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ABSTRACT

ADAPTIVE AUDIO CLASSIFICATION FRAMEWORK FOR IN-VEHICLE

ENVIRONMENT WITH DYNAMIC NOISE CHARACTERISTICS

HAITHAM ALSAADAN

2017

With ever-increasing number of car-mounted electric devices that are accessed,

managed, and controlled with smartphones, car apps are becoming an important part

of the automotive industry. Audio classification is one of the key components of car

apps as a front-end technology to enable human-app interactions. Existing approaches

for audio classification, however, fall short as the unique and time-varying audio

characteristics of car environments are not appropriately taken into account.

Leveraging recent advances in mobile sensing technology that allows for effective and

accurate driving environment detection, in this thesis, we develop an audio

classification framework for mobile apps that categorizes an audio stream into music,

speech, speech+music, and noise, adaptably depending on different driving

environments. A case study is performed with four different driving environments, i.e.,

highway, local road, crowded city, and stopped vehicle. More than 420 minutes of

audio data are collected including various genres of music, speech, speech+music, and

noise from the driving environments. The results demonstrate that the proposed

approach improves the average classification accuracy by up to 166%, and 64% for

speech, and speech+music, respectively, compared with a non-adaptive approach in



x

our experimental settings.
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Chapter 1

Introduction

1.1 Motivation

Audio classification has been primarily used for automated multimedia content

analysis [40] and is rapidly expanding the range of applications into diverse areas. For

example, it is a key front-end technology for speech recognition algorithms that are

fundamental technological ingredients to help advance the smart city initiative. Also,

it is increasingly applied to in-vehicle intelligent transportation system (ITS)

applications (apps) for safer and more efficient control of ever increasing car-mounted

electronic devices. An example is the automated vehicle audio volume control app that

automatically lowers the volume when on-going human speech is detected, and adjusts

the volume appropriately depending on the level of vehicle cabin noise (dynamic noise

levels as illustrated in Figure 1.1) when music is detected.

1.2 Limitations of Prior Art

Numerous approaches have been proposed for audio classification, especially

concentrating on classifying audio data into music and speech. Lu et al. presented a

k-nearest neighbor (KNN)-based classification algorithm along with some new features

like the noise frame ratio and band periodicity [21]. Chen et al. utilized support vector

machine (SVM) to extract audio data from movies [5]. They selected four major

features; silence ratio, and variance of zero-crossing rate from the time domain, and
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Figure 1.1: Time-varying in-vehicle noise levels in highway.

sub-band energy, and harmonic ratio from the frequency domain. Dogan et al. adopted

a decision-tree for classification based on MPEG-7 features including audio spectrum

centroid, and audio power [6]. Xie et al. introduced two new pitch-density-based

features namely the average pitch-density and relative tonal power density for more

effective classification [40][9]. However, these approaches do not take into account the

unique and time-varying audio characteristics of in-vehicle environments, and their

effect on the classification accuracy.

1.3 Proposed Approach

In this thesis, we design, implement, and evaluate an adaptive audio

classification framework for smartphone apps that classifies an input audio stream into
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four different audio types, i.e., music, speech, speech+music, and noise. The key idea

of the proposed framework is that the classification accuracy is substantially improved

by generating individual classification models for varying driving environments and

adaptively applying the models based on real-time identification of driving

environments. This adaptive approach is possible with recent advances in cloud

computing and mobile sensing technologies that allow previously unattainable

precision in driving environment detection.

1.4 Key Contributions

More specifically, the proposed framework consists of a feature selection module

that identifies an optimal feature set, and a classification algorithm based on the

support vector machine (SVM) that adapts to varying driving environments. The

training phase of the proposed system allows users to build classification models for a

wide range of driving environments, e.g., different weather conditions, vehicle models,

and road conditions.

The modularized design of the proposed framework increases the extensibility.

The driving environment detection module allows for integration of various mobile

sensing solutions to efficiently identify the current driving environment. In addition,

the feature extraction module of the framework allows for extension with other useful

features to improve the classification accuracy. The proposed classification algorithm

can be easily integrated with extended modules for better performance.

