activator NlpD, contain LysM domain 
 

PC_00006008 OTH_007 COG1538 Outer membrane protein TolC  
PC_00006392 OTH_007 COG5569 Periplasmic Cu and Ag efflux protein CusF  
PC_00006425 OTH_007 COG5525 Phage terminase, large subunit GpA  
PC_00006551 OTH_007 COG3668 Plasmid stabilization system protein ParE  
PC_00005909 OTH_007 COG0270 Site-specific DNA-cytosine methylase  
PC_00005592 OTH_007 COG2801 Transposase InsO and inactivated derivatives  
PC_00005204 OTH_007 COG0286 Type I restriction-modification system, DNA methylase subunit 

 
PC_00006474 OTH_007 COG3704 Type IV secretory pathway, VirB6 components  
PC_00005324 OTH_007 COG3019 Uncharacterized conserved protein  
PC_00006615 OTH_007 COG3544 Uncharacterized conserved protein, DUF305 family  
PC_00005913 OTH_007 COG3667 Uncharacterized protein involved in copper resistance 

PCB7 PC_00004854 ADRDL_27 COG0161 Adenosylmethionine-8-amino-7-oxononanoate 
aminotransferase 

 
PC_00004855 ADRDL_27 COG0132 Dethiobiotin synthetase  
PC_00004915 ADRDL_27 COG2086 Electron transfer flavoprotein, alpha and beta subunits  
PC_00006737 ADRDL_27 COG0366 Glycosidase  
PC_00006190 ADRDL_27 COG0582 Integrase  
PC_00006273 ADRDL_27 COG0477 MFS family permease  
PC_00004775 ADRDL_27 COG4384 Mu-like prophage protein gp45  
PC_00004836 ADRDL_27 COG4386 Mu-like prophage tail sheath protein gpL  
PC_00006807 ADRDL_27 COG4626 Phage terminase-like protein, large subunit, contains N-terminal 

HTH domain 
 

PC_00006305 ADRDL_27 COG5495 Predicted oxidoreductase, contains short-chain dehydrogenase 
(SDR) and DUF2520 domains 

 
PC_00006832 ADRDL_27 COG2271 Sugar phosphate permease 
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PC_00006633 ADRDL_27 COG3793 Tellurite resistance protein  
PC_00005681 ADRDL_27 COG1063 Threonine dehydrogenase or related Zn-dependent 

dehydrogenase 
 

PC_00006492 ADRDL_27 COG3547 Transposase  
PC_00006929 ADRDL_27 COG3316 Transposase (or an inactivated derivative)  
PC_00004717 ADRDL_27 COG1662 Transposase and inactivated derivatives, IS1 family  
PC_00006417 ADRDL_27 COG3451 Type IV secretory pathway, VirB4 component  
PC_00004859 ADRDL_27 COG1881 Uncharacterized conserved protein, phosphatidylethanolamine-

binding protein (PEBP) family 

PCB8 PC_00006936 EUR_034 COG4227 Antirestriction protein ArdC  
PC_00005055 EUR_034 COG1106 ATPase/GTPase, AAA15 family  
PC_00006181 EUR_034 COG0740 ATP-dependent protease ClpP, protease subunit  
PC_00006971 EUR_034 COG5511 Bacteriophage capsid protein  
PC_00006709 EUR_034 COG4385 Bacteriophage P2-related tail formation protein  
PC_00005527 EUR_034 COG1192 Cellulose biosynthesis protein BcsQ  
PC_00005020 EUR_034 COG1475 Chromosome segregation protein Spo0J, contains ParB-like 

nuclease domain 
 

PC_00005979 EUR_034 COG0863|COG1475 DNA modification methylase|Chromosome segregation protein 
Spo0J, contains ParB-like nuclease domain 

 
PC_00005575 EUR_034 COG0847 DNA polymerase III, epsilon subunit or related 3'-5' exonuclease 

 
PC_00006348 EUR_034 COG0358 DNA primase (bacterial type)  
PC_00005911 EUR_034 COG2944 DNA-binding transcriptional regulator YiaG, XRE-type HTH 

domain 
 

PC_00006344 EUR_034 COG5004 P2-like prophage tail protein X  
PC_00006226 EUR_034 COG4540 Phage P2 baseplate assembly protein gpV  
PC_00006915 EUR_034 COG3500 Phage protein D  
PC_00005927 EUR_034 COG3497 Phage tail sheath protein FI 



155 
 

 

 
PC_00005815 EUR_034 COG3498 Phage tail tube protein FII  
PC_00006196 EUR_034 COG5525 Phage terminase, large subunit GpA  
PC_00006206 EUR_034 COG3948 Phage-related baseplate assembly protein  
PC_00006539 EUR_034 COG5301 Phage-related tail fibre protein  
PC_00005003 EUR_034 COG5283 Phage-related tail protein  
PC_00006829 EUR_034 COG3620 Predicted transcriptional regulator with C-terminal CBS domains 

 
PC_00006018 EUR_034 COG0270 Site-specific DNA-cytosine methylase  
PC_00005068 EUR_034 COG1974 SOS-response transcriptional repressor LexA (RecA-mediated 

autopeptidase) 
 

PC_00006274 EUR_034 COG1479 Uncharacterized conserved protein, contains ParB-like and HNH 
nuclease domains 

PCB9 PC_00006947 EUR_062 COG1051 ADP-ribose pyrophosphatase YjhB, NUDIX family  
PC_00006457 EUR_062 COG1192 Cellulose biosynthesis protein BcsQ  
PC_00006038 EUR_062 COG1475 Chromosome segregation protein Spo0J, contains ParB-like 

nuclease domain 
 

PC_00006744 EUR_062 COG2131 Deoxycytidylate deaminase  
PC_00006231 EUR_062 COG0262 Dihydrofolate reductase  
PC_00006252 EUR_062 COG0484 DnaJ-class molecular chaperone with C-terminal Zn finger 

domain 
 

PC_00006630 EUR_062 COG0543|COG0633 NAD(P)H-flavin reductase|Ferredoxin  
PC_00005809 EUR_062 COG3081 Nucleoid-associated protein YejK (function unknown)  
PC_00006688 EUR_062 COG1835 Peptidoglycan/LPS O-acetylase OafA/YrhL, contains 

acyltransferase and SGNH-hydrolase domains 
 

PC_00005649 EUR_062 COG3740 Phage head maturation protease  
PC_00006516 EUR_062 COG4695 Phage portal protein BeeE  
PC_00006562 EUR_062 COG5525 Phage terminase, large subunit GpA  
PC_00005403 EUR_062 COG3728 Phage terminase, small subunit 
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PC_00004921 EUR_062 COG3668 Plasmid stabilization system protein ParE  
PC_00006311 EUR_062 COG3905 Predicted transcriptional regulator  
PC_00006147 EUR_062 COG1715 Restriction endonuclease Mrr  
PC_00006184 EUR_062 COG1396 Transcriptional regulator, contains XRE-family HTH domain  
PC_00005421 EUR_062 COG3706 Two-component response regulator, PleD family, consists of 

two REC domains and a diguanylate cyclase (GGDEF) domain 

PCB1
0 

PC_00004607 ADRDL_45 COG1426 Cytoskeletal protein RodZ, contains Xre-like HTH and DUF4115 
domains 

 
PC_00004608 ADRDL_45 COG1974 SOS-response transcriptional repressor LexA (RecA-mediated 

autopeptidase) 
 

PC_00005720 FDA_135 COG4227 Antirestriction protein ArdC  
PC_00006864 FDA_135 COG2336 Antitoxin component of the MazEF toxin-antitoxin module  
PC_00004692 FDA_135 COG0507 ATP-dependent exoDNAse (exonuclease V), alpha subunit, 

helicase superfamily I 
 

PC_00006410 FDA_135 COG1192 Cellulose biosynthesis protein BcsQ  
PC_00005783 FDA_135 COG2916 DNA-binding protein H-NS  
PC_00005721 FDA_135 COG4197 DNA-binding transcriptional regulator YdaS, prophage-encoded, 

Cro superfamily 
 

PC_00006319 FDA_135 COG2944 DNA-binding transcriptional regulator YiaG, XRE-type HTH 
domain 

 
PC_00004863 FDA_135 COG1344|COG1344 Flagellin and related hook-associated protein FlgL|Flagellin and 

related hook-associated protein FlgL 
 

PC_00004934 FDA_135 COG0426 Flavorubredoxin  
PC_00005597 FDA_135 COG2337 mRNA-degrading endonuclease, toxin component of the MazEF 

toxin-antitoxin module 
 

PC_00004984 FDA_135 COG0845 Multidrug efflux pump subunit AcrA (membrane-fusion protein) 
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PC_00004666 FDA_135 COG0697 Permease of the drug/metabolite transporter (DMT) 

superfamily 
 

PC_00006066 FDA_135 COG2932 Phage repressor protein C, contains Cro/C1-type HTH and 
peptisase s24 domains 

