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ABSTRACT 

 NOVEL TECHNIQUE OF FABRICATION OF POROUS COPPER AND COPPER 

OXIDE TO IMPROVE THE LITHIUM ION BATTERY PERFORMANCE 

RAJU PRASAD GHIMIRE 

2018 

Due to widespread and long-term application, Lithium-ion batteries are considered 

as promising power sources for portable devices, satellites, medical instruments, computers, 

electric vehicles and grid application. It started to occupy the market once Sony 

commercialized in 1991. Rechargeable lithium ion batteries drawing people attention due 

to their peculiar properties such as high energy density and low self-discharge compared to 

other alkali metals. However, these widespread and long-term applications still require 

better batteries in terms of performance, safety and cost, which can be achieved by better 

utilization of anode materials and/or an optimized design of battery configuration. There are 

several challenges in improving the battery performance, safety and to reduce the cost. The 

goal of this work was to design a high-performance battery with fabricating porous current 

collector and copper oxide. 

Current collector are essential features of batteries and being responsible for 

efficient charge transport to active electrode materials. In this study, a chemically treated 

high surface area, three-dimensional copper current collectors considerable improve the 

anodic performance of a batteries, by means of enhance in specific capacity and control over 

the fast decay. The electron transfers rapidly at the junction of the metal foam, the active 

material, and the electrolyte which increase the rate of redox reaction. On the other hand, 

the transfer of electron relatively slowly between foil current collector and the electrolyte 
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surface of the active material. Impedance analysis also reveals that the charge transfer 

resistance is lower in porous copper current collector than the non-porous one. Unique 

properties of porous copper current collector improve the first discharge specific capacity 

of Li2Ti5O12 (LTO) from 168.5 mAhg-1 to 235.8 mAhg-1 in comparison with the non-porous 

copper current collector. Moreover, fabrication of binder-free copper oxide on top of porous 

copper can open new window to the battery research.



1 

Chapter 1: INTRODUCTION 

1.1 Background 

The difficulty to meet the rapidly growing energy consumption in the world has 

raised concerns, with depletion energy resources and heavy environmental impacts such as 

ozone layer depletion, global warming, climate change, etc... Growth in population, 

increasing demand for building services and comfort levels, together with the rise in time 

spent inside buildings, assure that the increasing trend in energy demand will continue in 

the future[2]. Figure 1.1 shows the energy consumption forecasting until 2052[3]. 

Figure 1.1 Current and future of energy consumption with economic development [2] 

1
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Current issue of the 21st century is the energy storage rather than the energy 

generation. Energy can be generated from the renewable energy sources such as solar, wind 

etc. However, these renewables cannot produce the required energy all day long. There is 

no sun at night and wind does not blow perpetually despite their infinite abundance. This 

problem can be addressed by use of energy storage which can store the solar or wind energy 

when available and enable the use of the stored energy later at any time when needed.  

Several technologies have been developed to enable energy storage such as batteries, 

supercapacitors, pumped hydro, and flywheel. The above-mentioned energy storage 

technologies offer the benefit of temporary electricity storage and using it during peak 

demand hours. 

Energy storage devices especially batteries have been a vital part of everyday life 

with portable electronics. Batteries, lithium ion (Li-ion) batteries, have  been monumental 

in the development of widespread use of portable electronics. These batteries are also being 

pursued for large scale energy storage applications such as electric vehicles and grid 

storage. In addition, energy storage plays crucial role to reduce air emissions and reduce 

fossil fuel usage [4]. Researcher are motivated to design a battery technology based on 

lithium metal as anode because Lithium is the most electropositive (-3.04 V versus standard 

hydrogen electrode) as well as the lightest (equivalent weight M=6.94 g mol –1, and specific 

gravity =0.53 g cm–3) metal, thus facilitating the design of storage systems with high energy 
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density. Figure 1.2 depicts the comparison of battery technologies in terms of volumetric 

and gravimetric energy density [5]. 

 

  

 

Despite the limited source, the higher energy density makes the lithium ion batteries 

the most suitable for portable electronics applications. In addition, lithium is the lightest  

 

 

 

Figure 1.2 Comparison of batteries technologies in terms of volumetric and gravimetric energy density 
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metal and which is suitable for the portable batteries. Table 1.1 shows the Potential vs. 

standard hydrogen electrode (SHE) [4] 

 

 

 

 

The lithium ion batteries have continued to display remarkable progress in capacity, 

energy, power and cost reduction. Safety remains a big concern for the industry, but 

research and developments in new safer and stable material designs have improved the 

outlook for safer batteries. [6]. 

In a lithium ion battery, the properties of the anode and cathode materials mainly 

determine the specific capacity, cycle stability, and performance of the battery. With the 

active materials discoveries reaching a saturation stage, battery research now focuses on 

simpler designs and cost parameters of the existing battery components. It should be 

Table 1.1 Potential vs. standard hydrogen electrode (SHE) [4] 
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mentioned that the lithium ion batteries are still suffering from the low power density and 

severe capacity fading due to structural degradation and volume change of the active 

materials during charging and discharging. Various researches have been carried out to 

address the above-mentioned issues. One of the techniques is the employment of current 

collectors having different structure (foil, grid, net).  Figure 1.3 represent the Current 

battery problem [7] 

  

 

1.2 Literature review 

As like other development, batteries also have gone through a series of journey 

since 17th century. For the very first time the term “battery” have been used by Benjamin 

Franklin in 1749 to describe the linked capacitors[7].  Figure 1.4 is a picture of the  

Figure 1.3 Current battery problem [7] 
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connected capacitor[6], so called battery.     

 

 

On the other hand, people also believed that the first battery was invented more 

than 2000 years ago and found while constructing a railway in 1936 near Baghdad, called 

Parthian Battery. Figure 1.5 shows the first Parthian battery configuration. It consisted of 

a clay jar that was filled with vinegar solution into which an iron rod surrounded by a 

copper cylinder was inserted. This device produced 1.1 to 2.0 volts of electricity when 

filled with vinegar[8]. 

  

  

  

Figure 1.4 First battery configuration [6] 
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 With the financial supports in scientific research and investigations, researchers 

invested their time to develop an efficient battery which can unlock the door of advanced 

science and technologies. Table 2 shows the history of modern battery development. The 

period from 1990 to 2002 was considered as the most progressive year in the field of battery 

development[9]. 

 

 

 

Figure 1.5 First Parthian Battery configuration [7] 
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Table 1.2 Summary of the History of Battery inventors with contributions [8] 

Year Inventor Activity 

1600 William Gilbert (UK) Establishment of electrochemistry study 

1745 Ewald Georg von Kleist (NL) Invention of Leyden jar. Stores static electricity 

1791 Luigi Galvani (Italy) Discovery of “animal electricity” 

1800 Alessandro Volta (Italy) Invention of the voltaic cell (zinc, copper disks) 

1802 William Cruickshank (UK) First electric battery capable of mass production 

1820 André-Marie Ampère (France) Electricity through magnetism 

1833 Michael Faraday (UK) Announcement of Faraday’s law 

1836 John F. Daniell (UK) Invention of the Daniell cell 

1839 William Robert Grove (UK) Invention of the fuel cell (H2/O2) 

1859 Gaston Planté (France) Invention of the lead acid battery 

1868 Georges Leclanché (France) Invention of the Leclanché cell (carbon-zinc) 

1881 Camile Alphonse Faure (France) Invention of lead grid lattice (current system) 

1899 Waldemar Jungner (Sweden) Invention of the nickel-cadmium battery 

1901 Thomas A. Edison (USA) Invention of the nickel-iron battery 

1932 Schlecht & Ackermann (Germany) Invention of the sintered pole plate 

1947 Georg Neumann (Germany) Successfully sealing the nickel-cadmium battery 

1949 Lewis Urry, Eveready Battery Invention of the alkaline-manganese battery 

1970s Group effort Development of valve-regulated lead acid battery 

1990 Group effort Commercialization of nickel-metal-hydride battery 

1991 Sony (Japan) Commercialization of lithium-ion battery 

1994 Bellcore (USA) Commercialization of lithium-ion polymer 

1995 Group effort Introduction of pouch cell using Li-polymer 

1995 Duracell and Intel Proposal of industry standard for SMBus 

1996 Moli Energy (Canada) Introduction of Li-ion with manganese cathode 

1996 University of Texas (USA) Identification of Li-phosphate (LiFePO4) 
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2002 University of Montreal, Quebec 

Hydro, MIT, others 

Improvement of Li-phosphate, nanotechnology, 

commercialization 

2002 Group effort Various patents filed on nanomaterials for batteries 

  

 Historically, the first battery was created by Alessandro Volta in 1880. Besides the 

controversy of first inventors, Alessandro Volta, being a physicist, rather than a 

physiologist or anatomist, concluded that it was the contact of the two-different metal that 

caused the frog legs to jump. After several experiments, he proposed and came up with the 

first functional battery called Voltaic Pile in 1800. Figure 1.6 represents the sketch of the 

first voltaic pile battery demonstrated by Alessandro Volta in 1801.  