In this thesis, we perform a case study with four different driving environments;
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highway, local road, city, and stopped vehicle. The results indicate that the accuracy is

improved by up to 166%, and 64% for classification of speech, and speech+music,

respectively, compared with a non-adaptive solution (the accuracy for music was high

in both adaptive and non-adaptive approaches). The results also show that the

proposed framework out-performs an existing classification algorithm [40].

The contributions of this work are summarized as follows.

• We collected a corpus of more than 420 mins of real-world audio data (i.e.,

speech, music, speech+music, and noise) collected with a smartphone

microphone from various driving environments (i.e., highway, local road, city,

and stopped vehicle).

• We identified that non-adaptive audio classification approaches face significant

performance degradation in a in-vehicle environment if we do not account for

varying driving environments.

• We developed an adaptive multi-class audio classification framework for

smartphone apps that adaptively applies classification models depending on

driving environments to achieve high classification accuracy.

• We performed experiments with real audio data collected with a smartphone to

validate the effectiveness of the proposed approach.



5

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, we review the literature,

followed by the audio characteristics of different driving environments and

identification of the performance degradation of existing approaches in Chapter 3. We

then describe the design of the proposed system in Chapter 4. Experimental results are

presented in Chapter 5; The conclusions are included in Chapter 6.
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Chapter 2

Literature Review

Audio classification has long been studied. Numerous approaches have been

proposed that classify audio input into various types. A large body of the research

focused on audio classification into speech and music [9][19][30][33][7]. There were a

number of works that classify audio streams into mixed types, e.g., speech,

speech+music, music, and environmental sound [5][6][40][43]. Recently, researchers

examined the classification of audio data beyond just music and speech. Examples

include music genre classification [27][26][39], and classification of acoustic

scenes [34][24][14][31]. In this chapter, we briefly review two key aspects of audio

classification, i.e., feature extraction, and classification, and specifically focus on

research efforts on audio classification for car environments.

2.1 Feature Extraction

In audio classification, features used can be largely classified into four groups:

energy features, spectral features, spectral envelope features, and pitch features [40].

Energy features include the root mean square (RMS) [28], low energy ratio [36], 4Hz

modulation energy [32], subband energy distribution [23], and noise frame ratio [22].

The spectral flux [20][32], zero crossing rate [35], and spectral kurtosis [20] were used

as spectral features. For spectral envelope features, Mel frequency cepstral

coefficients [18], linear predictive cepstral coefficients [20], power spectrum

deviation [12], and linear spectral pairs [18] have been widely adopted. Pitch features
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included spectral peak duration, and pitch tunning [45].

2.2 Classification

Classifiers are another important component of audio classification. Various

classifiers have been adopted. Most widely used ones were the K-nearest neighbor

(KNN) [22], Gaussian mixture model (GMM) [32], artificial neural network (ANN) [3],

and support vector machine (SVM) [23]. In particular, it has been reported that SVM

outperforms most other classifiers [40]. Recently, deep neural networks (DNN) emerged

as a new model for audio classification [17].

2.3 Audio Classification for Car Environments

Having reviewed the fundamental technologies behind audio classification, now

we focus on research efforts on audio classification specifically designed for car

environments. Audio classification has long been considered as a front-end technology

for automatic speech recognition (ASR) for vehicular applications [2]. For example,

ASR is performed once the input audio stream is determined to be of the speech type.

Unfortunately, to the best of our knowledge, there are very few work on audio

classification specifically designed for car environments. Rather, most work were

focused on ASR. This section reviews ASR techniques concentrated on vehicular

applications.

Collecting in-vehicle acoustic data was of a primary interest for ASR research.

Hansel et al. collected audio data of a total of 14 noise conditions with +1000 speakers
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for speech recognition [11]. AVICAR is another widely adopted corpus of acoustic data

collected in a car environment [16]. The data were obtained in varying noise

conditions, i.e., idle, 35mph, and 55mph with window open/close. However, existing

in-vehicle data are concentrated on speech data only, not including other audio types

such as speech+music, music, etc.

Speech enhancement techniques were proposed to improve the performance of

speech recognition in car environments. A speech enhancement algorithm based on the

spectral subtraction algorithm was proposed [37]. A specific focus was given to

integration of the algorithm into a Virtex-4 field-programmable gate array (FPGA)

device [37]. Kleinschmidt considered two methods for speech enhancement, i.e., the

likelihood maximization-based Mel-filterbank noise subtraction, and frequency-domain

spectrum subtraction [13]. However, these algorithms do not take into account the

time-varying characteristics of noise in a vehicle interior.