 
PC_00004868 FDA_135 COG5301 Phage-related tail fibre protein  
PC_00005132 FDA_135 COG1502 Phosphatidylserine/phosphatidylglycerophosphate/cardiolipin 

synthase or related enzyme 
 

PC_00004872 FDA_135 COG4928 Predicted P-loop ATPase, KAP-like  
PC_00005973 FDA_135 COG3091 Predicted Zn-dependent metalloprotease, SprT family  
PC_00005469 FDA_135 COG1715 Restriction endonuclease Mrr  
PC_00006225 FDA_135 COG1961 Site-specific DNA recombinase related to the DNA invertase Pin 

 
PC_00004648 FDA_135 COG0741 Soluble lytic murein transglycosylase and related regulatory 

proteins (some contain LysM/invasin domains) 
 

PC_00004701 FDA_135 COG0286 Type I restriction-modification system, DNA methylase subunit 

 
PC_00006088 FDA_135 COG0630 Type IV secretory pathway ATPase VirB11/Archaellum 

biosynthesis ATPase 
 

PC_00005940 FDA_135 COG3736 Type IV secretory pathway, component VirB8  
PC_00005181 FDA_135 COG2948 Type IV secretory pathway, VirB10 components  
PC_00005454 FDA_135 COG3702 Type IV secretory pathway, VirB3 components  
PC_00004905 FDA_135 COG3451 Type IV secretory pathway, VirB4 component  
PC_00004753 FDA_135 COG3704 Type IV secretory pathway, VirB6 components  
PC_00004679 FDA_135 COG3504 Type IV secretory pathway, VirB9 components  
PC_00005667 FDA_135 COG3505 Type IV secretory pathway, VirD4 component, TraG/TraD family 

ATPase 
 

PC_00006942 FDA_135 COG4737 Uncharacterized protein 
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PCB1
1 

PC_00006742 ADRDL_45 COG1135 ABC-type methionine transport system, ATPase component 

 
PC_00006051 ADRDL_45 COG2189 Adenine specific DNA methylase Mod  
PC_00005544 ADRDL_45 COG0814 Amino acid permease  
PC_00006540 ADRDL_45 COG0507 ATP-dependent exoDNAse (exonuclease V), alpha subunit, 

helicase superfamily I 
 

PC_00005971 ADRDL_45 COG1887 CDP-glycerol glycerophosphotransferase, TagB/SpsB family 

 
PC_00006603 ADRDL_45 COG1192 Cellulose biosynthesis protein BcsQ  
PC_00005398 ADRDL_45 COG2303 Choline dehydrogenase or related flavoprotein  
PC_00005157 ADRDL_45 COG1196 Chromosome segregation ATPase  
PC_00006949 ADRDL_45 COG1475 Chromosome segregation protein Spo0J, contains ParB-like 

nuclease domain 
 

PC_00006236 ADRDL_45 COG1309 DNA-binding transcriptional regulator, AcrR family  
PC_00006498 ADRDL_45 COG3855 Fructose-1,6-bisphosphatase  
PC_00006097 ADRDL_45 COG0334 Glutamate dehydrogenase/leucine dehydrogenase  
PC_00006531 ADRDL_45 COG1391 Glutamine synthetase adenylyltransferase  
PC_00004940 ADRDL_45 COG0582|COG4974 Integrase|Site-specific recombinase XerD  
PC_00005482 ADRDL_45 COG1566 Multidrug resistance efflux pump  
PC_00006620 ADRDL_45 COG0036 Pentose-5-phosphate-3-epimerase  
PC_00005142 ADRDL_45 COG3645|COG3646 Phage antirepressor protein YoqD, KilAC domain|Phage 

regulatory protein Rha 
 

PC_00004976 ADRDL_45 COG2932 Phage repressor protein C, contains Cro/C1-type HTH and 
peptisase s24 domains 
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PC_00006683 ADRDL_45 COG2932|COG2932|COG293

2 
Phage repressor protein C, contains Cro/C1-type HTH and 
peptisase s24 domains|Phage repressor protein C, contains 
Cro/C1-type HTH and peptisase s24 domains|Phage repressor 
protein C, contains Cro/C1-type HTH and peptisase s24 domains 

 
PC_00005425 ADRDL_45 COG3772 Phage-related lysozyme (muramidase), GH24 family  
PC_00006975 ADRDL_45 COG5281|COG5281 Phage-related minor tail protein|Phage-related minor tail 

protein 
 

PC_00004959 ADRDL_45 COG5301 Phage-related tail fibre protein  
PC_00005416 ADRDL_45 COG2814 Predicted arabinose efflux permease, MFS family  
PC_00005203 ADRDL_45 COG2072 Predicted flavoprotein CzcO associated with the cation diffusion 

facilitator CzcD 
 

PC_00006681 ADRDL_45 COG1598 Predicted nuclease of the RNAse H fold, HicB family  
PC_00006063 ADRDL_45 COG3654 Prophage maintenance system killer protein  
PC_00004945 ADRDL_45 COG5527 Protein involved in initiation of plasmid replication  
PC_00005271 ADRDL_45 COG3598 RecA-family ATPase  
PC_00005214 ADRDL_45 COG3611 Replication initiation and membrane attachment protein DnaB 

 
PC_00005516 ADRDL_45 COG3587 Restriction endonuclease  
PC_00006574 ADRDL_45 COG1039 Ribonuclease HIII  
PC_00005243 ADRDL_45 COG4585 Signal transduction histidine kinase  
PC_00005793 ADRDL_45 COG0270 Site-specific DNA-cytosine methylase  
PC_00005509 ADRDL_45 COG0741|COG5283 Soluble lytic murein transglycosylase and related regulatory 

proteins (some contain LysM/invasin domains)|Phage-related 
tail protein 

 
PC_00006364 ADRDL_45 COG1974 SOS-response transcriptional repressor LexA (RecA-mediated 

autopeptidase) 
 

PC_00006304 ADRDL_45 COG3793 Tellurite resistance protein 
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PC_00006325 ADRDL_45 COG0675 Transposase  
PC_00006745 ADRDL_45 COG2801 Transposase InsO and inactivated derivatives  
PC_00006806 ADRDL_45 COG3415|COG4373 Transposase|Mu-like prophage FluMu protein gp28  
PC_00006212 ADRDL_45 COG3843 Type IV secretory pathway, VirD2 components (relaxase)  
PC_00005547 ADRDL_45 COG3299 Uncharacterized phage protein gp47/JayE  
PC_00005463 ADRDL_45 COG4834 Uncharacterized protein  
PC_00005910 ADRDL_45 COG3567 Uncharacterized protein 

PCB1
2 

PC_00005322 ATCC_5195
8 

COG0179 2-keto-4-pentenoate hydratase/2-oxohepta-3-ene-1,7-dioic 
acid hydratase (catechol pathway) 

 
PC_00005771 ATCC_5195

8 
COG3481 3'-5' exoribonuclease YhaM, can participate in 23S rRNA 

maturation,  HD superfamily 
 

PC_00006666 ATCC_5195
8 

COG0066 3-isopropylmalate dehydratase small subunit 

 
PC_00005079 ATCC_5195

8 
COG0834 ABC-type amino acid transport/signal transduction system, 

periplasmic component/domain 
 

PC_00004968 ATCC_5195
8 

COG1132 ABC-type multidrug transport system, ATPase and permease 
component 

 
PC_00006604 ATCC_5195

8 
COG1129 ABC-type sugar transport system, ATPase component 

 
PC_00006461 ATCC_5195

8 
COG1879 ABC-type sugar transport system, periplasmic component, 

contains N-terminal xre family HTH domain 
 

PC_00005067 ATCC_5195
8 

COG4569 Acetaldehyde dehydrogenase (acetylating) 

 
PC_00006068 ATCC_5195

8 
COG0827 Adenine-specific DNA methylase 

 
PC_00005066 ATCC_5195

8 
COG2015 Alkyl sulfatase BDS1 and related hydrolases, metallo-beta-

lactamase superfamily 
 

PC_00005049 ATCC_5195
8 

COG2721 Altronate dehydratase 
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PC_00004950 ATCC_5195

8 
COG2336 Antitoxin component of the MazEF toxin-antitoxin module 

 
PC_00006012 ATCC_5195

8 
COG2161 Antitoxin component YafN of the YafNO toxin-antitoxin module, 

PHD/YefM family 
 

PC_00005855 ATCC_5195
8 

COG2207 AraC-type DNA-binding domain and AraC-containing proteins 

 
PC_00006172 ATCC_5195

8 
COG0542 ATP-dependent Clp protease ATP-binding subunit ClpA 

 
PC_00005148 ATCC_5195

8 
COG0507|COG1112|COG150
2 

ATP-dependent exoDNAse (exonuclease V), alpha subunit, 
helicase superfamily I|Superfamily I DNA and/or RNA 
helicase|Phosphatidylserine/phosphatidylglycerophosphate/car
diolipin synthase or related enzyme 