Figure 1.6 This image depicts an 1891 painting by Giuseppe Bertini (1825-1898) of Alessandro 

Volta demonstrating his battery (called the “Voltaic Pile”) to Napoleon in 1801.  The work is 

currently maintained at the Volta Temple in Como, Italy 



10 

 

 

 

 Figures 1.7 and 1.8 shows the voltaic pile structure and working mechanism 

respectively. The battery consisted of zinc and copper/silver discs’ pairs stacked on top of 

each other in which cardboard soaked in brine or a piece of cloth (current 

electrolyte/separator) separated the electrode layers. That battery was not a perfect battery 

and had some issue. The first issue was the leakage of the electrolyte due to the 

compression caused by the weight of the discs on the soaked cloth which in turn causes the 

short circuit. But, this problem by William Cruickshank two years later, by changing the 

device packaging from a stack of layers to a box where the layers are laid accordingly. 

Second issue was the short battery life due to hydrogen bubble reactions at the copper 

electrodes through electrolysis as well as the zinc degradation during battery operation. 

However, this issues only figured out later by William Sturgeon[10] coating mercury on 

zinc surface[11].  

Figure 1.7 Voltaic battery, stacks of zinc and copper/silver separated by a blotting paper [10] 

Figure 1.8 Structure and working mechanism of Voltaic Pile [10] 
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 The issue of hydrogen bubbling was addressed by John Frederic Daniel by 

modifying the battery structure and arrangements, which was later considered as the first 

practical battery. Figures 1.9 and 1.10 show the structure and actual surviving example of 

the Daniell’s cell respectively. The battery was made of a copper bowl filled with a solution 

of copper sulfate in which a smaller size porous earthenware bowl filled with a zinc plate 

and sulfuric acid were dipped into. The earthenware bowl acted as the separator in which 

only ions could pass through, but solutions did not mix with each other. The device 

produced 1.1 V at room temperature[12].  

 

 

 

 

 

Figure 1.9 Proposed Daniell cell 

as the first practical battery 
Figure 1.10 An actual surviving example of the 

Daniell cell (Jensen-Thomas) Apparatus) 

Collection) [10] 
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Daniel’s cell was compromised and eventually improved to a safer model from  

1837 to 1885. Later, many different prototypes such as Birds’ cell, Gravity cell, Porous  

pot cell, Poggendorff cell, Grove cell and Dun cell were introduced. Figure 1.11 and 1.12 

represent the sample structure of porous pot cell and gravity cell respectively[7]. 

 

 

 

 

Since all existing batteries would be permanently drained when all their chemical 

reactions were spent, Gaston Plante realized the need of a rechargeable battery and 

developed a lead acid battery in 1859, which is an electrochemical cell and can be 

recharged through passing a reverse current[13]. Beside its unique rechargeable nature, 

lead acid batteries were too heavy to be sufficient for multiple applications except where 

Figure 1.11 Porous pot cell Figure 1.12 Gravity cell 
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the weight was not a limiting factor such as in automobiles. In 1881, Camile Alphonse 

Faure improved the Gaston’s version of lead acid battery making it more suitable for mass  

production[1, 14]. Figure 1.13. shows the device structure of a Gaston’s lead acid 

battery[15]. That lead acid cell was the first “secondary” cell. 

 

 

Scientists, one after another, were trying to improve performance of the rechargeable 

battery. In 1866, Georges Leclanche invented a battery with zinc as anode and manganese 

dioxide as cathode wrapped in a porous material. In 1886, after 20 years, Carl Gassner 

designed a cell without electrolyte, a variant of the Leclanche cell, which came to be known 

as the dry cell. In a similar way, first alkaline battery Nickel Cadmium (NiCd) with nickel 

as a positive electrode and cadmium as negative electrode in a potassium hydroxide 

solution as electrolyte, was invented by Waldemar Jungner in 1899[16]. People were 

Figure 1.13: The first rechargeable Gaston’s lead acid battery 
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looking for a battery with high energy density and lighter weight and NiCd seemed more 

promising than the lead acid battery at that time. 

Thomas Edison solved some minor issues about Jungner’s nickel-iron battery and 

commercialized it in 1903. A lighter weight version of Gaston’s lead acid battery was 

proposed by Edison which had a great advancement for electric and diesel-electric rail 

vehicle applications. Until 1959, much progress on primary (non-rechargeable) cells have 

been made; and zinc carbon and later zinc-manganese dioxide batteries based on alkaline 

electrolyte entered the market[16]. Figure 1.14 shows an alkaline primary battery- zinc-

carbon battery[17]. 

 

 

  

 As described earlier, lithium possesses the combination of lowest density and 

highest electrochemical potential After 1980, major discoveries of LiCoO2-cathode by 

John B. Goodenough, graphite-anode by Rachid Yazami led to the demonstration of the 

first lithium-ion battery in 1985 and was fabricated by Akira Yoshino. Ultimately, Sony 

Figure 1.14 Commercialized zinc-carbon battery, an alkaline primary battery [18] 
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commercialized the lithium-ion battery in 1991[10, 18-20]. However, no new major battery 

system has entered the commercial market since the invention of Li-phosphate in 1996.  

 The superior energy density enabled the lithium ion batteries to provide the same 

amount of energy as other battery chemistries with a much smaller volume or weight. 

Therefore, since the invention to present day, lithium ion batteries have been revolutionary 

in portable electronics and are being heavily investigated for electric vehicles and grid 

storage applications. Numerous applications are now increasing the demand for batteries 

with much higher energy density and faster rate performance. In recent years, much effort 

has been made to identify the new materials and enhance the capacity[21]. 

 

1.3 Previous work 

In 1990, Debra Rolison et al.[22, 23] designed the first porous internal architecture 

of a device which can be used as a catalyst in sensors. That technique allowed people to 

use porous lead in lead acid battery and they found the mechanical and electrical properties 

are convenient for high current. By considering the above phenomenon of porous structure, 

there has been a great interest in designing porous metals. 

The research on foamed and porous metallic materials has become an attractive 

research field since they exhibits many unusual combinations of physical and mechanical 

properties, such as permeability of air and water, impact energy absorption capacity, 

unusual acoustic energy absorption ability, and lower thermal conductivity, etc [24]. 

Various fabrication techniques have been used to prepare porous copper such as dealloying, 

powder sintering, electrochemical deposition, solid-gas eutectic solidification method, 
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casting, and templates [25-28]. Most of the above-mentioned processes are complex, 

demanding and the preparation cost is too high. 

As mentioned above porous metals containing a large number of pores shows 

various characteristics such as large specific surface area and low density, which are 

different from those of bulk metals[29, 30]. Porous metals are not only lightweight and 

high-strength, but also multifunctional. These include many special properties including 

shock damping, acoustic absorption, heat dissipation, electromagnetic shielding and high 

electrical conductivity [31-34].  

Formation of porous copper has been the subject of many investigations for the past 

few decades. Copper containing several pores has been studied for different industrial 

applications. Porous copper having large specific surface area, high electrical conductivity 

and other special functionalities[35-40] make copper a specialized product for applications 

in separation systems, sensors, batteries, fluid flow control, self-lubricating bearing, 

catalysts and electrochemistry. Moreover, the porous metals with different porosity and 

structure may be synthesized for filters, metal-matrix composites, brakes, and damping 

elements, etc[41] Because of its special porous structure and novel physical and mechanical 

properties, porous copper is widely studied in many fields, as catalyst, separator, sensor, 

&especially in high-performance lithium-ion batteries[42-47]. In 2o16, Liu et.al 

summarize the preparation techniques of porous copper for Lithium-Ion battery 

application. These includes Casting, Powder Metallurgy (PM), Dealloying and 

Electrodeposition. However, these methods have their own limitations. Casting and 

Powder Metallurgy techniques required a high temperature (800-1300oC) and pressure 

(0.2-300MPa). On the other hand, the corrosive chemicals have been used in Dealloying 

method. The porous copper fabricated by these methods have low porosity (< 80%) and 
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bigger pore size (several hundreds of µm) in comparison with electrodeposition[48]. 

Fabrication of porous copper using electrodeposition technique usually occurs under 

electric potential or current density with gas bubbles as dynamic templates [49, 50]. The 

electrodeposition technique has been used, since it is a simple and rapid method for 

preparing porous and reticulated Cu films with small pore size (in several tens of µm) high 

porosity (80–99%), and thin thickness (in several tens of µm)[45-47]. Compared with 

traditional fabrication techniques, electrodeposition method has attracted much attention 

due to its comprehensive advantages of low cost but still required to heat the sample in 

many cases. But anodization technique using glycerol, DI water and sodium bicarbonate 

has not been reported yet.  