Noise reduction mechanisms were researched for speech recognition in an

in-vehicle environment. Ahn and Ko studied a noise reduction algorithm based on

eigendecomposition [1]. A microphone array was used to improve the performance of

speech recognition in vehicular environment [42]. Yapanel and Hansen proposed a new

feature estimation approach to enable noise-robust speech recognition specifically

concentrating on time-varying vehicle noise [41]. However, due to the large overlapping

frequency range between noise and music/speech, it is impossible to completely remove

in-vehicle noise.

Close to our proposed framework are adaptive approaches. Mporas et al.
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developed an adaptive speech enhancement method based on varying acoustic

environment characteristics in a vehicular environment [25]. Noise models were

generated and input speech data were compared with the noise model to make smart

decisions in directing subsequent speech processing systems [2]. However, extracting

noise information from noisy speech data gets very tricky when background music is

being played, which is quite usual in everyday driving experience. In addition, while

Akbacak and Hansen [2] used artificially degraded speech data, we collect and utilize

real-world audio data of various types including music+speech, and music.
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Chapter 3

Preliminaries

3.1 Preliminary Results

We examined the performance of a non-adaptive approach for audio

classification under varying driving environments to get an insight that justifies the

need for an adaptive solution. For this study, classification models for varying audio

types, i.e., speech, music, speech+music, and background noise were generated based

on supervised learning under an uniform environment, a stopped vehicle. More

specifically, an input audio stream was divided into frames, and selected features were

extracted from each frame. These features were then labeled according to the audio

types in generating the classification models. In the meantime, the test data were

collected from different driving environments, i.e., highway, local road, and city. The

collected test data were classified based on the generated classification models.

Figure 3.1 depicts the average classification accuracy for the input audio data of

different types collected from varying driving environments. The highest accuracy was

achieved in the stopped vehicle (labeled in the graph as ‘idle’) because the test data

were collected from the same driving environment. On the other hand, the accuracy

degraded for different driving environments. Especially the accuracy for speech and

speech+music was significantly impacted while the accuracy for music was kept high

regardless of varying driving environments potentially because of the distinctive

acoustic characteristics of music.
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Figure 3.1: The average classification accuracy of a non-adaptive approach for varying
driving environments.

Figure 3.2: Spectrograms of in-vehicle noise for different driving environments.
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Figure 3.3: Results of FFT for noise and music.

Another notable observation was that the degree of performance degradation

was different depending on varying driving environments because of unique attributes

of noise in each environment. More specifically, the spectrograms of cabin noise show

that the frequency range and the intensity of noise were unique in each driving

environment (Figure 3.2). Unfortunately, however, the wide frequency range of noise

implies that applying a simple bandpass filter is not enough to completely remove the

noise due to the large amount of overlapping frequencies compared with speech and

music considering that typical human voice and music have frequency ranges of 300Hz

∼ 3Khz, and 20Hz ∼ 20Khz, respectively [29]. Figure 3.3 displays the frequency

distributions of noise and music for highway, which specifies the significant amount of

overlapping frequency ranges.
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3.2 Implications

These preliminary results suggest that a non-adaptive approach is not a suitable

method for audio classification in car environment. We thus propose to reduce the

performance degradation by individually training classification models for varying

driving environments and adaptively applying the models depending on the real-time

identification of driving environments. More specifically, in this paper, we consider four

different driving environments for the purpose of case study, i.e., local road, city,

highway, and stopped vehicle. In the following chapter, we present the details of the

proposed adaptive audio classification framework.
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Chapter 4

System Design

This chapter presents an overview of the proposed framework, followed by the

details of main components of the framework.

4.1 Overview

An overview of the proposed framework is illustrated in Figure 4.1. The driving

environment detection module identifies the current driving environment. Collected

audio data are then sent to the feature extraction module that extracts appropriate

features from collected audio data. Obtained features are used in two different modes.

In the training mode, they are utilized to train classification models corresponding to

the current driving environment. In the testing mode, extracted features are provided

to the classification algorithm in order to classify the input data into music, speech,

speech+music, and noise; once the classification is completed, the input data are used

for training to consolidate the classification models.