 
PC_00006490 ATCC_5195

8 
COG5295 Autotransporter adhesin 

 
PC_00006133 ATCC_5195

8 
COG5295|COG5295|COG529
5 

Autotransporter adhesin|Autotransporter 
adhesin|Autotransporter adhesin 

 
PC_00005012 ATCC_5195

8 
COG1168 Bifunctional PLP-dependent enzyme with beta-cystathionase 

and maltose regulon repressor activities 
 

PC_00005061 ATCC_5195
8 

COG0496 Broad specificity polyphosphatase and 5'/3'-nucleotidase SurE 

 
PC_00004994 ATCC_5195

8 
COG3266 Cell division protein DamX, binds to the septal ring, contains C-

terminal SPOR domain 
 

PC_00005114 ATCC_5195
8 

COG1192 Cellulose biosynthesis protein BcsQ 

 
PC_00004997 ATCC_5195

8 
COG1196|COG3593 Chromosome segregation ATPase|Predicted ATP-dependent 

endonuclease of the OLD family, contains P-loop ATPase and 
TOPRIM domains 



162 
 

 

 
PC_00004929 ATCC_5195

8 
COG1475 Chromosome segregation protein Spo0J, contains ParB-like 

nuclease domain 
 

PC_00006682 ATCC_5195
8 

COG2096|COG3193 Cob(I)alamin adenosyltransferase|Uncharacterized conserved 
protein GlcG, DUF336 family 

 
PC_00005141 ATCC_5195

8 
COG1203 CRISPR/Cas system-associated endonuclease/helicase Cas3 

 
PC_00005461 ATCC_5195

8 
COG1917 Cupin domain protein related to quercetin dioxygenase 

 
PC_00005242 ATCC_5195

8 
COG1064 D-arabinose 1-dehydrogenase, Zn-dependent alcohol 

dehydrogenase family 
 

PC_00006792 ATCC_5195
8 

COG0329 Dihydrodipicolinate synthase/N-acetylneuraminate lyase 

 
PC_00006902 ATCC_5195

8 
COG0847 DNA polymerase III, epsilon subunit or related 3'-5' exonuclease 

 
PC_00005791 ATCC_5195

8 
COG2003 DNA repair protein RadC, contains a helix-hairpin-helix DNA-

binding motif 
 

PC_00005198 ATCC_5195
8 

COG3279 DNA-binding response regulator, LytR/AlgR family 

 
PC_00006421 ATCC_5195

8 
COG0745 DNA-binding response regulator, OmpR family, contains REC 

and winged-helix (wHTH) domain 
 

PC_00005048 ATCC_5195
8 

COG2390 DNA-binding transcriptional regulator LsrR, DeoR family 

 
PC_00005369 ATCC_5195

8 
COG1349 DNA-binding transcriptional regulator of sugar metabolism, 

DeoR/GlpR family 
 

PC_00006553 ATCC_5195
8 

COG2186 DNA-binding transcriptional regulator, FadR family 

 
PC_00005437 ATCC_5195

8 
COG1414 DNA-binding transcriptional regulator, IclR family 

 
PC_00005554 ATCC_5195

8 
COG0583 DNA-binding transcriptional regulator, LysR family 
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PC_00006000 ATCC_5195

8 
COG1167 DNA-binding transcriptional regulator, MocR family, contains an 

aminotransferase domain 
 

PC_00005789 ATCC_5195
8 

COG0251 Enamine deaminase RidA, house cleaning of reactive enamine 
intermediates, YjgF/YER057c/UK114 family 

 
PC_00006381 ATCC_5195

8 
COG0695 Glutaredoxin 

 
PC_00006322 ATCC_5195

8 
COG1100|COG4886 GTPase SAR1 family domain|Leucine-rich repeat (LRR) protein 

 
PC_00005358 ATCC_5195

8 
COG0561 Hydroxymethylpyrimidine pyrophosphatase and other HAD 

family phosphatases 
 

PC_00005159 ATCC_5195
8 

COG0582 Integrase 

 
PC_00005080 ATCC_5195

8 
COG0119 Isopropylmalate/homocitrate/citramalate synthases 

 
PC_00005103 ATCC_5195

8 
COG2205 K+-sensing histidine kinase KdpD 

 
PC_00006146 ATCC_5195

8 
COG4948 L-alanine-DL-glutamate epimerase or related enzyme of enolase 

superfamily 
 

PC_00005650 ATCC_5195
8 

COG0662 Mannose-6-phosphate isomerase, cupin superfamily 

 
PC_00005028 ATCC_5195

8 
COG4373 Mu-like prophage FluMu protein gp28 

 
PC_00006525 ATCC_5195

8 
COG4388 Mu-like prophage I protein 

 
PC_00005337 ATCC_5195

8 
COG4382 Mu-like prophage protein gp16 

 
PC_00005240 ATCC_5195

8 
COG4383 Mu-like prophage protein gp29 

 
PC_00006298 ATCC_5195

8 
COG4387 Mu-like prophage protein gp36 
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PC_00006905 ATCC_5195

8 
COG5005 Mu-like prophage protein gpG 

 
PC_00005453 ATCC_5195

8 
COG1566 Multidrug resistance efflux pump 

 
PC_00005966 ATCC_5195

8 
COG0739|COG1388|COG377
3 

Murein DD-endopeptidase MepM and murein hydrolase 
activator NlpD, contain LysM domain|LysM repeat|Cell wall 
hydrolase CwlJ, involved in spore germination 

 
PC_00005784 ATCC_5195

8 
COG1028 NAD(P)-dependent dehydrogenase, short-chain alcohol 

dehydrogenase family 
 

PC_00004866 ATCC_5195
8 

COG2110 O-acetyl-ADP-ribose deacetylase (regulator of RNase III), 
contains Macro domain 

 
PC_00006092 ATCC_5195

8 
COG3121 P pilus assembly protein, chaperone PapD 

 
PC_00006735 ATCC_5195

8 
COG0036 Pentose-5-phosphate-3-epimerase 

 
PC_00006271 ATCC_5195

8 
COG0697 Permease of the drug/metabolite transporter (DMT) 

superfamily 
 

PC_00006954 ATCC_5195
8 

COG3499 Phage protein U 

 
PC_00006156 ATCC_5195

8 
COG3772 Phage-related lysozyme (muramidase), GH24 family 

 
PC_00006962 ATCC_5195

8 
COG5301 Phage-related tail fibre protein 

 
PC_00005691 ATCC_5195

8 
COG5283 Phage-related tail protein 

 
PC_00005859 ATCC_5195

8 
COG1502 Phosphatidylserine/phosphatidylglycerophosphate/cardiolipin 

synthase or related enzyme 
 

PC_00005590 ATCC_5195
8 

COG1263 Phosphotransferase system IIC components, 
glucose/maltose/N-acetylglucosamine-specific 
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PC_00005187 ATCC_5195

8 
COG1762 Phosphotransferase system mannitol/fructose-specific IIA 

domain (Ntr-type) 
 

PC_00005186 ATCC_5195
8 

COG3414 Phosphotransferase system, galactitol-specific IIB component 

 
PC_00005231 ATCC_5195

8 
COG3539 Pilin (type 1 fimbria component protein) 

 
PC_00006589 ATCC_5195

8 
COG0596 Pimeloyl-ACP methyl ester carboxylesterase 

 
PC_00005019 ATCC_5195

8 
COG3668 Plasmid stabilization system protein ParE 

 
PC_00005069 ATCC_5195

8 
COG4938 Predicted ATPase 

 
PC_00004942 ATCC_5195

8 
COG3522 Predicted component of the type VI protein secretion system 

 
PC_00005351 ATCC_5195

8 
COG3516 Predicted component of the type VI protein secretion system 

 
PC_00005440 ATCC_5195

8 
COG3518 Predicted component of the type VI protein secretion system 

 
PC_00005636 ATCC_5195

8 
COG3521 Predicted component of the type VI protein secretion system 

 
PC_00005775 ATCC_5195

8 
COG3515 Predicted component of the type VI protein secretion system 

 
PC_00006106 ATCC_5195

8 
COG3517 Predicted component of the type VI protein secretion system 

 
PC_00006306 ATCC_5195

8 
COG3520 Predicted component of the type VI protein secretion system 

 
PC_00006728 ATCC_5195

8 
COG3456 Predicted component of the type VI protein secretion system, 

contains a FHA domain 
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PC_00006167 ATCC_5195

8 
COG3311 Predicted DNA-binding transcriptional regulator AlpA 

 
PC_00006323 ATCC_5195

8 
COG5635 Predicted NTPase, NACHT family domain 

 
PC_00006229 ATCC_5195

8 
COG1487 Predicted nucleic acid-binding protein, contains PIN domain 

 
PC_00006621 ATCC_5195

8 
COG0667 Predicted oxidoreductase (related to aryl-alcohol 

dehydrogenase) 
 