 Unlike the planner copper, porous copper improves adhesion of the active material 

[51, 52], and accommodate strain occurring during the lithiation-delithiation reaction[53-

55] . Porous current collectors also accelerate surface electrochemical reactions[56, 57] 

and lithium ion transport[57]. Porous copper current collectors are also well known for 

their chemical compatibility with battery electrolytes and ability to improve the cycle 

performance of LIBs[58-60]. However, there are some challenges in using porous metal as 

current collector for Li-ion batteries because conventional porous metal generally have low 

tolerance during charging or discharging, especially at high voltages and preparation cost 

also too high, but porous copper is particularly interesting in this respect, due to its 

relatively low cost and convenient mechanical/electrical properties for high currents[61, 

62]. Additionally, the porous metal should not react with any active materials or 

electrolytes during charging and discharging[63, 64] and the porous copper does not have 

any side reaction with other chemicals used in LIB. 
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High surface area porous copper current collectors considerably improve the 

performance of cathodes and anodes in batteries, but their technological implementation is 

impeded by the complexity of their preparation, which needs to be simple, fast, and energy 

efficient. An alternative, innovative, simple and environmental friendly method need to be 

developed to fabricate porous copper using anodic oxidation. Pores on copper were 

achieved by anodically oxidizing copper using an electrolytic solution under an electric 

potential. The chemically treated porous copper has a porosity of 81.8% and a high specific 

area. Use of porous copper as current collector not only facilitates the redox reaction with 

shorter electron and lithium ion transfer length by providing a high specific area, but also 

allows the construction of a lightweight battery. This makes porous copper very attractive 

current collector for Li-ion batteries.  

Another remarkable discovery by Tarascon’s group in 2000[65-67] was the 

transition metal oxide as the anode materials for the lithium ion batteries since they have 

higher capacities (600-1000 mAhg-1). However, the transition-metal oxide is beset by 

formidable technical difficulties such as charge transfer limitations associated with poor 

kinetics that results mainly from interfacial phenomena between active materials and 

current collectors[68-70]. The poor kinetic process and electrical conductivity can affect 

conversion reactions of transition-metal oxides with lithium resulting in the large 

polarization, the low energy efficiency and the poor cycle performance[71, 72]. To fully 

utilize the concept of conversion reactions for the manufacture of high performance lithium 

ion batteries, it is challenged to create an advanced electrode design/configuration[68]. For 

the traditional casting-derived electrode[73-75] ,transition metal oxide electrodes usually 
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have some difficulty to maintain their close contact with current collectors over several 

tens of charge/discharge cycles[76]. 

 Recently, metal oxides have been extensively studied as ideal components for the 

electrode materials of LIBs with significantly theoretical capacity[66, 77-80]. In particular, 

CuO has drawn considerable attention with high theoretical capacity (674 mAhg-1) than 

commercial graphite (372 mAhg-1), low cost, high safety and environmental 

friendliness[67, 81]. However, CuO suffering from the unavoidable huge and uneven 

volume expansion (about 174%) lead to the degradation, cracking and pulverization of the 

electrode material, which results poor capacity retention and dramatic capacity loss[82]. 

Several efforts have been focused on the optimization of electrode designs for efficiently 

marrying current collectors with transition-metal oxide anode materials[68, 69, 71, 83, 84]. 

The configuration of nanoarchitecture electrodes has been an effective route to overcome 

above-mentioned drawbacks. In this regard, various types of CuO nanostructures have been 

exploited for lithium ion electrode materials[85-89],which propose that the nanoscale 

microstructure provides a large free space to allow fast Li ion across the interface and 

releases the large volume variation during the Li insertion and extraction process, resulting 

in the suppression of electrode material degradation[90].  But, Jun Li et al. in 2017 put their 

effort to generate copper oxide on top of the porous copper and achieve higher capacity 

(940 mAhg-1) for the first discharge, which is higher than reported before[90]. However, 

in situ generation of copper oxide on top of porous copper through anodization has not 

been done before. 
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1.4 Motivation 

Fabrication of an efficient current collector and binder free copper oxide on top of 

porous copper, by using a novel, convenient, scalable, efficient, cheapest and 

environmental friendly way to enhance performance of energy storage device like the 

specific capacity of LIB at different charging/discharging current rate. 

 

1.5 Objectives 

The major objective of this research work was to enhance the performance of the 

lithium-ion battery by using porous copper current collector and binder free copper oxide 

as battery anode to accomplish the mentioned objectives, the following tasks were 

performed: 



21 

 

 

 

1) Optimize the anodization parameters for copper oxidation. 

2) Fabricate and optimize pores on copper foil substrate by anodization.  

3) Fabricate the copper oxide by heating after anodization. 

4) Fabricate Li-ion half-cells using porous and planner current collector with lithium 

titanite electrode and investigate charge/discharge performance. 

5) Fabricate Li-ion half-cells using electrodeposited copper oxide as potential anode 

and investigate charge/discharge performance.  
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Chapter 2: THEORY 

Battery 

Battery is an electrochemical device that converts chemical energy to electrical 

energy. A battery consists of a multiple number of electro chemical cells. Major attributes 

of a battery include its capacity, durability, charging time, safety, toxicity and cost which 

determine the battery market. There are two kinds of battery available: non-rechargeable 

(Primary) and rechargeable (Secondary) batteries. Primary Batteries are designed to be 

used until the energy is exhausted and need to be replaced with a new one. Their chemical 

reactions are not reversible but can be used immediately after the fabrication. However, 

secondary batteries can be recharged since their chemical reactions are reversible but are 

required to be charged before use[91]. Brief examples and comparisons of primary and 

secondary batteries as follows: Table 2.1 and 2.2 shows the list and comparative study of 

primary and secondary batteries.  
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Table 2.1 List of Primary and Secondary Batteries  

Table 2.2 Comparative study of primary and secondary batteries [15] 
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2.1  Secondary Batteries 

Rechargeable batteries play an important role in our lives and many daily chores  

would be unthinkable without the ability to recharge the batteries. The most common 

rechargeable batteries are lead acid, Nickel Cadmium (NiCd), Nickel metal hydride 

(NiMH), and Li-ion. Current research also shows significant results from other battery 

technologies such as sodium-air, sodium-ion, lithium-air, solid state batteries and so on but 

are in research and development stage.  

 

2.1.1 Working principle of Lead acid battery 

Lead acid battery was the first rechargeable batteries where lead, lead dioxide and  

sulfuric acid was used as anode, cathode and electrolyte respectively. Low specific energy, 

environmentally hazardous, slow charge/discharge and limited cycle life are the issues with 

Battery

Primary Secondary

Lead Acid NiCd NiMH Li-ion

Figure 2.1 List of secondary batteries 
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lead acid t battery. However, lead acid batteries are cheap to manufacture, has high specific 

power, good performance at low temperature and excellent performance at high 

temperature and low self-discharge as well. After the year 2009, almost all the lead acid 

batteries are being recycled. Figure 2.2 shows the charging and discharging processes of 

lead acid battery[92].. 

The chemical reactions that occurs inlead acid battery can be written as:  

Pb(s) + HSO-
4(aq) PbSO4(s) + H+ (aq) + 2e- [ at Anode]  

PbO2(s) + HSO-4 (aq) + 3H+ (aq) + 2e-  PbSO4(s) + 2H2O [ at Cathode] 

 

Pb(s) + PbO2(s) + 2H2SO4(aq) 2PbSO4(s) + 2H2O(l) [ Overall reaction] 

Figure 2.2 Charging (upper) and Discharging (lower) at lead acid battery [48] 
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2.1.2  Working principle of Nickel-Cadmium battery 

Nickel based batteries (Nickel-Cadmium, Nickel-Iron, Nickel-Hydrogen, Nickel-

Zinc and Ni-metal hydride) started developing to address the limitations of the lead acid 

batteries. Nickel-Cadmium (NiCd), first alkaline battery, is one of the most rugged and 

enduring batteries and has long service life. Because of the toxic nature of Cd in NiCd 

batteries, it is being replaced with other chemistries, but it retains its status in aircraft due 

to its good safety records. Figure 2.3 shows the structure of NiCd battery. 

  

Figure 2.3 Nickel Cadmium battery schematic diagram 
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Chemical reactions that occur in nickel-based battery can be written as: 

NiO(OH) + 2H2O + 2e-                  2Ni(OH)2 + 2OH- [at cathode] ----------Eqn. (1) 

Cd + 2OH- Cd(OH)2 + 2e- [at anode if cadmium is anode] 

In above equation (1), the nickel (III) oxide-hydroxide NiO(OH) which has been 

the active material of the cathode will produce Ni(OH)2 as a product of the discharge. 