This framework can be implemented as a smartphone app. When the user

starts this app, the user is provided with two options, i.e., training and testing. In the

training mode, the user will input his/her vehicle type and tire model to generate

customized classification models for varying driving environments. While the user is

driving in this training mode, the app will collect audio data (the user will be asked to

label the audio type as speech, speech+music, or music), automatically identify the

driving environment, and generate appropriate classification models.
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These classification models can then be used in the testing mode in which the

app will perform classification of incoming audio streams in real time. An important

use case of the proposed work is that it can be used to reinforce existing in-vehicle

ASR techniques. For example, unlike traditional ASR approaches, the proposed

framework allows for detection of various audio types including speech, and

speech+music. If speech+music is detected, the volume of music can be temporarily

and automatically reduced to significantly improve the ASR performance, while

existing non-adaptive in-vehicle ASR solutions assume only speech audio type resulting

in degraded performance when there is background noise of diverse characteristics or

even music being played.Ta

4.2 Driving Environment Detection

For our case study, four generic driving environments are used. These driving

environments can be identified easily using the GPS module of a smartphone. More

specifically, the vehicle speed and vehicle location on a map indicate whether a vehicle

is currently stopped, or is driving on a highway, etc. However, there are numerous

other significant factors that affect the level of in-vehicle noise essentially creating

different driving environments. We define such major factors as the following: vehicle

types, tire conditions, adverse weather conditions, open vehicle windows, and quality of

road surface.

Recent advances in mobile sensing and cloud computing technologies enable

effective identification of driving environments. For example, the barometer sensor of a
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smartphone can be used to monitor if the vehicle window is open [38]. Research has

shown that road conditions can also be monitored with a smartphone [8]. An app can

even be integrated with the noise map to identify areas with exceptionally high noise.

Real time weather conditions like wind speed and direction can be easily obtained and

used for defining a new classification model [4]. Vehicle-specific factors such as vehicle

types and tire conditions can be input by the user since the classification models will

be generated typically for their own vehicle.

4.3 Feature Extraction

It is of paramount importance to select appropriate features to achieve high

classification accuracy [40]. We consider 16 primary features including well-known and

effective features for audio classification into speech, music, and and environmental

sound [21]. These features extracted using MirToolbox [15] are summarized in

Table 4.1. The wrapper-based feature selection method is then used to find a feature

set that optimizes the classification accuracy for each classifier that we use in our

classification algorithm [10]. The details of the classification algorithm is described in

the following section.

4.4 Classification

Extracted features are used to train classification models for each audio type

and driving environment. Support vector machine (SVM) is known to show superior

performance compared with other classifiers [22][40]. We adopt SVM to create the
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Figure 4.1: Overview of the proposed framework.

Table 4.1: Features considered for the proposed framework.

Type Feature

Time domain Root mean square
Zero-crossing rate
High zero-crossing rate ratio
Low short time energy ratio
Noise frame ratio
Silence frame ratio

Spectral domain Spectral centroid
Spectral spread
Spectral flux
Spectral kurtosis
Spectral roll-off frequency
Band period
Subband energy distribution
Mel frequency cepstral coefficients
Linear predictive cepstral coefficients
Linear spectral pairs
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models based on supervised learning.
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Figure 4.2: CDF of accuracy for music.

A challenge is that audio data need to be classified into multiple audio types

using SVM that is inherently a binary classifier. A known approach to implement

multi-class audio classification using SVM is to define ‘speech’ and ‘non-speech’ classes

and to classify the input data into these two classes first [40]. More specifically, audio

types of speech and speech+music are combined to create the ‘speech’ class, and the

combination of music, and environmental sound is used to build the ‘non-speech’ class.

Once the input data is found to be in the ‘speech’ class, the input data is subsequently

classified into speech and speech+music. Similarly if the input data belongs to the

‘non-speech’ class, it is further classified into music and environmental sound (noise).

However, when this approach was applied to our data set, the accuracy for music was
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significantly degraded as shown in the cumulative distribution function (CDF) graph of

the music accuracy for different driving environments (Figure 4.2), potentially due to

the ‘combination effect’ of multiple audio data types.