PC_00005180 ATCC_5195
8 

COG3620 Predicted transcriptional regulator with C-terminal CBS domains 

 
PC_00006708 ATCC_5195

8 
COG2964 Predicted transcriptional regulator YheO, contains PAS and 

DNA-binding HTH domains 
 

PC_00005006 ATCC_5195
8 

COG2865 Predicted transcriptional regulator, contains HTH domain 

 
PC_00005308 ATCC_5195

8 
COG1359 Quinol monooxygenase YgiN 

 
PC_00004923 ATCC_5195

8 
COG0732|COG0732 Restriction endonuclease S subunit|Restriction endonuclease S 

subunit 
 

PC_00006403 ATCC_5195
8 

COG1172 Ribose/xylose/arabinose/galactoside ABC-type transport 
system, permease component 

 
PC_00005654 ATCC_5195

8 
COG0257 Ribosomal protein L36 

 
PC_00005371 ATCC_5195

8 
COG1734 RNA polymerase-binding transcription factor DksA 

 
PC_00006314 ATCC_5195

8 
COG3550 Serine/threonine protein kinase HipA, toxin component of the 

HipAB toxin-antitoxin module 
 

PC_00004856 ATCC_5195
8 

COG5002 Signal transduction histidine kinase 

 
PC_00005269 ATCC_5195

8 
COG0338 Site-specific DNA-adenine methylase 
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PC_00004896 ATCC_5195

8 
COG4974 Site-specific recombinase XerD 

 
PC_00005042 ATCC_5195

8 
COG1070 Sugar (pentulose or hexulose) kinase 

 
PC_00005150 ATCC_5195

8 
COG2271 Sugar phosphate permease 

 
PC_00005389 ATCC_5195

8 
COG0553|COG0553 Superfamily II DNA or RNA helicase, SNF2 family|Superfamily II 

DNA or RNA helicase, SNF2 family 
 

PC_00005151 ATCC_5195
8 

COG1063 Threonine dehydrogenase or related Zn-dependent 
dehydrogenase 

 
PC_00005872 ATCC_5195

8 
COG4115 Toxin component of the Txe-Axe toxin-antitoxin module, 

Txe/YoeB family 
 

PC_00005419 ATCC_5195
8 

COG4584 Transposase 

 
PC_00006074 ATCC_5195

8 
COG2963 Transposase and inactivated derivatives 

 
PC_00004900 ATCC_5195

8 
COG2801 Transposase InsO and inactivated derivatives 

 
PC_00006532 ATCC_5195

8 
COG3706 Two-component response regulator, PleD family, consists of 

two REC domains and a diguanylate cyclase (GGDEF) domain 

 
PC_00004922 ATCC_5195

8 
COG0286 Type I restriction-modification system, DNA methylase subunit 

 
PC_00005220 ATCC_5195

8 
COG0610 Type I site-specific restriction-modification system, R 

(restriction) subunit and related helicases ... 
 

PC_00006367 ATCC_5195
8 

COG3267 Type II secretory pathway, component ExeA (predicted ATPase) 

 
PC_00005466 ATCC_5195

8 
COG3157 Type VI protein secretion system component Hcp (secreted 

cytotoxin) 
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PC_00005704 ATCC_5195

8 
COG3519 Type VI protein secretion system component VasA 

 
PC_00005339 ATCC_5195

8 
COG3455 Type VI protein secretion system component VasF 

 
PC_00004882 ATCC_5195

8 
COG3523 Type VI protein secretion system component VasK 

 
PC_00005406 ATCC_5195

8 
COG3943 Uncharacterized conserved protein 

 
PC_00004860 ATCC_5195

8 
COG3209|COG3209|COG410
4 

Uncharacterized conserved protein RhaS, contains 28 RHS 
repeats|Uncharacterized conserved protein RhaS, contains 28 
RHS repeats|Zn-binding Pro-Ala-Ala-Arg (PAAR) domain, 
incolved in TypeVI secretion 

 
PC_00005707 ATCC_5195

8 
COG1479 Uncharacterized conserved protein, contains ParB-like and HNH 

nuclease domains 
 

PC_00004998 ATCC_5195
8 

COG2369 Uncharacterized conserved protein, contains phage Mu gpF-like 
domain 

 
PC_00005879 ATCC_5195

8 
COG3501 Uncharacterized conserved protein, implicated in type VI 

secretion and phage assembly 
 

PC_00006749 ATCC_5195
8 

COG4643|COG5519 Uncharacterized domain associated with phage/plasmid 
primase|Uncharcterized protein, DUF927 family 

 
PC_00005176 ATCC_5195

8 
COG3477 Uncharacterized membrane protein YagU, involved in acid 

resistance, DUF1440 family 
 

PC_00006025 ATCC_5195
8 

COG0730 Uncharacterized membrane protein YfcA 

 
PC_00006841 ATCC_5195

8 
COG4705 Uncharacterized membrane-anchored protein 

 
PC_00005633 ATCC_5195

8 
COG5351 Uncharacterized protein 

 
PC_00006019 ATCC_5195

8 
COG4456 Virulence-associated protein VagC (function unknown) 
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PCB1
3 

PC_00005790 FDA_176 COG3481 3'-5' exoribonuclease YhaM, can participate in 23S rRNA 
maturation,  HD superfamily 

 
PC_00004893 FDA_176 COG1995 4-hydroxy-L-threonine phosphate dehydrogenase PdxA  
PC_00006892 FDA_176 COG2977 4'-phosphopantetheinyl transferase EntD (siderophore 

biosynthesis) 
 

PC_00005587 FDA_176 COG1896 5'-deoxynucleotidase YfbR and related HD superfamily 
hydrolases 

 
PC_00005630 FDA_176 COG1403 5-methylcytosine-specific restriction endonuclease McrA  
PC_00006772 FDA_176 COG0834 ABC-type amino acid transport/signal transduction system, 

periplasmic component/domain 
 

PC_00006637 FDA_176 COG2884 ABC-type ATPase involved in cell division  
PC_00004944 FDA_176 COG2274 ABC-type bacteriocin/lantibiotic exporters, contain an N-

terminal double-glycine peptidase domain 
 

PC_00006414 FDA_176 COG3842 ABC-type Fe3+/spermidine/putrescine transport systems, 
ATPase components 

 
PC_00005581 FDA_176 COG1653 ABC-type glycerol-3-phosphate transport system, periplasmic 

component 
 

PC_00005525 FDA_176 COG0395 ABC-type glycerol-3-phosphate transport system, permease 
component 

 
PC_00006655 FDA_176 COG1121 ABC-type Mn2+/Zn2+ transport system, ATPase component 

 
PC_00005924 FDA_176 COG1108 ABC-type Mn2+/Zn2+ transport system, permease component 

 
PC_00005228 FDA_176 COG1132 ABC-type multidrug transport system, ATPase and permease 

component 
 

PC_00006812 FDA_176 COG1131 ABC-type multidrug transport system, ATPase component  
PC_00005899 FDA_176 COG3638 ABC-type phosphate/phosphonate transport system, ATPase 

component 
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PC_00006602 FDA_176 COG3221 ABC-type phosphate/phosphonate transport system, 

periplasmic component 
 

PC_00005319 FDA_176 COG3639 ABC-type phosphate/phosphonate transport system, permease 
component 

 
PC_00006900 FDA_176 COG4107 ABC-type phosphonate transport system, ATPase component 

 
PC_00005517 FDA_176 COG1682 ABC-type polysaccharide/polyol phosphate export permease 

 
PC_00005573 FDA_176 COG1134 ABC-type polysaccharide/polyol phosphate transport system, 

ATPase component 
 

PC_00005695 FDA_176 COG4618 ABC-type protease/lipase transport system, ATPase and 
permease components 

 
PC_00006071 FDA_176 COG1129 ABC-type sugar transport system, ATPase component  
PC_00005708 FDA_176 COG1879 ABC-type sugar transport system, periplasmic component, 

contains N-terminal xre family HTH domain 
 

PC_00005841 FDA_176 COG1175 ABC-type sugar transport system, permease component  
PC_00006142 FDA_176 COG0803 ABC-type Zn uptake system ZnuABC, Zn-binding component 

ZnuA 
 

PC_00006116 FDA_176 COG0028 Acetolactate synthase large subunit or other thiamine 
pyrophosphate-requiring enzyme 

 
PC_00006194 FDA_176 COG0183 Acetyl-CoA acetyltransferase  
PC_00005559 FDA_176 COG4799 Acetyl-CoA carboxylase, carboxyltransferase component  
PC_00005352 FDA_176 COG0110 Acetyltransferase (isoleucine patch superfamily) 
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PC_00006943 FDA_176 COG0236|COG0500|COG102

0|COG1020|COG1028|COG2
226|COG3319|COG3321 

Acyl carrier protein|SAM-dependent methyltransferase|Non-
ribosomal peptide synthetase component F|Non-ribosomal 
peptide synthetase component F|NAD(P)-dependent 
dehydrogenase, short-chain alcohol dehydrogenase 
family|Ubiquinone/menaquinone biosynthesis C-methylase 
UbiE|Thioesterase domain of type I polyketide synthase or non-
ribosomal peptide synthetase|Acyl transferase domain in 
polyketide synthase (PKS) enzymes 