Similarly, during the charge or preferably recharge process, the NiO(OH) will be 

reconstituting in the presence of the water again. As lead acid battery, nickel based battery’s 

reactions happen in an aqueous environment as well[93]. However, the alkaline electrolyte 

is not consumed in recharge reaction, which lead to higher cell stability since the state of 

charge is not determined by the specific gravity of the electrolyte. 

Nickel based batteries have fast charge/discharge rate compared to other secondary 

batteries. It also has mechanically robust structure, excellent performance at low 

temperature. In addition, in terms of price per cycle, NiCd can be considered as the cheapest 

and has long life and can be stored in discharged state as well. However, Nickel based 

batteries suffer from memory effect, high discharge rate in unused condition and has low 

open circuit voltage and low specific energy as well[13, 94, 95]. 

 

 

2.1.3 Working Principle of Lithium-ion Battery 

In lithium ion battery, metal oxide works as cathode and carbon-based material 

typically graphite works as an anode and electrolyte is a lithium salt dissolved in an organic 

solvent. The two electrodes are separated by a polymer separator membrane for electrical 
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isolation but the membrane is ionically conducting[49]. Discharge of a battery happens by 

oxidation of anode or reduction of cathode and reverse happens during charging. Variety 

of materials can be employed as electrodes in lithium ion batteries and different 

performance level can be achieved. Figure 2.4 shows the ion flow mechanism in Lithium 

ion Battery and Figure 2.5 shows the charging and discharging mechanisms of a full cell 

lithium ion battery. 

 

Figure 2.4 Ion flow in lithium-ion battery [49] 

Figure 2.5 Charging and discharging reaction of full cell lithium ion battery 
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The chemical reactions taking place in lithium ion battery can be written as: 

During Charge: 

𝐿𝑖𝐶𝑜𝑂2  → 𝐿𝑖1−𝑥𝐶𝑜𝑂2 +  𝑥𝐿𝑖 +  +  𝑥𝑒− 

6𝐶 +  𝑥𝐿𝑖 + + 𝑥𝑒 −  →  𝐿𝑖𝑥𝐶6  

During discharge: 

𝐿𝑖1−𝑥𝐶𝑜𝑂2 +  𝑥𝐿𝑖 +  +  𝑥𝑒− → 𝐿𝑖𝐶𝑜𝑂2  

𝐿𝑖𝑥𝐶6 → 6𝐶 +  𝑥𝐿𝑖 + + 𝑥𝑒 −    

   

   

  

Regarding to the reaction mechanism, only six carbon atoms can bind one lithium  

ion. To improve the performance of a lithium ion battery, an efficient anode material is 

required which can hold more and more lithium ions. Several materials have been tried but 

there is a huge interest in silicon because one silicon atom can hold 4 lithium ions. 

Theoretically, silicon electrodes can store over 10 times than that of graphite. The lithium 

ion battery is known as a rocking chair battery due to charge carriers shuttling back and 

forth between two intercalating electrodes during the charge and discharge processes[96]. 

Table 2.3 summarizes the pros and cons of lithium ion batteries.  
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Table 2.3 AAdvantage’s and disadvantages of Lithium ion batteries [1] 

Advantage Disadvantage 

High specific capacity, cycle durability 

and columbic efficiency 

Degrades at very high or very low 

temperature; best performance in 0-45◦ C 

High specific energy per unit weight Thermal runaway if the cell is stressed; 

protection circuit needed 

Very low self-discharge rate Transportation of large quantities are 

subjected to the safety regulations 

More simple charge and discharge process 

compared to other secondary batteries 

Electrode and electrolyte material are 

changing on a continuous trend 

Long life cycling with minimum 

degradation; easy maintenance 

Expensive manufacturing process; 

almost 40% NiCd 

 

During the charging and discharging process of a Li-ion half-cell, where LTO used 

as cathode and lithium metal foil used as reference anode, the following reactions take 

place: During discharge (lithiation): Li4Ti5O12 + 3Li+ + 3e-  Li7Ti5O12 

During charge (delithiation): Li7Ti5O12  Li4Ti5O12 + 3Li+ + 3e- 

During lithiation, the lithium metal is oxidized liberating Li ions into the electrolyte and 

electrons into the external circuit. These Li ions diffuse towards the cathode where lithium 

titanate is reduced. During delithiation, the reverse happens and is accomplished using 
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external field. The theoretical capacity of active material can be calculated by the given 

equation with lithium titanate as an example:  

   

𝐹 ∙ 𝑥

𝑀
=
96458.3𝐶 𝑚𝑜𝑙⁄

459.09𝑔 𝑚𝑜𝑙⁄
× 3 = 630.32𝐶 𝑔⁄ = 175.57 𝑚𝐴ℎ/𝑔 

Where, F = Faraday constant = 96458.3 𝐶 𝑚𝑜𝑙⁄  

       x = Number of electrons transferred per unit = 3 

       M = Molecular weight of active material 

                             = 6.941*4+47.867*5+15.9994*12 = 459.09 𝑔 𝑚𝑜𝑙⁄  

 

2.2 Battery Terminologies 

The parameters that define the performance of a battery are:  

• C- and E- rates: A C-rate is a measure of the rate at which a battery is discharged 

relative to its maximum capacity. A 1C rate means that the discharge current will 

discharge the entire battery in 1 hour. A C-rate of 1C is also known as a one-hour 

discharge; 0.5C or C/2 is a two-hour discharge and 0.2C or C/5 is a 5-hour 

discharge. For example, if the battery has a capacity of 500Ah (Ampere-Hour), the 

discharge current of 500A will be needed to fully discharge this battery in one hour 

at 1C rate. Some high-performance batteries can be charged and discharged above 
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1C with moderate stress. Similarly, an E-rate describes the discharge power. A 1E 

rate is the discharge power to discharge the entire battery in 1 hour.  

• State of Charge (SOC) (%): It is an expression of the present battery capacity as 

a percentage of maximum capacity. SOC is generally calculated using current 

integration to determine the change in battery capacity over time. 

• Depth of Discharge (DOD) (%):  It is the percentage of battery capacity that has 

been discharged expressed as a percentage of maximum capacity. An 80 % DOD 

is referred to as a deep discharge. 

• Open-circuit voltage (V): It is the voltage between the battery terminals with no 

load applied. The open-circuit voltage depends on the battery’s state of charge and 

increases with state of charge. 

• Internal Resistance (Ω): It is the resistance within the battery, generally different 

for charging and discharging, also is dependent on the battery state of charge. As 

internal resistance increases, the battery efficiency decreases and thermal stability 

is reduced as more charging energy is converted into heat. 

• Cut-off Voltage (V): It is the minimum allowable voltage that generally defines 

the “empty” state of the battery. 

• Specific Capacity (Ah/kg): The specific capacity is the product of constant 

discharge current (A) and the time it takes to discharge (h) per weight of the active 

material in battery electrode (kg). It basically defines the amount of charge the 

battery can hold. 

• Specific energy (Wh/kg): The specific capacity is the product of discharge power  
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(W) and the time it takes to discharge (h)per weight of the active material within  

battery electrode (kg). It basically defines how long the battery will last. 

• Specific power (W/kg): This parameter is the ratio of the available power to the 

weight of the active material within anode electrode (kg). It basically defines how 

fast the battery can be discharged. 

• Charge Voltage (V): The voltage that the battery is charged to when charged to 

full capacity. Charging schemes generally consist of a constant current charging 

until the battery voltage reaching the charge voltage, followed by constant voltage 

charging, which decreases the charging current to a set value. 

• Float Voltage (V): The voltage at which the battery is maintained after being 

charge to 100 %SOC to maintain that capacity by compensating for self-discharge 

of the battery. 

• Nominal Voltage (V): The reported or reference voltage of the battery, also 

sometimes thought of as the “normal” voltage of the battery[97]. 

 

 

2.3 Principle of Current Collectors 

In batteries research, current collectors also play a significant role for the battery 

performance. Selection of current collectors is based on two characteristics: (a) Electronic 

conductivity and (b) Potential stability. For the half-cell of lithium ion battery, the working 

potential for anode is about 0.5V to 2.5V and as anode copper (Cu) has oxidation potential 

of 0.337V with respect to hydrogen and about 2.7V with respect to lithium. So, copper is 

suitable for anode material. On the other hand, the working potential for cathode is about 
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3.0V to 4.7V and aluminum (Al) has an oxidation potential of 1.662 V with respect to 

hydrogen and about 4.7 with respect to lithium. Nickel is also stable for anode current 

collectors like copper but nickel is expensive. If the potential does not match, side reactions 

occur and stability cannot be achieved at desired level[98]. 