Figure 4.3: Overview of classification algorithm.

In order to address this challenge of degraded accuracy for music, a new

classification algorithm is designed. An overview of the proposed algorithm is displayed

in Figure 4.3. It consists of two modules: Noise Detector, and Music Detector. The

noise detector performs testing of input data using three types of classifiers, i.e.,

‘speech vs noise’, ‘music vs noise’, and ‘speech+music vs noise’. Essentially they are a

set of one-versus-one classifiers that are specifically focused on identifying noise. Each

classifier determines that the input data is noise if the accuracy is greater than a

threshold. Consequently, the noise detector specifies that the input data is noise if all

three classifiers indicate that it is noise. This way we eliminate the need for merging

audio data of different types into a single class. Once the noise detector finds that the



20

input data is of non-noise type, i.e., either speech, speech+music, or music, the music

detector starts to run to determine if the input data is of music type. The design of the

music detector is similar to the noise detector; the difference is that it consists of a set

of one-versus-one classifiers that are used to discern music. More specifically it tests

the input data stream against two types of classifiers ‘speech vs music’, and

‘speech+music vs music’ to identify music. Finally, if the result is non-music, a binary

classifier ‘speech+music vs speech’ is used to differentiate speech, and speech+music.
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Chapter 5

Experimental Results

In this chapter, we evaluated the performance of the proposed framework. More

specifically, we measured the classification accuracy of the proposed framework, a

non-adaptive approach, and an adaptive solution with the classification algorithm

based on ‘speech’ vs ‘non-speech’ [40], where the classification accuracy was defined as

the total number of correctly identified frames divided by the total number of input

audio frames. The effect of varying music genres on the accuracy was also considered.

5.1 Experimental Setup

Audio data were collected from cities of Brookings (Local), Sioux Falls (City),

Interstate-29 (Highway), and a stopped vehicle in South Dakota, United States. More

specifically, 10mins of audio data for each type were collected, i.e., speech, music (4

different genres), speech+music, and noise from varying driving environments, totalling

280mins of data. For testing, 5mins of audio data were collected for each audio type

and for each driving environment. Consequently, audio data of the total data size of

about 420mins were used. The audio streams were 16kHz mono with 16bit per sample.

Audio streams were divided into non-overlapping frames of 100ms, and for analysis

with longer frames, clips of 1 second were used.
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Figure 5.1: CDF of execution time.

5.2 Execution Time

The system execution time is important in applying the proposed system to

real-time applications such as mobile apps for smart transportation. We measured the

execution time for 1-second clips. The results are depicted in Figure 5.1. The CDF

graph indicates that, in most cases, the classification was completed in around 1

second which makes feasible to perform classification approximately every 2 seconds.

5.3 Classification Accuracy

We first analyze the accuracy of the proposed framework in comparison with a

non-adaptive approach as presented in Chapter 3. The average accuracy of the

proposed adaptive approach and a non-adaptive approach is shown in Tables 5.1
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Table 5.1: Accuracy of the proposed framework.

Category Highway Local City Idle Average

Speech 92.3% 91.4% 96.5% 96.3% 94.1%
Music 97.1% 92.9% 97.8% 98.2% 96.5%
Speech+Music 93.5% 89.8% 88.7% 92.0% 91.0%
Average 94.3% 91.4% 94.3% 95.5%

Table 5.2: Accuracy of a non-adaptive approach.

Category Highway Local City Idle Average

Speech 35.6% 82.8% 73.4% 96.6% 72.1%
Music 97.4% 98.1% 99.1% 98.2% 98.2%
Speech+Music 57.4% 84.4% 81.6% 92.0% 78.9%
Average 63.5% 88.4% 84.7% 95.6%

and 5.2 respectively. As shown, the accuracy was significantly improved for all driving

environments compared with a non-adaptive approach. The highest improvement in

the accuracy was achieved in the highway: the accuracy was improved by 166% and

64% for speech, speech+music, respectively, compared with a non-adaptive approach,

whereas the accuracy for music was not improved much because the music type was

accurately classified in a non-adaptive approach because of the distinctive acoustic

characteristics of music. An interesting observation was that no significant correlation

between the noise level of driving environments and the accuracy was found after

applying the adaptive method, e.g., the accuracy for local road was smaller than that

for the highway. This result indicated that the impact of varying noise levels in

different driving environments was successfully relieved by applying adaptive

classification models.
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Table 5.3: Accuracy of an adaptive approach in comparison with a classification algo-
rithm for in-vehicle environment.