 
PC_00005027 FDA_176 COG4670 Acyl CoA:acetate/3-ketoacid CoA transferase  
PC_00006845 FDA_176 COG2030 Acyl dehydratase  
PC_00004889 FDA_176 COG0427 Acyl-CoA hydrolase  
PC_00006385 FDA_176 COG2189 Adenine specific DNA methylase Mod  
PC_00006736 FDA_176 COG0827 Adenine-specific DNA methylase  
PC_00005448 FDA_176 COG1051 ADP-ribose pyrophosphatase YjhB, NUDIX family  
PC_00006611 FDA_176 COG1454 Alcohol dehydrogenase, class IV  
PC_00005914 FDA_176 COG3627 Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase 

 
PC_00006241 FDA_176 COG3454 Alpha-D-ribose 1-methylphosphonate 5-triphosphate 

diphosphatase PhnM 
 

PC_00006163 FDA_176 COG3624 Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase 
subunit PhnG 

 
PC_00006542 FDA_176 COG3625 Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase 

subunit PhnH 
 

PC_00005345 FDA_176 COG3626 Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase 
subunit PhnI 

 
PC_00006042 FDA_176 COG4778 Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase 

subunit PhnL 
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PC_00006782 FDA_176 COG1501 Alpha-glucosidase, glycosyl hydrolase family GH31  
PC_00006339 FDA_176 COG2721 Altronate dehydratase  
PC_00006255 FDA_176 COG0531 Amino acid transporter  
PC_00005986 FDA_176 COG0147 Anthranilate/para-aminobenzoate synthases component I  
PC_00004906 FDA_176 COG4227 Antirestriction protein ArdC  
PC_00005336 FDA_176 COG2207 AraC-type DNA-binding domain and AraC-containing proteins 

 
PC_00004951 FDA_176 COG2207|COG4936 AraC-type DNA-binding domain and AraC-containing 

proteins|Ligand-binding sensor domain 
 

PC_00005566 FDA_176 COG0433 Archaeal DNA helicase HerA or a related bacterial ATPase, 
contains HAS-barrel and ATPase domains 

 
PC_00006873 FDA_176 COG1438 Arginine repressor  
PC_00006473 FDA_176 COG0137 Argininosuccinate synthase  
PC_00006138 FDA_176 COG3119 Arylsulfatase A or related enzyme  
PC_00006635 FDA_176 COG5295|COG5295 Autotransporter adhesin|Autotransporter adhesin  
PC_00005606 FDA_176 COG2911|COG3468 Autotransporter translocation and assembly factor TamB|Type 

V secretory pathway, adhesin AidA 
 

PC_00006270 FDA_176 COG5614 Bacteriophage head-tail adaptor  
PC_00006755 FDA_176 COG1874 Beta-galactosidase GanA  
PC_00006434 FDA_176 COG3250 Beta-galactosidase/beta-glucuronidase  
PC_00006411 FDA_176 COG0637 Beta-phosphoglucomutase or related phosphatase, HAD 

superfamily 
 

PC_00006057 FDA_176 COG2931 Ca2+-binding protein, RTX toxin-related  
PC_00005496 FDA_176 COG0664 cAMP-binding domain of CRP or a regulatory subunit of cAMP-

dependent protein kinases 
 

PC_00005302 FDA_176 COG0346 Catechol 2,3-dioxygenase or other lactoylglutathione lyase 
family enzyme 
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PC_00006526 FDA_176 COG3266 Cell division protein DamX, binds to the septal ring, contains C-

terminal SPOR domain 
 

PC_00005954 FDA_176 COG0791|COG1310 Cell wall-associated hydrolase, NlpC family|Proteasome lid 
subunit RPN8/RPN11, contains Jab1/MPN domain 
metalloenzyme (JAMM) motif 

 
PC_00006058 FDA_176 COG1196 Chromosome segregation ATPase  
PC_00005478 FDA_176 COG1196|COG5281|COG528

1 
Chromosome segregation ATPase|Phage-related minor tail 
protein|Phage-related minor tail protein 

 
PC_00004909 FDA_176 COG1475 Chromosome segregation protein Spo0J, contains ParB-like 

nuclease domain 
 

PC_00006592 FDA_176 COG3052 Citrate lyase, gamma subunit  
PC_00005881 FDA_176 COG2032 Cu/Zn superoxide dismutase  
PC_00006505 FDA_176 COG2124 Cytochrome P450  
PC_00006707 FDA_176 COG1181 D-alanine-D-alanine ligase and related ATP-grasp enzymes  
PC_00006031 FDA_176 COG0794 D-arabinose 5-phosphate isomerase GutQ  
PC_00005144 FDA_176 COG0471|COG0471 Di- and tricarboxylate transporter|Di- and tricarboxylate 

transporter 
 

PC_00005235 FDA_176 COG2376 Dihydroxyacetone kinase  
PC_00006504 FDA_176 COG0847 DNA polymerase III, epsilon subunit or related 3'-5' exonuclease 

 
PC_00005396 FDA_176 COG0358 DNA primase (bacterial type)  
PC_00005113 FDA_176 COG2003 DNA repair protein RadC, contains a helix-hairpin-helix DNA-

binding motif 
 

PC_00004886 FDA_176 COG1484 DNA replication protein DnaC  
PC_00005164 FDA_176 COG3636 DNA-binding prophage protein  
PC_00005343 FDA_176 COG3279 DNA-binding response regulator, LytR/AlgR family  
PC_00005043 FDA_176 COG2197 DNA-binding response regulator, NarL/FixJ family, contains REC 

and HTH domains 
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PC_00004870 FDA_176 COG2390 DNA-binding transcriptional regulator LsrR, DeoR family  
PC_00005439 FDA_176 COG1349 DNA-binding transcriptional regulator of sugar metabolism, 

DeoR/GlpR family 
 

PC_00005056 FDA_176 COG4197 DNA-binding transcriptional regulator YdaS, prophage-encoded, 
Cro superfamily 

 
PC_00005629 FDA_176 COG2944 DNA-binding transcriptional regulator YiaG, XRE-type HTH 

domain 
 

PC_00005715 FDA_176 COG1309 DNA-binding transcriptional regulator, AcrR family  
PC_00006891 FDA_176 COG0640 DNA-binding transcriptional regulator, ArsR family  
PC_00006219 FDA_176 COG2186 DNA-binding transcriptional regulator, FadR family  
PC_00004943 FDA_176 COG1802 DNA-binding transcriptional regulator, GntR family  
PC_00005368 FDA_176 COG2188 DNA-binding transcriptional regulator, GntR family  
PC_00005937 FDA_176 COG1959 DNA-binding transcriptional regulator, IscR family  
PC_00004918 FDA_176 COG1609 DNA-binding transcriptional regulator, LacI/PurR family  
PC_00005160 FDA_176 COG0583 DNA-binding transcriptional regulator, LysR family  
PC_00006765 FDA_176 COG1846 DNA-binding transcriptional regulator, MarR family  
PC_00004916 FDA_176 COG0789|COG1192 DNA-binding transcriptional regulator, MerR family|Cellulose 

biosynthesis protein BcsQ 
 

PC_00005709 FDA_176 COG1167 DNA-binding transcriptional regulator, MocR family, contains an 
aminotransferase domain 

 
PC_00005155 FDA_176 COG1737 DNA-binding transcriptional regulator, MurR/RpiR family, 

contains HTH and SIS domains 
 

PC_00004898 FDA_176 COG1476 DNA-binding transcriptional regulator, XRE-family HTH domain 

 
PC_00005557 FDA_176 COG3710 DNA-binding winged helix-turn-helix (wHTH) domain  
PC_00005062 FDA_176 COG0484 DnaJ-class molecular chaperone with C-terminal Zn finger 

domain 
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PC_00006409 FDA_176 COG2200 EAL domain, c-di-GMP-specific phosphodiesterase class I (or its 

enzymatically inactive variant) 
 

PC_00006719 FDA_176 COG0251|COG0251|COG025
1|COG0251 

Enamine deaminase RidA, house cleaning of reactive enamine 
intermediates, YjgF/YER057c/UK114 family|Enamine deaminase 
RidA, house cleaning of reactive enamine intermediates, 
YjgF/YER057c/UK114 family|Enamine deaminase RidA, house 
cleaning of reactive enamine intermediates, 
YjgF/YER057c/UK114 family|Enamine deaminase RidA, house 
cleaning of reactive enamine intermediates, 
YjgF/YER057c/UK114 family 

 
PC_00005301 FDA_176 COG0619 Energy-coupling factor transporter transmembrane protein EcfT 

 
PC_00005224 FDA_176 COG0148 Enolase  
PC_00006827 FDA_176 COG1024 Enoyl-CoA hydratase/carnithine racemase  
PC_00005138 FDA_176 COG1073 Fermentation-respiration switch protein FrsA, has esterase 

activity, DUF1100 family 
 

PC_00006214 FDA_176 COG1011 FMN phosphatase YigB, HAD superfamily  
PC_00005117 FDA_176 COG2222 Fructoselysine-6-P-deglycase FrlB and related proteins with 

duplicated sugar isomerase (SIS) domain 
 

PC_00005958 FDA_176 COG0076 Glutamate or tyrosine decarboxylase or a related PLP-
dependent protein 
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PC_00005842 FDA_176 COG0001|COG0236|COG023