  

2.4 Porous Copper Formation 

Porous copper is a network of copper crystals 

having voids. There are four well-established 

techniques which can be used to fabricate porous 

copper such as casting, powder metallurgy, dealloying, 

and electrodeposition[48]. 

Casting is done by passing the high-pressure gases (hydrogen and argon) of 0.2-2 

MPa into the melted copper at a high temperature of 1200-1300°C followed by waiting 

until it solidifies. Pores in copper can be found due to the solubility gap of the gases 

between liquid and solid[99]. The orientation, size, and density of the pores in the porous 

copper can be controlled by gas pressure, freezing direction, solidification velocity, transfer 

velocity, melting temperature etc.[29, 99-101]. 

Powder metallurgy is the technique to make porous copper by foaming during the 

sintering process after blending and compacting of raw materials containing Cu powders 

and foaming agents[27]. The orientation, pore size, porosity, morphology and mechanical 

properties of porous copper depends on the sintering time, sintering temperature, 

compaction pressure, and the amount, time, and size of the foaming agent. Pore obtained 

Figure 2.6 Copper metal 
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by this technique has porosity of 50-85% and pore size is 53-1500 micrometer. The 

required pressure (75-300 MPa) and sintering temperature (800-1000oC)[35, 102].  

Dealloying occurs under driving force when alloys are immersed into electrolyte,  

 

so that more reactive components are chemically or electrochemically etched owing to  

 

them high reactivity, but noble components remain stable in the metallic form. Despite its  

 

high pollution causing characteristic owing to the use of corrosive chemicals and  

 

contamination by other compositions, dealloying is an effective way to prepare Cu films  

 

with the pore size of several hundreds of nm (even down to several tens of nm) and  

 

certain thickness[103-107]. 

 

Electrodeposition usually occurs under applied current density or electric potential 

with gas bubbles as dynamic templates[49, 50]. The distribution, number and pore size 

explicitly depends on the potential or current density and time and they are also affected 

by concentrations of copper ions, temperature and composition of working electrodes[30, 

38, 42, 45, 47, 101]. Porous copper fabrication using the electrochemical anodization 

technique is a well-known technique, which uses the galvanostatic condition. This 

technique renders a wide range of porosity and thickness. For electrochemical etching of 

copper, copper substrate is placed in an etching cell consisting of electrolyte and a counter 

electrode. Separation between copper and the counter electrode in maintained at certain 

distance and the external bias is applied.  

2.5 Copper Dissolution  

Porous copper formation involves two simultaneous reactions: oxidation and 

dissolution of copper, which require valence band holes be driven to the surface under 

depletion condition. The exact mechanism by which the pore forms in copper substrate has 
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not been satisfactorily explained and several mechanisms have been proposed. The pore 

morphology, size and number depend on the applied current, voltage, electrolyte 

composition and oxidation time. Availability of valence band holes is the most important 

factor for pore formation, which is primarily determined by the dopants, glycerol-based 

electrolyte concentration and applied electric field. It has been believed that initially the 

copper surface is passivated with hydrogen. It is explained by the evolution of hydrogen 

gas during the process of electrochemical etching of copper and hole requirement for the 

dissolution to occur. The constant current of 0.20 A applied for 10 mins on the copper foil 

forms a layer of CuCO3 via nucleation and growth from solution. The dissolved Cu2+ ions 

that are needed for the precipitation of CuCO3 are produced from the metal dissolution that 

results in the formation of pores on the copper surface. However, the surface is fully 

passivated by CuCO3 [108]. Figure 2.7 and figure 2.8 shows the copper sample after 

anodization and the mechanism of pore formation during anodization.  

The overall reaction during the oxidation is  

C3H8O3 + 3H2O + NaHCO3 + Cu   CuCO3 + 3CO2 + NaOH + 14H+ + 14e-  
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2.6 Copper Oxide Fabrication Technique 

Copper oxide can be formed by heating the copper carbonate once copper carbonate is 

deposited to the copper after the anodization. The chemical reaction can be written as: 

 CuCO3   CuO + CO2 

Figure 2.7 Copper sample after anodization 

 
Figure 2.8 Mechanism of pore formation during anodization 
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Chapter 3: EXPERIMENTAL PROCEDURE 

3.1 Materials and Crystal Structure 

Fabrication of lithium ion battery using porous copper as a current collector involved 

several steps, materials and characterization. Materials like Copper, DI water, Soap, 

Acetone, Glycerol, Sodium bicarbonate are required to fabricate the porous copper. Battery 

fabrication was done by using Li4Ti5O12 (LTO >98%, MTI), which contains 90% of the 

particle are less than 4.24 μm, was used as an anode material (AM), pure Li metal foil 

(99.9%, MTI Corp) as a cathode (C), Polyvinylidene fluoride (PVDF) as a binder (B), 

Super Carbon as a conductive agent (CA), N-methyl pyrrolidone (NMP) as a solvent and 

Lithium perchlorate as an electrolyte.  

3.1.1 Copper 

The used copper (Purity > 99.99% and Density 8.94 g.cm-3) foil for battery anode 

substrate was from MTI corporation. One side of the foil 

was polished and thickness of the copper foil was 9μm. 

Figure 3.1 shows the picture of copper foil used for 

oxidation and finally as a battery substrate. 

Figure 3.1 Roll of copper foil 
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3.1.2 Glycerol and Sodium Bicarbonate 

The chemical formula for glycerol is C3H8O3 as 

shown in Figure 3.2. It was used as an oxidizing agent 

(electrolyte for the electrolysis). Pure glycerol (> 99.1 %) 

from the HACH has been used. Sodium bicarbonate 

(NaHCO3), as shown in Figure 3.3 is also known as 

baking soda and was used as a conductive agent during 

the electrolysis.  

3.1.3 Lithium Titanium Oxide 

It is also known as Titanate (LTO), Li4Ti5O12 as 

shown in Figure 3.4, (Purity >98%, MTI), which 

contains 90% of the particle are less than 4.24 μm and 

10% of the particles less than 1.09 μm, was used as an 

anode material in a Li-ion half-cell.  

3.1.4 Polyvinylidene fluoride 

Generally, it is known as a PVDF (Purity > 

99.5%) from MTI corporation. The chemical formula is 

-(C2H2F2) n- as shown in Figure 3.5. It was used as a 

Figure 3.2 Glycerol Structure 

Figure 3.3 Sodium bicarbonate structure 

Figure 3.4: Titanate Structure 

Figure 3.5: PVDF Structure 
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binder for the Li-ion cells. It contains moisture less than 0.1%.  

3.1.5 N-Methyl-2-pyrrolidone 

The chemical formula is C5H9NO as shown in 

Figure 3.6, mostly called NMP. The molecular weight is 

99.134 and has purity more than 99.5%. During the 

experiment, it was used as a solvent for PVDF. 

 

 

 

3.1.6 Super P Carbon 

Timcal super C45 conductive carbon black as shown 

in Figure 3.7 was used as a conductive additive. The size of 

spherical particles is called "particle size," and the size of 

the particle chain is called "structure." Various functional 

groups such as the hydroxyl or carboxyl group are found in 

the surface of carbon black. 

 

3.1.7 Copper(II) Oxide (CuO) 

Copper oxide is a black solid and inorganic 

compound also known as cupric oxide with structure 

shown in Figure 3.9. CuO was formed by thermally 

heating of copper carbonate after the anodic oxidation 

of copper. 

Figure 3.6 NMP Structure 

Figure 3.7 Super Carbon Structure 

Figure 3.8 CuO Structure 



41 

 

 

 

    

3.2   Fabrication Procedure 

3.2.1 Porous Copper and Copper Oxide Formation 

Pore on copper was formed by anodic oxidation of copper using electrolytic 

solution under electric potential. First, sample measuring 2.5 x 5 cm were cut from Cu foil 

and cleaned with warm soap water. Cleaned sample were ultra-sonicated for 15 min each 

in (a) deionized (DI) water (b) acetone and (c) isopropanol. Electrolyte solution was 

prepared using 1:2 volume ratio of DI water and glycerol along with 1 at. wt. % of sodium 

bicarbonate and the solution was stirred for an hour by using magnetic stirrer.  

Galvanostatic anodization was performed in a metal beaker. Copper electrode 

connected to the positive terminal of the power supply as anode and negative terminal was 

connected to the beaker itself. Power supply was used to supply the potential. Anodization 

was carried out in constant current mode at different current range from 0.01 A to 2.00 A. 