Category Highway Local City Idle Average

Speech 94.9% 94.5% 92.8% 96.3% 94.6%
Music 96.0% 69.1% 82.9% 86.2% 83.6%
Speech+Music 89.7% 89.0% 85.7% 94.7% 89.8%
Average 93.5% 84.2% 87.1% 92.4%

We then used a different classification algorithm [40]. Recall that this Xie’s

algorithm is based on binary classification into ‘speech’ and ‘non-speech’ data types.

The accuracy obtained when the Xie’s algorithm was applied is shown in Table 5.3. A

notable observation was that the Xie’s algorithm had significantly low accuracy for

music, as previously noted in the CDF graph (Figure 4.2). More specifically, the

average accuracy for music was 13.4% smaller than that for the proposed classification

algorithm. The reason was that speech and music+speech data were combined as a

single ‘speech’ class, and when music data were compared with the ‘speech’ class, a lot

of music frames were classified into the ‘speech’ class. This also explained the slight

increase of the average accuracy for speech. In contrast, the proposed classification

algorithm does not rely on such combined classes, and consequently, it achieved 0.9%,

8.6%, 8.2%, and 3.4% higher accuracy for highway, local, city, and idle, respectively,

compared with the Xie’s algorithm in our experimental settings.

5.4 Effect of Music Genre

We performed supervised training with only a single music genre, i.e., pop

music. In order to further improve the performance, we trained the classification model
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Figure 5.2: Accuracy for music with different genres.
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Figure 5.3: Effect of two-level SVM
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for music taking into account different music genres (i.e., jazz, classic, and rap) and

measured the accuracy. For this set of experiments, we used the highway data. The

results are depicted in Figure 5.2. As shown, when it was trained with a single musical

genre, the accuracy for other music genres was degraded. It was observed that after

training with multiple music genres, the accuracy was increased by 8%, 5%, and 3% for

jazz, classic, and rap, respectively.

5.5 Effect of Two-Level SVM

We presumed that the reason for the low accuracy for Music is because Music

data are quite similar to Speech+Music. Based on the CDF graph, if the accuracy for

Music is lower than 30%, it is highly likely to be speech in all driving environments.

Similarly, we accepted it as music if the accuracy is greater than 90%. The problem

was the results between 30% and 90%. We need to ensure that the input data was

really music by performing a separate classification. The results after applying one

more classification are shown in Figure 5.3.
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Chapter 6

Conclusion

6.1 Summary

We have presented the design, implementation, and evaluation of an adaptive

multi-class music classification framework specifically designed for in-vehicle

environments. The proposed framework classifies an input audio stream into four

different audio types, i.e., music, speech, speech+music, and noise. The classification

accuracy was substantially improved by generating individual classification models for

varying driving environments and adaptively applying the models based on real-time

identification of driving environments. A novel classification algorithm based on

effective feature selection allowed for improved classification accuracy for driving

environments with varying noise characteristics.

6.2 Contributions

As outcomes of this work, we collected more than 420mins of real-world audio

data (i.e., speech, music, speech+music, and noise) with a smartphone microphone

from various driving environments (i.e., highway, local road, city, and stopped vehicle).

Additionally, a case study performed with different driving environments demonstrated

that the proposed framework substantially improved the mean audio classification

accuracy by up to 166%, and 64% for speech, and speech+music, respectively,

compared with a non-adaptive approach in our experimental settings.
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6.3 Future Work

Future work includes identification of the effectiveness of other features such as

pitch-density-based features [40], and bottleneck features extracted using deep neural

network [44], analysis of the effect of new features, and incorporation of those features

in order to further improve the accuracy of audio classification.

Another important future work is to evaluate the performance of the proposed

framework in other test scenarios, e.g., with different vehicle models, and weather

conditions.

Finally, the proposed framework will be applied to a variety of smart car apps.

Examples include an automatic voice control app which that can identify human voice

to automatically adjust the car radio volume.
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