6|COG0318|COG1020|COG1
020|COG1020|COG1020|CO
G2141|COG3321 

Glutamate-1-semialdehyde aminotransferase|Acyl carrier 
protein|Acyl carrier protein|Acyl-CoA synthetase (AMP-
forming)/AMP-acid ligase II|Non-ribosomal peptide synthetase 
component F|Non-ribosomal peptide synthetase component 
F|Non-ribosomal peptide synthetase component F|Non-
ribosomal peptide synthetase component F|Flavin-dependent 
oxidoreductase, luciferase family (includes alkanesulfonate 
monooxygenase SsuD and methylene tetrahydromethanopterin 
reductase)|Acyl transferase domain in polyketide synthase 
(PKS) enzymes 

 
PC_00006838 FDA_176 COG0625 Glutathione S-transferase  
PC_00005659 FDA_176 COG2379 Glycerate-2-kinase  
PC_00005826 FDA_176 COG0366 Glycosidase  
PC_00006168 FDA_176 COG0438 Glycosyltransferase involved in cell wall bisynthesis  
PC_00006793 FDA_176 COG0463 Glycosyltransferase involved in cell wall bisynthesis  
PC_00005551 FDA_176 COG1216 Glycosyltransferase, GT2 family  
PC_00006819 FDA_176 COG2610 H+/gluconate symporter or related permease  
PC_00005843 FDA_176 COG0672 High-affinity Fe2+/Pb2+ permease  
PC_00006535 FDA_176 COG0561 Hydroxymethylpyrimidine pyrophosphatase and other HAD 

family phosphatases 
 

PC_00005942 FDA_176 COG0134 Indole-3-glycerol phosphate synthase  
PC_00004978 FDA_176 COG0582 Integrase  
PC_00006768 FDA_176 COG1416 Intracellular sulfur oxidation protein, DsrE/DsrF family  
PC_00005907 FDA_176 COG3385 IS4 transposase  
PC_00005845 FDA_176 COG0473|COG1058 Isocitrate/isopropylmalate dehydrogenase|Predicted 

nucleotide-utilizing enzyme related to molybdopterin-
biosynthesis enzyme MoeA 
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PC_00005916 FDA_176 COG0119 Isopropylmalate/homocitrate/citramalate synthases  
PC_00005717 FDA_176 COG3210|COG5295 Large exoprotein involved in heme utilization or 

adhesion|Autotransporter adhesin 
 

PC_00005376 FDA_176 COG3210|COG3468 Large exoprotein involved in heme utilization or adhesion|Type 
V secretory pathway, adhesin AidA 

 
PC_00005540 FDA_176 COG3210|COG4932|COG493

2 
Large exoprotein involved in heme utilization or 
adhesion|Uncharacterized surface anchored 
protein|Uncharacterized surface anchored protein 

 
PC_00005314 FDA_176 COG4886 Leucine-rich repeat (LRR) protein  
PC_00006059 FDA_176 COG4886|COG4886 Leucine-rich repeat (LRR) protein|Leucine-rich repeat (LRR) 

protein 
 

PC_00004904 FDA_176 COG1452 LPS assembly outer membrane protein LptD (organic solvent 
tolerance protein OstA) 

 
PC_00005418 FDA_176 COG3486 Lysine/ornithine N-monooxygenase  
PC_00005483 FDA_176 COG0331 Malonyl CoA-acyl carrier protein transacylase  
PC_00005399 FDA_176 COG4580 Maltoporin (phage lambda and maltose receptor)  
PC_00006448 FDA_176 COG4668 Mannitol/fructose-specific phosphotransferase system, IIA 

domain 
 

PC_00005538 FDA_176 COG0246 Mannitol-1-phosphate/altronate dehydrogenases  
PC_00006554 FDA_176 COG3064 Membrane protein involved in colicin uptake  
PC_00006377 FDA_176 COG2244 Membrane protein involved in the export of O-antigen and 

teichoic acid 
 

PC_00006259 FDA_176 COG1884|COG2185 Methylmalonyl-CoA mutase, N-terminal 
domain/subunit|Methylmalonyl-CoA mutase, C-terminal 
domain/subunit (cobalamin-binding) 

 
PC_00004885 FDA_176 COG0477 MFS family permease  
PC_00006007 FDA_176 COG0477|COG2814 MFS family permease|Predicted arabinose efflux permease, 

MFS family 
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PC_00006124 FDA_176 COG4675 Microcystin-dependent protein  (function unknown)  
PC_00006555 FDA_176 COG4381 Mu-like prophage protein gp46  
PC_00005305 FDA_176 COG5005 Mu-like prophage protein gpG  
PC_00004981 FDA_176 COG4379 Mu-like prophage tail protein gpP  
PC_00005390 FDA_176 COG0845 Multidrug efflux pump subunit AcrA (membrane-fusion protein) 

 
PC_00006550 FDA_176 COG0841 Multidrug efflux pump subunit AcrB  
PC_00006121 FDA_176 COG1757 Na+/H+ antiporter NhaC  
PC_00005109 FDA_176 COG2211 Na+/melibiose symporter or related transporter  
PC_00005467 FDA_176 COG3023 N-acetyl-anhydromuramyl-L-alanine amidase AmpD  
PC_00005730 FDA_176 COG1820 N-acetylglucosamine-6-phosphate deacetylase  
PC_00005537 FDA_176 COG3055 N-acetylneuraminic acid mutarotase  
PC_00005281 FDA_176 COG1028 NAD(P)-dependent dehydrogenase, short-chain alcohol 

dehydrogenase family 
 

PC_00005128 FDA_176 COG1252 NADH dehydrogenase, FAD-containing subunit  
PC_00004939 FDA_176 COG1853 NADH-FMN oxidoreductase RutF, flavin reductase (DIM6/NTAB) 

family 
 

PC_00005712 FDA_176 COG4221 NADP-dependent 3-hydroxy acid dehydrogenase YdfG  
PC_00005767 FDA_176 COG2375 NADPH-dependent ferric siderophore reductase, contains FAD-

binding and SIP domains 
 

PC_00006078 FDA_176 COG1834 N-Dimethylarginine dimethylaminohydrolase  
PC_00006351 FDA_176 COG1208 NDP-sugar pyrophosphorylase, includes eIF-2Bgamma, eIF-

2Bepsilon, and LPS biosynthesis proteins 
 

PC_00005626 FDA_176 COG4409 Neuraminidase (sialidase)  
PC_00005508 FDA_176 COG1335 Nicotinamidase-related amidase  
PC_00005601 FDA_176 COG2223 Nitrate/nitrite transporter NarK  
PC_00005082 FDA_176 COG1021 Non-ribosomal peptide synthetase component E (peptide 

arylation enzyme) 
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PC_00006388 FDA_176 COG1020|COG1020|COG102

0|COG2226|COG3433 
Non-ribosomal peptide synthetase component F|Non-
ribosomal peptide synthetase component F|Non-ribosomal 
peptide synthetase component F|Ubiquinone/menaquinone 
biosynthesis C-methylase UbiE|Aryl carrier domain 

 
PC_00006712 FDA_176 COG1020|COG1020|COG217

5 
Non-ribosomal peptide synthetase component F|Non-
ribosomal peptide synthetase component F|Taurine 
dioxygenase, alpha-ketoglutarate-dependent 

 
PC_00005229 FDA_176 COG1020|COG1020|COG332

0 
Non-ribosomal peptide synthetase component F|Non-
ribosomal peptide synthetase component F|Thioester 
reductase domain of alpha aminoadipate reductase Lys2 and 
NRPSs 

 
PC_00006723 FDA_176 COG0451 Nucleoside-diphosphate-sugar epimerase  
PC_00006940 FDA_176 COG0589 Nucleotide-binding universal stress protein,  UspA family  
PC_00005052 FDA_176 COG2823 Osmotically-inducible protein OsmY, contains BON domain 

 
PC_00005769 FDA_176 COG4206 Outer membrane cobalamin receptor protein  
PC_00005110 FDA_176 COG4571 Outer membrane protease  
PC_00006170 FDA_176 COG3203 Outer membrane protein (porin)  
PC_00006100 FDA_176 COG2885 Outer membrane protein OmpA and related peptidoglycan-

associated (lipo)proteins 
 

PC_00005465 FDA_176 COG2885|COG2913 Outer membrane protein OmpA and related peptidoglycan-
associated (lipo)proteins|Outer membrane protein assembly 
factor BamE, lipoprotein component of the BamABCDE complex 

 
PC_00005089 FDA_176 COG1538 Outer membrane protein TolC  
PC_00005837 FDA_176 COG4771 Outer membrane receptor for ferrienterochelin and colicins 



180 
 

 

 
PC_00006910 FDA_176 COG4774 Outer membrane receptor for monomeric catechols  
PC_00005991 FDA_176 COG0729 Outer membrane translocation and assembly module TamA 