To form a regular pore on copper surface the constant current of 0.20 A was applied for 10 

min. Various parameter of the anodized sample was studied and best sample was used for 

the fabrication process.  
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Figure 3.9 shows the Schematic diagram of fabrication procedure of porous copper 

and copper oxide. Porous copper was obtained by ultrasonicating the anodized samples in 

isopropanol for 60 minutes to remove the green layer of copper carbonate. On the other 

hand, copper oxide was obtained by heating the copper carbonate instead of ultrasonicating 

the samples. The heating of the copper carbonate was done in the atmosphere at the 

temperature of 200oC for 10 minutes over the hotplate.  Figure 3.10 Anodic Oxidation 

Copper Sample(a) Schematic diagram (b) Laboratory Setup.  
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Figure 3.9: Schematic diagram of formation of porous copper and copper oxide 

Figure 3.10: Anodic Oxidation Copper Sample(a) Schematic diagram (b) Laboratory Setup 

a   b   
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3.2.2 Physical Characterization  

The morphology, chemical composition and microstructure of the samples were 

characterized using a scanning electron microscopy (SEM) on a HITACHI-S3400 as 

shown in Figure 3.12. SEM images were taken with an accelerating voltage 25kV, working 

distance on average of 13.4 mm and three different magnifications with 550, 1.10K and 

5.50K were employed. The SEM uses a focused beam of high-energy electrons to generate 

Figure 3.11: Anodized Copper sample before and after cleaning 

Figure 3.12: SEM-EDS Measurement system [66]. 
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a variety of signals at the surface of solid specimens. The signals that derive from electron-

sample interactions reveal information about the sample including external morphology 

(texture), chemical composition, making up the sample[109]. Figure 3.11 above shows the 

anodized copper sample before and after the cleaning. 

The structural composition of the samples was studied by using X-ray diffraction 

(XRD, D/MAX-RB, Rigaku, Japan) as shown in Figure 3.13 with Cu Kα (1.50598 0A) 

radiation at 40 kV and 200 mA. The used X-ray diffractometer is the Smart lab and it is 

one of the high-resolution equipment’s available today. The system incorporates a high 

resolution θ/θ closed loop goniometer drive system, cross beam optics (CBO), an in-plane 

scattering arm, and an optional 9.0 kW rotating anode generator. Smart Lab Guidance 

software provides the user with an intelligent interface that guides you through the 

intricacies of each experiment. 

 

Figure 3.13 X-ray Diffraction Measurement System. 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
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Filmetrics as shown in Figure 3.14 has been used to measure the reflectance of the 

porous surface of samples.  Films as thin as 1nm and as thick as 13 mm can be measured 

by measuring light not visible to the human eye. Results such as film thickness, color, 

refractive index, and even roughness are available in seconds. For porous copper, the most 

fundamental parameters of interest are layer thickness and porosity[109]. 

 

 

 

Figure 3.14 Reflectance Measurement System [66]. 
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Adhesion test of the copper foil before and after the anodic oxidation was 

performed by contact angle measurements. The water contact angle measurement of the 

copper sample was performed by the Data Physics OCA 20 system as shown in Figure 3.15 

before and after the oxidation.  

 

3.2.3 Others laboratory setup 

These are shown in the Figure 3.16. (a) Ultrasonicator (b) Hotplate, (c) Disc Cutter, 

(d) Sample, and (e) Vacuum Oven respectively. 

Figure 3.15 Contact Angle Measurement system. 
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3.2.4 Slurry Preparation 

The working electrode was prepared by a slurry coating method with 80 wt % of 

active material (AM), 10 wt % of conductive agent (CA), and 10 wt % of binder. NMP was 

added after stirring the mixture of AM CA for 4 hours by using the magnetic stirrer. The 

Figure 3.16. (a) Ultrasonicator (b) Hotplate, (c) Disc Cutter, (d) Sample, and (e) Vacuum Oven 
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solvent mixture was stirred for 1h. PVDF as a binder was added with NMP separately and 

stirred for 1 h and mixed with the solvent mixture of AM and CA. Again, the final mixture 

was stirred for 4 h. The speed of the magnetic stirrer was 400 rpm and it took 10 hours 

altogether to get final slurry[110]. Lithium titanate, Li4Ti5O12 was used as a AM and 

super P carbon black as a CA. Next, the slurry was poured on to the copper foil and ultra-

sonicated for 10 minutes before heating. The sample was being kept in vacuum pump at 

100 0C for 12 h. Doctor blade was used to maintain the thickness, for this experiment we 

used 50 μm. 

3.2.5 Copper Oxide Synthesis 

It was prepared by heating the copper carbonate (Green layer on top of copper) at 

200oC for 10 minutes. Copper carbonate on porous copper surface was obtained by 

anodization of copper. Figure 3.17 shows the Heating of Copper Carbonate. 

 

 

 

  

 

 

 

3.2.6 Battery Assembly  

Battery fabrication was done inside a Ar-filled glove box. Gloveboxes provide a 

clean, low-humidity, oxygen free environment for laboratory, cleanroom, electronic 

 Figure 3.17 Heating of Copper Carbonate 
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assembly and other critical processing operations in industries such as semiconductor and 

pharmaceutical manufacturing. The following step was used to assemble the coin cell: 

1. Figure 3.18 shows the schematic arrangement of the coin cell assembly. 

2. Punch the separator membranes into discs of 15 mm in diameter. 

3. Transfer the coin cell cases, springs and spacers, separators and working electrodes into 

the glove box (after flushing the exchanger three times with argon). 

4. Assemble the coin cells in the glove box.  

5. Add few drops of the electrolyte on to the cell cup and place the working electrode on 

it. Add another three drops of the electrolyte and place separator and add two more 

drops of the electrolyte before placing the lithium counter electrode on it. Place two 

stainless steel spacers and a spring on the lithium disc. 

6. Close the cell using the cell cap and crimp 3-4 times using the compact crimping 

machine. 

7. After assembling the cells, handle the finished cells using plastic tweezers (to avoid 

short-circuiting). 

8. Clean the excess electrolyte leaking from the sides of the cell using a paper napkin. 

9. The cell is ready for testing and can be taken out of the glovebox. 

10. The fabricated battery was left for at least 12 h for electrolyte wetting stability. 
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3.2.7 Electrochemical Measurements 

The electrochemical characterization of the assembled CR2032-type coin cells was 

done using the LAND CT2001A battery analyzer as shown in Figure 3.19. The cells were 

galvanostatically charged and discharged at different rates (1C = 170 mAhg-1) based on the 

weight of the anode material in a potential window of 0.01-3V versus Li+/Li at different 

constant current rate of 0.1C, 0.2C, 0.5C, 1.0C, 2.0C, 5.0C. 

 

 

 

 

Working Electrode  
 

Separator 

Lithium 

steel disc 

Spring 

Figure 3.18 Battery Arrangement and Fabrication at Glove Box 
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Cyclic voltammetry (CV) was conducted on an electrochemical workstation of 

Princeton Applied Research (AMETEK Versa STAT 3) at a scan rate of 0.2 mVs-1 from 

0.01 to 3.0 V. Electrochemical impedance spectroscopy (EIS) was also performed under 

the same instrument as shown in figure 3.20. The frequency range from 100 kHz to 0.01 

Hz was chosen at the open-circuit potential.  

 

Figure 3.19: LAND CT2001A battery Analyzer system setup. 
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Figure 3.20: System setup used for Electrochemical Impedance (EIS) and Cyclic Voltammetry (CV) measurement 
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Chapter 4: RESULTS AND DISCUSSIONS 

4.1 Morphological Characterization 

4.1.1 Anodized Copper 

 Change in copper surface was observed after the oxidation. The surface of the copper 

looked darker in color compared to the pristine copper as shown in Figure 4.1showing the 

anodized copper in the red circles. First the work has been done to optimize the electrolyte 

composition, ratio of DI water, Glycerol, and Sodium bicarbonate and second task was to 

optimize the anodization parameter such as applied current, voltage and time. After all the 

uniform pore on the copper surface has been observed. In figure 4.1 copper surface inside 

the red region were obtained after the anodization. Surface change can also visualize by 

naked eye. The copper surface changed to slight dark after the anodization. 

 

Figure 4.1: Copper surface changed by anodization 
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Figure 4.2 shows scanning electron microscope (SEM) images of copper surface 

anodized at constant current mode with different current values of 0.00A, 0.14 A, 0.2 A 

and 0.6 A for 10 mins. It was observed that when current was increased, the pore diameter 

also increased until a saturation current. Non-uniform pores started to appear on copper 

surface for sample anodized at 0.10A.  As the current increased from 0.10A, more pores 

with larger diameter were observed. As seen in the SEM images, uniform pores with larger 

diameter were only formed at 0.20A. Beyond this saturation current, initial pores etched 

away and new pores with smaller dimensions appeared when copper was anodized at 0.6 

A. In addition, it has been observed that different saturation current occurred for different 

oxidation time. In addition, small saturation current (0.20A) was enough for longer 

oxidation time (10min) and large current (2.10A) was required for shorter oxidation time 

(2min) to get uniform pores formation throughout the copper surface. It can be observed 

that the average diameter of the pores was about 7μm, which is large enough to 

accommodate the anode material. The porous structure of the copper enables higher surface 

area, light weight and high strength structure.  
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 After optimizing the anodization parameter on copper foil, applied that on the actual 

current collector foil and the Figure 4.3 was the actual SEM micrographs before and after 

the oxidation of the current collector foil. SEM images of as received copper foil (A-C) as 

received and porous copper foil (D-F) with different magnifications at 550, 1.1K and 5.5K 

respectively. The SEM images show that the anodized copper surface has numerous pores 

with average pore diameter of 7 μm. The anodization time, applied potential or current 

density, and concentrations of electrolyte solution determine the number and dimensions 

of pores [45, 101]. 

a b 

c d 

Figure 4.2: SEM images of copper surface anodized at different currents of (a) 0.0A (b) 0.14A (c) 0.2A 

(d) 0.6A 
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Figure 4.3: SEM micrographs of as received (A-C) and anodized (D-F) copper foil at different magnification 
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4.1.2 Copper Oxide  

Figure 4.4 shows the SEM images of anodized copper foil before (A) and after (B) 

heating. The anodized copper is covered by a green layer of copper carbonate. Once the 

carbonate layer was heated at 200oC for 10 mins, it was decomposed into copper oxide and 

carbon dioxide. As the carbon dioxide evaporated, only copper oxide is remained. The 

equation can be written as: CuCO3 → 𝐶uO + CO2   

 

B 

A 

Figure 4.4 SEM images of anodized copper foil before (A) and after (B) heating 
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4.1.3 Energy-dispersive X-ray spectroscopy (EDX) analysis of copper Oxide 

EDX spectroscopy analysis was carried out after the SEM measurement by using 

the same setup as shown in figure 3.12 above. Figure 4.5 shows the elemental mapping (A) 

and the distribution of copper (B) and oxygen (C). From the EDX analysis it was obvious 

that the distribution of copper and oxide throughout the surface was uniform. In addition, 

Carbo

Oxyge

Coppe

B 

A 

Figure 4.5 Elemental mapping (A) and the distribution of copper (B) and oxygen (C) 

 

C 
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the carbon peak along with the copper and oxygen peak shows that the surface also covered 

with carbon which is in favor with the prompt charge collection for the battery application.  

 

4.1.4 Structural characterization  

 XRD is used to predict the structural composition on copper before and after 

oxidation. Figure 4.6 shows the XRD patterns of as-received (non-porous) and oxidized 

(porous) copper foil. Both the non-porous and porous copper samples had distinct peaks at 

43.32o, 50.45o, 74.13o, and 89.94o corresponding to the (111), (200), (220) and (211) planes 

of Cu respectively.  These XRD peaks represented the face-centered cubic copper structure 

with cell parameter a = b = c = 361.50 pm, α = β = γ = 90oand Z = 4.[111]. It was observed 

that the peak positions did not change before and after the oxidation, indicating no obvious 

impurities.  

 

 Also, the XRD was used to characterize the formation of copper oxide formed by 

heating the copper carbonate layer on the copper surface. Figure 4.7 shows the XRD 

patterns of pure copper and copper oxide. It was found that new peaks at 36.14o, 48.52o, 

and 60.68o appeared for the copper oxide sample compared to copper sample. Those new 

peak positions exactly matched with the standard peaks assigned by the PDXL 2 software 

for copper oxide, indicating the formation of copper oxide after heat treatment. 
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Figure 4.6: XRD pattern of received(Non-Porous) and oxidized(Porous) copper foil 

Figure 4.7: XRD pattern of pure copper and copper oxide 
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4.1.5 Reflectance measurement of porous copper 

 Reflectance measurement was done using filmetrics f20. The observed reflectance 

% of all the samples prepared by galvanostatic anodization at the constant current of 0.2A 

for 10 mins was measured. Figure 4.8 depicts the Reflectance% from received planner 

(Non-Porous) and anodized (Porous) copper foil. As can be seen, the porous copper foil 

exhibited reflectance of less than 1%. In comparison, the non-porous copper showed a high 

reflectance of greater than 40%. 

All the samples exhibited reduction in the reflectance in the spectral range of 

interest from 400 nm to 800 nm. The decrease in the reflectance % can be attributed to the 

trapping of the light inside the pores. This observation is also a proper indication of 

formation of the pores throughout the surface of the anodized copper. 
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Figure 4.8: Reflectance% from received(Non-Porous) and oxidized(Porous) copper foil 
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4.2 Adhesion Test  

 Adhesion tests were done by measuring the contact angle between water and copper 

surface. Figure 4.9 shows Contact angle measurement between copper, non-porous (A & 

B) and porous (C & D), and water from left and right. It was observed that the contact angle 

was reduced from 77.5o to 48o after the oxidation which indicated that the porous surface 

was more hydrophilic than before. This can allow the electrode slurry to spread easily 

throughout the surface and help to achieve good adhesion between the current collector 

and battery electrode. Adhesion between current collector and anode material is very 

important to achieve stable cycling of a battery especially during high rate charge/discharge 

processes. At high current charge/discharge, high amount of stress can build up which may 

lead to electrode peeling off from the copper surface resulting in early battery failure. 
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Porous copper provides a more hydrophilic surface for battery electrode and can be 

beneficial for stable battery cycling.  

 

 

4.3  Absorption measurement of CuO 

Figure 4.10 shows the UV-VIS absorbance spectroscopy of copper oxide.  

 

The absorbance of the fabricated copper oxide had maximum absorbance in  

 

visible region (400-700) nm. The wavelength of the synthesized copper oxide can be  

 

calculated as follows:  

  

Figure 4.9: Contact angle measurement between copper, non-porous (A & B) and porous (C 

& D), and water from left and right. 

A B 

C D 
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Band gap (eV) = 1240/ λ (nm) = 1240/1033 = 1.20eV. The CuO can be used for  

 

photovoltaic application. 
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4.4  Electrochemical charge and discharge cycling performance   

 

Figure 4.11 shows the 2nd cycle charge/discharge voltage profiles of the half  

cells with lithium titanate as the working electrode on porous and planar copper foils 

measured at a constant C-rate of 0.1 C.  For both the cases of porous and planar copper 

foils, discharge/charge voltage plateaus were observed about 1.53/1.56 V. However, the 

reversible discharge capacity for the half cell with porous copper foil was 202.4 mAh/g, 

which is much higher than that of the planar copper-based cell with 159.2 mAh/g for the 

second cycle and the corresponding value for the first cycle was 235.8mAh/g and 

168.5mAh/g respectively. The higher capacity can be attributed to the enhanced 

electrochemical lithiation/delithiation or Li+ transport with the increase in the 

electrode/electrolyte interface facilitated by the porous structure of the porous copper foil 

Figure 4.12 shows the galvanostatic charge/discharge cycling performance of the 

half cells based on porous and planar copper foils obtained at different C-rates of 0.1C, 

Figure 4.10: UV-VIS absorbance spectroscopy of copper oxide 
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0.2C, 0.5C, 1.0C, 2.0C, 5.0C and back to 0.1C.  The cell with porous copper exhibited 

superior rate capability compared to the cell with planar copper foil. The cell with the 

porous copper retained 95.32% of the initial capacity after cycling at 0.1C, 0.2C, 0.5C, 

1.0C, 2.0C and 5.0C rates vs the cell with planar copper with 95.28%.  This superior rate 

capability and stability of the cell with the porous copper current collector can be attributed 

to the unique properties of the porous copper such as large surface area, highly conductive 

pathways, short electron and lithium ion diffusion lengths and buffer spaces to 

accommodate the stress during the cycling processes [15-21].  
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Figure 4.11: Galvanostatic charge-discharge voltage profile for 2nd cycle  
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 Figure 4.13 shows the specific capacity vs. cycle number of the half-cell CuO as an 

anode material. The cycle performance shows that the specific capacity at 8th cycle was 

more than 800 mAhg-1 which is higher than reported before. The cycle performance shows 

that the fabricated copper oxide by novel technique gave high performance[112, 113]. The 

enhance performance of copper oxide also arouse from the hidden porous structure of the 

Figure 4.12: Specific capacity vs. cycle number of half-cells on non-porous and porous 

copper collector at different C-rates  
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current collector as well. However, detail properties and reaction mechanism of the copper 

oxide as an anode material will be the future study of this research work. 
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4.5  Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) 

To understand the difference in the charge/discharge processes for different current 

collectors, cyclic voltammetry and EIS measurements were performed. Figure 4.14 shows 

cyclic voltammogram curves of the half-cells with the porous and planar copper as current 

collector cycled for 150 cycles. Both the cells demonstrated one cathodic peak located at 