 
PC_00006032 FDA_176 COG4693 Oxidoreductase (NAD-binding), involved in siderophore 

biosynthesis 
 

PC_00005833 FDA_176 COG3121 P pilus assembly protein, chaperone PapD  
PC_00005362 FDA_176 COG0036 Pentose-5-phosphate-3-epimerase  
PC_00006405 FDA_176 COG3409|COG3409 Peptidoglycan-binding (PGRP) domain of peptidoglycan 

hydrolases|Peptidoglycan-binding (PGRP) domain of 
peptidoglycan hydrolases 

 
PC_00005099 FDA_176 COG0810 Periplasmic protein TonB, links inner and outer membranes 

 
PC_00006897 FDA_176 COG0616 Periplasmic serine protease, ClpP class  
PC_00006145 FDA_176 COG0265 Periplasmic serine protease, S1-C subfamily, contain C-terminal 

PDZ domain 
 

PC_00006513 FDA_176 COG0697 Permease of the drug/metabolite transporter (DMT) 
superfamily 

 
PC_00005868 FDA_176 COG3628 Phage baseplate assembly protein W  
PC_00005091 FDA_176 COG3740 Phage head maturation protease  
PC_00005085 FDA_176 COG4540 Phage P2 baseplate assembly protein gpV  
PC_00004873 FDA_176 COG4695 Phage portal protein BeeE  
PC_00005317 FDA_176 COG3500 Phage protein D  
PC_00005177 FDA_176 COG3646 Phage regulatory protein Rha  
PC_00005256 FDA_176 COG2932 Phage repressor protein C, contains Cro/C1-type HTH and 

peptisase s24 domains 
 

PC_00005898 FDA_176 COG1842 Phage shock protein A  
PC_00005426 FDA_176 COG5362|COG5410 Phage terminase large subunit|Uncharacterized protein  
PC_00006538 FDA_176 COG5525 Phage terminase, large subunit GpA 
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PC_00005268 FDA_176 COG3747 Phage terminase, small subunit  
PC_00006320 FDA_176 COG4626 Phage terminase-like protein, large subunit, contains N-terminal 

HTH domain 
 

PC_00006491 FDA_176 COG3772 Phage-related lysozyme (muramidase), GH24 family  
PC_00006487 FDA_176 COG4679 Phage-related protein  
PC_00006937 FDA_176 COG4733 Phage-related protein, tail component  
PC_00005402 FDA_176 COG4733|COG4932 Phage-related protein, tail component|Uncharacterized surface 

anchored protein 
 

PC_00005137 FDA_176 COG5301 Phage-related tail fibre protein  
PC_00005253 FDA_176 COG5283 Phage-related tail protein  
PC_00006232 FDA_176 COG5283|COG5412 Phage-related tail protein|Phage-related protein  
PC_00006107 FDA_176 COG1942 Phenylpyruvate tautomerase PptA, 4-oxalocrotonate 

tautomerase family 
 

PC_00006613 FDA_176 COG5083 Phosphatidate phosphatase PAH1, contains Lipin and LNS2 
domains. can be involved in plasmid maintenance 

 
PC_00004936 FDA_176 COG1080|COG1762|COG192

5 
Phosphoenolpyruvate-protein kinase (PTS system EI component 
in bacteria)|Phosphotransferase system mannitol/fructose-
specific IIA domain (Ntr-type)|Phosphotransferase system, HPr 
and related phosphotransfer proteins 

 
PC_00005631 FDA_176 COG1235 Phosphoribosyl 1,2-cyclic phosphodiesterase  
PC_00006333 FDA_176 COG1447 Phosphotransferase system cellobiose-specific component IIA 

 
PC_00005153 FDA_176 COG1440 Phosphotransferase system cellobiose-specific component IIB 

 
PC_00004878 FDA_176 COG1455 Phosphotransferase system cellobiose-specific component IIC 
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PC_00005328 FDA_176 COG1445 Phosphotransferase system fructose-specific component IIB 

 
PC_00006815 FDA_176 COG1263|COG1264 Phosphotransferase system IIC components, 

glucose/maltose/N-acetylglucosamine-
specific|Phosphotransferase system IIB components 

 
PC_00006530 FDA_176 COG1762 Phosphotransferase system mannitol/fructose-specific IIA 

domain (Ntr-type) 
 

PC_00005568 FDA_176 COG1299 Phosphotransferase system, fructose-specific IIC component 

 
PC_00004874 FDA_176 COG1299|COG1445 Phosphotransferase system, fructose-specific IIC 

component|Phosphotransferase system fructose-specific 
component IIB 

 
PC_00005323 FDA_176 COG1925|COG4668 Phosphotransferase system, HPr and related phosphotransfer 

proteins|Mannitol/fructose-specific phosphotransferase 
system, IIA domain 

 
PC_00005693 FDA_176 COG2213 Phosphotransferase system, mannitol-specific IIBC component 

 
PC_00005124 FDA_176 COG3444 Phosphotransferase system, mannose/fructose/N-

acetylgalactosamine-specific component IIB 
 

PC_00005292 FDA_176 COG2893 Phosphotransferase system, mannose/fructose-specific 
component IIA 

 
PC_00004972 FDA_176 COG3539 Pilin (type 1 fimbria component protein)  
PC_00005245 FDA_176 COG1752 Predicted acylesterase/phospholipase RssA, containd patatin 

domain 
 

PC_00005577 FDA_176 COG2814 Predicted arabinose efflux permease, MFS family  
PC_00005026 FDA_176 COG3179 Predicted chitinase  
PC_00005046 FDA_176 COG3515 Predicted component of the type VI protein secretion system 
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PC_00005296 FDA_176 COG3520 Predicted component of the type VI protein secretion system 

 
PC_00005864 FDA_176 COG3517 Predicted component of the type VI protein secretion system 

 
PC_00005965 FDA_176 COG3522 Predicted component of the type VI protein secretion system 

 
PC_00006528 FDA_176 COG3521 Predicted component of the type VI protein secretion system 

 
PC_00005087 FDA_176 COG0673 Predicted dehydrogenase  
PC_00006162 FDA_176 COG3311 Predicted DNA-binding transcriptional regulator AlpA  
PC_00005861 FDA_176 COG2378 Predicted DNA-binding transcriptional regulator YafY, contains 

an HTH and WYL domains 
 

PC_00005698 FDA_176 COG3576 Predicted flavin-nucleotide-binding protein, pyridoxine 5'-
phosphate oxidase superfamily 

 
PC_00006161 FDA_176 COG3596 Predicted GTPase  
PC_00006371 FDA_176 COG1598 Predicted nuclease of the RNAse H fold, HicB family  
PC_00006481 FDA_176 COG0667 Predicted oxidoreductase (related to aryl-alcohol 

dehydrogenase) 
 

PC_00005560 FDA_176 COG0679 Predicted permease  
PC_00006150 FDA_176 COG4653 Predicted phage phi-C31 gp36 major capsid-like protein  
PC_00005925 FDA_176 COG1724 Predicted RNA binding protein YcfA, dsRBD-like fold, HicA-like 

mRNA interferase family 
 

PC_00006221 FDA_176 COG5472 Predicted small integral membrane protein  
PC_00006021 FDA_176 COG5464 Predicted transposase YdaD  
PC_00005534 FDA_176 COG0661 Predicted unusual protein kinase regulating ubiquinone 

biosynthesis, AarF/ABC1/UbiB family 
 

PC_00006337 FDA_176 COG1989 Prepilin signal peptidase PulO (type II secretory pathway) or 
related peptidase 
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PC_00006054 FDA_176 COG3617 Prophage antirepressor  
PC_00005102 FDA_176 COG3654 Prophage maintenance system killer protein  
PC_00004988 FDA_176 COG1670 Protein N-acetyltransferase, RimJ/RimL family  
PC_00005032 FDA_176 COG1651 Protein-disulfide isomerase  
PC_00006326 FDA_176 COG1363 Putative aminopeptidase FrvX  
PC_00005479 FDA_176 COG3657 Putative component of the toxin-antitoxin plasmid stabilization 

module 
 

PC_00006933 FDA_176 COG1703 Putative periplasmic protein kinase ArgK or related GTPase of 
G3E family 

 
PC_00005375 FDA_176 COG3723 Recombinational DNA repair protein RecT  
PC_00005897 FDA_176 COG0684 Regulator of RNase E activity RraA  
PC_00005543 FDA_176 COG0305 Replicative DNA helicase  
PC_00005036 FDA_176 COG1715 Restriction endonuclease Mrr  
PC_00005993 FDA_176 COG0732|COG0732 Restriction endonuclease S subunit|Restriction endonuclease S 

subunit 
 

PC_00005309 FDA_176 COG3344 Retron-type reverse transcriptase  
PC_00005405 FDA_176 COG3709 Ribose 1,5-bisphosphokinase PhnN  
PC_00004961 FDA_176 COG0698 Ribose 5-phosphate isomerase RpiB  
PC_00005571 FDA_176 COG1172 Ribose/xylose/arabinose/galactoside ABC-type transport 

system, permease component 
 

PC_00005836 FDA_176 COG0499 S-adenosylhomocysteine hydrolase  
PC_00005574 FDA_176 COG0515 Serine/threonine protein kinase  
PC_00005262 FDA_176 COG0631 Serine/threonine protein phosphatase PrpC  
PC_00005729 FDA_176 COG0172 Seryl-tRNA synthetase  
PC_00004932 FDA_176 COG4264 Siderophore synthetase component  
PC_00006442 FDA_176 COG5000 Signal transduction histidine kinase involved in nitrogen fixation 

and metabolism regulation 
 

PC_00005230 FDA_176 COG0629 Single-stranded DNA-binding protein 
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PC_00006726 FDA_176 COG1961 Site-specific DNA recombinase related to the DNA invertase Pin 

 
PC_00005536 FDA_176 COG0338 Site-specific DNA-adenine methylase  
PC_00005442 FDA_176 COG0270 Site-specific DNA-cytosine methylase  
PC_00004913 FDA_176 COG4974 Site-specific recombinase XerD  
PC_00005622 FDA_176 COG0741 Soluble lytic murein transglycosylase and related regulatory 

proteins (some contain LysM/invasin domains) 
 

PC_00005111 FDA_176 COG3109 sRNA-binding protein  
PC_00004941 FDA_176 COG1082 Sugar phosphate isomerase/epimerase  
PC_00005779 FDA_176 COG2271 Sugar phosphate permease  
PC_00004966 FDA_176 COG0641 Sulfatase maturation enzyme AslB, radical SAM superfamily 

 
PC_00005218 FDA_176 COG0210 Superfamily I DNA or RNA helicase  
PC_00005121 FDA_176 COG3208 Surfactin synthase thioesterase subunit  
PC_00006697 FDA_176 COG3005 Tetraheme cytochrome c subunit of nitrate or TMAO reductase 

 
PC_00006299 FDA_176 COG0457 Tetratricopeptide (TPR) repeat  
PC_00005064 FDA_176 COG1063 Threonine dehydrogenase or related Zn-dependent 

dehydrogenase 
 

PC_00005839 FDA_176 COG3007 Trans-2-enoyl-CoA reductase  
PC_00006465 FDA_176 COG3609 Transcriptional regulator, contains Arc/MetJ-type RHH (ribbon-

helix-helix) DNA-binding domain 
 

PC_00004877 FDA_176 COG1396 Transcriptional regulator, contains XRE-family HTH domain  
PC_00005452 FDA_176 COG3335 Transposase  
PC_00005906 FDA_176 COG3415 Transposase  
PC_00006009 FDA_176 COG0675 Transposase  
PC_00006247 FDA_176 COG3293 Transposase  
PC_00006355 FDA_176 COG5421 Transposase 
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PC_00006960 FDA_176 COG4584 Transposase  
PC_00005393 FDA_176 COG3328 Transposase (or an inactivated derivative)  
PC_00004947 FDA_176 COG3328|COG3464 Transposase (or an inactivated derivative)|Transposase  
PC_00005025 FDA_176 COG2963 Transposase and inactivated derivatives  
PC_00004990 FDA_176 COG2801 Transposase InsO and inactivated derivatives  
PC_00005891 FDA_176 COG3415|COG4373 Transposase|Mu-like prophage FluMu protein gp28  
PC_00005303 FDA_176 COG3335|COG3415 Transposase|Transposase  
PC_00005208 FDA_176 COG1638 TRAP-type C4-dicarboxylate transport system, periplasmic 

component 
 

PC_00005226 FDA_176 COG1554 Trehalose and maltose hydrolase (possible phosphorylase) 

 
PC_00005751 FDA_176 COG0149 Triosephosphate isomerase  
PC_00006711 FDA_176 COG1767 Triphosphoribosyl-dephospho-CoA synthetase  
PC_00005122 FDA_176 COG1746 tRNA nucleotidyltransferase (CCA-adding enzyme)  
PC_00006282 FDA_176 COG0286|COG4227 Type I restriction-modification system, DNA methylase 

subunit|Antirestriction protein ArdC 
 

PC_00006600 FDA_176 COG0610 Type I site-specific restriction-modification system, R 
(restriction) subunit and related helicases ... 

 
PC_00005673 FDA_176 COG2804 Type II secretory pathway ATPase GspE/PulE or T4P pilus 

assembly pathway ATPase PilB 
 

PC_00005998 FDA_176 COG1450 Type II secretory pathway component GspD/PulD (secretin) 

 
PC_00004892 FDA_176 COG1459 Type II secretory pathway, component PulF  
PC_00005780 FDA_176 COG3468 Type V secretory pathway, adhesin AidA  
PC_00005818 FDA_176 COG3157 Type VI protein secretion system component Hcp (secreted 

cytotoxin) 
 

PC_00006673 FDA_176 COG3455 Type VI protein secretion system component VasF  
PC_00005949 FDA_176 COG3523 Type VI protein secretion system component VasK 
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PC_00005678 FDA_176 COG0562 UDP-galactopyranose mutase  
PC_00005329 FDA_176 COG1422 Uncharacterized archaeal membrane protein, DUF106 family, 

distantly related to YidC/Oxa1 
 

PC_00006503 FDA_176 COG3193 Uncharacterized conserved protein GlcG, DUF336 family  
PC_00005685 FDA_176 COG3209 Uncharacterized conserved protein RhaS, contains 28 RHS 

repeats 
 

PC_00006006 FDA_176 COG3251 Uncharacterized conserved protein YbdZ, MbtH family  
PC_00005335 FDA_176 COG3110 Uncharacterized conserved protein YccT, UPF0319 family  
PC_00006061 FDA_176 COG2841 Uncharacterized conserved protein YdcH, DUF465 family  
PC_00006677 FDA_176 COG2373 Uncharacterized conserved protein YfaS, alpha-2-macroglobulin 

family 
 

PC_00006335 FDA_176 COG2373|COG2911|COG321
0|COG4932 

Uncharacterized conserved protein YfaS, alpha-2-macroglobulin 
family|Autotransporter translocation and assembly factor 
TamB|Large exoprotein involved in heme utilization or 
adhesion|Uncharacterized surface anchored protein 

 
PC_00005173 FDA_176 COG5492 Uncharacterized conserved protein YjdB, contains Ig-like 

domain 
 

PC_00006101 FDA_176 COG4625 Uncharacterized conserved protein, contains a C-terminal beta-
barrel porin domain 

 
PC_00006632 FDA_176 COG4372|COG5280|COG541

2 
Uncharacterized conserved protein, contains DUF3084 
domain|Phage-related minor tail protein|Phage-related protein 

 
PC_00006932 FDA_176 COG5266 Uncharacterized conserved protein, contains GH25 family 

domain 
 

PC_00005294 FDA_176 COG2369 Uncharacterized conserved protein, contains phage Mu gpF-like 
domain 

 
PC_00005873 FDA_176 COG4453 Uncharacterized conserved protein, DUF1778 family 



188 
 

 

 
PC_00006920 FDA_176 COG3514 Uncharacterized conserved protein, DUF4415 family  
PC_00006166 FDA_176 COG3501|COG4253 Uncharacterized conserved protein, implicated in type VI 

secretion and phage assembly|Uncharacterized conserved 
protein, DUF2345 family 

 
PC_00005542 FDA_176 COG1361|COG1361|COG237

3 
Uncharacterized conserved protein|Uncharacterized conserved 
protein|Uncharacterized conserved protein YfaS, alpha-2-
macroglobulin family 

 
PC_00006402 FDA_176 COG0730 Uncharacterized membrane protein YfcA  
PC_00005680 FDA_176 COG1285 Uncharacterized membrane protein YhiD, involved in acid 

resistance 
 

PC_00005679 FDA_176 COG3299 Uncharacterized phage protein gp47/JayE  
PC_00004879 FDA_176 COG4289 Uncharacterized protein  
PC_00005047 FDA_176 COG4834 Uncharacterized protein  
PC_00005794 FDA_176 COG3566 Uncharacterized protein  
PC_00005892 FDA_176 COG3567 Uncharacterized protein  
PC_00006109 FDA_176 COG4877 Uncharacterized protein  
PC_00006642 FDA_176 COG4340 Uncharacterized protein  
PC_00006678 FDA_176 COG5556 Uncharacterized protein  
PC_00006727 FDA_176 COG3470 Uncharacterized protein probably involved in high-affinity Fe2+ 

transport 
 

PC_00006043 FDA_176 COG3778 Uncharacterized protein YmfQ in lambdoid prophage, DUF2313 
family 

 
PC_00005585 FDA_176 COG0006 Xaa-Pro aminopeptidase  
PC_00005468 FDA_176 COG4104 Zn-binding Pro-Ala-Ala-Arg (PAAR) domain, incolved in TypeVI 

secretion 
 

PC_00006648 FDA_176 COG3227 Zn-dependent metalloprotease 
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