1.45 V (vs Li) corresponding to Li intercalation into Li4Ti5O12 and one anodic peak at 1.72 

V (vs Li) corresponding to Li deintercalation from Li4Ti5O12. The cell with the porous 

copper demonstrated sharper oxidation and reduction peaks with higher values of current 

density in comparison to the cell with the planar copper. This revealed that the rate of redox 

Figure 4.13: Specific capacity vs. cycle number of the half-cell CuO as an anode material  
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reaction was faster for cell with the porous copper current collector than that of the planar 

copper current collector. The observation of this electrochemical behavior supports the 

capacity enhancement observed for the porous copper based cell. As can be seen in the EIS 

spectra also known as Nyquist plots, shown in Figure 4.15, the charge transfer resistance 

(represented by diameter of the depressed semicircle) for the porous copper current 

collector was lower than that the planar copper current collector. This confirms the superior 

electrode redox kinetics in case of the porous copper current collector compared to the 

planar copper. Additional advantage of porous copper is to reduce the insignificant mass 

in the current collector as thinner current collector is important to increase the energy 

density (Wh/cm2.) Oxidation of LTO in the half cell charging process happens as Li+ is 

being extracted from charged LTO shown in equation below: On the other hand, reduction 

of LTO in half cell discharging process happens as Li+ is being inserted into the LTO layers 

and the chemical reaction is as follows. This higher redox activity for porous Cu supported 

  xeLiOTiLiOTiLi 312541257

12571254 33 OTiLieLiOTiLi  
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the higher cycling rate performance from the charge/discharge tests.            
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Figure 4.15: EIS measurement of batteries after 150 cycles   

Figure 4.14: Cyclic voltammetry measurement for 5 cycles   
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Chapter 5: CONCLUSIONS 

5.1 Summary 

Many research predicts that the world energy consumption is rapidly increasing day 

by day and in the future more energy demand is unavoidable fact. Current issue of the 21st 

century is the energy storage rather than the energy generation. Energy can be generated 

from the renewable energy sources such as solar, wind etc. To mitigate such demand, 

several technologies have been developed to enable energy storage such as batteries, 

supercapacitors, pumped hydro, and flywheel. The above-mentioned energy storage 

technologies offer the benefit of temporary electricity storage and using it during peak 

demand hours. In this regard, Secondary batteries seem promising device because of its 

rechargeable nature although these sounds expensive for the first. Despite the advantage 

and disadvantage of all the battery prototypes, zinc-carbon and alkaline batteries from the 

primary battery and nickel cadmium, lead acid and lithium ion from the secondary batteries 

dominated the market due to their higher specific energy, specific capacity, columbic 

Re 

Zw  Rct  Rf  

Cd  Cf  

Figure 4.16 Equivalent circuit of half-cell model. 
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efficiency, capacity retention, cycle durability, very low self-discharge rate and more 

simple charge/discharge cycling properties[114]. Different electrical devices require 

different energy storage solution. For instance, electric vehicles for consumer use require 

high capacity batteries to lengthen the travel range between recharging stops. On the other 

hand, electric buses with regular stops equipped with charging outlets require faster 

charging electrical energy storage for frequent charging at its designated stops during 

service hours. Lithium-ion batteries are becoming mainstream battery choice for consumer 

and automotive applications. As always there is certain challenges often associated with it 

and the projection of only modest future cost reduction is the biggest challenge and believe 

it or not, a revolution in lithium ion batteries is in its final stages now. So, small 

improvement in battery performance and reduction of cost counts[115].  

Fabrication of an efficient current collector and binder free copper oxide on top of 

porous copper, by using a novel, convenient, scalable, efficient, cheapest and 

environmental friendly way to enhance performance of energy storage device like the 

specific capacity of LIB at different charging/discharging current rate. The major objective 

of this research work was to enhance the performance of the lithium-ion battery by using 

porous copper current collector and binder free copper oxide as battery anode to 

accomplish the mentioned objectives, the following tasks were performed: 

1 Optimize the anodization parameters for copper oxidation. 

2 Fabricate and optimize pores on copper foil substrate by anodization. 

3 Fabricate the copper oxide by heating after anodization. 
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4 Fabricate Li-ion half-cells using porous and planner current collector with 

lithium titanite electrode and investigate charge/discharge performance. 

5 Fabricate Li-ion half-cells using electrodeposited copper oxide as potential 

anode and investigate charge/discharge performance. 

Battery is an electrochemical device that converts chemical energy to electrical  

 

energy. A battery consists of a multiple number of electro chemical cells. Major attributes  

 

of a battery include its capacity, durability, charging time, safety, toxicity and cost which  

 

determine the battery market. There are two kinds of battery available: non-rechargeable  

 

(Primary) and rechargeable (Secondary) batteries. Primary Batteries are designed to be  

 

used until the energy is exhausted and need to be replaced with a new one. There  

 

chemical reactions are not reversible but can be used immediately after the fabrication.  

 

However, secondary batteries can be recharged since their chemical reactions are  

 

reversible but are required to be charged before use[91]. In lithium ion battery, metal  

 

oxide works as cathode and carbon-based material typically graphite works as an anode  

 

and electrolyte is a lithium salt dissolved in an organic solvent. The two electrodes are  

 

separated by a polymer separator membrane for electrical isolation but the membrane is  

 

ionically conducting[49]. Discharge of a battery happens by oxidation of anode or  

 

reduction of cathode and reverse happens during charging. Variety of materials can be  

 

employed as electrodes in lithium ion batteries and different performance level can be  

 

achieved.  

 

Porous copper has been fabricated by various method and most popular methods 

are Casting, Powder Metallurgy, Dealloying and Electrodeposition and also there are 
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different technique to synthesis copper oxide. However, the abovementioned methods are 

demanding and not environmental friendly and which limits its use in industrial 

application. But there is a need for a cost-effective and non-toxic anodization technique to 

obtain highly ordered porous copper for the use as an efficient current collector and copper 

oxide as a binder free anode material for Lithium battery application. The major goal of 

this research was to develop a cost effective and non-toxic technique to fabricate porous 

copper and copper oxide for energy storage application. Porous copper and copper oxide 

can be use in various devices as per their demand. For instance, sensor, supercapacitor, 

solar cell, battery and in most cases wherever copper has been using that can be replace by 

porous copper for more efficient and sensitive device[45,116-122].  

Formation of porous copper involves two simultaneous process one after another, 

oxidation followed by dissolution of copper. The most important factor for pore formation 

is availability of valance band hole which is primarily determined by the dopants, 

electrolyte concentration, back illumination and applied electric field. Similarly, copper 

oxide fabrication also happens in two steps. First, deposition of carbonate layer on surface 

of porous copper and heating of copper carbonate. The reason behind to use the glycerol 

based electrolyte for electrochemical anodization was to get the uniform porous structure 

throughout the surface and carbonate layer can go inside of every pore. Once the copper 

carbonate is heated copper oxide can be formed inside of each pore which improve 

adhesion force. Electrolyte was the composition of glycerol, DI water and Sodium 

bicarbonate. The separation between cathode and anode were 1 cm apart and applied a 

galvanostatic mode. Uniform pores were observed at 0.2 A for 10-minute anodization time. 

However, for different current different time can make same pore. During the experiment, 

it has been observed that higher current need less time and vice versa.  
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5.2 Conclusions 

This novel technique to fabricate porous copper and copper oxide on porous copper 

has several advantages such as low cost, non-toxic, environmental friendly and less 

corrosive electrochemical technique can be used to fabrication and the beauty of this 

experiment was both porous copper and copper oxide can fabricate by using the same 

technique and same setup. The only difference in the experiment is if porous copper is 

needed then wash the anodized sample by IPA and if copper oxide is needed heated the 

sample for 10 minutes at 200o C. One of its great emerging advantage is its commercialized 

nature as a current collector (porous copper) and anode material (copper oxide) for lithium 

ion battery. The objective of porous efficient current collector and advanced anode material 

was achieved using constant current anodization technique. Same pore morphology and 

copper carbonate layer can be achieved at different parameter. However, green layer of 

copper carbonate will be deposited more easily on the copper surface for longer time or 

higher current. Fabricated battery using porous current collector has more specific capacity 

and less impedance. Similarly, battery using the copper oxide on porous copper current 

collector gives batter performance. Porous copper and copper oxide both can be 

commercialized in lithium ion battery and so on.  

5.3  Future Work 

Future work should include investigation of the effect of porous copper current 

collector for material having high specific capacity like silicon for Li-ion batteries and the 

fabrication of the sensor and supercapacitor using porous copper and copper oxide. The 

most importantly it seems useful for the integrated device having battery and solar cell on 

each side. 
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